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Abstract. Co-location of devices is a useful basis for access control policies for 
ad-hoc connections, as physical security, visibility and social norms provide 
reassurances to the device owners and participants. There are various possible 
techniques for demonstrating co-location through physical interactions, which 
others have started to explore. In some cases these provide the basis for 
encryption, in others simply confirmation of presence. In all cases these 
techniques are dependent upon hardware capabilities, offer varying physical 
scope and levels of attack resistance, and require different levels of user 
attention and visible public action. Different trade-offs amongst these 
considerations are desired in different situations. In this paper we present a 
framework for negotiating such pairings. This facilitates device identification, 
matching of pairing techniques to requirements, chains of communication to 
bridge between devices of different capability and improved security by 
combining techniques where possible.  
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1   Introduction 

Devices offer services.  Device owners are willing for the devices of other people 
in the same location to use their device’s services.  How can we prove that these 
devices are co-located?  How can we choose the most appropriate method(s) to prove 
co-location?  There have been many recent proposals to provide secure device pairing 
[1-8] all varying in their security against different attacks, the needed hardware 
capabilities and the necessary level of user attention.  In a world of heterogeneous 
devices and requirements, we need mechanisms to allow automated selection of the 
best protocols without requiring the user to have an in-depth knowledge of the 
minutiae of the underlying technologies.  In this paper, we describe such a mechanism. 

As motivation, let us introduce Angela, who is working in a well reputed 
organization. She organizes a meeting with representatives of some customers to give 
them a confidential briefing about a new product that her company is launching in 
near future. The meeting is organized in a hotel equipped with modern smart devices, 
but which is unfamiliar to Angela. On the meeting day, Angela is getting late, so she 
leaves her office in hurry and forgets to print some important documents required 
during the meeting. When she reaches the hotel, she wants to pair her laptop with a 
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nearby printer to print the documents, without having to gain special permissions on 
the hotel network or pass files to a receptionist. That she has been allowed into the 
room with the printer is sufficient credentials. Next she goes to the meeting room, 
where she wants to pair her laptop with the projector securely, since the presentation 
carries some sensitive data. In addition to preventing eavesdroppers on a connection 
expected to last for several hours, Angela’s laptop selects a mechanism that allows 
her to demonstrate to the room that the data is coming from her laptop. After her 
meeting and before leaving, she needs to discuss a confidential issue with her boss. At 
this time, she wants to pair her Bluetooth enabled headset with her mobile phone.
Finally when she finishes everything and needs to leave the hotel, she wants to 
provide the hotel with a signature stored on her work smart-ID card to use in 
authenticating their invoice.  

The scenario presented above embodies common problems in pervasive computing 
of ad-hoc interactions with unfamiliar devices and institutions, but can also make use 
of physical presence. It gives rise to two major concerns regarding the pairing 
process. First is how Angela makes sure that no one else can modify or read the 
sensitive data sent to the various devices. This requires setting up of keys for 
encryption, but also correct device selection in an unfamiliar environment. Second, 
while pairing the devices she needs to discover which pairing processes can be 
applied in each situation. To the best of our knowledge, there is no any existing secure 
pairing system that best fits in all four situations of the scenario.  For example 
accelerometer based techniques are not practical for large devices, in a large room 
with a roof mounted projector radio signal and close-range techniques are likely to 
fail. Where a choice of pairing techniques is available not all users will be able to 
judge which one is the best to use. Further, a pairing system must not increase the 
complexity and the cost of the devices by requiring expensive dedicated hardware in 
all devices, but should accommodate the existing capabilities of the pairing partners 
and should be flexible enough to accommodate future technologies. We believe that a 
general pairing infrastructure for smart spaces can improve the security and usability 
of the pairing process. Our proposal is an attempt to integrate pairing schemes in a 
single model that facilitates association of any pair of devices in several situations by 
using their common co-location capabilities, and also to relieve user from choosing 
between dozens of pairing schemes.   

The proposed architecture consists of two functional components: co-location 
servers and devices. Devices register their capabilities with an easily found database 
stored on the co-location server. When two devices need to associate, the client can 
query the co-location server to discover and acquire the required information to 
initiate a secure pairing with the target device. Different interactions to demonstrate 
proximity are possible and the selection requires consideration of the level of 
proximity required, the ease with which the interaction can be mimicked by an 
impostor, the availability of matching sensors to work with, the longevity of the 
association, and the desirability of the interaction being public. Based on the 
information from the co-location server, both the client and resource mutually execute 
a common co-location protocol. This protocol will involve the generation of a key 
from interaction with the environment – a successful pairing will arise when matching 
keys are generated. The selected interactions will generate an appropriate key for the 
nature of the intended association.  
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2   Background 

The problem of secure device pairing continues to be a very active area of research in 
pervasive computing environments. The issue got significant attention from many 
researchers, after Stajano and Anderson in their seminal paper [9] highlighted the 
challenges inherent in secure device association. Their work [9, 10] has been 
considered as the first effort towards secure transient association between devices in 
ubiquitous computing environments. They proposed a master-slave model which 
maps the relationships between devices. The pairing process is done by agreeing a 
secret key over the physical connection (such as using a cable). Though the secret key 
is transferred in plain-text and cryptographic methods are not used, it is susceptible to 
dictionary attacks. In reality, it is also difficult to have common physical interfaces in 
all the devices, and carrying cables might not be feasible all the times. Balfanz et al. 
[2] extended Stanjano and Anderson’s work and proposed a two-phase authentication 
method for pairing of co-located devices using infrared as a location limited side 
channel. In their proposed solution, pre-authentication information is exchanged over 
the infrared channel and then the user switches to the common wireless channel. 
Slightly different variations, of Balfanz et al [2] approach, are proposed in [4, 6, 11, 
12], which also use location limited side channel to transfer the pre-authentication 
data. The common problem with these approaches is twofold: first, they need some 
kind of interface (e.g. IrDA, laser, ultrasound, etc) for pre-authentication phase and 
are vulnerable to passive eavesdropping attack in the location limited side channels, 
e.g. two remotes and one projector. Some location limited side channels, such as 
infrared and laser, are highly vulnerable to denial of service (DoS) attack. Some other 
pairing schemes including Bluetooth require the human operator to put the 
communicating partners into discovery mode. After discovery and selection of a 
device, the channel is secured by entering the same PIN or password into both 
devices. Although it is a general approach, it gives rise to a number of usability and 
security issues [13, 14]. For example, a short password or PIN number makes it 
vulnerable to dictionary or exhaustive search attacks. Further, in Bluetooth pairing an 
adversary can eavesdrop to break the security from a long distance using powerful 
antennas.

Recently proposed schemes [1, 5, 7] use audio and/or visual channels for a secure 
pairing process. Seeing-is-Believing (SiB) [5] uses two dimensional bar codes for 
exchanging security relevant information between the devices; while the Loud and 
Clear [1] system exploits annunciated nonsensical sentences corresponding to a 
shared key. Both of the schemes suffer from a few problems, such as SiB requires that 
one of the peers must be equipped with camera; while in Loud and Clear a speaker is 
required. Camera equipped devices are usually prohibited in high security areas; 
while the latter is not suitable for hearing-impaired users. Further, bar code scanning 
requires sufficient proximity and light in SiB; while Loud and Clear places a burden 
on the user for comparison of audible sequences. An adversary can easily subvert bar 
code stickers on devices in SiB; while ambient noise makes authentication either 
weak or difficult in Loud and Clear scheme. Saxena et al. [7] extended the work of 
McCune et al. [5] and proposed a scheme, which requires one device to be equipped 
with a light detector or a camera and the other with a single LED. When the LED on 
the device blinks, the other device takes a video clip. Then, video clip is parsed to 
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extract an authentication string. This scheme has many of the limitations as SiB, such 
as requiring close proximity and a camera. More recently, the idea of shaking the 
devices together to pair them has become more common. In this approach two devices 
are hold and shaken together simultaneously, common readings from the embedded 
accelerometers in the devices are used to pair them together. Smart-its-friends [15] 
was the first effort towards this approach. The follow-on method to Smart-its-friends 
is shake well before use [8]. Mayrhofer and Gellersen extended the Holmquist et al. 
approach and proposed two protocols to securely pair the devices. Both of the 
proposed protocols exploit the cryptographic primitives with accelerometer data 
analysis for secure device-to-device authentication. Shaking the devices together is 
always not possible, since there is large variety of devices, such as printers, projectors 
and laptops that can not be shaken.

In contrast to all of above approaches, Varshavsky et al. [3] proposed Amigo [3] 
system, which exploits the knowledge of common radio environment of communicating 
partners to securely pair the two co-located devices. Since Amigo exploits Diffie-
Hellman key exchange method with the addition of a co-location verification stage, it is 
computationally not feasible for many devices in pervasive computing environments. 
Further, there may be many pervasive computing environments where wireless 
communication is not in use, where the radio data is not available to process or where 
the wireless network is easy to eavesdrop on while remaining hidden.  

In summary, no one has yet devised the perfect pairing protocol.  Pairing protocols 
vary in the strength of their security, the level of required user intervention, their 
susceptibility to environmental conditions and in the required physical capabilities of 
the devices.  In the remainder of this paper, we show how different protocols can be 
integrated within a general architecture for proving co-location, which is sensitive to the 
trade-off amongst the identified strengths.   

3 System Architecture 

Figure 1 illustrates the high level architecture of the proposed system, and figure 3 
shows a more detailed sequence diagram of communications used in the proposed 
system. Devices move between four states: initialization and registration, device 
discovery, authentication and paired. In the registration process, the device generates 
capability information to send to the co-location server. Thus, each device becomes a 
visible part of the system and can benefit from any other legitimate device in the 
system by creating an association with it. After registration, a client moves into the 
discovery state. The client searches for pairable devices in the vicinity during this 
state by querying the co-location server. The latter performs a match-making process 
based on the client’s query. It produces communication and co-location capability 
information based on common capabilities of both client and matching device(s) 
(resources). The co-location server provides this information to both devices to 
smoothly derive the operations of subsequent authentication state. 

Once the device enters the authentication state, the received information from the 
co-location server is used to execute a common authentication scheme. Finally, if the 
client is successfully authenticated, it enters the paired state. During the paired state, 
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the client periodically enters an evaluation process, where the expiry condition of the 
given credentials is tested. Based on the outcome of the evaluation process, the client 
could either remain in a paired state or the given credentials are revoked. In the 
remaining part of this section, we will discuss the design details of our proposed system. 

Fig. 1. High level architecture of the proposed system 

3.1 Bootstrapping and Registration 

Bootstrapping in our model refers to the system initialization and advertisement of co-
location servers. Devices discover the co-location servers for registration by listening 
to a multicast address. A co-location server periodically multicasts its address, so that 
devices can find it and so register. During registration, the device component is 
responsible for providing its capabilities in XML form to the co-location server to 
store in the directory. 

The co-location server might run with other local services (e.g. DNS, print) to limit 
the deployment costs. We are considering all the devices registered with the same co-
location server as potentially co-located. Each co-location server is responsible for 
handling a particular domain, but it is possible that these will overlap or that an 
impostor might run a server which fails to provide matches as a denial of service 
attack (we return to security later). These problems can be overcome by performing a 
search in parallel on all available servers, prioritizing those that provide successful 
matches in future. A combination of fine-grained deployment of servers, located 
access (through network schemes) and location services are expected to locate the 
various devices in the system. Typical semantics of these interactions will involve 
searching for devices “within x meters”, “the nearest”, “the device labeled y”, or “a 
device in location labeled z” (where the label is provided by the user). None of these 
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mechanisms is fool-proof and require open access to location systems, user input, or 
scanning location tags in addition to the system described here. The process of co-
location will allow users to reject a choice and get the next alternative – and, of 
course, to verify that the device is the one they believe it to be.

A problem arises when a registered device (either in paired or unpaired state) moves 
out of the domain of its current co-location server without performing de-registration 
with the existing co-location server or before the expiry condition of its registration. Un-
pairing will be handled by the paired devices maintenance arrangements, as they may 
move together – so the pairing correctly does not require the co-location server to 
continue. De-registration is required to avoid clients attempting to pair with devices 
which are no longer present. Explicit de-registration is hard to ensure. Expiry will also 
be provided, but requires a traffic overhead / timeliness trade-off. Where multiple co-
location servers have a trust relationship new registrations may cause speculative de-
registrations in adjacent domains to smooth the hand-over process. Finally, the server 
may need to offer an alternative match where a device is no longer available. 

3.2 Device Discovery 

Discovery mechanisms play an essential role in ad hoc communications. Several 
discovery protocols have been proposed to facilitate dynamic discovery of 
services/devices. Some well known discovery protocols include Service Location 
Protocol (SLP), Secure Discovery Service (SDS), Bluetooth Service Discovery 
Protocol (SDP), Microsoft’s Universal Plug and Play (UPnP) and Jini, Sun’s Java-
based approach. Each has its own design considerations. For example, SLP and UPnP 
are designed for TCP/IP networks; while SDS and Jini are restricted to Java 
applications, and SDP supports only Bluetooth device/service discovery. Detailed 
comparisons of discovery protocols can be found in [16-18]. Here one can argue that 
our approach resembles Jini. As a matter of fact, security has not been major 
goal/objective of Jini and it is based on Java; so, it supports the same weak/light 
security mechanism as Java offers. Further, non-encrypted Remote Method 
Invocation (Java RMI) is used for all the communication in Jini that makes it 
susceptible to eavesdropping, and also Jini does not support resource (service) side 
authentication. Moreover, in Jini when a client-device wants to create association with 
the resource-device, the object/programming code is downloaded from the Jini 
Lookup Table, which is used to pair the devices. This mechanism also introduces a 
security risk in pairing model as one can launch/put malicious code in the Lookup 
Table. Service discovery protocols are not the focus of this work, so to simplify 
analysis of the problem, we decided to focus on our requirements independent of 
existing technology. After we have proved our solution, we shall incorporate 
functionality back into existing protocols such as SDP or UPnP if appropriate.

For our initial tests, we used XML to describe the registration and discovery 
messages mechanism in the proposed architecture. It is portable and flexible enough 
that we can easily incorporate additional features in the discovery process. Figure 2 
shows the XML based device description template and its corresponding DTD 
document.
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During discovery, the device component is responsible for sending an XML-based 
query to the corresponding co-location server in order to find the required device. 
When the co-location server receives the client’s query, it goes through a match-
making process to find the possible matching device(s) in the domain. As a result, if 
the matching process succeeds, the co-location server generates an XML document 
with the required information in order to send it to the client and resource for 
subsequent authentication process. If a compatible device1 doesn’t exist, then the co-
location server recommends any possible device(s) by relaxing the strict condition of 
common co-location capabilities and leaves the client to decide whether to create an 
association using third party support. If, even after relaxing this condition, there isn’t 
any matching device, the co-location server simply sends a “device not found” 
message to the client. 

(a) 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE colocation [ 
 <!ELEMENT Device (SemanticName,SemanticLocation,CommProtocol, 

ColocCapability> 

<!ELEMENT SemanticName (Name)> 
<!ELEMENT Name  (#PCDATA)> 

<!ELEMENT SemanticLocation (Name)> 
<!ELEMENT Name  (#PCDATA)> 

<!ELEMENT CommProtocol(Name,Address)> 
<!ELEMENT Name  (#PCDATA)> 
<!ELEMENT Address  (#PCDATA)> 

<!ELEMENT ColocCapability(Name,Type)> 
<!ELEMENT Name  (#PCDATA)> 
<!ELEMENT Type  (#PCDATA)> 

]> 

(b)

<Device> 
       <SemanticName> 
                 <Name></Name> 
        </SemanticName> 

        <SemanticLocation> 
                  <Name></Name> 
        </SemanticLocation> 

       <CommProtocol>  
                 <Name> </Name> 
                  <Address></Address> 
        </CommProtocol> 

        <ColocCapability> 
                   <Name></Name> 
                   <Type></Type> 
       </ColocCapability> 
</Device> 

Fig. 2. (a) DTD for device description               (b) XML-based device description template 

3.3 Authentication 

Authentication is an important part of the pairing process, as it becomes the basis of a 
secure association between the client and target device. If the authentication 
process/scheme is weak, then the user can not trust (from security point of view) the 
pairing system as a whole. In this process, devices exploit the common information 
received from co-location server to mutually agree on a scheme to generate a key and 
execute the authentication operation. We are considering a symmetric key to create 
secure encrypted channel between the devices. Currently, devices generate a key from 
the data acquired from sensors as suggested by the co-location server during 

                                                          
1 A pair able device that supports some common co-location capabilities as client for proving its physical 

existence in the same proximity.
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discovery process. Sensors and a key generation algorithm for the devices are selected 
based on the received information from the co-location server.  

The client-side device component establishes a connection with the intended 
resource using the communication channel, as described in the received XML from 
co-location server. Once connection acknowledgement from the resource is received, 
it sends an authentication invocation message to the resource in order for 
synchronization and key generation operations to commence. Sensors with same or 
equivalent capabilities (as recommended by co-location server) on both devices 
acquire the data from local environment. An encryption key is derived from the 
collected data samples. When the client receives the key generation completion 
acknowledgement from the resource, it encrypts a “HELLO” message and transmits it 
to the resource. The resource decrypts the received message. If the decrypted message 

Fig. 3. Message sequence chart describing the communication pattern for the 
proposed system 
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is recognized by the resource, the client is authenticated and both the devices enter 
into paired state. Devising encryption algorithms and generating keys from sensor 
data is not the focus of our research, so we shall not discuss this further here. 

3.4 Security Analysis 

Like the schemes for device pairing we build on, we make an assumptions that 
physical presence and visible actions meet the real access control requirements of the 
kind of ad-hoc situations described. The devices involved can make use of common 
sensing capabilities to generate acceptable, strong keys without exposure to third 
parties or administrators’ intervention. 

Prior work for device pairing varies greatly in the assumptions about device 
capabilities, user competence and involvement, as well as security considerations. 
Understanding the details of various attacks/vulnerabilities in wireless communication 
is very important in order to determine an appropriate defence strategy for the pairing 
process. The most significant risk in short range wireless communication (e.g. 802.11, 
Bluetooth, etc) is that the underlying communication channels are open to everyone 
including bona-fide users as well as intruders, and thus these cannot be physically 
secured the same way as a wired network.  For example, 802.11 standard uses an 
encryption system called Wired Equivalent Privacy (WEP). WEP has known 
vulnerabilities [19], such as it is susceptible to attacks on data and as well as user 
authentication. These weaknesses allow an intruder to both inappropriately intercept 
data and also gain access to a network by impersonating a legitimate user. In the case 
of Bluetooth, devices operate on the 2.4 GHz ISM band. Each Bluetooth device has a 
unique address, which gives some trust/confidence to user in the identity of the device 
during association process. For Bluetooth devices to securely associate, an 
initialization process uses a PIN based approach. Although, the Bluetooth security 
architecture is relatively secure, it has been vulnerable to key spoofing, address 
spoofing and PIN cracking [13, 20]. Other threats for wireless communication include 
well known Man-in-the-Middle (MiTM) and Denial-of-Service (DoS) attacks. 

The main goal of an adversary attacking an association model is to fool the 
legitimate device to associate with adversary’s device. Since we are proposing a 
system for secure device association in close proximity, the threat model considers 
co-location as the main property to establish a secure channel between two devices.  
We define the model as follows: two devices that are registered with the same co-
location server need to form a secure association between them. By “secure 
association”, we mean that no eavesdropper may decrypt or falsify messages between 
the communicating partners. We also address the issue of authenticity, which requires 
that both devices should be able to demonstrate (confirm) the co-location property of 
each other by the human participants identifying the physical devices involved. 

We assume the presence of adversary trying to attack from the same physical 
space, the next room, the next floor of the building, or possibly from a remote 
location. Further, it has surveyed the location where the two legitimate devices are 
attempting to pair and also knows the co-location capability information of the 
communicating partners. The adversary can use this knowledge to convince one or 
both of the legitimate devices that it is co-located with them. Since, the problem is 
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demonstrating that two legitimate devices are physically in the same place, verifying 
that a communicating partner is not an imposter is very important. We consider an 
impostor attack where the adversary succeeds in pairing with one of the legitimate 
device by proving falsely that it is physically co-located with it.

Another threat is when a fake co-location server is introduced. This highlight the 
risk of two possible attacks: denial-of-server (DoS) attack and potential for 
impersonation attack. We are not considering DoS attack that is result of frequency 
jamming, since this would affect any communications system. In our proposed 
solution co-location server only recommends/suggests the common possible 
method(s) of authentication, but cannot impose any particular scheme. Also, it is not 
providing any code or information regarding keys to the co-location server, so 
controlling this device does not provide any privileged information. One possible 
attack is that a malicious co-location server would only suggest pairing with 
compromised devices or using weak protocols. Compromised devices are a risk in any 
system; exclusion of obvious physical devices would cause the server to be 
questioned; once some basic association has been formed devices may improve the 
strength of their pairing through maintenance of the connection, which does not 
require the co-location server. Another possible consideration to mitigate this risk is 
that each device before registration authenticates the co-location server to check that 
it is the actual server with which they want to register. 

4   Development Status 

We have implemented a proof of concept version of the proposed system, which has 
given us positive results. During these tests, we used PhidgetInterfaceKits along with 
several sensors and three laptops. Since, the work is still in progress, so more detailed 
implementation of the system and results has been left for future work. 

We want to further clarify that in our proposed scheme, the co-location server only 
provides bootstrapping information to two unknown devices in an ambient 
environment, so that pairing process can be commenced. It is the responsibility of 
device component to execute the authentication scheme to prove the physical co-
location property of devices. Moreover, we are not considering the traditional 
centralized server-based approach. Our proposed system can be implemented with or 
without directory service. When deployed without a co-location server, peer devices 
(i.e. client and resource) can locate each other directly using local broadcast or 
multicast techniques. 

Currently, we are investigating a number of authentication strategies to aid the 
design of our system. Further, we need to consider a number of issues along the way, 
such as looking into efficient credential revocation mechanisms and device-chaining 
(i.e. when two devices are in the same proximity but are unable to perform direct 
authentication because of long distance, then there is the need of another device 
sharing the proximity with both of the devices to mediate the authentication between 
them). We are also interested in descriptions of authentication quality (strength of 
keys, ease of mimicking pairing action, visibility of pairing actions) and their use in 
selecting mutually acceptable authentication scheme. To aid in the process of 



23 

determining if the proposed system is successful, we shall use several scenarios that 
highlight a number of aspects of secure device pairing. We shall also conduct a 
usability and more detailed security analysis. Results obtained from these analyses will 
be compared with other existing systems offering pairing mechanism. 

5   Conclusion 

Pervasive computing has given the vision of ‘anytime anywhere’ computing systems, 
which differ from more traditional computing systems due to the ad-hoc, spontaneous 
nature of interactions among devices. These systems are prone to security risks, such 
as eavesdropping but require different techniques to traditional access control to 
manage. Physical proximity is however a good basis for establishing associations. 
Many devices will carry sensors for other purposes, which could be used in order to 
demonstrate this proximity. Recently, secure device pairing has gained significant 
attention from researchers and a significant set of techniques and protocols have been 
proposed. Some of these techniques consider devices equipped with infrared or laser 
transceivers, other require embedded accelerometers, cameras, speakers, microphones 
and displays. The issue of a universal pairing mechanism is still unresolved. To this 
end, we attempt to fill the gap left by prior work and propose a general device pairing 
scheme for pervasive environments. The benefit of this approach from the user’s point 
of view is to eliminate confusion as to what process to follow while pairing devices, 
and from application and technological point of view is its capability to securely pair 
the devices under a number of different contexts (in terms of device capabilities).  
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