
Humpty Dumpty: Putting iBGP Back Together

Again

Ashley Flavel1, Jeremy McMahon2, Aman Shaikh3, Matthew Roughan1,
and Nigel Bean1

1 School of Mathematical Sciences, University of Adelaide
{ashley.flavel,matthew.roughan,nigel.bean}@adelaide.edu.au

2 TRC Mathematical Modelling, University of Adelaide
jeremy.mcmahon@adelaide.edu.au

3 AT&T Labs - Research
ashaikh@research.att.com

Abstract. Humpty Dumpty is the anthropomorphic nursery-rhyme egg
broken into many pieces. Similarly, we have many pieces of measurement
data to represent the current iBGP state. However, unlike the nursery-
rhyme where the King’s men couldn’t put Humpty together again, we
present a systematic approach to putting all the pieces of measured iBGP
data together to obtain a more complete picture of a network’s routing
state.

Our technique determines the decisions made by all routers in a net-
work. It is efficient, has no assumptions about router configuration and is
accurate. We present a case-study of a large Tier-2 ISP, finding for those
routers with adequate measurement infrastructure, we consistently find
the egress location for 99.9999% of (router, prefix) pairs. Further, for
the 85% of routers without measurement infrastructure we predict their
decisions. This technique has been successfully applied in a ‘what-if’ sce-
nario and has future applications in the real-time analysis of routing
decisions.

Keywords: iBGP, Route prediction.

1 Introduction

Measurement plays a crucial role in management of IP networks since it allows
operators to determine how the network is currently operating. The measure-
ment data can be used for tasks such as deriving traffic demands in operational
networks [1], finding traffic matrices [2] and their dynamics [3], and oscillation
detection [4]. A majority of such tasks require some knowledge of the path traf-
fic takes through a network — hence the need for routing measurements. How-
ever, due to high storage requirements, operational setup costs and dependency
between routes selected across routers, BGP monitors collecting BGP routing
information are often only connected to a subset of routers. In this paper we pro-
vide a methodology to make use of the high dependency between router decisions
to systematically “fill in the gaps” left by partial measurements.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 52–65, 2009.
c© IFIP International Federation for Information Processing 2009

Humpty Dumpty: Putting iBGP Back Together Again 53

An Autonomous System’s (AS) BGP routing decisions are not atomic. When
multiple routes are available to a destination, individual routers within the AS
can make different decisions as to their selected route based on their own per-
spective of the ’best’ route. The network solution, that is, the decision of all
routers in the network for a particular destination, is dependent on the subset
of AS-wide routes which are learned at each individual router. Hence, it is not
valid to assume all AS-wide routes are learned at each router for selection [5].
The iBGP configuration employed, such as full mesh or route-reflection [6], de-
termines whether all routes or a subset of routes are available at every router.
In this paper we focus on the route reflector iBGP configuration since it is used
widely in large enterprise and service provider networks.

In [4], we introduced a model to analyze the oscillatory properties of a two-
tier route-reflector (RR) iBGP topology. We now extend this model to determine
the network solution of a general RR iBGP topology. The model captures the
reliance of a router on other routers for choosing its best route. This model un-
derpins a methodology for determining routes selected by all routers based on
the knowledge of routes selected by a subset of routers and the iBGP configura-
tion. Another benefit of our methodology is that it can also be used for ’what-if’
analysis. Compared to the methodology proposed by Feamster and Rexford [7],
which provides similar functionality, our methodology is applicable to any RR
iBGP configuration, not just configurations satisfying recommendations of Grif-
fin [8]. Further, our approach is topology independent making it extensible to
topologies other than a RR iBGP configuration.

We applied our methodology to the topology of a large Tier-2 AS and using
measurements collected from 15% routers (mostly RRs), we could determine
routes for all the routers in the network. Of over 12.7 million routing decisions, we
predicted a decision consistent with the observed data for all but seven routers.
In the process, we also detected several configuration and data collection issues
on routers when routes predicted by our methodology were inconsistent with the
measurement data — highlighting an additional benefit of our analysis.

2 Background and Related Work

The Internet is comprised of a collection of Autonomous Systems (ASes) which
co-operate to ensure connectivity between any two hosts. BGP is the protocol
used to disseminate reachability information between ASes. A given AS has
several routers at its border that connect with other ASes. These routers use
BGP to learn routes to external prefixes from other ASes. These routes are then
propagated to other routers inside the AS using iBGP (internal BGP). Every
router selects a ‘best’ route from all the routes learned for every prefix. The
selected route is then sent to other routers. For route dissemination (via iBGP),
routers inside an AS need to form a full mesh of sessions. However, in large
networks, a RR hierarchy is used to mitigate scalability issues of a full mesh.
One consequence of RR hierarchy is that the set of routes available at each router
is usually a subset of all routes learned across AS [5].

54 A. Flavel et al.

Prior work has recommended guidelines for designing iBGP configurations
[9, 10, 11], proposed alterations to iBGP to disseminate more information AS-
wide [12,13] and proposed centralized AS-wide route selection [14]. Our approach
is orthogonal to these. Our aim is very pragmatic — to understand the current
operation of a network — irrespective of whether it satisfies certain guidelines
or not.

One approach to discovering the network solution is to simulate BGP by
propagating information in an arbitrary order between routers until no router
alters its decision (for example, C-BGP [15]). However using this approach, a
significant number of intermediate router states are evaluated prior to converg-
ing to an arbitrary final solution (there may be multiple feasible solutions [4]).
Consequently, determining if a network is in the convergence process or if it is
persistently oscillating is difficult. In contrast, we avoid many intermediate states
to quickly find a valid solution and more importantly, converge to a solution con-
sistent with observed data. This enables our approach to predict the route traffic
actually takes in the network. In addition, if the configuration has an oscillatory
state, we can quickly identify it and pinpoint the responsible routers.

The most closely related work to ours is by Feamster and Rexford [7]. Their mo-
tivation was to predict the network solution as designed. That is, they assume rec-
ommended guidelines for network configuration are satisfied resulting in a unique
network solution. We make no such assumptions allowing the network to be ana-
lyzed as it is currently operating — whether it satisfies guidelines or not. In ad-
dition, they assume complete visibility of input routes. In contrast, our technique
works with even limited knowledge of input routes from the network. Further, our
technique is designed to use observed data to influence which of multiple network
solutions is actually chosen by the network. Finally, it can efficiently analyze the
impact of small changes to the network without a significant re-analysis.

The primary assumption of Feamster and Rexford requires all RRs to pre-
fer a client (a directly connected router in a lower level of the RR hierarchy)
learned route over any other. This constraint is a sufficient condition to pre-
vent persistent oscillation and guarantees a unique solution [8]. However as the
condition is not necessary, it can be overly restrictive and not satisfied in prac-
tice [10, 4]. Removing this assumption removes the benefit of always converging
to a unique solution — the timing of BGP updates can determine which of mul-
tiple solutions is settled upon. In addition, the tie-breaking option employed in
operational networks, such as the one we examined, can be non-deterministic,
resulting in an even greater number of feasible network solutions. Our technique
always converges to a valid solution and in almost all instances, converges to a
solution consistent with the observed data.

3 Two-Level Route-Reflector Reliance Graph

We first introduced, in [4], the concept of reliance between router decisions
to determine if a network configuration was oscillatory. In this paper, we use
reliances to efficiently and accurately determine the actual routes selected by

Humpty Dumpty: Putting iBGP Back Together Again 55

any router. We say a router u is reliant on another router v if it can learn of
its best route for a particular prefix (after convergence) from v. We denote this
reliance as u� v. Reliances are represented by a directed edge in the direction
of information flow in the reliance graph. Routing information can only flow over
iBGP sessions between routers. Consequently, the reliance graph is a sub-graph
of the iBGP signaling graph. The rules governing route-propagation in an iBGP
topology determine which links are pruned from the signaling graph to form
the reliance graph. Note that a reliance graph is a directed graph and we term
strongly connected components co-reliance groups1.

By the construction of the reliance graph, the only location a router can
learn of its best route is from an inbound edge from a neighboring router in
the reliance graph. Consequently, if all neighbor’s decisions are static, then the
router’s decision is also static (as the set of available routes remains constant).
Hence, if there are only singleton co-reliance groups in the reliance graph, then
a topological sort of all routers will result in an ordering where all routers’
decisions must only be evaluated once. However, if there are non-singleton co-
reliance groups, then we cannot topologically sort the routers (as there is at least
one loop in the reliance graph). We can still topologically sort the co-reliance
groups. By evaluating each co-reliance group in a topological ordering, we can
ensure we do not need to re-visit a co-reliance group, but we may need to visit
routers within a non-singleton co-reliance group multiple times.

Consider Fig. 1(a) as an example. In this example we have not shown the
full-mesh iBGP sessions between RRs. When a RR is closer to a non-client
egress router2 the IGP distances are shown. Routers e, f and g learn routes from
outside the AS. We create reliances when a router can learn of its best route
from another (see Fig. 1(b)). For example, a is reliant on e as e propagates its
externally learned route to a. However a is also reliant on b as b can inform a
of the route which it learns from f . Similarly, b is reliant on a. As c is closer
to its own client (g) than any non-client, it will never select any route learned
via another RR. Router d will select the best route from routes learned from
other RRs. Clients h and i will only ever select a route which they learn from
their parent RRs. In Fig. 1(c) we highlight all strongly connected components
in the reliance graph. Evaluating router decisions in any topological ordering of
co-reliance groups (for example the numerical ordering D1, D2, ...) will result in
a valid solution. Notice there are two valid solutions to this example based on
the order of evaluation of routers in D5. If we evaluate a’s decision first, both
routers in D5 will select the egress e. Conversely if we evaluate b’s decision first,
both routers will select egress f .

The reliance rules in the three-level hierarchy are somewhat more complicated
than the two-level case examined in [4]. We first present a brief recap of the
notation used in [4] before outlining generalized reliance rules and showing an
example of how they apply. Similar techniques can be applied to any iBGP
topology if the topology can be abstracted to a reliance graph.

1 For every u and v in a strongly connected component, there is a path from u to v.
2 An egress router is a router which learns a route directly from a neighboring AS.

56 A. Flavel et al.

(a) RR-client relationship (b) Router reliances

(c) Co-reliance groups

Fig. 1. Example two level RR topology. Solid nodes are RRs and transparent nodes
are clients. IGP distances shown when non-client router is closer than client router,
thus for example a prefers f over e when possible. Large arrows indicate a route is
learned from a neighboring AS.

4 General Route-Reflector Reliance Graph

The rules we examined in [4] were only applicable to the two-level RR hierarchy.
We now generalize these rules to a multi-level hierarchy. The rules governing
reliance in the multi-level hierarchy are significantly more complex than the
two-level case as RRs can hide information propagated to their parents (see [16]
for details). Consequently, we use an example topology shown in Fig. 2(a) as we
describe the rules to assist the reader in following the concepts. In this figure,
routers 1, 2, 3 and 4 form the central core mesh of RRs, while c, d, g, h, i, l and
n form the middle level RRs. The solid lines represent iBGP sessions and the
dashed lines represent a router’s preference for a non-downstream egress. Where
no dashed line exists, a downstream egress is preferred. We explicitly define
several vital preferences in the caption of the figure 3. Routes learned directly
from neighbor ASes are denoted by large arrows, i.e., routers b, e, f, i and m are
the egress routers.

4.1 Notation Recap

We now present a brief recap of the important notation used for the remainder
of this chapter. For a thorough description, we refer the reader to [4].

An iBGP configuration C is a pair C = (GP ,GS) where GP is the physical
graph on which the IGP is run to determine the shortest path between two

3 The ranking function λ is defined later in Section 4.1.

Humpty Dumpty: Putting iBGP Back Together Again 57

(a) iBGP sessions (b) Reliance rules

(c) Pruning (d) Co-reliances

Fig. 2. An example 3-level RR topology. Black nodes represent RRs at the top level.
Arrowed lines represent a reliance. We explicitly define the following preferences:
λg(b) > λg(e) > λg(f), λ2(b) > λ2(e) > λ2(f), λ3(i) > λ3(m), λ4(m) > λ4(i) >
λ4(b) > λ4(e) > λ4(f).

58 A. Flavel et al.

routers. The iBGP signaling graph GS = (V, AS) is overlaid on top of the physical
graph with routers V connected by directed arcs in AS .

Three types of arcs exists in AS . An arc (u, v) ∈ down represents an arc from
a RR u to one of its clients v. An arc (u, v) ∈ up if and only if (v, u) ∈ down.
Arcs in up are acyclic — consistent with a hierarchy rather than an arbitrary
network design. An arc (u, v) ∈ over represents a vanilla iBGP session from
router u to v. If (u, v) ∈ over then (v, u) ∈ over.

A valid signaling path S satisfies the following property. The path S can be
split into sub paths S = PQR where P = p1p2...pa for some a ≥ 0 such that
each pi ∈ up, R = r1r2...rb for some b ≥ 0 such that each ri ∈ down and Q
consists of at most a single arc q ∈ over. Note that P, Q or R may be empty.

An egress instance [8] I = (C, X) corresponds to a pair of a configuration C
and a set of egress routers X . The set X consists of all egress routers that learn an
external BGP route to a particular prefix which are not eliminated by the BGP
decision process (up-to the IGP distance step) when compared with all AS-wide
routes [7]. In our example of Fig. 2(a), b, e, f , i and m form X . An egress ancestor
set E can be recursively defined as the set of egress routers X and all parents
of routers in E. In our example, E = {b, d, e, f, g, h, i, m, k, l, 1, 2, 3}. Note that
although an egress router may learn multiple routes (to a prefix) it will only
advertise its best route to neighbors. Hence, there is a one-to-one mapping from
egress routers to available routes. Therefore, we will refer to an egress router
and its available route interchangeably.

The BGP decision process is denoted by a ranking function λu for a router u
such that if a route ak is preferred over a route aj at router u, then λu(ak) >
λu(aj). If two routes ak and aj are equivalent up-to the tie-break option and the
actual route chosen is dependent on message timing, then λu(ak) = λu(aj). For
convenience, we denote the preference of the null route φ as λu(φ) = −∞.

4.2 Reliance Rules for Route Reflection

In this section we generalize the reliance rules we previously defined for the
two-level RR hierarchy [4] to an arbitrary hierarchy. Although there is a strict
set of reliances which are a subset of arcs (of type up, down and over) in
the signaling graph AS , defining where a router can learn of its best route in
an n-level hierarchy is more difficult than in the two-level case. An important
consideration is that failing to define reliances can result in incorrect decisions,
while defining additional reliances simply increases the computational complex-
ity of predicting selected routes (as it may create larger co-reliance groups than
really exist). Consequently, we start with a relatively conservative definition of
reliances before pruning many of those which cannot exist. We assume the MED
attribute is filtered or compared AS-wide in this section.

Downstream Egress Set. Let us generalize the best downstream egress func-
tion defined in [4] to return a set of downstream egresses Λ(u) for a router u.
If u has no downstream egresses, Λ(u) = φ. Unlike the two-level hierarchy, in
an arbitrary hierarchy, it is no longer guaranteed that a router will learn of all

Humpty Dumpty: Putting iBGP Back Together Again 59

Table 1. Downstream egress sets for routers in example topology of Fig. 2

Router(u) 1 2 3 d g h l all other routers

Λ1(u) φ φ i b e f m φ
Λn(u) b e, f φ φ φ φ φ φ

downstream egresses since the set of available routes is restricted by the selection
of intermediate routers.

We first define Λ1(u) as the set of best downstream egresses which are one
downstream iBGP hop away from u. Router u is guaranteed to learn of these
routes due to the direct iBGP session and so these routes will always be available.
Formally, for u �∈ X ,

Λ1(u) =
{
v ∈ X : (u, v) ∈ down and λu(v) = max

w∈X:(u,w)∈down
λu(w)

}

We show for our example in Fig. 2 the sets Λ1(u) for all routers in Table 1.
Notice that as λg(e) > λg(f), Λ1(g) = e.

Now, let us consider other egresses u could learn (and select as best) from
clients which are not direct egresses, i.e., those more than one hop away. We
denote this set by Λn(u) and define it for u �∈ X as,

Λn(u) =
⋃

w∈E\X:(u,w)∈down

{
v ∈ Λ(w)\Λ1(u) : λu(v) ≥ max

r∈Λ1(u)
λu(r)

}
.

Note that egresses not preferred over an “always available egress” are not in
Λn(u). We also show in Table 1 for our example in Fig. 2 the sets of Λn(u) for all
routers. As router 2 can learn of both e and f from its children (g and h), both
egresses are in Λn(2). Also notice that as i is an always available downstream
egress of 3 and i is preferred over m, m is not in Λn(3). Finally, we define
Λ(u) = Λ1(u) ∪ Λn(u). Note, Λ(u) is well defined as we define Λ(u) recursively
up the hierarchy.

Rules for Reliance. Reliance rules are adapted from the route propagation
rules [6] and indicate where a router can learn of its best route. Arcs in the
reliance graph are a subset of the arcs in the signaling graph AS . There are
three types of arcs in AS which may be part of the reliance graph. Consider the
arc (u, v) ∈ AS :

1. (u, v) ∈ down: a RR u is reliant on its child v iff u �∈ X and v ∈ E.
2. (u, v) ∈ up: a client u is reliant on its parent v iff u �∈ X .
3. (u, v) ∈ over: a router u �∈ X is reliant

(a) on another router v ∈ E\X iff

min
r∈Λ(u)

λu(r) ≤ max
s∈Λ(v)\Λ1(u)

λu(s)

60 A. Flavel et al.

(b) on another router v ∈ X iff

min
r∈Λ(u)

λu(r) ≤ λu(v)

We demonstrate the above rules for our example in Fig. 2(b). Applying rule
1, we see any router in E which does not have a direct egress is reliant on its
children, for example, 2 is reliant on h. Applying rule 2, all client routers are
reliant on their parents (unless they are a direct egress), for example l is reliant
on 3. Rule 3 applies when a router can learn of a better route via an over edge
than any client-learned route. For instance, rule 3(a) applies to the reliance of
2 on 1, as 2 will select the route from b if it ever learns of it, whereas rule 3(b)
applies for the reliance of a on b, as a can learn the egress directly from b, via
an over edge.

Pruning Reliances. Our technique for determining router decisions would
work on the reliance graph defined by the rules above. However, ideally we
would like to have the smallest possible co-reliance groups in the reliance graph
to minimize computation. The reliance rules are essentially a pruning of the
signaling graph. We can continue in this vein by pruning even more reliances:
1) u�� v if (u, v) ∈ down and v ∈ X\Λ1(u).

That is, a RR is reliant only on its best client with a direct egress. In our
example, as g prefers e over f , and as e is always available, f will never be
chosen and is pruned in Fig. 2(c).
2) u�� v if (u, v) ∈ down, v ∈ E\X and

min
r∈Λ1(u)

λu(r) > max
s∈Λ(v)

λu(s)

That is, if a RR u has a client r with a direct egress and no possible egress
which it can learn from another client v is better than r, then u cannot be reliant
on v. In our example, as 3 prefers i over m, 3 is not reliant on l and this edge is
also pruned in Fig. 2(c).

Our next rule is for up edges. Before specifying the rule for a (u, v) ∈ up, we
define L(u, v) as the egresses that can be learned by a router u from the parent
router v which are not available from a direct client. For a general hierarchy,
the exact form of L(u, v) can be quite complicated. In practice, RR hierarchies
do not tend to be larger than three-levels, and for three levels, we can formally
define

L(u, v) =
⋃

w∈E:v�w

Λ(w)\Λ1(u).

3) u�� v if (u, v) ∈ up and

min
r∈Λ1(u)

λu(r) > max
s∈L(u,v)

λu(s)

That is, a RR in the second level of the hierarchy is only reliant on its parent
if the parent can learn a better route than any of the always available egress

Humpty Dumpty: Putting iBGP Back Together Again 61

at the RR. In our example, l prefers m over any egress it can learn from 3 (as
λl(m) > λl(i)). Hence the reliance of l on 3 is pruned. Other reliances which are
pruned using this technique are h� 2 and d� 1. Notice g� 2 is not prunable
as g may select an egress learned from 2.

Finding a Valid Solution. As the reliance graph precisely identifies which
routers’ decisions a particular router is dependent upon, if there are no cycles in
the reliance graph structure, we can topologically sort the routers and evaluate
them in-order (visiting them exactly once). However, as shown in our example,
it is likely there are cycles in the reliance graph. Hence, we partition the reliance
graph into co-reliance groups before undertaking a topological sort on co-reliance
groups. We show these co-reliance groups in Fig. 2(d). One topological ordering
(any topological order will result in the same network solution) is the numerical
ordering of D1 −D19 in Fig. 2(d). If multiple routers are present in a co-reliance
group (such as D9) the decisions of the routers may be dependent on message
timing and we evaluate their decisions until a valid solution is found. The or-
dering in which we evaluate the routers within a co-reliance group determines
which of possibly multiple valid solutions we converge upon [4]. Our desire is
to converge to the actual solution selected by the network. We describe how we
achieve this in the next section.

5 Finding the Actual Solution

A walk of the reliance graph can have multiple valid solutions when either

1. co-reliance groups have multiple routers; or
2. the non-deterministic oldest-route tie-breaker is used.

When such conditions exist, we want to find the actual solution chosen by
routers. If decisions of some routers in the network are known (through mea-
surement), we can use them as constraints while determining the solution4. Two
feasible approaches to using these constraints are: (i) find all possible solutions
and select one which satisfies the constraints; or (ii) gravitate towards a solution
satisfying all constraints by ensuring that when we visit each co-reliance group,
we select a solution consistent with the constraints. We take the latter approach
as it reduces unnecessary computation of infeasible solutions. However, it can
result in discrepancies if we reach a co-reliance group and there are no solutions
satisfying the constraints. We could backtrack along the reliance graph to re-
solve discrepancies, however in our examined network, we found only seven in
over 12.7 million decisions had such discrepancies and so we did not implement
a backtracking algorithm.

The ordering of router evaluation within a co-reliance group determines which
of multiple valid solutions we converge to. Due to space constraints, we refer the
reader to [16] for full details of ordering of routers within a co-reliance group.

4 There may be multiple feasible solutions which match the known route selections.

62 A. Flavel et al.

Once we have an ordering for co-reliance groups and an ordering for routers
within a co-reliance group we can calculate the decisions of all routers by simply
walking the reliance graph. We visit each co-reliance group in-order, and visit
each router within the co-reliance group in-order. If the co-reliance group is
non-singleton, we continue evaluating the router decisions until no routers alter
their decision. Our algorithm does not rely on the underlying topology, only its
description in terms of a reliance graph. Consequently, any topology describable
by a reliance graph can be analyzed using this algorithm.

It is possible that a co-reliance group never converges to a solution [4]. How-
ever, if this is the case, then the actual network also has oscillatory properties.
The non-convergent co-reliance group isolates the routers responsible for oscil-
latory modes so administrators can take corrective action.

When the oldest-route tie-breaker is used, there may be multiple routes avail-
able at a router with equal IGP distances to an egress. Any route with this
equally good IGP distance may be chosen by the router. We again use any
available constraints to assist our decision (see [16] for details).

6 Evaluation

We have implemented our techniques and tested them on a large Tier-2 AS. The
AS has a three-level RR hierarchy and uses the oldest-route tie-break option.
The MED attribute is reset by the AS. A BGP monitoring infrastructure collects
BGP updates from 15% of routers, majority of which are RRs. We use the known
routes from these routers as the set of input routes to the network. Each such
route contains a “next-hop” attribute which corresponds to the egress router for
the route. IGP distances are determined based on data collected by an OSPF
monitor [17].

Our algorithm discovers the decisions made by routers once the network has
converged to a solution. Consequently, we only examine stable prefixes – those
prefixes with no updates witnessed from any router under observation in the 6
hours prior and 6 hours past the examined time. Our evaluation is based on data
collected on the 26th May 2008, although we found similar results for several
other examined intervals. During the analysis process, our model discovered sev-
eral minor configuration errors. In this case, our model predicted the “correct”
outcome, although the network selected an “incorrect” outcome due to a config-
uration error on several egress routers. We exclude the prefixes affected by these
configuration errors from our analysis.

To speed up our analysis, we group all prefixes with the same set of egress
routers and the same egress selection by all routers that have session to the BGP
monitor. This allowed us to discover the egress router selected by all routers (in-
cluding the remaining 85% of routers without BGP monitors) for 224, 870 stable
prefixes with only 827 reliance graphs and 1154 “walks” of the reliance graph.

As our technique is based on the rules of route propagation, it will always
find a valid solution given any configuration. With the addition of monitor in-
formation (or any other constraints available), we can converge to a solution

Humpty Dumpty: Putting iBGP Back Together Again 63

satisfying such constraints. In practice, we found our technique always found
valid solutions and only seven inconsistencies with BGP monitor data in over
12.7 million known (prefix, router) pairs. This discrepancy was resulting from
a tie-break decision at a router without a BGP monitor session. The predicted
egresses were in the same PoPs as the actual selected egress. Backtracking to
alter the random tie-break decision would correct this.

We found 99.99% of co-reliance groups were singleton and the maximum size
of a co-reliance group was five routers which occurred only four times ensuring
our technique very rarely required the re-evaluation of router decisions.

The execution time of this case study lasted several hours. However, the eval-
uation time was dominated by the conversion of the enormous amounts of com-
pressed binary BGP data on disk to an ASCII readable format in memory. The
construction and walk of the reliance graph did not significantly contribute to
the execution time. Consequently, the incorporation of incremental changes to
BGP and IGP may allow near real-time analysis of router decisions. We leave
the incorporation of such routing dynamics to future work.

7 General Router Reliance Graph

In previous sections, we focused on the reliance rules for an iBGP route-reflector
topology. However, our technique is applicable to any topology describable by a
series of reliances. That is, if a set of rules defining where a router can possibly
learn of its best route can be defined, our technique will find a solution. This is
in contrast to [7] where different iBGP topologies required separate algorithms.
Further, for the iBGP topology examined in this paper the conditions required
by Feamster-Rexford technique are not satisfied. Our technique, in the best case
can precisely order the execution of router decisions (when all co-reliance groups
are singular) and in the worst case (all routers in a general topology form a single
co-reliance group) reverts to an arbitrary ordering of router decisions (such as
in [15]). The addition of reliance rules increases the efficiency of our technique.

An example of a different iBGP topology is an RR topology with the MED
attribute respected. The authors of [7] recommended a simulator as the best
technique to evaluate the network solution to this topology. However, in [16]
we detail reliance rules for such a topology, finding that although the number
of edges in the reliance graph can increase (in comparison to when the MED
attribute is not respected), routers outside the egress ancestor set do not form
non-singleton co-reliance groups. Hence, the maximum co-reliance group size is
bounded by the size of the egress ancestor set which is commonly an order of
magnitude smaller than the total number of routers — making our technique
significantly more efficient than a pure simulator. Consequently, the ordering of
router decisions outlined in this paper may also be used to improve the conver-
gence times of existing BGP simulators such as C-BGP [15].

The separation of the topology and the rules for route propagation from the
algorithm used to evaluate the network solution has possible applications not
only in iBGP described in this paper, but also in the eBGP context. A topology

64 A. Flavel et al.

inferred by a technique such as [18] could form a starting point to predict the
(Internet-wide) solution for a particular prefix and may help to answer Internet-
wide ‘what-if’ questions.

8 Conclusions

In this paper, we presented a reliance graph model to capture the dependence
amongst routers for route selection. The input to the model is the iBGP topol-
ogy and IGP distances. The model allows one to efficiently calculate the net-
work solution (set of routes selected by all routers) with no assumptions on
the iBGP configuration. The model also works when only partial information
about routes is available. We demonstrated the efficacy of the model by apply-
ing it to a Tier-2 containing over 220, 000 prefixes. Our methodology was able
to find a valid solution and a solution consistent with observed routes for all but
seven (prefix, router) pairs even when routes from only about 15% routers were
known.

One significant benefit of using a reliance graph model is that dynamics of
iBGP topology or IGP distance that do not affect the reliance graph does not
have any effect on the actual routing choices. Furthermore, BGP route dynamics
only require the re-evaluation of routers in the portion of the network so affected.
We believe that these two features should allow our methodology to work in real-
time for filling gaps to BGP monitors as well as for ’what-if’ analyses. In fact,
we have applied the methodology successfully to determine the current router
decisions and predict changes under modified route availability [16].

BGP monitors are used to determine the route selected by routers in the
network i.e., the selected network solution. Our reliance graph analysis identifies
where routes can be learned from. Consequently, a new direction of research
could be to identify the optimal placement of BGP monitors to minimize the
number of random tie-break decisions while maximizing the information about
the available egresses.

References

1. Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.: Deriv-
ing Traffic Demands for Operational IP Networks: Methodology and Experience.
IEEE/ACM Transactions on Networking (2001)

2. Zhang, Y., Roughan, M., Lund, C., Donoho, D.: Estimating Point-to-Point
and Point-to-Multipoint Traffic Matrices: An Information-Theoretic Approach.
IEEE/ACM Transactions on Networking 13(5), 947–960 (2005)

3. Teixeira, R., Shaikh, A., Griffin, T.G., Voelker, G.M.: Network Sensitivity to Hot-
Potato Disruptions. In: ACM SIGCOMM (2004)

4. Flavel, A., Roughan, M., Bean, N., Shaikh, A.: Where’s Waldo? Practical Searches
for Stability in iBGP. In: IEEE International Conference on Network Protocols
(2008)

5. Buob, M., Meulle, M., Uhlig, S.: Checking for Optimal Egress Points in iBGP
Routing. In: International Workshop on the Design of Reliable Communications
Networks (2007)

Humpty Dumpty: Putting iBGP Back Together Again 65

6. Bates, T., Chandra, R., Chen, E.: BGP Route Reflection - An Alternative to Full
Mesh IBGP, RFC 2796 (2000)

7. Feamster, N., Rexford, J.: Network-Wide Prediction of BGP Routes. IEEE/ACM
Transactions on Networking 15(2), 253–266 (2007)

8. Griffin, T., Wilfong, G.: On the Correctness of IBGP Configuration. In: ACM
SIGCOMM (2002)

9. Feamster, N., Balakrishnan, H.: Correctness Properties for Internet Routing. In:
Forty-third Allerton Conference on Communication, Control, and Computing
(2005)

10. Vutukuru, M., Valiant, P., Kopparty, S., Balakrishnan, H.: How to Construct a
Correct and Scalable iBGP Configuration. In: IEEE INFOCOM, Barcelona, Spain
(April 2006)

11. Buob, M., Uhlig, S., Meulle, M.: Designing Optimal iBGP Route-Reflection Topolo-
gies. In: IFIP Networking (2008)

12. Bonaventure, O., Uhlig, S., Quoitin, B.: The Case for More Versatile BGP Route
Reflectors, Work in progress, draft-bonaventure-bgp-route-reflectors-00.txt (2004)

13. Poduri, K., Alaettinoglu, C., Jacobson, V.: BST - BGP Scalable Transport. In:
NANOG 27 (2003)

14. Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh, A., van der Merwe,
J.: Design and Implementation of a Routing Control Platform. In: Symposium on
Networked Systems Design and Implementation (2005)

15. Quoitin, B., Uhlig, S.: Modeling the Routing of an Autonomous System with
CBGP. IEEE Network Magazine, Special Issue on Interdomain Routing (2005)

16. Flavel, A.: BGP, Not As Easy As 1-2-3. Ph.D thesis, University of Adelaide (2009)
17. Shaikh, A., Greenberg, A.: OSPF Monitoring: Architecture, Design and Deploy-

ment Experience. In: Symposium on Networked Systems Design and Implementa-
tion (2004)

18. Mühlbauer, W., Maennel, O., Uhlig, S., Feldmann, A., Roughan, M.: Building an
AS-Topology Model that Captures Route Diversity. In: ACM SIGCOMM (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CMMI10
 /CMTI10
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

