
Scan Surveillance in Internet Networks

(Work in Progress)

Khadija Ramah Houerbi1, Kavé Salamatian2, and Farouk Kamoun1

1 National School of Computer Science, University of Manouba, Tunisia
khadija.houerbi@cristal.rnu.tn, farouk.kamoun@ensi.rnu.tn

2 Lancaster University, Lancaster, UK
kave.salamatian@comp.lancs.ac.uk

Abstract. In recent years, many measurement studies have shown the
ubiquity of scanning activities in the Internet and the growing sophis-
tication of probing techniques that became more stealthy by stretching
slowly over time or using spoofed source IP addresses. Scans are mainly
generated by attackers trying to map the configuration of a target net-
work and by computer worms trying to spread over the Internet. Al-
though, the problem of scan detection has been given a lot of attention
by network security researchers, current state-of-the-art methods still
suffer from high percentage of false alarms or low ratio of scan detection.
In this paper, we propose to detect changes in scanning patterns, by
monitor variation of the distribution of scan features in a space spanned
by IP source address, IP destination address, source port number, and
destination port number. This gives insight on characteristics of scan-
ning activities and exposes the presence of emerging scanning attacks
and worms. For that, we propose to use an information theoretic-based
approach to detect changes in distributions.

Keywords: scan monitoring, anomaly detection, Information Theory,
Networks.

1 Introduction

A major challenge for security managers is to develop network intrusion detection
systems that can timely and accurately detect network attacks. A precursor to
many attacks on networks is often a reconnaissance operation more commonly
referred to port scans. Scans have many legitimate uses [1], including, for system
administrators, to verify the security of a network, to find web servers to index
by some search engines and some application (e.g. SSH, some peer to peer as
edonkey and windows applications). However, intruders frequently perform port
scanning as a mean to gather valuable information on target victims to achieve
destructive attacks. Furthermore, computer worms also use port scanning to
propagate; infected hosts usually perform scanning to search for new vulnerable
hosts. This scanning activity takes the form of probe packets targeted at specific
TCP or UDP ports on multiple target hosts. If a target host responds, then the
scanning host will initiate the process of uploading malware onto that host.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 614–625, 2009.
c© IFIP International Federation for Information Processing 2009

Scan Surveillance in Internet Networks 615

Many measurement studies [2–4], have shown that port scans represent a
sizable portion of today’s Internet traffic, that exhibits steady growth, mainly
since 2001, and a changing nature over time and between sites. In [2], the au-
thors examined the history of scanning activities over 12.5 years (between 1994
and 2006) as observed at the border of the Lawrence Berkeley National Lab-
oratory (LBNL). They showed that since 2001 scanning became an ubiquitous
phenomenon (mainly due to the wide spread of Internet worms like CodeRed I
and II, Nimda, Slammer, and Blaster). Following a different approach, the au-
thors in [3], measured and characterized traffic amassed by network telescopes
in two academic networks and termed it ”Background radiation”. This traffic,
sent to unused IP addresses, is anomalous by nature, and reflects the presence of
many unwanted activities ranging from scans, backscatter from a flooding attack
victimizing someone else, exploit attempts and mis-configurations. The authors
of [4] analyzed a set of logs from the global ”DShield” repository that spanned a
4 month-long period during 2001-2002. They showed that while common scan-
ning types (eg. vertical and horizontal) are indeed prevalent, other strategies
such as coordinated and stealthy scans are also widely used.

In the next section, we will survey state-of the art of scan techniques and scan
detection approaches. We will show that most of scan detection methods need
connection reassembly and are limited to one scan type. Moreover, nearly all
proposed methods have difficulties catching low rate scanners and often suffer
from significant levels of false positives making them inadequate for automatic
scan suppression.

Subsequently, we will present in section three, the approach proposed in this
paper. Although, the proposed approach is not a scan detection method it aims
to expose the presence of emerging scanning attacks and worms. It consists of
collecting and analyzing scan traffic to track significant changes in its distribu-
tional aspects. Detecting such changes is important because it can be relevant of
serious security problems such as rapid scanning worms or reconnaissance scan
preceding destructive attacks. The section four exposes our experimental results.
For that we used both real measurement datasets collected on Tunisian National
University Network and some artificial traces obtained by mixing a real trace
with experimental Nmap scan traffic. Finally, we conclude and present some
perspectives in section five.

2 Background and Related Work

2.1 Scan Techniques

Port scanning can be defined as a technique for discovering open ”doors” or ports
on a host or a set of hosts. It aims to discover host’s vulnerabilities by sending
a probe to a port and listening for an answer. As most of Internet services are
on TCP, scanners are mainly interested to probing TCP ports to determine
their states. There are at least a dozen scan techniques implemented in Nmap
utility which we can group in three major types: SYN scans, non-SYN scans,
and idle scans. SYN scan techniques work against any compliant TCP stack and

616 K. Ramah Houerbi, K. Salamatian, and F. Kamoun

allow clear, reliable differentiation between the open, closed, and filtered states
of a TCP port. They can be performed quickly, scanning thousands of ports
per second on a fast network. The Half-open scanning technique (an example
of SYN scan technique) is the most popular one. It consists of sending a single
SYN packet to a specific port on a target host and then waiting for a response.
A SYN/ACK response indicates that the probed port is listening (open), while
a RST (reset) response signifies a closed port. If no response is received (or
an ICMP unreachable error is received), the port is marked as filtered. Non-
SYN scans are more subtle techniques that exploit loophole in the RFC 793 to
differentiate between open and closed ports . However, many systems (Microsoft
Windows, many Cisco devices, BSDI, and IBM OS/400) do not follow RFC
793 to the letter that makes these techniques less effective. Finally, Idle scan
is an advanced scan method that allows for blind TCP port scanning of target
hosts (meaning no packets are sent to the target host from the real attacker’s
IP address). It exploits predictable IP fragmentation ID sequence generation on
a zombie intermediate host to glean information about the open ports on the
target. IDS systems will display the scan as coming from the zombie machine
used. Besides being extraordinarily stealthy (due to its blind nature), it permits
mapping out IP-based trust relationships between machines.

2.2 Scan Detection Methods

As a result of importance of scan traffic, various scan detection methods have
been proposed to detect and prevent scan activities. These methods can be
classified into counting methods [1, 5, 6], and non counting ones [7–9].

Snort [6], a popular intrusion detection system, implements a simple count-
ing method for scan detection. It marks a source IP address as a scanner if
it tries to connect to more than a given number of distinct IP addresses or a
fixed number of TCP/UDP ports within a time window. However the count-
ing algorithm can erroneously mark legitimate hosts as scanners in particular
when proxies or address translation mechanisms are used. For example in [1],
the authors established that over a Lawrence Berkley Laboratory (LBL) traces,
with Snort’s default settings, 38.5% of host detected as scanner are in fact false
positives. Other counting methods have built upon the observation that, unlike
benign remote users, scanners are more likely to initiate failed connections to
local IP addresses. Bro [5] scan detection algorithm uses this and counts only
failed connection for services specified in a configurable list. For the others, it
counts all connections.However the issue with Bro is similar to Snort, even if mis-
classification is less likely to happen because of counting only failed attempts.
Threshold Random Walk (TRW) algorithm, proposed in [1], propose to use the
observed disparity between the proportion of successfully established connec-
tions between legitimate remote hosts and malicious ones.TRW uses sequential
hypothesis testing to distinguish between benign remote hosts who occasionally
send misaddressed traffic and remote scanners who are often likely to probe non
active IP addresses or ports. However, despite its advantages, one can still easily
evade TRW. In [10], the authors proposed a distributed scan method, named

Scan Surveillance in Internet Networks 617

z-scan that is using a limited number of zombies. This method is extremely
effective against TRW.

Non-counting approaches have been proposed [7, 8, 11], to address problems
with counting methods. The authors of [8] proposed a probabilistic approach to
scan detection. It computes for each address an access probability distribution,
calculated across all remote source IP addresses that are contacted by this host.
Then, it compares the probability with that of scanners that are assumed as ac-
cessing each destination address with an equal probability. The authors of [11] pro-
posed an entropy-based approach to fast scanning worms detection. The proposed
approach works on flow-level and computes entropy contents of traffic parameters
such as IP addresses. Significant changes in entropy indicate worm propagation. In
[7], the authors formalize the problem of scan detection as a classification problem.
A data mining classifier algorithm labels each pair (source IP, destination port) as
scanner or non-scanner. Despite its performance, this data mining method heavily
depends on an accurately labeled training trace and it is not suitable for real-time
scan detection; it was used with time windows of 20 minutes.

3 Scan Surveillance

We have seen in the previous section that scan detection poses two tricky
challenges. First, probing methods are increasingly varied and refined both for
greater efficiency and to operate at lower profile to evade intrusion detection
systems. Second, complete session re-assembly of traffic data, needed by many
proposed scan detection methods, is impractical for on-line deployment at high-
speed vantage points. Maintaining real-time assembly of many connections for
many hosts requires much computing resources making the cost of such methods
unaffordable for many ISPs. Moreover, as stated in [3], scan activity can be seen
as an unavoidable background radiation that hits permanently our network. This
means that the presence of scanners is a nuisance that is not per se problematic,
but a change in the pattern of activity of scanners is an important sign that
something is happening, e.g.,a new worm propagating or a cibled attack to a
network. In place of trying to detect each individual scanner, we should rather
monitor the scanning activity to detect change in it. When we detect a change,
we can there after apply sophisticated and complex forensic techniques to detect
the scanner(s) that have led to a change in scanning activity. In this paper, we
will concentrate on the detection of changes in scan activity.

Our approach of monitoring scan activity has analogous foundation to what
proposed in [8, 11], in the sense that we that we characterize the scanning ac-
tivity by its distribution in the space spanned by IP source address (@IPsrc),
IP destination address (@IPdst), source port number (# src) and destination
port number (# dst) (@IPsrc,@IPdst,# src,# dst). The authors of [8] use the
distribution of @IPdst or # dst as a discriminant feature between a scanner
and a benign node. The authors of [11] derive the entropy from the distribu-
tion of @IPsrc is used as the feature to monitor to detect worm propagation.
In this paper we are going further, and we see the joint distribution over the

618 K. Ramah Houerbi, K. Salamatian, and F. Kamoun

quadruple (@IPsrc,@IPdst,# src,# dst) as the main feature to use to detect
changes in scanning activity. Our scanning monitoring algorithm therefore con-
sists of deriving an aggregated reference distribution on an observation window
of w packets. This reference is thereafter compared with the distribution inferred
over a running window of the same size. We detect a change in scanning pattern
if the deviation from the reference window is larger than a detection threshold.
In summary we are following the below three steps;

1. Aggregating suspect scan traffic collected on a chosen vantage point in sep-
arate windows of w packets.

2. Computing, for each window, an empirical joint distributions of the features
of interest in the scanning traffic.

3. Analyzing these empirical distributions and tracking deviation from a ref-
erence distribution to expose the presence of serious security problems that
need more investigation.

We saw in previous section that detecting individual scans is a challenging
task. Fortunately our objective is to detect change in scanning pattern at any
observation point, i.e.,we should be able to monitor scanning traffic using only
locally available information. So we will not use any scan detection algorithm
to collect scan traffic. We propose to collect on every monitored point all SYN
packets that are not followed by SYN/ACK responses within a 60 seconds inter-
val. Collecting such traffic, although it may include benign traffic as well as the
real scan traffic, has three basic benefits: first, its collection is more ressource-
friendly as we are ignoring all non-SYN packets and we do not need complete
session re-assembly; second, such traffic is mainly composed by scans as usually,
we can neglect mis-configuration traffic and transitory network congestion or
failures. Finally, isolated SYN packets form most of scan traffic. Non-SYN scans
suffer from TCP/IP implementation idiosyncrasies, which limits their efficiency
and therefore their use.

3.1 Feature Selection

Our aim here is to track changes in the distribution of scan activity in the space
spanned by (@IPsrc,@IPdst,# src,# dst). This choice comes from the observa-
tion that different port scanning strategies affects feature distributions in diverse
manners. A horizontal scan affects the # dst distribution of the scan traffic, so
that it becomes skewed and concentrated on the vulnerable port being scanned.
Moreover, if the distribution of the source IP address field is also skewed than
means that the a single or a few numbers of IP addresses conduct the attack (it is
probably a botnet master, looking for vulnerable machines to send them a bot),
otherwise it is most likely a worm scan. In the same way, vertical scans might be
detectable as a change in the distributional aspect of source and destination IP
addresses, which becomes more concentrated: on the attacker IP address for the
@IPsrc distribution and on the victim for @IPdst. However, coordinated scans
are less obvious to detect since the attacker can probe many ports on different
target IP addresses using many source IP addresses; therefore making all feature

Scan Surveillance in Internet Networks 619

distributions appears dispersed. For this case we expect to have to use the full set
(@IPsrc,@IPdst,# src,# dst) to be able to detect the changes. Thus, we will use
the following traffic features to detect scanning attacks and worms:

– (@IPsrc,# dst): to detect emerging horizontal scans from botnet masters
and individual attackers.

– (# dst): to detect new worm scans.
– (@IPsrc, @IPdst): to detect new or repetitive vertical scans.
– (@IPsrc,@IPdst,# src,# dst): to detect coordinated scans.

3.2 Distribution Inference

In most general settings, computing the traffic features joint distributions for
each time window consists of having a vector of up to 296 entries 1, where each
entry represent a possible assignment of the features values. Every time the
feature value assigned to an entry is observed it is incremented. Hopefully, the
number of distinct TCP port pairs is near 25000 where number of distinct IP
address pairs in a 24 hours scan trace (see Table 1) is about 2 millions. Although
these numbers are lower than the 264 and 232 possible ones, they remain impor-
tant, and it is still unfeasible to estimate precisely the distribution. We have
therefore, to resort to estimate an aggregated histogram. One solution to build
it is to apply a mask that aggregates into a single bin all features values sharing
the same value of mask. Even if this solution is easy to implement it suffers from
a lack of flexibility, aggregation level is not easy to control and most important
it is too deterministic, i.e.,an attacker can guess the mask applied and make
use of it to hide its scan traffic. To address these two problems we propose to
apply a random hash function to each feature and to aggregate value based on
the resulting hash values. This approach is easy to implement, leads to flexible
aggregation, and last, it is immune to the attacker guess. To have more security
one can even change frequently the random hash.

One might use the aggregated histogram to estimate precisely a parametric
distribution form [12]. However in this work, we want to stay non-parametric so
we will directly use the histogram without refining it into an estimated distri-
bution.

3.3 Change Detection

We have postulated earlier in section 3 that we can infer change in scanning
pattern by observing changes in the joint distribution of features. We need to
define a way to measure the discrepancy between two distributions. This problem
is indeed central in statistics. Two main approach classes can be defined to
deal with this problem. A first class of approach is parametric. They consist of
measuring the distance of two distributions through the change in parameters of
a parametric distribution. Parametric inference and statistical tests associated
with it have widely used these approaches.
1 (@IPsrc,@IPdst,# src,# dst) is represented with 96 bits.

620 K. Ramah Houerbi, K. Salamatian, and F. Kamoun

A second class is non-parametric and does not use any particular type of
distribution. Entropy based approach [9, 11] belongs to this category. Entropy is
the measure of missing information when we do not know the value of a random
variable realization. The intuition beyond using entropy in anomaly detection is
that we expect that a change in the distribution lead to proportional change in
entropy. Unfortunately, a closer analysis of entropy shows that it is not a good
indicator of distribution variation. To see this let us assume a two valued random
variable with a distribution (p, 1 − p) and let us assume that this distribution
varies to (p+Δ, 1−p−Δ). A sensitivity analysis of the entropy H(p) to variation
of p can be done through the derivative:

∂H

∂p
= log

(
p

1 − p

)

One can therefore expect that the effect of a small variation Δ on the distribution
on the entropy would be approximatively Δ log

(
p

1−p

)
, i.e.,the sensitivity of the

entropy variation depends strongly on the value of p and not on the variation
of the distribution; for small p the entropy will vary largely with small variation
of p and for larger values the entropy will not vary as much. The sensitivity
analysis shows that even very small variations of a bin probability (that could
eventually result from small random fluctuations) can lead to large variation of
the entropy. This elucidates why from a theoretical standpoint entropy is not
a good metric to use for tracking change in distributions as small variation in
distribution might lead to large variations in entropy and large variation in the
distribution might not lead to important entropy variation.

In place of entropy, we propose to use the relative entropy, also named Kullback-
Leibler divergence (KLD) [13] , to track changes in distributions obtained over
hashed distributions. The Kullback-Leibler divergence is an information theo-
retic measure of the difference between two probability distributions defined on
the same finite set H: a distribution P and a reference probability distribution
Q. It is given by equation (1).

D(P‖Q) =
∑
x∈H

P (x) log
(

P (x)
Q(x)

)
(1)

The KLD is not defined when ∃x ∈ H, Q(x) = 0, P (x) �= 0. By applying a
sensitivity analysis similar to what done for entropy to a two valued discrete
distribution we obtain:

∂D

∂p
= log

(
p

q

)
+ log

(
1 − q

1 − p

)

This shows that in contrast with entropy the sensitivity of KLD does not depend
on the value of p alone but on the ratio between p and the reference distribution
Q, i.e.,KLD is highly sensitive if we have a large variation compared to the
reference distribution, and become less sensitive if this variation is smaller. This
is perfectly what we expect from a distribution variation metric. This validates

Scan Surveillance in Internet Networks 621

the use of KLD in place of entropy, and it explains also some of the poor results
obtained when using entropy to monitor distributional changes.

Furthermore, we can formulate anomaly detection using feature distribution
of the random variable X as follows. Let us assume that the scan traffic follows a
stable distribution P and we are observing n observations of scan packets. Let us
Qn be the empirical feature distribution. Anomaly detection reduces to decide
the following composite hypothesis test:

– H1 : The observed scan traffic features follow the stable distribution P ,
i.e.,there is no change.

– H2 : The observed scan traffic features follow an alternative distribution P ′

i.e.,there is a change.

It can be shown that the classical likelihood ratio test can be replaced by the
below test on KLD:

|D(Qn‖P) − D(Qn‖P ′)| >
1
n

log T

where T is the decision threshold. The Stein lemma [13] states that if one fixes the
probability of false alarm (the probability that no change happened but we still
decided that a change occurs) to a value and want to minimize the probability
of misdetection (the probability that there are changes and we cannot detect
them), this minimal misdetection probability will depend on D(P‖P ′). However
in practice we do not know the type of changes that will happen a priori, so the
alternative distribution P ′ is unknown. We have therefore, to replace the change
detection test by the below one:

|D(Qn‖P)| >
1
n

log T

However, this test is not optimal anymore and we cannot derive the misdetection
errors analytically, and we have to resort to Receiver Operation Characteristic
(ROC) curves. These curves show the tradeoff achieved between false alarm and
mis-detection rate for a given change detection scheme.

4 Experimental Validation

The trace used in this paper consists of all packet headers that have passed during
April 4th to 5th , 2006 through the 100 Mb/s link connecting Tunisian National
University Network (TNUN) to the Internet. Table 1 summarize that trace and
reports the total number of packets and flows. It also shows the share of transport
protocols above IP protocol.

We have assumed that all SYN packets that are not followed by SYN/ACK
responses within a 60 seconds interval are scan traffic. This leads to 10 millions
suspicious packets that have 18388 sources and are destinated to 56585 desti-
nations, leading to 2 millions address pairs. The traffic targeted up to 25 000
different port numbers. The suspicious packets account for 3% of total number
of packets and 42% of the total number of connections.

622 K. Ramah Houerbi, K. Salamatian, and F. Kamoun

Table 1. Summary of the packet trace used for validation

Period Packets number Flow number Protocol share(%)
in millions in millions TCP UDP ICMP

April 4-5 , 2006 356 10.5 97.5 1.8 0.7

0 5 10 15 20 25 30 35 40 45 50 55
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Window index

K
ul

lb
ac

k−
Le

ib
ne

r
D

is
ta

nc
e

Kullback−Leibner Distance variatiion compared to the first wndows for scenario T−H20pc

(@IPsrc,#dst)
(@IPsrc,@IPdst)
(#dst)
(@IPsrc,@IPdst,#src,#dst)

Sequential horizontal scan random horizontal scan

Fig. 1. Evolution of Kullback distance computed for four sets of features with a hori-
zontal scan inserted

4.1 Validation on Artificially Changed Scan Traffic Traces

To validate the method we first create artificial changes in scanning profile and
see whether we can detect these changes using the proposed methods. For this
purpose, we have used Nmap tool to generate 5 scan traces: 2 horizontal scan
targeted to port 80 on randomly chosen IPs (a sequential scan on all IPs of
an address mask, and a random scan), and 3 vertical scans (a sequential, a
random, and a targeted) to many ports on a single IP. These scan packets are
injected in a real trace by mixing according to a certain percentage (referred
as scan intensity) them with the originally observed real trace (T). We provide
in table 2 the details of the resulting traces. We used for each set of features
a hash function on 5 bits, i.e.,the feature distribution is obtained over 32 bins.
We obtain over each fixed window of 1000 packets an empirical histogram. We
used the histogram over the first window as the reference histogram for detecting
changes in scanning pattern.

In Fig. 1, we present the KLD variation obtained for the scenario T-H20pc
with two horizontal scans injected. The figure shows that (@IPsrc, # dst), (#
dst) and (@IPsrc,@IPdst, # src, # dst), shows an noticiable change of the KLD.
However unexpectedly that the distribution on (@IPsrc, @IPdst) do not show
a major change. This could be explained because of the use of random hash
function that distributes the value in the hash space, so that the horizontal scan

Table 2. Artificial scan traces summary

Trace Description Intensity

T Original scan trace 0%
T-V20pc Three vertical scans injected in window 100, 260, and 430 20%
T-H20pc Two horizontal scans injected in window 100 and 260 20%

Scan Surveillance in Internet Networks 623

0 5 10 15 20 25 30 35 40 45 50 55
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Window Index

K
ul

lb
ac

k−
Le

ib
ne

r
D

is
ta

nc
e

Kullback−Leibner Distance variatiion compared to the first wndows for scenario T−V20pc

(@IPsrc,#dst)
(@IPsrc,@IPdst)
(#dst)
(@IPsrc,@IPdst,#src,#dst)

Random vertical scanSequential Vertical scan
 Targeted vertical scan

Fig. 2. Evolution of Kullback distance computed for four features compared to the
first window for a one hour scan trace

is not affecting too much the distribution. Interestingly the KLD for (@IPsrc,
dst) and (# dst) show almost the same values during the horizontal scan
injection. This could be explained by the fact that the variation in feature space
is essentially related to port variations that are happening during horizontal
scans. Moreover KLD variations are more emphasized on the (@IPsrc,@IPdst, #
src, # dst) than on other features. This validates the use the approach proposed
in the paper for detecting changes in horizontal scanning pattern. In Fig. 2, we
present the KLD variation obtained for the scenario T-V20pc with three vertical
scan injected. The figure shows that (@IPsrc, # dst) is not well reacting to the
introduction of vertical scans, when (@IPsrc, @IPdst), as well as (@IPsrc,@IPdst,
src, # dst), are well reacting to the injected scan level changes. This validates
the use the above three set of features for detecting vertical scans. In vertical scan
this is mainly destination address and destination port that are changed, one can
expect to not see it on the feature (@IPsrc, # dst). It is noteworthy that the
feature (@IPsrc,@IPdst, # src, # dst) seems to be reactive to the two types of
scans: horizontal and vertical. However, using each individual feature enable also
to know if the change is resulting from vertical or horizontal scanning changes,
where using (@IPsrc,@IPdst, # src, # dst) does not give this information.

4.2 Mining Scan Traffic Changes in Real Data

We present in the Fig. 3, the KLD variations for selected features over the
whole scan traffic trace. The figure first validates the assumption that there is
a stable value for KLD. This can be seen by observing that most of time the
KLD distance is close to zero and has a flat structure. However some clear peaks
are visible. The KLD computed over (@IPsrc, # dst) pair presents many peaks
that are relative to horizontal scans. The figure also shows clearly some vertical
scan that are visible by sharp peaks on the (@IPsrc, # dst) graph. However,
the intensity variation is larger for horizontal scan than vertical one. This is
in accordance with other studies [2–4] findings that affirmed the predominance
of horizontal scans compared to other scanning strategie. Interestingly one can
observe a increase and a deacrease in the KLD obtained over (@IPsrc,# dst)
feature in windows 700 to 800. This increase represents a significant change in
horizontal scanning behaviour. It has happened from 10 PM to 6 AM the next

624 K. Ramah Houerbi, K. Salamatian, and F. Kamoun

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0
0.2
0.4
0.6

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0
0.2
0.4
0.6

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0
0.2
0.4
0.6

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0
0.2
0.4
0.6

Variation of Kullback−Leibner distance compared to the first window for a full day

Window index

K
ul

bb
ac

k−
Le

ib
ne

r
di

st
an

ce
(@IPsrc,#dst)

(@IPsrc,@IPdst)

(#dst)

(@IPsrc,@IPdst,#src,#dst)

Fig. 3. Evolution of Kullback distance computed for four features to the first window
for a one hour scan trace

day. This could be related to a significant scan activity targeting TNUN. Here
also (@IPsrc,@IPdst, # src, # dst) seems to be a good tradeoff between the all
the feature. It regroups peaks in (@IPsrc, @IPdst) as well as (@IPsrc, # dst)
curves and it can also detect the change happening between time 700 and 800.

5 Conclusion

We presented in this paper a scan surveillance approach based on Kulback-
distance-based approach. The proposed approach is completely non-parametric
and does not need any hypothesis on the nature of scan traffic. We provided
preliminary evidence that the method is effective. However, a complete analysis
will need a complete study with a larger set of traces and particularly the obser-
vation of a real change in scanning pattern (for example in the advent of a new
worm propagating). We are actually instrumenting equipment in network to do
this real time analysis.

References

1. Jung, J., Paxson, V., Berger, A., Balakrishnan, H.: Fast portscan detection using
sequential hypothesis testing. In: IEEE Symposium on Security and Privacy, pp.
211–225 (2004)

2. Allman, M., Paxson, V., Terrell, J.: A Brief History of Scanning. In: ACM SIG-
COMM/USENIX Internet Measurement Conference (October 2007)

3. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of internet background radiation. In: 4th ACM SIGCOMM IMC conference, pp.
27–40. ACM, New York (2004)

4. Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: global characteristics
and prevalence. In: ACM SIGMETRICS, pp. 138–147. ACM, New York (2003)

5. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: 7th
conference on USENIX Security Symposium, pp. 2435–2463. USENIX Association,
Berkeley (1998)

Scan Surveillance in Internet Networks 625

6. Roesch, M.: Snort–Lightweight Intrusion Detection for Networks. In: 13th Confer-
ence on Systems Administration LISA 1999, pp. 229–238 (1999)

7. Simon, G., Xiong, H., Eilertson, E., Kumar, V.: Scan Detection: A Data Mining
Approach. In: Proceedings of the Sixth SIAM International Conference on Data
Mining, pp. 118–129 (2006)

8. Leckie, C., Kotagiri, R.: A probabilistic approach to detecting network scans. In:
Network Operations and Management Symposium, NOMS 2002. 2002 IEEE/IFIP,
pp. 359–372 (2002)

9. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: SIGCOMM conference, pp. 217–228. ACM, New York (2005)

10. Kang, M., Caballero, J., Song, D.: Distributed Evasive Scan Techniques and
Countermeasures. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS,
vol. 4579, pp. 157–174. Springer, Heidelberg (2007)

11. Wagner, A., Plattner, B.: Entropy based worm and anomaly detection in fast
IP networks. In: 14th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, pp. 172–177 (2005)

12. Akodjenou-Jeannin, M., Salamatian, K., Gallinari, P.: Flexible Grid-Based Clus-
tering. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič,
D., Skowron, A. (eds.) PKDD 2007. LNCS, vol. 4702, pp. 350–357. Springer, Hei-
delberg (2007)

13. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley and Sons,
Inc., Chichester (1991)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

