
13

Towards A General System for Secure Device Pairing by
Demonstration of Physical Proximity

Yasir Arfat Malkani, Dan Chalmers, Ian Wakeman and Lachhman Das Dhomeja

 Department of Informatics, University of Sussex
BN1 9QJ, Brighton, UK

{y.a.malkani, d.chalmers, ianw, l.d.dhomeja}@sussex.ac.uk

Abstract. Co-location of devices is a useful basis for access control policies for
ad-hoc connections, as physical security, visibility and social norms provide
reassurances to the device owners and participants. There are various possible
techniques for demonstrating co-location through physical interactions, which
others have started to explore. In some cases these provide the basis for
encryption, in others simply confirmation of presence. In all cases these
techniques are dependent upon hardware capabilities, offer varying physical
scope and levels of attack resistance, and require different levels of user
attention and visible public action. Different trade-offs amongst these
considerations are desired in different situations. In this paper we present a
framework for negotiating such pairings. This facilitates device identification,
matching of pairing techniques to requirements, chains of communication to
bridge between devices of different capability and improved security by
combining techniques where possible.

Keywords: Authentication, security, co-location, discovery, pairing.

1 Introduction

Devices offer services. Device owners are willing for the devices of other people
in the same location to use their device’s services. How can we prove that these
devices are co-located? How can we choose the most appropriate method(s) to prove
co-location? There have been many recent proposals to provide secure device pairing
[1-8] all varying in their security against different attacks, the needed hardware
capabilities and the necessary level of user attention. In a world of heterogeneous
devices and requirements, we need mechanisms to allow automated selection of the
best protocols without requiring the user to have an in-depth knowledge of the
minutiae of the underlying technologies. In this paper, we describe such a mechanism.

As motivation, let us introduce Angela, who is working in a well reputed
organization. She organizes a meeting with representatives of some customers to give
them a confidential briefing about a new product that her company is launching in
near future. The meeting is organized in a hotel equipped with modern smart devices,
but which is unfamiliar to Angela. On the meeting day, Angela is getting late, so she
leaves her office in hurry and forgets to print some important documents required
during the meeting. When she reaches the hotel, she wants to pair her laptop with a

14

nearby printer to print the documents, without having to gain special permissions on
the hotel network or pass files to a receptionist. That she has been allowed into the
room with the printer is sufficient credentials. Next she goes to the meeting room,
where she wants to pair her laptop with the projector securely, since the presentation
carries some sensitive data. In addition to preventing eavesdroppers on a connection
expected to last for several hours, Angela’s laptop selects a mechanism that allows
her to demonstrate to the room that the data is coming from her laptop. After her
meeting and before leaving, she needs to discuss a confidential issue with her boss. At
this time, she wants to pair her Bluetooth enabled headset with her mobile phone.
Finally when she finishes everything and needs to leave the hotel, she wants to
provide the hotel with a signature stored on her work smart-ID card to use in
authenticating their invoice.

The scenario presented above embodies common problems in pervasive computing
of ad-hoc interactions with unfamiliar devices and institutions, but can also make use
of physical presence. It gives rise to two major concerns regarding the pairing
process. First is how Angela makes sure that no one else can modify or read the
sensitive data sent to the various devices. This requires setting up of keys for
encryption, but also correct device selection in an unfamiliar environment. Second,
while pairing the devices she needs to discover which pairing processes can be
applied in each situation. To the best of our knowledge, there is no any existing secure
pairing system that best fits in all four situations of the scenario. For example
accelerometer based techniques are not practical for large devices, in a large room
with a roof mounted projector radio signal and close-range techniques are likely to
fail. Where a choice of pairing techniques is available not all users will be able to
judge which one is the best to use. Further, a pairing system must not increase the
complexity and the cost of the devices by requiring expensive dedicated hardware in
all devices, but should accommodate the existing capabilities of the pairing partners
and should be flexible enough to accommodate future technologies. We believe that a
general pairing infrastructure for smart spaces can improve the security and usability
of the pairing process. Our proposal is an attempt to integrate pairing schemes in a
single model that facilitates association of any pair of devices in several situations by
using their common co-location capabilities, and also to relieve user from choosing
between dozens of pairing schemes.

The proposed architecture consists of two functional components: co-location
servers and devices. Devices register their capabilities with an easily found database
stored on the co-location server. When two devices need to associate, the client can
query the co-location server to discover and acquire the required information to
initiate a secure pairing with the target device. Different interactions to demonstrate
proximity are possible and the selection requires consideration of the level of
proximity required, the ease with which the interaction can be mimicked by an
impostor, the availability of matching sensors to work with, the longevity of the
association, and the desirability of the interaction being public. Based on the
information from the co-location server, both the client and resource mutually execute
a common co-location protocol. This protocol will involve the generation of a key
from interaction with the environment – a successful pairing will arise when matching
keys are generated. The selected interactions will generate an appropriate key for the
nature of the intended association.

15

2 Background

The problem of secure device pairing continues to be a very active area of research in
pervasive computing environments. The issue got significant attention from many
researchers, after Stajano and Anderson in their seminal paper [9] highlighted the
challenges inherent in secure device association. Their work [9, 10] has been
considered as the first effort towards secure transient association between devices in
ubiquitous computing environments. They proposed a master-slave model which
maps the relationships between devices. The pairing process is done by agreeing a
secret key over the physical connection (such as using a cable). Though the secret key
is transferred in plain-text and cryptographic methods are not used, it is susceptible to
dictionary attacks. In reality, it is also difficult to have common physical interfaces in
all the devices, and carrying cables might not be feasible all the times. Balfanz et al.
[2] extended Stanjano and Anderson’s work and proposed a two-phase authentication
method for pairing of co-located devices using infrared as a location limited side
channel. In their proposed solution, pre-authentication information is exchanged over
the infrared channel and then the user switches to the common wireless channel.
Slightly different variations, of Balfanz et al [2] approach, are proposed in [4, 6, 11,
12], which also use location limited side channel to transfer the pre-authentication
data. The common problem with these approaches is twofold: first, they need some
kind of interface (e.g. IrDA, laser, ultrasound, etc) for pre-authentication phase and
are vulnerable to passive eavesdropping attack in the location limited side channels,
e.g. two remotes and one projector. Some location limited side channels, such as
infrared and laser, are highly vulnerable to denial of service (DoS) attack. Some other
pairing schemes including Bluetooth require the human operator to put the
communicating partners into discovery mode. After discovery and selection of a
device, the channel is secured by entering the same PIN or password into both
devices. Although it is a general approach, it gives rise to a number of usability and
security issues [13, 14]. For example, a short password or PIN number makes it
vulnerable to dictionary or exhaustive search attacks. Further, in Bluetooth pairing an
adversary can eavesdrop to break the security from a long distance using powerful
antennas.

Recently proposed schemes [1, 5, 7] use audio and/or visual channels for a secure
pairing process. Seeing-is-Believing (SiB) [5] uses two dimensional bar codes for
exchanging security relevant information between the devices; while the Loud and
Clear [1] system exploits annunciated nonsensical sentences corresponding to a
shared key. Both of the schemes suffer from a few problems, such as SiB requires that
one of the peers must be equipped with camera; while in Loud and Clear a speaker is
required. Camera equipped devices are usually prohibited in high security areas;
while the latter is not suitable for hearing-impaired users. Further, bar code scanning
requires sufficient proximity and light in SiB; while Loud and Clear places a burden
on the user for comparison of audible sequences. An adversary can easily subvert bar
code stickers on devices in SiB; while ambient noise makes authentication either
weak or difficult in Loud and Clear scheme. Saxena et al. [7] extended the work of
McCune et al. [5] and proposed a scheme, which requires one device to be equipped
with a light detector or a camera and the other with a single LED. When the LED on
the device blinks, the other device takes a video clip. Then, video clip is parsed to

16

extract an authentication string. This scheme has many of the limitations as SiB, such
as requiring close proximity and a camera. More recently, the idea of shaking the
devices together to pair them has become more common. In this approach two devices
are hold and shaken together simultaneously, common readings from the embedded
accelerometers in the devices are used to pair them together. Smart-its-friends [15]
was the first effort towards this approach. The follow-on method to Smart-its-friends
is shake well before use [8]. Mayrhofer and Gellersen extended the Holmquist et al.
approach and proposed two protocols to securely pair the devices. Both of the
proposed protocols exploit the cryptographic primitives with accelerometer data
analysis for secure device-to-device authentication. Shaking the devices together is
always not possible, since there is large variety of devices, such as printers, projectors
and laptops that can not be shaken.

In contrast to all of above approaches, Varshavsky et al. [3] proposed Amigo [3]
system, which exploits the knowledge of common radio environment of communicating
partners to securely pair the two co-located devices. Since Amigo exploits Diffie-
Hellman key exchange method with the addition of a co-location verification stage, it is
computationally not feasible for many devices in pervasive computing environments.
Further, there may be many pervasive computing environments where wireless
communication is not in use, where the radio data is not available to process or where
the wireless network is easy to eavesdrop on while remaining hidden.

In summary, no one has yet devised the perfect pairing protocol. Pairing protocols
vary in the strength of their security, the level of required user intervention, their
susceptibility to environmental conditions and in the required physical capabilities of
the devices. In the remainder of this paper, we show how different protocols can be
integrated within a general architecture for proving co-location, which is sensitive to the
trade-off amongst the identified strengths.

3 System Architecture

Figure 1 illustrates the high level architecture of the proposed system, and figure 3
shows a more detailed sequence diagram of communications used in the proposed
system. Devices move between four states: initialization and registration, device
discovery, authentication and paired. In the registration process, the device generates
capability information to send to the co-location server. Thus, each device becomes a
visible part of the system and can benefit from any other legitimate device in the
system by creating an association with it. After registration, a client moves into the
discovery state. The client searches for pairable devices in the vicinity during this
state by querying the co-location server. The latter performs a match-making process
based on the client’s query. It produces communication and co-location capability
information based on common capabilities of both client and matching device(s)
(resources). The co-location server provides this information to both devices to
smoothly derive the operations of subsequent authentication state.

Once the device enters the authentication state, the received information from the
co-location server is used to execute a common authentication scheme. Finally, if the
client is successfully authenticated, it enters the paired state. During the paired state,

17

the client periodically enters an evaluation process, where the expiry condition of the
given credentials is tested. Based on the outcome of the evaluation process, the client
could either remain in a paired state or the given credentials are revoked. In the
remaining part of this section, we will discuss the design details of our proposed system.

Fig. 1. High level architecture of the proposed system

3.1 Bootstrapping and Registration

Bootstrapping in our model refers to the system initialization and advertisement of co-
location servers. Devices discover the co-location servers for registration by listening
to a multicast address. A co-location server periodically multicasts its address, so that
devices can find it and so register. During registration, the device component is
responsible for providing its capabilities in XML form to the co-location server to
store in the directory.

The co-location server might run with other local services (e.g. DNS, print) to limit
the deployment costs. We are considering all the devices registered with the same co-
location server as potentially co-located. Each co-location server is responsible for
handling a particular domain, but it is possible that these will overlap or that an
impostor might run a server which fails to provide matches as a denial of service
attack (we return to security later). These problems can be overcome by performing a
search in parallel on all available servers, prioritizing those that provide successful
matches in future. A combination of fine-grained deployment of servers, located
access (through network schemes) and location services are expected to locate the
various devices in the system. Typical semantics of these interactions will involve
searching for devices “within x meters”, “the nearest”, “the device labeled y”, or “a
device in location labeled z” (where the label is provided by the user). None of these

18

mechanisms is fool-proof and require open access to location systems, user input, or
scanning location tags in addition to the system described here. The process of co-
location will allow users to reject a choice and get the next alternative – and, of
course, to verify that the device is the one they believe it to be.

A problem arises when a registered device (either in paired or unpaired state) moves
out of the domain of its current co-location server without performing de-registration
with the existing co-location server or before the expiry condition of its registration. Un-
pairing will be handled by the paired devices maintenance arrangements, as they may
move together – so the pairing correctly does not require the co-location server to
continue. De-registration is required to avoid clients attempting to pair with devices
which are no longer present. Explicit de-registration is hard to ensure. Expiry will also
be provided, but requires a traffic overhead / timeliness trade-off. Where multiple co-
location servers have a trust relationship new registrations may cause speculative de-
registrations in adjacent domains to smooth the hand-over process. Finally, the server
may need to offer an alternative match where a device is no longer available.

3.2 Device Discovery

Discovery mechanisms play an essential role in ad hoc communications. Several
discovery protocols have been proposed to facilitate dynamic discovery of
services/devices. Some well known discovery protocols include Service Location
Protocol (SLP), Secure Discovery Service (SDS), Bluetooth Service Discovery
Protocol (SDP), Microsoft’s Universal Plug and Play (UPnP) and Jini, Sun’s Java-
based approach. Each has its own design considerations. For example, SLP and UPnP
are designed for TCP/IP networks; while SDS and Jini are restricted to Java
applications, and SDP supports only Bluetooth device/service discovery. Detailed
comparisons of discovery protocols can be found in [16-18]. Here one can argue that
our approach resembles Jini. As a matter of fact, security has not been major
goal/objective of Jini and it is based on Java; so, it supports the same weak/light
security mechanism as Java offers. Further, non-encrypted Remote Method
Invocation (Java RMI) is used for all the communication in Jini that makes it
susceptible to eavesdropping, and also Jini does not support resource (service) side
authentication. Moreover, in Jini when a client-device wants to create association with
the resource-device, the object/programming code is downloaded from the Jini
Lookup Table, which is used to pair the devices. This mechanism also introduces a
security risk in pairing model as one can launch/put malicious code in the Lookup
Table. Service discovery protocols are not the focus of this work, so to simplify
analysis of the problem, we decided to focus on our requirements independent of
existing technology. After we have proved our solution, we shall incorporate
functionality back into existing protocols such as SDP or UPnP if appropriate.

For our initial tests, we used XML to describe the registration and discovery
messages mechanism in the proposed architecture. It is portable and flexible enough
that we can easily incorporate additional features in the discovery process. Figure 2
shows the XML based device description template and its corresponding DTD
document.

19

During discovery, the device component is responsible for sending an XML-based
query to the corresponding co-location server in order to find the required device.
When the co-location server receives the client’s query, it goes through a match-
making process to find the possible matching device(s) in the domain. As a result, if
the matching process succeeds, the co-location server generates an XML document
with the required information in order to send it to the client and resource for
subsequent authentication process. If a compatible device1 doesn’t exist, then the co-
location server recommends any possible device(s) by relaxing the strict condition of
common co-location capabilities and leaves the client to decide whether to create an
association using third party support. If, even after relaxing this condition, there isn’t
any matching device, the co-location server simply sends a “device not found”
message to the client.

(a)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE colocation [
 <!ELEMENT Device (SemanticName,SemanticLocation,CommProtocol,

ColocCapability>

<!ELEMENT SemanticName (Name)>
<!ELEMENT Name (#PCDATA)>

<!ELEMENT SemanticLocation (Name)>
<!ELEMENT Name (#PCDATA)>

<!ELEMENT CommProtocol(Name,Address)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>

<!ELEMENT ColocCapability(Name,Type)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Type (#PCDATA)>

]>

(b)

<Device>
 <SemanticName>
 <Name></Name>
 </SemanticName>

 <SemanticLocation>
 <Name></Name>
 </SemanticLocation>

 <CommProtocol>
 <Name> </Name>
 <Address></Address>
 </CommProtocol>

 <ColocCapability>
 <Name></Name>
 <Type></Type>
 </ColocCapability>
</Device>

Fig. 2. (a) DTD for device description (b) XML-based device description template

3.3 Authentication

Authentication is an important part of the pairing process, as it becomes the basis of a
secure association between the client and target device. If the authentication
process/scheme is weak, then the user can not trust (from security point of view) the
pairing system as a whole. In this process, devices exploit the common information
received from co-location server to mutually agree on a scheme to generate a key and
execute the authentication operation. We are considering a symmetric key to create
secure encrypted channel between the devices. Currently, devices generate a key from
the data acquired from sensors as suggested by the co-location server during

1 A pair able device that supports some common co-location capabilities as client for proving its physical

existence in the same proximity.

20

discovery process. Sensors and a key generation algorithm for the devices are selected
based on the received information from the co-location server.

The client-side device component establishes a connection with the intended
resource using the communication channel, as described in the received XML from
co-location server. Once connection acknowledgement from the resource is received,
it sends an authentication invocation message to the resource in order for
synchronization and key generation operations to commence. Sensors with same or
equivalent capabilities (as recommended by co-location server) on both devices
acquire the data from local environment. An encryption key is derived from the
collected data samples. When the client receives the key generation completion
acknowledgement from the resource, it encrypts a “HELLO” message and transmits it
to the resource. The resource decrypts the received message. If the decrypted message

Fig. 3. Message sequence chart describing the communication pattern for the
proposed system

21

is recognized by the resource, the client is authenticated and both the devices enter
into paired state. Devising encryption algorithms and generating keys from sensor
data is not the focus of our research, so we shall not discuss this further here.

3.4 Security Analysis

Like the schemes for device pairing we build on, we make an assumptions that
physical presence and visible actions meet the real access control requirements of the
kind of ad-hoc situations described. The devices involved can make use of common
sensing capabilities to generate acceptable, strong keys without exposure to third
parties or administrators’ intervention.

Prior work for device pairing varies greatly in the assumptions about device
capabilities, user competence and involvement, as well as security considerations.
Understanding the details of various attacks/vulnerabilities in wireless communication
is very important in order to determine an appropriate defence strategy for the pairing
process. The most significant risk in short range wireless communication (e.g. 802.11,
Bluetooth, etc) is that the underlying communication channels are open to everyone
including bona-fide users as well as intruders, and thus these cannot be physically
secured the same way as a wired network. For example, 802.11 standard uses an
encryption system called Wired Equivalent Privacy (WEP). WEP has known
vulnerabilities [19], such as it is susceptible to attacks on data and as well as user
authentication. These weaknesses allow an intruder to both inappropriately intercept
data and also gain access to a network by impersonating a legitimate user. In the case
of Bluetooth, devices operate on the 2.4 GHz ISM band. Each Bluetooth device has a
unique address, which gives some trust/confidence to user in the identity of the device
during association process. For Bluetooth devices to securely associate, an
initialization process uses a PIN based approach. Although, the Bluetooth security
architecture is relatively secure, it has been vulnerable to key spoofing, address
spoofing and PIN cracking [13, 20]. Other threats for wireless communication include
well known Man-in-the-Middle (MiTM) and Denial-of-Service (DoS) attacks.

The main goal of an adversary attacking an association model is to fool the
legitimate device to associate with adversary’s device. Since we are proposing a
system for secure device association in close proximity, the threat model considers
co-location as the main property to establish a secure channel between two devices.
We define the model as follows: two devices that are registered with the same co-
location server need to form a secure association between them. By “secure
association”, we mean that no eavesdropper may decrypt or falsify messages between
the communicating partners. We also address the issue of authenticity, which requires
that both devices should be able to demonstrate (confirm) the co-location property of
each other by the human participants identifying the physical devices involved.

We assume the presence of adversary trying to attack from the same physical
space, the next room, the next floor of the building, or possibly from a remote
location. Further, it has surveyed the location where the two legitimate devices are
attempting to pair and also knows the co-location capability information of the
communicating partners. The adversary can use this knowledge to convince one or
both of the legitimate devices that it is co-located with them. Since, the problem is

22

demonstrating that two legitimate devices are physically in the same place, verifying
that a communicating partner is not an imposter is very important. We consider an
impostor attack where the adversary succeeds in pairing with one of the legitimate
device by proving falsely that it is physically co-located with it.

Another threat is when a fake co-location server is introduced. This highlight the
risk of two possible attacks: denial-of-server (DoS) attack and potential for
impersonation attack. We are not considering DoS attack that is result of frequency
jamming, since this would affect any communications system. In our proposed
solution co-location server only recommends/suggests the common possible
method(s) of authentication, but cannot impose any particular scheme. Also, it is not
providing any code or information regarding keys to the co-location server, so
controlling this device does not provide any privileged information. One possible
attack is that a malicious co-location server would only suggest pairing with
compromised devices or using weak protocols. Compromised devices are a risk in any
system; exclusion of obvious physical devices would cause the server to be
questioned; once some basic association has been formed devices may improve the
strength of their pairing through maintenance of the connection, which does not
require the co-location server. Another possible consideration to mitigate this risk is
that each device before registration authenticates the co-location server to check that
it is the actual server with which they want to register.

4 Development Status

We have implemented a proof of concept version of the proposed system, which has
given us positive results. During these tests, we used PhidgetInterfaceKits along with
several sensors and three laptops. Since, the work is still in progress, so more detailed
implementation of the system and results has been left for future work.

We want to further clarify that in our proposed scheme, the co-location server only
provides bootstrapping information to two unknown devices in an ambient
environment, so that pairing process can be commenced. It is the responsibility of
device component to execute the authentication scheme to prove the physical co-
location property of devices. Moreover, we are not considering the traditional
centralized server-based approach. Our proposed system can be implemented with or
without directory service. When deployed without a co-location server, peer devices
(i.e. client and resource) can locate each other directly using local broadcast or
multicast techniques.

Currently, we are investigating a number of authentication strategies to aid the
design of our system. Further, we need to consider a number of issues along the way,
such as looking into efficient credential revocation mechanisms and device-chaining
(i.e. when two devices are in the same proximity but are unable to perform direct
authentication because of long distance, then there is the need of another device
sharing the proximity with both of the devices to mediate the authentication between
them). We are also interested in descriptions of authentication quality (strength of
keys, ease of mimicking pairing action, visibility of pairing actions) and their use in
selecting mutually acceptable authentication scheme. To aid in the process of

23

determining if the proposed system is successful, we shall use several scenarios that
highlight a number of aspects of secure device pairing. We shall also conduct a
usability and more detailed security analysis. Results obtained from these analyses will
be compared with other existing systems offering pairing mechanism.

5 Conclusion

Pervasive computing has given the vision of ‘anytime anywhere’ computing systems,
which differ from more traditional computing systems due to the ad-hoc, spontaneous
nature of interactions among devices. These systems are prone to security risks, such
as eavesdropping but require different techniques to traditional access control to
manage. Physical proximity is however a good basis for establishing associations.
Many devices will carry sensors for other purposes, which could be used in order to
demonstrate this proximity. Recently, secure device pairing has gained significant
attention from researchers and a significant set of techniques and protocols have been
proposed. Some of these techniques consider devices equipped with infrared or laser
transceivers, other require embedded accelerometers, cameras, speakers, microphones
and displays. The issue of a universal pairing mechanism is still unresolved. To this
end, we attempt to fill the gap left by prior work and propose a general device pairing
scheme for pervasive environments. The benefit of this approach from the user’s point
of view is to eliminate confusion as to what process to follow while pairing devices,
and from application and technological point of view is its capability to securely pair
the devices under a number of different contexts (in terms of device capabilities).

Acknowledgments. Thanks to Jon Robinson of Software Systems Group for his
feedback on this work.

References

1. Goodrich, M.T., et al., Loud and Clear: Human-Verifiable Authentication Based on
Audio. in 26th IEEE Intl. Conf. on Distributed Computing Systems, ICDCS 2006.

2. Balfanz, D., et al., Talking to Strangers: Authentication in Ad-hoc Wireless Networks. in
Symposium on Network and Distributed Systems Security (NDSS '02). 2002. San Diego,
California.

3. Varshavsky, A., et al., Amigo: Proximity-Based Authentication of Mobile Devices. in
UbiComp 2007: Ubiquitous Computing. 2007. p. 253-270.

4. Spahic, A., et al., Pre-Authentication using Infrared. in Privacy, Security, and Trust Within
the Context of Pervasive Computing, 2005. p. 105-112

5. McCune, J.M., et al., Seeing-is-Believing: Using Camera Phones for Human-Verifiable
Authentication. in IEEE Symposium on Security and Privacy, 2005. p. 110 - 124.

6. Mayrhofer, R. and M. Welch. A Human-Verifiable Authentication Protocol Using Visible
Laser Light. in 2nd Intl. Conf. on Availability, Reliability and Security (ARES’07) 2007.

7. Saxena, N., et al., Secure Device Pairing based on a Visual Channel. IEEE Symposium on
Security and Privacy 2006. Oaklan, CA. p. 306-313.

24

8. Mayrhofer, R. and H. Gellersen, Shake Well Before Use: Authentication Based on
Accelerometer Data. in 5th International Conference on Pervasive Computing (Pervasive-
07). 2007.

9. Stajano, F. and R. Anderson, The Resurrecting Duckling: security issues for ubiquitous
computing. Computer, 2002. 35(4): p. 22-26.

10. Stajano, F., The Resurrecting Duckling - What Next?, in Revised Papers from the 8th
International Workshop on Security Protocols. 2001, Springer-Verlag.

11. Mayrhofer, R., et al., An Authentication Protocol Using Ultrasonic Ranging. Technical
Report. 2006, Lancaster University.

12. Mayrhofer, R. and H. Gellersen. On the Security of Ultrasound as Out-of-band Channel. in
IEEE International Symposium on Parallel and Distributed Processing (IPDPS-07), 2007.

13. Shaked, Y. and A. Wool. Cracking the Bluetooth PIN. in 3rd ACM Intl. Conf. on Mobile
Systems, Applications, and Services (MobiSys '05), 2005. Seattle, Washington.

14. Jakobsson, M. and S. Wetzel, Security Weaknesses in Bluetooth. Lecture Notes in
Computer Science, 2001. 2020: p. 176+.

15. Holmquist, L.E., et al., Smart-Its Friends: A Technique for Users to Easily Establish
Connections between Smart Artefacts, in 3rd international conference on Ubiquitous
Computing. 2001, Springer-Verlag: Atlanta, Georgia, USA.

16. Zhu, F., et al., Classification of Service Discovery in Pervasive Computing Environments.
MSU-CSE-02-24, Michigan State University, East Lansing, 2002.

17. Bettstetter, C. and C. Renner. A Comparison of Service Discovery Protocols and
Implementation of the Service Location Protocol. in Proceedings of EUNICE 2000, Sixth
EUNICE Open European Summer School. 2000. Twente, Netherlands.

18. Ververidis, C.N. and G.C. Polyzos, Service discovery for mobile Ad Hoc networks: a
survey of issues and techniques. in IEEE Communications Surveys & Tutorials, 2008.
10(3): p. 30-45.

19. Borisov, N., et al., Intercepting mobile communications: the insecurity of 802.11. in 7th

ACM Annual International Conference on Mobile Computing and Networking (MobiCom
'01), 2001. Rome, Italy: ACM.

20. Hager, C.T. and S.F. Midkiff, An analysis of Bluetooth security vulnerabilities. in IEEE
Wireless Communications and Networking (WCNC 03), 2003. 3: p. 1825-1831.

