
L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 182–194, 2009.
© IFIP International Federation for Information Processing 2009

Real Time Identification of SSH Encrypted Application
Flows by Using Cluster Analysis Techniques

Gianluca Maiolini1, Andrea Baiocchi2, Alfonso Iacovazzi2, and Antonello Rizzi2

1 Elsag Datamat, Automation, security and transportation division,
V. Laurentina 760, 00143 Rome, Italy

gianluca.maiolini@elsagdatamat.com
2 INFOCOM Dept., University of Roma “Sapienza”

Via Eudossiana 18 - 00184 Rome, Italy
{name.surname}@uniroma1.it

Abstract. The identification of application flows is a critical task in order to
manage bandwidth requirements of different kind of services (i.e. VOIP, Video,
ERP). As network security functions spread, an increasing amount of traffic is
natively encrypted due to privacy issues (e.g. VPN). This makes ineffective cur-
rent traffic classification systems based on ports and payload inspection, e.g.
even powerful Deep Packet Inspection is useless to classify application flow
carried inside SSH sessions. We have developed a real time traffic classification
method based on cluster analysis to identify SSH flows from statistical behavior
of IP traffic parameters, such as length, arrival times and direction of packets.
In this paper we describe our approach and relevant obtained results. We
achieve detection rate up to 99.5 % in classifying SSH flows and accuracy up to
99.88 % for application flows carried within those flows, such as SCP, SFTP
and HTTP over SSH.

Keywords: Traffic analysis, statistical traffic classification, SSH, cluster analy-
sis, k-means.

1 Introduction

The control of QoS becomes a very important stake, even more with the arrival of
new applications with very different profiles, such as real time multimedia. These
applications have very different behavior according to packet sizes, offered traffic
profile, transport level protocol (UDP/TCP) and different requirements on throughput,
transit delay, jitter, packet loss rate.

Traffic shaping and scheduling techniques for edge routers aim at managing band-
width resources according to QoS policy model. Before applying QoS policy it is
important to classify correctly application flows. Most routers use port based classifi-
cation of protocols but new applications are forwarded using well-known ports, i.e 80.
Deep packet inspection (DPI) systems can be quite effective in recognizing applica-
tions, thanks to IP payload analysis, even if they fail in classifying ciphered flows.
From provider side, it will be very important to recognize applications encoded within
ciphered flows in order to apply QoS policies; in fact encoded traffic could contain

 Real Time Identification of SSH Encrypted Application Flows 183

real time applications, transactional applications (ERP, finance,..), comfort applica-
tion (web, mail,..) and so on. In this situation, future requirements could consist in
optimizing performance in terms of QoS for application natively encoded.

Secure Shell or SSH is a network protocol that allows data to be exchanged using a
secure channel between two networked devices. It is often used to login to a remote
computer but it is also applied for tunneling, file transfer and forwarding arbitrary
TCP ports over a secure channel between a local and a remote computer. What makes
the detection of this protocol interesting is that its traffic is encrypted. Thus any pay-
load analysis based classification method is irrelevant since the payload is encrypted.
Actually DPI technology cannot recognize application delivered within SSH flows.

The objective of our work is to develop a real time system to recognize and clas-
sify SSH flows by analyzing statistical features of first IP packets belonging to a SSH
connection, such as arrival times, directions and lengths. By recognition we mean
identifying which flows belong to SSH protocol as opposed to other application level
protocols. By classification we mean to identify the kind of service carried within
each SSH connection, such as SCP, SFTP and HTTP over SSH. Experiments show
that our approach permits us to achieve great recognition accuracy up to 99.2% for
SSH identification and, once SSH has been identified, applications in those SSH tun-
nels are classified with accuracy up to 99.8%.

The paper is organized as follows. Section II establishes the position of this work,
relative to earlier research. Problem statement has been discussed in section III. In
section IV we have described dataset creation, in particular data collection and pre-
processing. The machine learned based approaches for real time SSH classification
are presented in section V. Experimental results are presented in section VI, and con-
clusions are drawn in section VII.

2 Related Works

Different approaches to traffic classification have been developed, using information
available at IP layer such as inter-arrival times, bytes transferred, packet size. Some
proposals [4][5] need also semantically complete TCP flows as input.

In [1], Karagiannis et al. developed a heuristic that uses social, functional and ap-
plication level behaviours of a host to identify all traffic flows originating from it.
This approach, although really innovative, is tailored onto a specific source host.

Salgarelli et al. [2] used only size and inter-arrival time of first n packets to create a
statistical descriptor (a Fingerprint) of an application layer protocol: this fingerprint is
then used to measure the similarity of a certain flow to the corresponding protocol.

The Hidden Markov Models (HMM) theory is used in [3]: packets size and inter-
arrival time are used to build a model describing a certain protocol. The results of the
training phase is a HMM model describing the behaviour of each protocol. Even
though this approach can classify distinct encrypted applications, its performance on
SSH is (76% detection rate and 8% false negative) is not as good as well known ap-
plication traffic such as WWW and instant messaging.

Moore et al. [4] used a supervised machine learning algorithm called Naive Bayes
(and its generalization, Kernel Estimation) on a wide set of characteristics (tens or
hundreds), as flow duration, packets inter-arrival time and payload size and their

184 G. Maiolini et al.

statistics (mean, variance...). Moreover, they use a filtering technique to identify the
best characteristics to be used with the mentioned methods.

A number of works [5][6][7] rely on unsupervised learning techniques. McGregor
et al. [5] explore the possibility to use cluster analysis to group flows using transport
layer attributes, but they do not evaluate the accuracy of the classification. Zander et
al. [6] extend this work using another Expectation Maximization (EM) algorithm
named Autoclass. They also analyze the best set of attributes to use. Both these works
only test Bayesian clustering technique trained by an EM algorithm, which has a slow
learning time.

Bernaille et al. [7] use faster clustering algorithms representing data in different
spaces: K-means and Gaussian Mixture Models (GMM) for euclidean space and
Spectral clustering in HMM based space. The only features they use are packet size
and packet direction: they demonstrate the effectiveness of these algorithms even
using a small number of packets (e.g. the first four of a TCP connection).

Alshammari et Al [8], work attempted to classify/identify applications services
running over SSH. They have shown the utility of two supervised learning algorithms
AdaBoost and RIPPER for classifying SSH traffic without using features such as
payload, IP addresses and source/destination ports. Results indicate that a detection
rate of 99% and a false positive rate of 0.7% can be achieved using RIPPER. More-
over, promising preliminary results were obtained when RIPPER was employed to
identify which service was running over SSH. They can recognize applications inside
SSH flows such SCP and SFTP with accuracy up to 99.8% but they have performed
off-line analysis on complete traces. We aim at classifying applications inside SSH
flows in real time mode just analyzing the firsts 4 packets after SSH negotiation. We
rely on K-means cluster analysis machines algorithm.

3 Problem Statement

In this paper, we focus on the classification of IP flows generated from network appli-
cations communicating through TCP protocols. Our objective is to recognize SSH
flows out of other applications such as HTTP, FTP, POP3, etc. and, once that is ac-
complished, to identify which service is actually carried within the encrypted SSH
tunnel. Then, we first need to define exactly what we mean for TCP flow.

Definition: A flow F is the bi-directional, ordered sequence of IP packets exchanged
during a TCP connection.

Within a TCP connection, application level data are delivered as well as control
packets, such as those related to three way-handshake (RFC-793) and TCP ACK
packets. So, TCP flow will be composed by packets from SYN (PK0) to FIN (PKN–1).
Each flow could be seen as a sequence of (PK0, …., PKN–1), where PKj represents the
j-th IP packet exchanged during TCP connection. Since we aim at classifying applica-
tion flows relying on statistical features of IP packets, such as length, direction and
absolute-arrival times, we will characterize each TCP flow F as an ordered sequence
of N-tuples (dj, lj. tj), with 0 ≤ j ≤ N–1, where:

• dj ∈ [0,1] where 1 encodes the direction detected for SYN packet and 0 the
opposite direction;

• lj length of IP PKj, in bytes;

 Real Time Identification of SSH Encrypted Application Flows 185

• tj = Tj–T0, where Tj is the timestamp of PKj at capture point and T0 is the
timestamp of the PK0 at the capture point.

The packet length ranges between a minimum and a maximum. The latter is the
MTU (Maximum Transmission Unit) of the interfaces crossed by TCP connections
packets. In all experiments we found out MTU=1500 bytes has never been exceeded,
which is just the largest allowed MTU of most Ethernet LANs and hence most of the
Internet [10]. As for the minimum length, it corresponds to those carrying a TCP
ACK and is denoted as lACK in the following. It is the smallest length detectable for a
TCP packet as we tested during our experiments and as RFC 793 refers, typical values
ranging between 40 and 56 bytes, depending on options in the TCP and IP headers.

4 Data Set Creation

Given our aim as stated in the introduction, we assume a trained machine learning
approach, exploiting cluster analysis. To that end, we need both a test and a train data
set. A data set for our purposes is composed of a collection of flows in the sense de-
fined in Section III along with metadata per flow, reporting the known application
layer protocol the flow belongs to, the absolute timestamp of its first packet (T0), the
capture date and location.

Knowing the application protocol each flow belongs to is needed to reliably train
our algorithm. Since publicly available traces have payloads stripped off (for obvious
privacy reason, e.g. CAIDA traces) and classification results cannot be checked relia-
bly, we resorted to artificial traffic carefully generated by exploiting network prem-
ises at the University campus, the Elsag Datamat site and a private home. This way
we encompass three major kinds of Internet access points: institutional, business and
domestic. The controlled traffic generation is a must specifically for collecting SSH
traces whose service content is known, i.e. to further label each SSH flow with a
metadata reading which service it is carrying among SCP, SFTP and HTTP.

4.1 Data Collection

IP traces generation of TCP based application: We focus our attention on four
different plain application layer protocols, namely HTTP, FTP-control, POP3 and of
course SSH, which seem to be the ones accounting for the majority of traffic flows in
the INTERNET (except of peer-to peer traffic). As for HTTP and FTP-Control (FTP-
C in the following), we collected traffic traces coming from the Networking Lab at
our Department. By means of automated tools mounted on machines within the Lab,
thousands of web pages have been downloaded in a random order, over thousands of
web sites distributed in various geographical areas (Italy, Europe, North America,
Asia). FTP sites have been addressed as well and control FTP session established with
thousands remote servers, again distributed in a wide area. The generated traffic has
been captured on our LAN switch configuring a mirroring port; we verified that the
TCP connections bottleneck was never the link connecting our LAN to the big Inter-
net. This experimental set up, while allowing the capture of artificial traffic that
(realistically) emulates user activity, gives us traces with reliable application layer
protocol classification. In order to complete our traces repository, in the next section
we describe how we collected SSH traces.

186 G. Maiolini et al.

SSH IP traces generation: Our data collection approach is to simulate possible net-
work scenarios using one or more computers to capture the resulting traffic. In order
to have realistic traces and technology independent implementations of SSH (version
2) protocol, we used computers with heterogeneous operative systems, namely Linux
and Windows. We simulate SSH connections by connecting three client computers
deployed in three different LAN to one server. As shown in figure 1, client LANs and
SSH server have been connected to the Internet by using different geographic links.
We run the following SSH services: SCP, SFTP and HTTP over SSH. SCP and SFTP
are transfer file services natively available on OpenSSH [9]. In particular we
downloaded/uploaded files from clients to server using both SCP and SFTP protocols
collecting eight thousands flows. HTTP over SSH traces have been collected
downloading web pages through SSH tunnels (one SSH tunnel for each HTTP ses-
sion). We get four thousands of flows.

SSH connections can tunnel several TCP flows at the same time: we are working in
the case where each flow is assigned by SSH a separated channel, each with specific
SSH identifier. Finally we will consider flows without SSH compression feature.

Fig. 1. Platform used to generate SSH traffic: SSH server is inside the University campus net-
work; clients are at University, Elsag Datamat and a private home premise, respectively

4.2 Data Set Creation: Pre-processing of Traces

In order to create data sets we pre-processed collected traffic traces. In particular we
think that removing packets related to TCP control messages from each flow F can
help us highlighting the differences among various applications. Therefore we remove
from each flow F packets related to:

• Three-way handshake of TCP: PK0=SYN, PK1=SYN-ACK, PK2=ACK;
• TCP ACK packets, i.e. those packets carrying only a TCP level ACK and no

payload data;
• Retransmitted packets.

According to TCP protocol (RFC 793) the third packet (PK2=ACK) of each TCP
connection flow F carries an ACK. In order to remove ACK packets and TCP header
length at the same time, we detect PKACK = <dACK, lACK, tACK> of each session, where:

• dACK is 1, because ACK direction in three way handshake is always consis-
tent with that of SYN packet;

• lACK, is the length of packet containing TCP ACK;

 Real Time Identification of SSH Encrypted Application Flows 187

• tACK, is the relative capture time of that packet.

So, for each flow n packets will be pre-processed as:

PKj
*= <δj=dj, λj = lj–lACK, τj = tj–tACK>, j ∈ [3,..., N–NACK–1]

where NACK is the number of ACK packets detected in the pre-processed flow. Packets
with λj=0 are removed and packets shown in PKj

* will contain bytes concerning just
application contribution. In particular, λj ∈ [0, lMTU–lACK].

In order to make our analysis in real time, we need to run our classification method
exploiting the very firsts packets of each flow. After tests and analysis of results we
set how many packets will be required to strike a convenient trade-off between high
classification accuracy and an acceptable classification delay. So our dataset will be
composed as shown in Figure 2. In our dataset we collected traces belonging to the
following application layer protocols: HTTP, FTP-C, POP3 and SSH.

Fig. 2. Pre-processing TCP flows

Fig. 3. Pre-processing of SSH flows

Once SSH application flows has been detected, we aim at identifying application
within SSH tunnels. Then, we further process SSH flows by removing packets related

188 G. Maiolini et al.

to the SSH initial handshake (see Figure 3). We consider the following services inside
encrypted SSH tunnels: SCP, SFTP and HTTP over SSH.

5 Classification Method

5.1 A K-Means Based Approach

In this section some details about the adopted classification system are exploited.

Basically a classification problem can be defined as follows. Let P : X → L be an
unknown oriented process to be modeled, where X is the domain set and the codomain
L is a label set, i.e. a set in which it is not possible (or misleading) to define an order-
ing function and hence any dissimilarity measure between its elements.

If P is a single value function, we will call it classification function. Let Str and Sts
be two sets of input-output pairs, namely the training set and the test set. We will call
instance of a classification problem a given pair (Str , Sts) with the constrain Str ∩ Sts
=Ø . A classification system is a pair (M , TAi), where TA is the training algorithm,
i.e. the set of instructions responsible for generating, exclusively on the basis of Str, a

particular instance M of the classification model family M, such that the classifica-

tion error of M computed on Sts will be minimized. The generalization capability,

i.e. the capability to correctly classify any pattern belonging to the input space of the
oriented process domain to be modeled, is for sure the most important desired feature
of a classification system. From this point of view, the mean classification error on Sts
can be considered as an estimate of the expected behavior of the classifier over all the
possible inputs. In the following, we describe a classification system trained by an
unsupervised (clustering) procedure.

When dealing with patterns belonging to the Rn vectorial space we can adopt a dis-
tance measure, such as the Euclidean distance; moreover, in this case we can define
the prototype of the cluster as the centroid (the mean vector) of all the patterns in the
cluster, thanks to the algebraic structure defined in Rn. Consequently, the distance
between a given pattern xi and a cluster Ck can be easily defined as the Euclidean
distance d(xi ; µk) where µk is the centroid of the pattern belonging to Ck:

∑
∈

=
ki Cx

i
k

k x
μ

μ 1

A direct way to synthesize a classification model on the basis of a training set Str

consists in partitioning the patterns in the input space (discarding the class label in-
formation) by a clustering algorithm (in our case, by the K-means).

Successively, each cluster is labeled by the most frequent class among its patterns.
Thus, a classification model is a set of labeled clusters (centroids); note that more than
one cluster can be associated with the same label, i.e. a class can be represented by
more than one cluster. Assuming to represent a floating point number with four bytes,
the amount of memory needed to store a classification model is K · (4 · n + 1) bytes,
where n is the input space dimension and assuming to code class labels with one byte.
An unlabeled pattern x is classified by determining the closest centroid µ i (and thus
the closest cluster Ci) and by labeling x with the same class label associated with Ci.

 Real Time Identification of SSH Encrypted Application Flows 189

It is important to underline that, since the initialization step of the K-Means is not
deterministic, in order to compute a precise estimation of the performance of the clas-
sification model on the test set Sts, the whole algorithm must be run several times,
averaging the classification errors on Sts yielded by the different classification models
obtained in each run.

Normalization

This paragraph describes how data sets have been normalized. The available data is
split in training set and test set. The training and test data sets are normalized in order
to guarantee that each feature will contribute to distance computations with equal
weights; for each feature we adopted the “affine normalization”, consisting in:

minmax

min

−
−= x

y

where x is the value we want to normalize, max/[min] is the maximum/[minimum]
value of x in a reasonable range of possible values of x and y is the normalized value.

The direction takes the values in the domain (0,1), and doesn’t need to be normal-
ized. As concerns the lengths, min and max values are respectively 0 byte and lMTU–
lACK bytes. Absolute arrival time was intended between 0 and 200 sec. During
normalization, timestamps over two hundreds seconds has been normalized to 1.

Cross-validation

In order to choose the optimal number of clusters to be used in the K-means clustering
procedure, we have performed cross validation. It help us to estimate “a priori” the
performance of the classification system using only the training set and give us an
estimate of the homogeneity of training set. The cross-validation is a function which
receives as inputs the training set (containing a x N patterns, in which a is the number
of applications and N is the number of patterns for each application), the length range
of clusters’ number to use and the number of parts to split the training set (n-fold cross-
validation), and it returns a vector of length l containing the estimated accuracy for
each classifier synthesized during the cross-validation procedure. In more detail, the
function divides in n parts (simply called sub-datasets) the train dataset, assigning n
patterns for each application in a random way to each part. All the new created datasets
will have he same number of patterns for each application and will be balanced in the
same way of the original dataset. Next, for each value of k belonging to a considered
range of reasonable values, the function calculates the classifier performances taking in
turn as test set one of the n sub-dataset and as training set the remaining n-1. Therefore
the training procedure will be run n times, as long as each of the sub-dataset n has been
test set once. The results are inserted into a matrix ∏ of k x n size:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= Π

nkk

n

ppp

p

ppp

,2,11,

1,2

,12,11,1

..

........

......

..

190 G. Maiolini et al.

where the pi,j represents the mean accuracy of the classifier that has been obtained by
the ith dataset as test set and by clustering data fixing k equal to j. The mean accuracy
is the average of the accuracies on the single application acch

(i)(k) divided by the
application number.

)(
1

1

)(
, kacc

a
p

a

h

i
hik ∑

=
=

Finally the function computes a further average of the accuracies in the matrix ∏ :

∑
=

=
n

i

ikp
n

k
1

,
1

)(π

obtaining in this way the π(k) performance vector of the classifier, as a function of
the number of clusters fixed in the clustering procedure. Finally, the optimal number
of clusters to be used in the classification model is determined as follows:

{ })(maxarg
1

kk
lk

π
≤≤

=

Actually, in this way it is very likely that the highest k value in the range will be
chosen because the performances of the classifier tends to improve by increasing of
the number of clusters. However, the cross-validation purpose is to find the number k
of clusters representing a trade-off between performances and complexity of cluster-
ing algorithm. We have chosen the minimal value of k after which the rate of the
performance indicated from vector π increases slower (or decreases).

5.2 On-Line Procedure for Capturing and Classifying Application Flows

In this section, we will describe how our algorithm works. Our method is divided into
four phases.

First phase: traffic retrieving. This phase consists in connecting a network protocol
analyzer, such Wireshark, to the network we want to investigate. In the case of LAN
traffic classification, Wireshark workstation will be connected to a mirroring port of
the edge switch in order to sniff all traffic traces flowing through the geographical
link connecting LAN to the Internet.

Second phase: detecting TCP flows. Wireshark allows our tool to manage traffic in
real time. As SYN packet is detected, related IP source and destination are identified
as peers involved in a new TCP flow. Datagram exchanged by those IP addresses are
retrieved and stored until the number of packets required for classifying application
has been reached. Number of packets analyzed for each flow is settable (for instance:
six after three-way handshake). This method enables us identifying TCP flows
through IP addresses and TCP flags, as well as retrieving plain information for classi-
fying applications such as lengths, direction and arrival time of each packet.

Third phase: preprocessing and normalization phase. Each TCP flow previously
detected includes TCP control information as well as retransmitted packets, so lists of
TCP flows are preprocessed according to specifications described in Section 4.2 and
normalized as depicted in Section 5.1, in “normalization” sub section.

Fourth phase: classification. Output of the previous phase is a list of application
flows processed and normalized. Our k-means based classification machine is

 Real Time Identification of SSH Encrypted Application Flows 191

configured off-line through process shown in Figure 4 and described in Section 5.1. It
is trained by using training set composed by traces collected as described in Section
4.1. As depicted in Figure 5, decision phase consists in classifying flow (that could be
seen as a point in Rn, pTS) to the application of the nearest centroid in Rn. Each cen-
troid has been assigned to a well known application during training phase (cnew), ac-
cording to section 5.1.

Fig. 4. A k-means based approach: off-line training phase

Fig. 5. A k-means based approach: on-line traffic classification

6 Experimental Results

By classifying plain flows with our approach, we obtained results shown in table 1.

Table 1. Plain application flows classification results

 Accuracy (%)
Pkt
<l,d,t>

K* HTTP FTP-C SSH POP3 Average

3 32 99.0 34.1 99.0 95.7 81.95
4 35 98.9 82.9 98.9 92.3 93.25
5 26 98.6 32.0 99.3 90.6 80.13
6 23 99.2 92.2 98.4 88.3 94.53
7 28 99.5 92.9 99.1 90.2 95.43

We can notice that by analyzing the firsts six packets of each flow we achieve av-

erage accuracy up to 94.53%, with 23 clusters as the optimal value found by the cross

192 G. Maiolini et al.

validation technique. We can demonstrate that accuracy in recognizing SSH applica-
tion flows is up to 98.4% relying on the statistical features of lengths, directions and
absolute times. We emphasize that increasing the number of analysed packets im-
proves accuracy, even if it delays the classification intended to be real time. Results
demonstrate that six packets are necessary to have a trade-off good enough to guaran-
tee high classification accuracy as well as acceptable classification delay.

Once SSH has been classified, we have applied our classification method to iden-
tify application flows forwarded in SSH tunnels.

In classifying SSH tunnel content, we have not used arrival times. In fact times re-
lated to HTTP over SSH are greater than others due to delay introduced by navigation
trough the main server. This could affect our classification results. To make our
analysis more realistic for classifying SSH tunnels we have represented each packet
using only its size and direction, discharging arrival times.

We tried out processing all possible combination of packets up to ten packets after
end of SSH negotiation (i.e. the initial common handshake phase, same in all SSH
flows).

Table 2. Encoded SSH applications flows

1° 2° 3° 4° 5°
HTTP
over SSH scp sftp

0 0 1 1 1 99.80% 98.93% 99.75%

0 0 1 1 0 99.88% 99.30% 99.05%

As shown in Table 2, we tested different patterns representations, increasing the
considered number of packets for each flow in order to identify which one contains
more information to emphasize difference among applications. As shown in Table 2,
the K-means based algorithm yields very interesting results in terms of identification
of encoded applications. We can detect different applications with accuracy up to 99.8
for HTTP over SSH protocol, just analyzing third and fourth packets after SSH nego-
tiation. We can notice that analyzing also the fifth packet does not improve signifi-
cantly accuracy. Moreover, increasing the considered number of packets means intro-
ducing delay for real time recognition.

Table 3. Encoded SSH application flows (with scp and sftp upload and download)

3° 4° 5° 6° 7° 8° 9°
HTTP
over SSH scp up scp down sftp up sftp down

1 1 0 0 0 1 0 90.00% 96.78% 95.65% 96.74% 4.61%

1 1 1 0 0 1 0 89.78% 96.83% 95.87% 96.70% 4.61%

1 1 1 0 0 0 1 92.44% 94.65% 88.57% 96.17% 5.61%

We have also tried to classify uploads and downloads of SCP-SSH and SFTP-SSH

flows. Results are less encouraging: in fact accuracy decreases for every application.
At a glance, SFTP downloads get confused with other applications. By inspecting

 Real Time Identification of SSH Encrypted Application Flows 193

data set we concluded that this method mistakes this kind of classification due to the
fact that SFTP and SCP are characterized by similar patterns in terms of directions
and packet’s lengths. Further tests have been performed by analyzing a greater num-
ber of packets up to the ninth without achieving significant improvements.

7 Conclusion and Future Works

In this paper we describe a cluster analysis based method to classify in real time en-
coded traffic flows, overcoming actual limits of deep packet inspection. We are able
to identify SSH flows out of other plain TCP based applications with accuracy up to
99.2% after collecting and analysing up to six application packets. Other protocols
have been correctly classified with accuracy up to 94.53%. Once SSH flows have
been detected, we can classify the nature of each SSH tunnel continuing in gathering
session packets. In doing so, we gain accuracy up to 99.88% in classifying HTTP over
SSH just analyzing the third and fourth packet after the end of the SSH negotiation
phase. The same encouraging results have been obtained by classifying SCP (up to
99.3) and SFTP (up to 99.05) applications. Further works should be performed in
order to improve results for classification of download and upload flows for SCP and
SFTP. Moreover, it will be necessary to investigate the applicability of the approach
on wider application dataset.

Recovering large quantity of well-known traffic is a critical point in traffic analysis
due to privacy issues in collecting traces from geographic links. We also tried to clas-
sify CAIDA traces [11], but direction of packets is unavailable making our
pre-processing assumption useless. We have obtained these good results in our own
dataset; yet more traces would help assessing the robustness of our methodology.

Currently on-going work includes extension of the classification tool to more pow-
erful classification algorithms, well beyond k-means; in this respect, k-means shall be
regarded as a first use attempt, to verify the soundness of our approach, before pro-
ceeding to more complex yet reliable classification algorithms. We are also working
on preprocessing and normalization in order to improve the extraction of statistical
behavior of application level flows.

References

1. Karagiannis, T., Papagiannaki, D., Faloutsos, M.: BLINC: Multilevel traffic classification
in the dark. In: Proc. of ACM SIGCOMM 2005, Philadelphia, PA, USA (August 2005)

2. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic Classification through Simple Sta-
tistical Fingerprinting. ACM SIGCOMM Computer Communication Review 37(1), 5–16
(2007)

3. Wright, C., Monrose, F., Masson, G.: On Inferring Application Protocol Behaviors in En-
crypted Network Traffic. Journal of Machine Learning Research (JMLR): Special issue on
Machine Learning for Computer Security 7, 2745–2769 (2006)

4. Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques.
In: ACM SIGMETRICS 2005, Banff, Alberta, Canada (June 2005)

194 G. Maiolini et al.

5. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow clustering using machine learning
techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 205–214.
Springer, Heidelberg (2004)

6. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and application
identification using machine learning. In: LCN 2005, Sydney, Australia (November 2005)

7. Bernaille, L., Teixeira, R., Salamatian, K.: Early Application Identification. In: Proceed-
ings of CoNEXT (December 2006)

8. Alshammari, R., Nur Zincir-Heywood, A.: A Flow Based Approach For Ssh Traffic De-
tection. In: IEEE International Conference on Systems, Man and Cybernetics, 2007. ISIC
(2007)

9. http://www.openssh.com/
10. MTU: RFC 879
11. http://www.caida.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

