
Bandwidth Optimization for Multicast

Transmissions in Virtual Circuit Networks

(Work in Progress)

Vincent Reinhard1, Joanna Tomasik1, Dominique Barth2,
and Marc-Antoine Weisser1

1 Computer Science Department, SUPELEC, 91192 Gif sur Yvette, France
{vincent.reinhard,joanna.tomasik,marc-antoine.weisser}@supelec.fr

2 PRiSM, Université de Versailles-St-Quentin. Versailles, France
dominique.barth@prism.uvsq.fr

Abstract. The CARRIOCAS project aims to guarantee QoS connectiv-
ity services to distributed applications in a Telecom carrier network. A
large number of these applications (for example video applications) use
a multicast service packet delivery. Multicast which minimizes the total
used bandwidth in the MPLS network has become an important sub-
ject. We study multicast routing in the network where only some routers
can duplicate packets. We prove that the construction of a multicast
tree minimizing the bandwidth used in such a network is a NP -complete
problem and we propose an heuristic algorithm to solve it. We evaluate
the performance of the heuristic in terms of total bandwidth used by the
multicast for different network sizes.

Keywords: Multicast, bandwidth optimization, MPLS networks.

1 Introduction

As distributed applications become more and more popular, Internet providers
have become interested in furnishing to their customers not only the connectiv-
ity service but other services (storage, computation) as well. Supplying at the
same time connectivity and other services was one of the motivations of the
CARRIOCAS project [1][2][3][4] The latter is one of the projects of the ”SYS-
TEM@TIC PARIS-REGION 1competitiveness cluster”. It aims to provide con-
nectivity services and usual grid services to enable the executions of distributed
application workflows in a Telecom carrier network. In the CARRIOCAS ser-
vice architecture, the network service management is centralized per a network
operator domain in order to enable querying for explicit bandwidth reservation.
This network service management disposes of the network topology. It computes
a virtual connection for each external connectivity service demand and, when-
ever possible, reserves a bandwidth on the connection. If no virtual connection
1 SYSTEM@TIC PARIS-REGION and the CARRIOCAS project are supported by the

French Ministry of Industry, Essonnes, Haut-de-Seines and Paris General Council.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 859–870, 2009.
c© IFIP International Federation for Information Processing 2009

860 V. Reinhard et al.

with the requested bandwidth can be reserved, it rejects the reservation query.
This mechanism ensures that the bandwidth needed for the CARRIOCAS ap-
plications never exceeds the bandwidth available and guarantee the QoS for
applications. As GMPLS [14] is to be deployed in the CARRIOCAS network, it
has to ensure both unicast and multicast communications.

There are several schemes for multicasting data in networks [6][7]. A first one
is to construct virtual circuits from the multicast source to each destination.
Such scheme is equivalent to multiple unicasts and the network bandwidth used
by a large multicast group may become unacceptable [8]. In another scheme the
multicast source sends data to the first destination and each destination acts as
a source for the next destination until all destinations receive the data flow. In
yet another scheme intermediate routers make copies of data packets and dis-
patch them to their successors in the multicast tree. This solution allows the
multicast transmission to share bandwidth on the common links. Many multi-
cast tree algorithms have been proposed and can roughly be classified into two
categories [6]. The first category contains the algorithms based on the shortest
path while minimizing the cost of the path from the multicast source to each
destination. The second category contains algorithms based on the Steiner tree
problem [9][10][11][12]. Such algorithms derived from the Steiner tree problem
minimize the total cost of the multicast tree. This minimization is a NP -complete
problem [10].

In this paper we study a solution based on the last mentioned scheme used in
a MPLS [15] optical network which introduces an additional strong constraint
on the construction of a multicast tree. From the technological point of view,
routers able to duplicate packets introduce a supplementary delay due to O/E/O
conversions and are more expensive. For these reasons network operators want to
limit the number of such routers which we call ”diffusing nodes”. The constraint
on the number of diffusing nodes invalidates the existing algorithms of multicast
tree construction based on the Steiner tree [9][10] because they were proposed
for networks the routers of which can all duplicate data. Such a constraint has
already been considered for wavelength-routed networks [5] under the condition
that all routers support the ”drop and continue” functionality. Moreover, no
complexity study had been made. In our work we consider that the routers do
not support ”drop and continue”. We prove that minimizing the total cost of
the multicast tree under this condition and with the constraint on the number of
diffusing nodes is an NP -complete problem and propose an heuristic algorithm
to solve it.

The rest of this paper is organized as follows. In Section II and III we propose a
network model and define the bandwidth optimization problem. In
Section IV, we present a bipartite graph used to study the bandwidth opti-
mization problem. In Section V we prove that the problem is NP -complete and
Section VI contains a pseudo-polynomial algorithm to solve it. We also propose
an heuristic algorithm to solve the bandwidth optimization problem in Sec-
tion VII. Section VIII contains our results concerning the performances of the
heuristic. Finally, we conclude and outline future work.

Bandwidth Optimization for Multicast Transmissions 861

2 Network Modeling

We model a network using a directed symmetric graph G = (V, E). We define
cap(u, v) as the bandwidth available on the link (u, v), u, v ∈ V . A multicast
request is a triplet ε = (e, R, c), with e ∈ V the source of the multicast, R ⊂ V
the set of destinations and c the size of the data flow. In this work, we consider
only multicast requests of the size c = 1 and note them ε = (e, R). We define
DG ⊂ V as the set of diffusing nodes of G. An example of a network graph with
a multicast request is given in Fig. 1.

B
C

D

E

F

R

Q

J

L

M

P

G

I

K

H

A

Diffusing node

Multicast destination

Multicast origin

Fig. 1. A network graph G, DG = {B, K, G} and a request ε = (A, {C, F, P})

3 Definition of the Bandwidth Optimization Problem

Our goal is to optimize the bandwidth used by multicasts in the network repre-
sented by graph G. We define a diffusion tree for ε = (e, R) as an arborescence
Aε in G rooted in e, spanning R and with all leaves included in R (Fig. 2). We
define V (Aε) as the set of nodes of Aε and E(Aε) as the set of edges of Aε. A
request ε is satisfied by the set of paths CAε in Aε, defined as follows:

– every node of R is the final extremity of exactly one path in CAε ,
– every node of DG is the final extremity of at the most one path in CAε ,
– the origin of a path in CAε is either e or a node of DG, In the latter case,

the node of DG is also the final extremity of a path in CAε .
– a node of DG is in a path p ∈ CAε only if it is the final extremity or the

origin of p.

The load chAε(u, v) of a link (u, v) ∈ E(Aε) is the number of paths p ∈ CAε such
as (u, v) is a link of p. The load chAε of the arborescence Aε is

∑

(u,v)∈E(Aε)

chAε(u, v).

862 V. Reinhard et al.

I G

B

C

H

F

PA

Fig. 2. A possible arborescence Aε for G and ε shown in Fig. 1

Definition of the Problem diff tree. Given a network G, its set of diffusing
nodes DG, and a multicast request ε = (e, R), find an arborescence Aε for ε, such
as chAε is minimal.

4 Complexity of the Problem

We study the complexity of diff tree and we prove that its decision problem
diff tree dec is NP -complete. First, we prove that the certificate of the decision
problem is in class P. We then reduce the problem of the weighted set cover
which is NP -complete [17] to the problem diff tree dec.

First, we show that the certificate of the problem diff tree dec is in class P.
Given an instance of the problem diff tree dec (a graph of the network, a set of
diffusing nodes and a multicast request) and an associated arborescence Aε, we
can compute chAε in a polynomial time (we must compute a finite set of shortest
paths). The certificate of the problem diff tree dec is therefore in class P. We
now reduce the problem of the weighted set cover which is NP -complete [17] to
the problem diff tree dec and we show that the solution to the problem of the
set cover is equivalent to the solution to diff tree dec.

Definition of the Weighted Set Cover Problem. Given a collection C of
subsets of a finite set S, with a cost h associated to each subset and an integer
K, is it possible to find a cover S of size less than K, namely, a collection
C′ ⊆ C such as every element of S is in at least one subset C′ and whose
cost is less than K. Let I be an instance of the set cover problem, namely a
collection C = {c1, ..., cm} of subsets of a finite set S = {s1, ..., sn}, a cost h
associated to each subset ci and an integer K. From this instance I, we can
construct in polynomial time an instance I ′ of the problem diff tree dec (Fig. 3):
Let G = (V, E) be a graph. We define V as the set of its nodes followingly: there
is a node for each subset ci from collection C; a node for each element si from
finite set S and a node e. We define E as the set of its edges created as follows:
an edge of weight l > h/2 between any node representing ci from collection C
and every node representing an element si of the ci; an edge of weight h between
the node e and each node representing a subset ci. We define DG = {c1, ..., cm}
and K ′ an integer which adequate value will be defined later. Let ε = (e, R) be
a multicast request in G, with R = S.

In a solution to I ′ in G, we know that a node of DG is never reached from
another node of DG but always from node e. Since l > h/2, the weight of a

Bandwidth Optimization for Multicast Transmissions 863

Fig. 3. Construction of an instance I ′ of the problem diff tree dec from an instance I
of the problem of the set cover

path between two nodes of DG is always greater than 2l, whereas the weight
of any arc between e and a node of DG is h < 2l. A solution to I ′ in G is an
arborescence Aε rooted in e. Aε contains all nodes si and j ≤ m nodes ci such as
chAε < K ′. Futhermore, chAε = j ∗ h + l ∗ n (the weight of the j edges between
node e and nodes ci and the weight of the n edges between nodes ci and si). In
instance I, selecting the subsets ci corresponding to the nodes ci which are also
nodes of Aε in I ′ gives a cover S of size K = j ∗ h = K ′ − l ∗ n.

Therefore, if there is a solution of weight less than K ′ to the instance I ′,
then we can construct a solution of weight less than K = K ′ − n ∗ l to the
instance I. Similarly, if there is a solution of weight less than K to the instance
I, then we can construct a solution of weight less than K ′ = K + n ∗ l to the
instance I ′. We can reduce any instance of the problem of the set cover to an
instance of the problem diff tree dec in a polynomial time. Furthermore, we have
demonstrated that the certificate of this problem is in class P. Therefore, the
problem diff tree dec is NP -complete.

5 The Diffusion Graph

To treat a multicast request ε in graph G, we construct a new directed and
weighted graph containing the three sets of nodes: e, DG and R. We call this
graph a ”diffusion graph” and define it as BG,(e,R). The weights of its arcs
correspond to the weights of shortest paths in G. The graph BG,(e,R) = (VB , EB)
is defined as follows:

– VB the set of nodes of BG,(e,R) such as VB = {e} ∪ R ∪ DG.
– EB the set of arcs constructed as follows:

• ∀u ∈ VB , u 	= e, the arc (e, u) ∈ EB.
• ∀(u, v) ∈ DG, the arcs (u, v) and (v, u) ∈ EB .
• ∀u ∈ DG, ∀v ∈ R, the arc (u, v) ∈ EB .

864 V. Reinhard et al.

R

e

DG

F

C

P

G

B

K

A

1

4

2

4

7

4

1

4

5

2

1

1

2

5

2

3

2

3

Fig. 4. The diffusing graph BG,(e,R) for G and the multicast request of Fig. 1

– The weight of the arc (u, v) of EB is the weight of a shortest path from
u to v in G \ {DG \ {DG ∩ {u, v}}}. If there is no path from u to v in
G \ {DG \ {DG ∩ {u, v}}}, the arc does not exist.

Fig. 4 represents the diffusion graph for the network graph from Fig. 1. The
complexity of the diffusion graph construction is O(n3), where n is the number
of vertices in G.

We prove that finding a solution to the diff tree problem in graph G is equiv-
alent to finding a solution to the diff tree in the diffusion graph.

To find a solution to the diff tree problem in graph G, we search an arbores-
cence Aε such as chAε is minimal. In the diffusion graph BG,(e,R), we search an
arborescence Bε such as chBε is minimal. Any arc (u, v) of BG,(e,R) represents
a shortest path from u to v in G. If we know an arborescence Bε in BG,(e,R)

for which chBε is minimal, we can determine a set of paths CBε in Bε. We can
construct a set of paths CAε in G such as chAε = chBε using the corresponding
shortest paths of G represented by the arcs of CABε

. From the set of paths CAε ,
we can construct the corresponding arborescence Aε in G. Since chBε is minimal,
chAε is minimal as well. Similarly, if we know Aε in G such as chAε is minimal,
we can create Bε in BG,(e,R) such as chBε is minimal.

6 A Pseudo-Polynomial Exact Algorithm

We propose an exact algorithm to determine an arborescence Aε minimizing
chAε in BG,(e,R). Let us define S ⊆ DG as a set of diffusing nodes which are
also nodes of Aε. Knowing S allows us to construct Aε in polynomial time as
follows. Let {e}∪R∪ S be the nodes of Aε. We chose for each node in R an arc
of minimum weight which has as its origin a node of S and we add this arc to
Aε. We then compute a spanning tree in the clique formed by e and the nodes of
S and we add it to Aε. Any part of this algorithm is polynomial. To determine

Bandwidth Optimization for Multicast Transmissions 865

1

3

2

3

4

7

4

1

4

5

2

1

2

5

1

2

C

P

K

G

B F

A

4

2

Fig. 5. Solution for the graph of Fig. 1 computed by the exact algorithm. chAε = 7.

which nodes are in S, we successively generate all subsets of DG. We construct
for each subset a minimal arborescence (as described above). Finally, we chose
as solution to the problem the arborescence with the minimal chAε .

The complexity of this exact algorithm depends on the cardinality of the
power set of DG and it is O(2#DG). Fig. 5 shows the solution computed by this
algorithm for the graph and request shown in Fig. 1.

7 Heuristic Algorithm

Since the pseudo-polynomial exact algorithm can not be used to solve the diff tree
problem when the number of diffusing nodes is large, we propose a polynomial
heuristic algorithm.

This heuristic is based on an algorithm of maximal flow of minimal cost and
its description is given below. In the experiments that we performed, we used
the Busacker and Gowen maximal flow of minimal cost algorithm (Busacker and
Gowen, 1961). First, we construct a directed graph FG,(e,R) = (VF , EF) (Fig. 6)
based on BG,(e,R) which will be used for a flow algorithm.

– VF is the set of nodes of FG,(e,R) with VF = VB∪{p} where p is an additional
node used as a sink.

– EF is the set of arcs with capacities and costs constructed as follows:
• ∀(u, v) ∈ EB, (u, v) ∈ EF , its cost is the weight of (u, v) ∈ EB and the

capacity on (u, v) is infinite.
• ∀u ∈ DG, EF contains (u, p). The cost of these arcs is always 0 and their

capacity is 1.

In FG,(e,R) we compute a maximal flow of minimal cost from e to p. Since the
capacity on each arc (u, p) is 1, the maximal flow value is equal to the number of
nodes in R and since a maximal flow has to pass by all r ∈ R every node of R is in
a flow. The computation of a maximal flow of minimal cost gives an arborescence
in FG,(e,R) which contains e and all nodes of R. This arborescence deprived of the
sink p is a possible Aε solving the diff tree problem in BG,(e,R). In any algorithm

866 V. Reinhard et al.

1

3

2

3

4

7

4

1

5

2

1

2

5

1

2

p

0

0

0

1

A=e=s

G

K

B

Capacity is infinite on all arcs except the arcs with node p as destination

1

1

P

F

C

4

2

4

Fig. 6. FG,(e,R) constructed from BG,(e,R) of Fig. 4. Capacities are highlighted. The
solution constructed by the heuristic is shown in dotted lines and chAε = 10.

of maximal flow of minimal cost, the cost of each arc is counted as many times
as the flow value on it. To compute chAε (Section III), we count the cost of each
arc used in the solution only once. For this reason, we modify the maximal flow
of minimal cost algorithm by setting to zero the cost of an arc which has already
been used by a flow. Setting the cost of the arcs already used to zero impacts the
computation of the solution. The arborescence Aε corresponding to the maximal
flow is not necessarily of minimal cost. A solution found by this heuristic for the
graph of Fig. 1 is illustrated by Fig. 6.

The complexity of this heuristic is the same as the algorithm of maximal flow
of minimal cost (for the Busacker and Gowen algorithm, O(n4)).

8 Results

We performed experiments to study the performance of our heuristic in terms
of the number of links used by the multicast tree which in our case corresponds
to the bandwidth used by the multicast. We also studied the influence of the
number of diffusing nodes on the performances of our algorithm.

We generate graphs G = (V, E) representing a network with the BRITE
generator [13] using the Waxman model (whith parameters: α = 0.15, β = 0.2,
m = 2, MaxBW = 1024, MinBW = 10). We define T ⊂ V as the set of nodes
of degree smaller than three.

In all experiments, to determine the location of the diffusing nodes in G we
use a k-center heuristic algorithm based on a dominating set algorithm [16].
This approach was chosen because the k-center algorithm distributes the centers
”equally” in the graph. In our opinion this approach is adapted to deal with
multicasts whose origins are not a priori known efficiently.

Bandwidth Optimization for Multicast Transmissions 867

10

12

8

6

4

2

10

12

8

6

4

2

80 9085 95 100 110 120 130 140 150 160

6

30

36

42

48

24

18

12

Number of multicasts

Fig. 7bFig. 7a

20 25 30 4035 50 60 70 80 9045 55 65 75 85

Average increase of the heuristic solution weight
(% of the exact solution weight)

Number of multicasts

20

100

120

150

180

80

60

40

Exact solution weightExact solution weight

Average increase of the heuristic solution weight
(% of the exact solution weight)

Fig. 7. Distribution of the multicast trees depending on their weight and the perfor-
mance of the heuristic compared to the exact algorithm for a network with 200 nodes.
The number of destinations is generated with N1 (Fig. 7a) and N2 (Fig. 7b). Confidence
intervals computed with the significance coefficient α = 0.05.

We used the Busacker and Gowen algorithm as basis for our heuristic algo-
rithm. The results obtained could be slightly different with another maximal
flow minimal cost algorithm.

We generate multicast requests (multicast groups) in the network as follows.
We chose an origin for multicasts uniformly in V . For each chosen origin, we
generate different destination sets. For each destination set, we use a normal
distribution N1 = N (10%#T, 2%#T) to fix the number of destinations. The
destinations are then chosen uniformly in T .

We started with a topology of 200 nodes. We arbitrarily fixed #DG = 6 and
placed the diffusing nodes in the network according to the k-center algorithm. We
chosed multicast sources and for each source generated 30 destination sets. We
computed the average number of links used in the multicast trees constructed
by both the exact algorithm and our heuristic. We constructed an histogram
containing the results as follows. We created weight intervals and placed every
generated multicast request in such an interval depending on the weight of its
best multicast tree (constructed by the exact algorithm). We arbitrarily set the
weight intervals length to 5. For each interval we computed the average weight of
the multicast tree constructed by the exact algorithm and by the heuristic. We
then showed in the histogram the relative average increase of the weight of the
solution computed by the heuristic compared to the weight of the exact solution.
We also showed for each weight interval the number of multicast requests in it.
The results are shown in Fig. 7a.

What we first observe is that our heuristic always finds solutions of average
weight at the most 10.5% greater than the best solution. We also observe that the
performance of our heuristic decreases when the average weight of the multicast
trees increases. This degradation can be explained as follows. An average greater

868 V. Reinhard et al.

#D = 12G

#D = 10G

#D = 6G

#DG

Relative difference (%)

100

2

4

6

8

10

12

14

16

18

200 300 400 500

2

4

6

8

10

12

14

16

18

6 8 10 12 14

Fig. 8a Fig. 8b

Relative difference (%)
(for the topology with 300 nodes)

Network size

#D = 8G

Fig. 8. Relative difference between average sizes of multicast trees obtained on one hand
with the heuristic and on the otherwith the exact algorithmdepending on thenetwork size
(Fig. 8a). Fig. 8b shows the same relative difference, depending on the number of diffusing
nodes in the network with 300 nodes. Confidence intervals for both Fig. 8a and Fig. 8b are
computed with precision 5% and significance coefficient α = 0.05.

weight of the multicast tree is due to either more destinations or destinations
farther from the multicast source (or both). When the heuristic constructs the
multicast tree, it tries in priority to add destinations to the diffusing nodes
already selected in the partial solution because the weight of the arcs already
used is set to zero (Section VII). When the number of destinations is not large
enough to select most of the diffusing nodes in the solution, the set of diffusing
nodes selected by the heuristic is most often different than the set selected by the
exact algorithm and the heuristic solution diverges more from the best solution
when the average weight increases. It is only after all or most of the diffusing
nodes have been selected in the partial solution, does the heuristic add each new
destination in the best way. To observe the performance of our heuristic when
the number of destinations is greater, we generated more multicast requests
by using another distribution N2 = N (25%#T, 2%#T) to fix the number of
destinations. The results are shown in Fig. 7b. We observe that the heuristic
constructs solutions whose weight is closer to the best one. In cases in which
the number of destinations is relatively large, both the exact solution and the
heuristic one are constructed with all or most diffusing nodes. After all diffusing
nodes have been selected by the heuristic, the heuristic adds each new destination
in the best way and the weight of its solution becomes closer to the best one.

In order to observe the influence of the network size on the performance of
our heuristic, we generated topologies of i ∗ 100, i = 1, 2, ..., 5 nodes preserving
the same average degree of nodes. We placed a various number of diffusing nodes
(#DG = 6, 8, 10, 12) in each network using the k-center algorithm. As above, for
each multicast source we generated 30 different destination sets whose cardinality
is given by the distribution N1. We computed the number of links used by the
multicast trees with both our heuristic and the exact algorithm (Fig. 8a).

Bandwidth Optimization for Multicast Transmissions 869

We observe that for a fixed number of diffusing nodes our heuristic per-
forms better for greater networks. We have shown in Section VI that the non-
polynomial part of the exact algorithm corresponds to finding the set of diffusing
nodes used in the minimal multicast tree. When the set of diffusing nodes of the
multicast tree constructed by the heuristic is almost the same as the set of dif-
fusing nodes of the best multicast tree, the heuristic finds a multicast tree whose
weight is close to the weight of the best multicast tree. In our model, since we
always preserve the average degree of nodes and use the distribution N1 based
on the number of nodes of low degree, the average number of destinations de-
pends on the network size. When the network size becomes larger, the average
number of destinations for the generated multicast groups increases and more
of the diffusing nodes must be used to construct the best multicast tree. All
or most of the diffusing nodes are chosen by both the exact algorithm and the
heuristic. The heuristic then constructs a multicast tree whose weight is close to
that of the best one.

The results depending on the number of diffusing nodes in a given network
(Fig. 8b) tends to confirm that for this given network, increasing the number
of diffusing nodes degrades the performance of our heuristic. For the reasons
explained above, the heuristic constructs better solutions when the ratio between
the number of diffusing nodes and the number of destinations is small. A greater
ratio means that a smaller portion of the diffusing nodes appears in the best
multicast tree and the heuristic choses the same set of diffusing nodes less often
than in the previous experiments.

9 Conclusion and Perspectives

We studied a construction of a multicast tree optimizing bandwidth in an optical
MPLS network. We proved that the construction of a multicast tree optimizing the
number of links used is NP -complete when only a subset of the routers are diffusing
nodes. We proposed a heuristic algorithm to construct the multicast tree optimiz-
ing the number of links used and we evaluated the performance of our heuristic with
a pseudo polynomial algorithm. We showed that the performance of the heuristic
depends on the ratio between the number of diffusing nodes and the number of
destinations. We observed that our heuristic performs very well when this ratio is
small and that it constructs multicast trees whose weight is close to the weight of
the best ones. We are currently working on new heuristics to construct a multicast
tree and we will compare them with the heuristic we proposed here. We are also
examining how we can improve the placement of the diffusing nodes in the network
when we are given the set of the multicast sources.

References

1. The CARRIOCAS website, http://www.carriocas.org
2. Verchere, D.: Orchestrating optimally IT and network resource allocations for strin-

gent distributed applications over ultrahigh bit rate transmission networks. In:
ECOC 2007 (2007)

870 V. Reinhard et al.

3. Audouin, O.: CARRIOCAS description and how it will require changes in the net-
work to support Grids. OGF (2007)

4. Reinhard, V., Tomasik, J.: A mechanism of application-network interactions in a
high-speed optical network. In: CISIS 2008 (2008)

5. Zhang, X., Wei, J., Qiao, C.: Constrained Multicast Routing in WDM Networks with
Sparse Light Splitting. In: INFOCOM 2000 (2000)

6. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of Multicast Routing Algo-
rithms forReal-Time Communication on High-Speed Networks. IEEE J. on Sel. Ar-
eas in Comm. 15(3) (April 1997)

7. Myoungki, J., Yijun, X., Cankaya, H.C., Vandenhoute, M., Qiao, C.: Efficient multi-
cast schemes for optical burst-switched WDM networks. In: IEEE ICC 2000 (2000)

8. Malli, R., Zhang, X., Qiao, C.: Benefits of multicasting in all-optical networks. In:
SPIE Proceedings, All Optical Networking, November 1998, pp. 209–220 (1998)

9. Beasly, J.: An SST-based algorithm for the Steiner problem in graphs. Networks 19,
1–16 (1989)

10. Hwang, F., Richards, D.: Steiner tree problems. Networks 22, 55–89 (1992)
11. Kompella, V., Pasquale, J., Polyzos, G.: Multicasting for multimedia applications.

In: INFOCOM 1992 (1992)
12. Bharath-Kumar, K., Jaffe: Routing to multiple destinations in computer networks.

IEEE Transactions on Communications 31(3), 343–351 (1983)
13. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal

Topology Generation. In: MASCOTS 2001 (2001)
14. Mannie, E. (ed.): Generalized Multi-Protocol Label Switching (GMPLS) Architec-

ture, IETF RFC 3945 (Ocotber 2004)
15. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol label switching architecture,

IETF RFC 3031 (January 2001)
16. Mihelic, J., Robic, B.: Solving the k-center Problem Efficiently with a Dominating

Set Algorithm. J. of Comp. and Info. Tech. - CIT 13, 3, 225–233 (2005)
17. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Complexity of Com-

puter Computations, pp. 85–103. Plenum, New York (1972)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

