
Protocols for Distributed AAA Framework in
Mobile Ad-hoc Networks

Sondes Larafa and Maryline Laurent-Maknavicious

CNRS Samovar UMR 5157, TELECOM & Management SudParis, 9 rue Charles
Fourier, 91011 EVRY, FRANCE

sondes.larafa@it-sudparis.eu Maryline.Maknavicius@it-sudparis.eu

Abstract. Ad-hoc networks are subject to malicious attacks given their
wireless nature and high dynamicity. Various security issues have been
raised so far, especially access control. In a previous work, we focused
on a light and distributed AAA framework using a six message-AAA
protocol, and an access token mechanism. In this article, we optimize
this AAA protocol through the definition of two new AVPs. Besides to
resist to spoofing and replay attacks, we design a two-way protocol that
allows destination nodes to check the access authorization validity of
their neighbors.

Keywords: Ad-hoc networks, distributed AAA infrastructure, access
phase, access token, SEND

1 Introduction

Ad-hoc networks are wireless networks able to self-configure with no adminis-
trator’s assistance. They are known as infrastructure-less networks, i.e. with no
central network entity for supporting packet routing. Ad-hoc networks might be
very dynamic. A mobile node joins an ad-hoc network simply by connecting to
the nearest already connected nodes. Once a mobile node is connected, it has
three functions: transmitting and receiving data, in addition to routing.

Ad-hoc networks are very useful for supporting military and rescue operations
because they are simple to set up and remain operational as long as there are
enough nodes to relay traffic. They are likely to play an important role in the
future networks by extending the operators networks coverage. This would enable
other users to get access even if they can not directly reach the networks. A
crucial prerequisite for this, however, is the availability of suitable authentication,
authorization and charging mechanisms to ensure revenues for operators [1].

AAA (Authentication, Authorization and Accounting) infrastructures pro-
vide these functions. They especially ensure security by applying access con-
trol. In the wireless, dynamic and infrastructure-less context of ad-hoc networks,
we are concerned by a distributed AAA infrastructure. We gave a detailed de-
scription of its design in [2] where we proposed a six-way protocol for mutual

75

authentication, and an access token to be used during the access phase after
authentication and authorization phase.

In the second section of this document we give an overview of our distributed
AAA infrastructure compared to centralized AAA infrastructures. Then in the
third section we review our six-way authentication protocol for which we give an
optimization through the definition of two new AVPs. The fourth section deals
with the access token usage to secure the access phase. We demonstrate that it is
vulnerable to spoofing and replay attacks if we just rely on SEND protocol for its
validation process. That is why we introduce a two-way protocol to be executed
between each newly authenticated node and any other selected destination node
during the access phase.

2 Distributed AAA infrastructure for ad-hoc networks

2.1 Existing Centralized AAA infrastructure

AAA infrastructures are classically used by network operators and service providers
to control the access to their networks and services, and also to perform account-
ing operations for next charging their subscribers. These ones are first authenti-
cated then granted access to certain resources.

Figure 1 shows a AAA infrastructure composed typically of a Client Node
(CN - the subscriber), the AAA server performing the authentication, and an
access point which relays the access requests from the CN to the AAA server.
The access point is also an Enforcement Point (EP) 1 which filters the traffic of
non authenticated CNs.

A classical AAA infrastructure refers to the two following protocols:

– An access protocol, like PANA, that supports the communications between
the CN and the access point for the authentication and authorization. As
such, the CN integrates a PANA client and the access point a PANA au-
thenticator.

– A AAA protocol that supports AAA exchanges between the AAA client
within the access point and the AAA server.

PANA and AAA messages carry the same EAP (Extensible Authentication
Protocol) messages [3]. Depending on the authentication method used, a fixed
number of EAP messages transport authentication and authorization material
for session establishment between the CN and the access point, thus between
the CN and the network.

Because lightness of ad-hoc networks solutions is very important, we con-
ceived a distributed AAA infrastructure that employs only AAA protocols (cf.
section 2.2).

AAA exchanges cover three phases:

1 The EP is responsible for enforcing policies with respect to authentication of sub-
scribers, authorization to access and services, accounting and mobility, etc

76

– Authentication and authorization phase: EAP messages carry the authenti-
cation and authorization elements. An EAP Success message is sent to the
CN if the authentication was successful and a session is established between
the CN and the access point.

– Access phase: CN sends traffic through the access point. The EP does not
filter this traffic.

– Accounting phase: the access point sends CN’s consumption information to
the AAA server.

Access protocol, e.g. PANA AAA protocol

Access Point: PANA Authenticator +
AAA client + Enforcement Point (EP)

Client Node (CN) AAA server

PANA Authentication Request/Answer
[EAP Request/Response]

AA−Request/AA−Answer
[EAP Request/Response]

AA−Answer [EAP Success]PANA Bind Request [EAP Success]

Traffic

Accounting Request/Answer

Authentication and
Authorization Phase

Access Phase

Accounting Phase

Fig. 1. Centralized AAA Infrastructure

2.2 Distributed AAA Infrastructure as defined in [2]

Introduction of AAA functionalities into ad-hoc networks is needed, as under-
lined in the introduction (cf. section 1). However it is inadequate to exploit
centralized AAA frameworks given the decentralized nature of ad-hoc networks.
That is why we designed a distributed AAA infrastructure [2] that has the fol-
lowing features.

n (n ≥ 1) AAA servers (AAA1, AAA2,..., AAAn), rather than one centralized
AAA server, ensure the AAA service. Each CN is a AAA client so it does not
need to contact an access point to join the AAA servers. This saves the exchanges
between the access point and the CNs. Moreover when a CN (i.e. a AAA client)
has been correctly authenticated, it acquire the functions of an Enforcement
Point. This means that it becomes responsible for examining the arriving traffic
and for filtering it if the generator node was not authorized.

During authentication and authorization phase, a CN contacts at least t
(1 ≤ t ≤ n) AAA servers in order to be authenticated correctly. t is the threshold

77

number required by [2] based on the principle of Shamir Secret Sharing [4].
In [2], we adapted the ISO [9798-3] three-way authentication protocol [5] to our
distributed AAA service thanks to the principle of Shoup’s signature shares [6].
The resulted authentication protocol makes use of public key certificates that
can be initialized into CNs by a third party (e.g. a Service Provider).

Mutual authentication occurs between a CN and the AAA servers. The CN
authenticates itself first in order to avoid overloading the servers with heavy
ciphering and deciphering operations during the first exchange. This improves
resistance to denial of service attacks.

At the end of the authentication and authorization phase, AAA servers send
an access token to the CN. This token is necessary during the access phase
because it proves that the CN was successfully authenticated by the AAA service
and authorized to use the ad-hoc network.

Since at least t AAA servers are required for CN’s authentication, and be-
cause our authentication protocol consists of six exchanges, at least 6 ·t messages
are necessary to achieve the authentication of one CN. It is obvious that the
number of authentication messages increases faster than t given the coefficient
6. Optimization of the number of the protocol exchanges is then a necessity.

3 Distributed AAA Protocol Optimization

3.1 Distributed AAA Protocol as defined in [2]

Figure 2 depicts our six way-protocol as we defined it in [2]. The AAA service
consists of n servers (n ≥ 3), and the threshold number t is equal to 3. A joining
node (JN - a CN) wishes to join the network. It obtains the list of the AAA
servers available as explained in [2]. Then it initiates AAA exchanges with 3 of
them e.g. AAA1, AAA2, and AAA3. It sends its identity in the first exchange.
The AAA servers reply in the second exchange with a random number RAAA

chosen jointly by them.
The third and fourth exchanges are inspired from the ISO three way-protocol

since we distributed it using Shoup’s principle. In the third exchange, JN signs
with its private key the random RAAA together with some data, namely a ran-
dom number RJN that it generates and the AAA service identity IDAAA. AAA
servers examine the validity of this signature. Then each server generates a piece
of the AAA service signature and sends it in the fourth exchange. JN combines
these pieces of signature according to Shoup’s principle [6]. A signature com-
puted by an entity A and sent to an entity B authenticates A towards B if B
establishes this signature integrity. So if JN’s signature and AAA service’s sig-
nature are valid, the mutual authentication between JN and the AAA service is
achieved successfully.

AAA servers reply if they consider that the JN authentication was successful.
Similarly JN triggers the fifth exchange if it succeeds to authenticate the AAA
service. The sixth exchange carries the access token of the JN: AAA servers agree
on a deadline TJN after which JN will have no longer access to the network and

78

will have to re-authenticate itself. Each server concatenates TJN with the IP
address of the JN and signs the result following Shoup’s principle (like it does
in the fourth exchange). The resulted piece of signature is concatenated to the
deadline TJN (cf. Fig. 2). Please have a look on the section 4 for further details
about the access token and its use during the access phase.

Client Node = Joining Node (JN):
AAA client + EP

AAA1 AAA AAA2 3

EAP Response / Type=Identity(ID)

EAP Response / Type=Identity(ID)

EAP Response / Type=Identity(ID)

EAP Request / Type=EAP−ADHOC (R)

EAP Request / Type=EAP−ADHOC (R)

EAP Request / Type=EAP−ADHOC (R)

EAP Respnse / Type=EAP−ADHOC (cert ,R ,ID , Sign (R , R , ID))

EAP Request / Type=EAP−ADHOC (cert , ID , Sign (R , R , ID))

JN

JN

JN

AAA

AAA

AAA

JN JN JNJN AAA AAA AAA

AAA AAA1 AAAJN JN JN

EAP Request / Type=EAP−ADHOC ()

EAP Success (T || Sign (IPCGA || T))
JN JN JNAAA1

1

2

3

4

5

6

EAP Respnse / Type=EAP−ADHOC (cert ,R ,ID , Sign (R , R , ID))
JN JN JNJN AAA AAA AAA

EAP Respnse / Type=EAP−ADHOC (cert ,R ,ID , Sign (R , R , ID))
JN JN JNJN AAA AAA AAA

EAP Request / Type=EAP−ADHOC (cert , ID , Sign (R , R , ID))
AAA AAA2 AAAJN JN JN

EAP Request / Type=EAP−ADHOC (cert , ID , Sign (R , R , ID))
AAA AAA3 AAAJN JN JN

EAP Request / Type=EAP−ADHOC ()

EAP Request / Type=EAP−ADHOC ()

EAP Success (T || Sign (IPCGA || T))
JN JN JNAAA2

EAP Success (T || Sign (IPCGA || T))
JN JN JNAAA3

Fig. 2. AAA protocol in distributed AAA infrastructures [2]

79

We named EAP-ADHOC the distributed authentication method that we
designed based on ISO [9798-3] norm.

3.2 Optimization

To optimize the protocol described in this section, the three last exchanges are
replaced by one exchange (cf. Fig. 3). The fifth exchange is in fact an empty
message where the JN informs the AAA service that the mutual authentication
was successful. It induces the access token sending by the AAA service. Actually
the success of JN’s authentication is a sufficient reason for AAA servers to send
the access token. Then it is up to the JN to trust or not the information sent by
the AAA service.

Now in the optimization, the last message is an EAP Success which informs
the JN that its authentication was successful. It carries the authentication infor-
mation of the AAA service and the access token of the JN. Both are encapsulated
into two new AVPs (Attribute Value Pair): AAA Authentication AVP encap-
sulates the authentication information and the Access Token AVP encapsulates
the access token (cf. section 3.3.).

Client Node (CN) = Joining Node (JN):
AAA client + EP

AAA1 AAA AAA2 3

EAP Response / Type=Identity(ID)

EAP Response / Type=Identity(ID)

EAP Response / Type=Identity(ID)

EAP Request / Type=EAP−ADHOC (R)

EAP Request / Type=EAP−ADHOC (R)

EAP Request / Type=EAP−ADHOC (R)

EAP Respnse / Type=EAP−ADHOC (cert ,R ,ID , Sign (R , R , ID))

JN

JN

JN

AAA

AAA

AAA

JN JN JNJN AAA AAA AAA

AAA AAA1 AAAJN JN JN

1

2

3

4

EAP Respnse / Type=EAP−ADHOC (cert ,R ,ID , Sign (R , R , ID))
JN JN JNJN AAA AAA AAA

EAP Respnse / Type=EAP−ADHOC (cert ,R ,ID , Sign (R , R , ID))
JN JN JNJN AAA AAA AAA

EAP Success [cert , ID , Sign (R , R , ID)], [T || Sign (IPCGA || T)]
JN JN JNAAA1

AAA AAA2 AAAJN JN JN
EAP Success [cert , ID , Sign (R , R , ID)], [T || Sign (IPCGA || T)]

JN JN JNAAA2

AAA AAA3 AAAJN JN JN
EAP Success [cert , ID , Sign (R , R , ID)], [T || Sign (IPCGA || T)]

JN JN JNAAA3

AAA Authentication AVP Access token AVP

Fig. 3. Optimized AAA protocol in distributed AAA infrastructures

80

3.3 New AVPs

AVPs are tuples < attribute name, value > that carry specific authentication,
accounting, authorization, routing and security information as well as configu-
ration details for the AAA exchanges. For example all EAP messages for JN’s
authentication shown in the figure 3 are transported in EAP-Payload AVPs.
However there is no AVP expected to transport AAA service authentication in-
formation at the same time as the EAP Success message in the EAP-Payload
AVP (cf. the last exchange in the optimized protocol, section 3.2).

AAA protocols such as Radius [7] and Diameter [8] support creation of new
attribute value pairs for the new applications needs. So we define the AAA au-
thentication AVP to carry the AAA service authentication information. Similarly
there is no special AVP for access token transportation. So we define an Access
Token AVP to carry the access token of the JN. The content of these two AVPs
is detailed in the next two paragraphs.

AAA Authentication AVP The data field of the AAA Authentication AVP
contains:

– certAAA: the X.509v3 certificate of the AAA service
– IDJN : the identity of the JN that it has sent in the first exchange
– SignAAAi(RAAA, RJN , IDJN): the piece of the AAA service signature com-

puted by the server number i on the random numbers RAAA and RJN to-
gether with the identity of the JN. Its length is equal to the AAA service
private key length. According to NIST recommendations 1024 bits RSA pri-
vate key length is enough for most of the applications until 2010 [9]. But this
maybe insufficient for communicating critical data.

These information actually form the authentication material of the AAA
service that are sent in the fourth exchange of the non-optimized protocol (cf.
section 3.1).

Access Token AVP The data field of the Access Token AVP contains:

– TJN : the access token deadline, it specifies the expiration time of the access
token as the number of seconds since midnight on 1st January 1970

– SignAAAi(IPCGAJN ||TJN): the piece of the AAA service signature computed
by the server number i on the concatenation of the IP address and the access
token deadline of the JN. The IP address is a Cryptographically Generated
Address (cf. section 4.1)

When the CN receives at least t Access Token AVPs from t AAA servers, it
computes SignAAA(IPCGAJN ||TJN) [6] then obtains its access token: ATJN =
TJN ||SignAAA(IPCGAJN ||TJN) (cf. Fig. 4). This access token is like a passport
for JN. Henceforward it is added to JN’s traffic during the access phase, and
JN’s neighbors check its validity to establish if the JN was authorized or not by
the AAA service. Figure 5 illustrates a JN sending a message M to a destination

81

Dest. This message includes ATJN and has IPCGAJN as a source IP address.
IN, R1 and R2 are relay nodes and operate as EPs. They examine ATJN before
relaying M. In the reality the only node that can verify ATJN is the immediate
neighbor IN (cf. section 4).

T || Sign (IP− CGA || T)
JN AAA JN JN

Access Token deadline

AAA service signature JN’s IP−CGA

Fig. 4. Access Token content (IP -CGAJN = IPCGAJN)

JN IN R1 R2 Dest

SEND

M : @src=IP−CGA , AT , DataJN JN

M M M M

Fig. 5. Access Token Adding to JN’s Messages

4 The Access Token Usage to secure the Access Phase

Unlike the solution proposed in [10], we make use of an access token to control
and secure the access to the ad-hoc network. Ad-hoc nodes need not keep a list
of authorized nodes in their caches. AAA servers need not broadcast a message
each time a new node is authorized to access the network, either.

Authenticated and authorized nodes must rather add their access tokens to
their messages in the beginning of the access phase to prove their legitimacy.
You can refer to section 3 for the access token content and the way it is obtained
by the JNs.

In this section we give an overview of CGA and SEND for better under-
standing of their role in the validity check of the access token during the access
phase.

4.1 Brief Introduction to CGA and SEND

Cryptographically Generated Address (CGA) [11] strongly links the
public key of a CN to its IP address. It is computed using CGA parameters that
include:

82

– the node’s public key
– a modifier: an integer that avoids collision by introducing randomness
– collision count: an integer equal to 0, 1 or 2

Once a CGA is computed by a JN, it becomes its IP address or IP-CGA. CGA
parameters are necessary for the JN’s neighbors to verify the CGA address. For
this reason SEND transports the CGA in the IP source address and the CGA
parameters in the CGA option of the same packet (cf. the paragraph below).

SEND [12] is a secure version of the Neighbor Discovery Protocol (NDP).
NDP enables a JN to discover its neighboring nodes or determine if they are
still reachable by mainly soliciting them to advertise their link-layer addresses.
So JN sends Neighbor Solicitation messages to its immediate neighbor IN from
which it receives Neighbor Advertisement messages as a reply (cf. Fig. 6).

JN IN

Neighbor Solicitation

Neighbor Advertisement

Fig. 6. Neighbor Discovery Protocol

SEND uses CGAs (cf. the previous paragraph) and includes the CGA option,
the RSA option and the Timestamp and Nonce options in NDP packets to secure
NDP. The CGA option contains the CGA parameters. The RSA option contains
an RSA signature generated on all the other options, the packet source and
destination IP-CGAs, and the packet data.

After SEND exchanges, the JN and its neighbors record the CGAs of the
neighboring entities and the necessary parameters for verification in their SEND
caches.

4.2 Access Token Validity Check by the Immediate Neighbors

Immediate neighbors (INs) of the JN receive JN’s access token ATJN (cf. Fig.
4) in the traffic of JN (cf. Fig. 5). They check the validity of ATJN relying on
the information recorded in their caches filled in during SEND exchanges (cf.
section 4.1). The first step is to validate JN’s IP-CGA after SEND exchanges by
means of the CGA parameters.

The second step is to check if the IP-CGA received in the traffic is equal
to that validated using above. The third step consists in concatenating the
IP-CGA of the received traffic with the expiration time of validity TJN in
ATJN and in verifying the consistency of this concatenation with the signature
SignAAA(IPCGAJN ||TJN) in ATJN . This verification can be processed thanks

83

to the public key of the AAA service. This public key was previously registered
by the INs after their authentication. In case of successful verification, INs add
ATJN and TJN in their caches entry for JN. Henceforward INs no longer proceed
with the previous check until the expiration of TJN . They simply check if the
access token received is equal to that in their caches and that the deadline TJN

has not expired yet.

4.3 Access Token Validity Check by the Destination

In the subsection 4.2 we demonstrated that the validity check of the access
token is based on SEND and CGA. Consequently only INs can do the check.
It is important that remote destination nodes can do the check, too, in order
to detect malicious nodes attacks like spoofing and replaying attacks. So we
need a protocol like SEND that carries CGA parameters beyond the immediate
neighborhood of JN. That protocol should never carry the access token without
securing it by a signature, a hash or a ciphering. The two-way protocol depicted
in figure 7 meets these two requirements.

In the first exchange with the destination node Dest, the JN sends its CGA
parameters namely the modifier, the public key (PK) and the collision count
for its IP-CGA verification. In addition to these parameters, it sends a nonce
that identifies this message and the corresponding response sent later by Dest.
It sends also a sequence number in order to avoid message replaying attacks.

The sequence number is equivalent to the timestamp sent in the Timestamp
option of SEND packets. If a mechanism exists to correctly synchronize ad-hoc
nodes, JN can send a timestamp rather than a sequence number.

g, p, and AJN are Diffie Hellman parameters [13] that JN sends as well,
thus asking the destination to compute a Diffie Hellman shared key K. Finally
ATJN is also included in the first exchange in order to prove that the JN was
authenticated and authorized by the AAA service.

The RSA signature of the JN is computed on all these elements plus the
source and destination IP addresses of the message, respectively IPCGAJN and
IPCGADest . Thanks to this signature the access token is protected from spoofing
attacks. No other node can indeed send the signed CGA parameters for IPCGAJN

and ATJN validation (cf. section 4.1).
Now Dest can validate ATJN following the same procedure described in sec-

tion 4.2. It first authenticates the JN thanks to the RSA signature and estab-
lishes, so, that it is effectively the owner of the public key received. Then the
validity of IPCGAJN and ATJN can be checked.

Dest moreover computes the Diffie Hellman shared key K. Let’s d (resp. j)
be the secret Diffie Hellman number of Dest (resp. JN), then ADest = gdmod p
(cf. Fig. 7) and K = Ad

JNmod p = Aj
Destmod p.

If all these operations were successful, Dest responds with a similar message
containing the same nonce of JN’s message. JN achieves the same verifications
on Dest’s elements. If these operations were successful, JN and Dest have been
successfully and mutually authenticated. Both have also proved that they were
successfully authenticated by the AAA service and so authorized to access the

84

network. In addition they have established a Diffie Hellman shared key K that
they can use in their later communications. Hence they no longer need to send
their access tokens until one of the deadlines TJN TDest expires.

JN IN R1 R2 Dest

 IP−CGA , @dest=IP_CGA , Modifier , PK , g, p, A , #seq , Nonce, AT ,RSA sign
JN Dest JN JN JN JNJN

 IP−CGA ,@dest=IP_CGA ,Modifier , PK , A , #seq , Nonce, AT ,RSA sign
Dest JN Dest Dest Dest DestDest

JN

Dest

@src=

@src=

Fig. 7. Protocol for source to destination access token checking

4.4 Robustness to Classical attacks

Signing the concatenation of IPCGAJN and TJN with the AAA service’s pri-
vate key (cf. section 3.3) preserves the IP-CGA from spoofing. It preserves at
the same time the access token from spoofing. If we place ourselves in the case
where just the access token is attached to JN’s traffic during the access phase
(cf. Fig. 5), this preservation can unfortunately be guaranteed only in the im-
mediate neighborhood of JN since only immediate neighbors can execute SEND
(cf. section 4.1).

INs can check the validity of the access token and so detect an access token
spoofing attack. However destination nodes can not detect a spoofing attack
without SEND. Figure 8 illustrates an example of spoofing. The node R1 pre-
tends that it is relaying one of JN’s messages but in fact it has generated this
message itself. It has placed into it the IPCGAJN as a source IP address and
ATJN as the attached access token. Dest can not receive SEND messages from
JN, so there are no CGA parameters for JN in Dest’s cache. Dest can’t verify
the validity of ATJN sent by R1 and accepts the message as if it was sent by
JN . Consequently it does not detect R1 as a malicious node.

The two-way protocol described in section 4.3 solves this problem. It trans-
fers CGA parameters for the ATJN validation and protects these elements with
a RSA signature. Replay attacks are also avoided by means of this protocol be-
cause it employs sequence numbers: Dest detects that a message was replayed
by comparing its sequence number to those received in the previous messages.

5 Conclusions and perspectives

In this paper we investigated an optimized version of the AAA protocol described
in [2]. Furthermore we demonstrated how to secure the access phase by means
of a special form of the access token associated to the use of SEND, CGA, and
a two-way protocol that we conceived in the section 4.3.

85

JN IN R1 R2 Dest

SEND

M’ : @src=IP−CGA , AT + DataJN JN

M’ M’

Fig. 8. Access Token Spoofing

The number of AAA exchanges and their length may be a difficult point
in the implementations. We are now evaluating the overhead induced to make
sure this authentication and access control protocol is usable for network access
control.

Acknowledgment

We are thankful to ANR (Agence Nationale de la Recherche) for financially
supporting the project TLCOM MobiSEND.

References

1. Nikolov, M.: Exploiting social and mobile ad hoc networking to achieve ubiqui-
tous connectivity (2008) http://developer.symbian.com/main/documentation/
technologies/future_technology_ideas/milen_nikolov.jsp.

2. Larafa, S., Maknavicius, M., Chaouchi, H.: Light and Distributed AAA Scheme
for Mobile Ad-hoc Networks. First Workshop on Security of Autonomous and
Spontaneous Networks, SETOP 2008, Loctudy, France (october 2008)

3. Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible Au-
thentication Protocol (EAP). RFC 3748 (June 2004)

4. Shamir, A.: How to Share a Secret. Communications of the ACM (1979)
5. : ISO [9798-3] http://www.iso.org/iso/fr/search.htm?qt=9798-3&published=

on&active_tab=standards.
6. Shoup, V.: Practical Threshold Signatures. Theory and Application of Crypto-

graphic Techniques (2000)
7. Rigney, C., Willens, S., Rubens, A., Rubens, A.: Remote authentication dial in

user service (radius). RFC 2865 (June 2000)
8. Calhoun, P., Loughney, J., Guttman, E., Zorn, G., Arkko, J.: Diameter Base

Protocol. RFC 3588 (September 2003)
9. Keylength: http://www.keylength.com/en/4.

10. Khakpour, A., Laurent-Maknavicius, M., Chaouchi, H.: WATCHMAN: An Overlay
Distributed AAA Architecture for Mobile Ad hoc Networks. The Third Interna-
tional Conference on Availability, Reliability and Security (ARES 2008), IEEE
Computer Society, Barcelona, Spain (March 2008)

11. Aura, T.: Cryptographically Generated Addresses (CGA). RFC 3972 (March 2005)
12. Arkko, J., Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery (SEND).

RFC 3971 (March 2005)
13. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on

Information Theory 22, pages 644 to 654 (1976) http://www.rsa.com/rsalabs/
node.asp?id=2248.

86

