
Passive, Streaming Inference of TCP Connection

Structure for Network Server Management

Jeff Terrell1, Kevin Jeffay1, F. Donelson Smith1, Jim Gogan2, and Joni Keller2

1 Department of Computer Science
2 ITS Communication Technologies

University of North Carolina
Chapel Hill, NC 27599

{jsterrel,jeffay,smithfd}@cs.unc.edu, {gogan,hope}@email.unc.edu

Abstract. We have developed a means of understanding the performance
of servers in a network based on a real-time analysis of passively measured
network traffic. TCP and IP headers are continuously collected and pro-
cessed in a streaming fashion to first reveal the application-layer structure
of all client/server dialogs ongoing in the network. Next, the representa-
tion of these dialogs are further processed to extract performance data
such as response times of request-response exchanges for all servers. These
data are then compared against archived historical distributions for each
server to detect performance anomalies. Once found, these anomalies can
be reported to server administrators for investigation.

Our method uncovers nontrivial performance anomalies in arbitrary
servers with no instrumentation of the server nor even knowledge of
the server’s function or configuration. Moreover, the entire process is
completely transparent to servers and clients. We present the design of
the tools used to perform this analysis, as well as a case study of the use
of this method to uncover a significant performance anomaly in a UNC
web portal.

1 Introduction

Monitoring the performance of servers in a network is a challenging and po-
tentially expensive problem. Common approaches are to purchase and install
monitoring software on the server, or to use an active monitoring system that
generates service requests periodically and measures the response time. Both ap-
proaches, while effective, typically require extensive customization to work with
the specific server/service at hand.

We are developing an alternate approach based on passive collection of packet
header traces, and real-time analysis of the data to automatically construct an
empirical model of the requests received by servers and the responses gener-
ated. These models can be constructed for arbitrary servers with no knowledge
of the functions performed by the server or the protocols used by the server.
Given these models, we can easily compute important performance measures
such as the response times for a server. Using statistical methods originally de-
veloped for medical image processing, distributions of these variables can be

M. Papadopouli, P. Owezarski, and A. Pras (Eds.): TMA 2009, LNCS 5537, pp. 42–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Passive, Streaming Inference of TCP Connection Structure 43

compared to archived historical distributions for each server to detect perfor-
mance anomalies.

The approach works for arbitrary servers because it relies solely on properties
of TCP. Using knowledge of the TCP protocol, packet header traces (consist-
ing of only TCP/IP headers and no application layer headers or payloads) are
processed in a streaming fashion to construct a structural model of the appli-
cation dialog between each server and each client in real-time. This model is
an abstract representation of the pattern of application-data-unit (ADU) ex-
changes that a client and server engaged in at the operating system’s socket
interface. For example, if a web browser made a particular request to a web
server that was 200 bytes long, and the server generated a response of 12,000
bytes, then by analyzing the headers of the sequence of TCP/IP packets flowing
between the client and server, we would infer this request/response structure
and represent this dialog as consisting of a single exchange wherein 200 bytes
were sent from client to server and 12,000 bytes were sent from server to client.
We intentionally ignore transport-layer effects such as segmentation, retransmis-
sion, etc. The model can be augmented to include both server-side and client-
side “think times” which can be inferred from the arrival time of the packets.
We refer to the server-side think times as response times, and they are our pri-
mary performance metric.

Using off-the-shelf hardware, we have constructed a network monitoring server
that is capable of tracing the 1 Gbps link connecting the 40,000 person UNC
campus to its upstream ISP, and performing the above analysis continuously,
in real-time, for all servers on the UNC campus. We have been continuously
tracing the UNC campus and gathering response time performance data for all
servers for a period of over six months. During this period we have processed
approximately 70 terabytes of packet headers. However, because our represen-
tation of client/server dialogs is relatively compact, the complete activity of the
UNC servers during this 6-month period requires only 3 terabytes of storage
(600 gigabytes, compressed). By mining these data for performance anomalies,
we were able to discover a significant performance anomaly that occurred to a
major UNC web portal. Over a period of three days in April 2008, the server
experienced a performance issue in which the average response time increased
by 1,500%. This discovery was made without any instrumentation of the server
or even a priori knowledge of the server’s existence.

In this paper we present an overview of our method of capturing and mod-
eling client/server dialogs and its validation. The dialogs are represented using
a format we call an a-b-t connection vector where a represents a request size,
b represents a response size, and t represents a think time. We present the an
overview of a tool we have developed called adudump that processes TCP/IP
packet header traces in real-time to generate a-b-t connection vectors for all
client/server connections present in the network. We then present some results
from an on-going case study of the use of adudump to generate connection vectors

44 J. Terrell et al.

for servers on the UNC campus network and the mining of these data to under-
stand server performance. The tools used in this study and the data obtained
will be publicly available for non-commercial use.

2 Related Work

Inferring the behavior of applications from analyses of underlying protocols
is not new. For example, several schemes for monitoring web systems via an
analysis of HTTP messages have been reported. Feldmann’s BLT system [1]
passively extracts important HTTP information from a TCP stream, but, un-
like our approach, BLT is an off-line method that requires multiple process-
ing passes and fundamentally requires information in the TCP payload (i.e.,
HTTP headers). This approach cannot be used for continuous monitoring or
monitoring when traffic is encrypted. In [2] and [3], Olshefski et al introduce
ksniffer and its improved sibling, RLM, which passively infer application-level
response times for HTTP in a streaming fashion. However, both systems re-
quire access to HTTP headers, making them unsuitable for encrypted traffic.
Furthermore, these approaches are not purely passive. ksniffer requires a kernel
module installed on the server system, and RLM places an active processing
system in the network path of the server. In contrast, our methods will work for
any application-layer protocol and we can monitor a large collection of arbitrary
servers simultaneously.

Commercial products that measure and manage the performance of servers in-
clude the OPNET ACE system1. ACE also monitors response times of network
services but requires an extensive deployment of measurement infrastructure
throughout the network, on clients, servers, and points in between. Fluke’s Vi-
sual Performance Manager2 is similar and also requires extensive configuration
and integration. Also similar is Computer Associates Wily Customer Experi-
ence Manager3. CEM monitors the performance of a particular web server, and
in the case of HTTPS, it requires knowledge of server encryption keys in order
to function.

3 Measurement

The adudump tool generates a model of ADU exchanges for each TCP connection
seen in the network. The design of the tool is based on earlier approaches for pas-
sive inference of application-level behavior from TCP headers (Smith et al [4],
Weigle et al [5], Hernandez-Campos et al [6,7]). However, while these approaches
build application-level models from packet headers in an offline manner, we have
extended these techniques to enable online (real-time) inference (i.e. analyzing

1 http://www.opnet.com/solutions/application performance/ace.html
2 http://www.flukenetworks.com/fnet/en-us/products/

Visual+Performance+Manager/Overview.htm
3 http://www.ca.com/us/performance-monitoring.aspx

Passive, Streaming Inference of TCP Connection Structure 45

(Connection closes...)

HTTP Client Monitor Server Records

SYN/ACK

ACK
SEQ=372

ACK=372 SEQ=1460

ACK=1460

SEQ=2920

SEQ=3030

ACK=3030 SEQ=712

SYN

ACK=712 SEQ=3730

ACK=3730
FIN

SYN >

RTT t0

SEQ

t1
ADU >
 372 t1

t2
ADU <
 3030 t2

ADU >
 340 t3

ADU <
 700 ?
END

t3

t0

Fig. 1. a-b-t inference example

packets as they are seen at a monitor in a single pass). This affords the capability
for continuous measurement of application-level data.

For a given connection, the core inference method is based on an analysis of
TCP sequence numbers. As explained in [4,5], sequence numbers provide enough
information to reconstruct the application-level dialogue between two end points.
Figure 1 details the inferences that adudump draws for an example connection.
adudump not only reports the size of the ADUs, but the application-level think-
time between ADUs. A variety of contextual information is also printed, as shown
in Table 1. Table 2 also gives an example of the data format.

To understand the inference, consider Figure 1. The connection “begins” when
the three-way handshake completes. This event is marked with a SEQ record. The
monitor sees a data segment sent from the client (in this case a web browser)
to the server and makes a note of the time it was sent. The next segment is
another data segment, sent in the opposite direction and acknowledging the pre-
vious data. Thus, adudump infers that the previous ADU (of 372 bytes) is com-
pleted, and generates a record with the ADU’s size, direction, and subsequent
think-time. The next segment, a pure acknowledgement (i.e. a segment without a

46 J. Terrell et al.

Table 1. the types of records output by adudump

Type Information Description

SYN t, x, y, d the initial SYN packet was seen at time t in direction d
between host/port x and host/port y; connection-tracking
state established

RTT t, x, y, d, r the SYN-ACK packet seen and round-trip-time measure-
ment r

SEQ t, x, y, d the connection establishment
CONC t, x, y, d the connection has been determined to be concurrent

ADU t, x, y, d, b, T an application-level data unit was seen of size b bytes,
and there was a think-time afterwards of T seconds. (The
think-time is not always available.)

INC t, x, y, d report an ADU in progress (e.g. when input is exhausted)
END t, x, y, d the connection is closed; connection-tracking state de-

stroyed

Table 2. adudump output format for an example connection. IP addresses (but not
ports) have been anonymized.

SYN: 1202706002.650917 1.2.3.4.443 < 5.6.7.8.62015

SEQ: 1202706002.681395 1.2.3.4.443 < 5.6.7.8.62015

ADU: 1202706002.688748 1.2.3.4.443 < 5.6.7.8.62015 163 SEQ 0.000542

ADU: 1202706002.733813 1.2.3.4.443 > 5.6.7.8.62015 2886 SEQ 0.045041

ADU: 1202706002.738254 1.2.3.4.443 < 5.6.7.8.62015 198 SEQ 0.004441

ADU: 1202706002.801408 1.2.3.4.443 > 5.6.7.8.62015 59 SEQ

END: 1202706002.821701 1.2.3.4.443 < 5.6.7.8.62015

payload) is not used in determining ADU boundaries. In general, adudump ignores
pure acks. Next, the server continues its response. Again, note that adudump
generates no record until it infers that the ADU is complete. Also, note that the
think-times that adudump reports are relative to the position of the monitor in
the network. In other words, the think-times necessarily include a component of
network delay as well. This is discussed in more detail in Section 4.

Note that this simple example assumes that the client and server take turns
sending data. Such cases are called “sequential connections.” “Concurrent con-
nections,” wherein both endpoints transmit simultaneously, can also be analyzed.
Examples of such applications that employ concurrent connections include HTTP
with pipelining enabled, peer-to-peer applications such as BitTorrent, and most
interactive applications such as the secure shell. Connections are assumed to be
sequential (i.e. non-concurrent) by default, until concurrency is detected by the
existence of unacknowledged data in both directions simultaneously. Although
concurrent applications do have a think-time, it is not possible to unambiguously
determine the think-time without instrumenting the application. In our data,

Passive, Streaming Inference of TCP Connection Structure 47

ADUs from concurrent connections constitute approximately 5% of the connec-
tions, 25% of the ADUs seen, and 30% of the size in bytes.

4 Data

We have used adudump to generate a six-month data set of records of all TCP
connections entering the UNC campus from the Internet, which we will make
available through DatCat4. It is this data set that we will use for the remain-
der of this paper. Overall, we collected over three terabytes of data, modeling
about 4 billion connections. Table 3 lists the individual collections, which were
punctuated by measurement faults such as power outages and full disks. The
records were captured by running adudump on a fiber split of the 1 Gbps link
between the University of North Carolina and its commodity Internet uplink.
Both directions of the link were tapped and fed to a machine with a 1.8 GHz
Intel Xeon processor, 1.25 GB of RAM, and an Endace DAG card for packet
capture. For privacy reasons, only inbound connections (i.e. those for which the
initial SYN was sent to the UNC network) were captured. The collection process
experienced very infrequent bouts of packet drops; the relatively old machine was
able to keep up even when the link burst to its full 1 Gbps capacity.

Table 3. Data collection. All times local (EDT); all dates 2008. Data for Mon-
day, March 17, was lost. Days are in MM/DD format. Durations are listed as
days:hours:minutes.

begin end duration outage size records ADUs conns

1 Fr 03/14 22:25 Th 04/17 03:50 33:05:25 1:14:11 813 GB 11.8 B 8.8 B 820 M
2 Fr 04/18 18:01 We 04/23 07:39 4:13:37 0:03:35 106 GB 1.6 B 1.1 B 116 M
3 We 04/23 11:14 Th 04/24 03:00 0:15:46 0:07:38 16 GB 234 M 161 M 19 M
4 Th 04/24 10:38 Fr 05/16 11:19 22:00:41 0:07:04 530 GB 7.7 B 5.7 B 532 M
5 Fr 05/16 18:23 Fr 05/23 00:06 6:05:43 5:16:20 108 GB 1.6 B 1.07 B 148 M
6 We 05/28 16:26 Mo 06/30 16:45 33:00:19 2:20:57 482 GB 7.3 B 4.7 B 686 M
7 Th 07/03 13:42 Fr 08/01 07:07 28:17:25 0:00:10 361 GB 5.7 B 3.5 B 563 M
8 Fr 08/01 07:17 Tu 08/19 13:12 18:05:55 1:02:05 273 GB 4.1 B 2.7 B 346 M
9 We 08/20 15:17 Mo 09/01 22:36 12:07:19 0:21:15 242 GB 3.6 B 2.5 B 271 M

10 Tu 09/02 19:51 We 10/01 21:25 29:01:34 n/a 629 GB 9.2 B 6.5 B 697 M

* 188:01:44 7:04:55 3.53 TB 52.8 B 36.7 B 4.2 B

Think-times reported by adudump are with respect to the monitor’s vantage
point, and think-times include an unknown component of network delay. How-
ever, note that since our monitor is at the edge of the UNC network, it is
relatively close to the UNC servers. Since the UNC network is generally well-
provisioned and well-designed, it is rare to see a intra-campus round-trip-time
of more than a millisecond. For this reason, we only consider server-side think-
times for the analysis, as these can be accurately inferred from our monitoring
vantage point.
4 http://imdc.datcat.org/

48 J. Terrell et al.

5 Validation

The heuristics that adudump uses to infer TCP connection structure are com-
plex. Therefore, it is important to validate the correctness of adudump against
a “ground truth” knowledge of application behaviors. Unfortunately, doing so
would require instrumentation of application programs. As this is not feasible, we
instead constructed a set of synthetic applications to generate and send/receive
ADUs with interspersed think times.

To create stress cases for exercising adudump, the following were randomly
generated from uniform distributions (defined by runtime parameters for mini-
mum and maximum values) each time they were used in the application: number
of ADUs in a connection, ADU sizes, inter-ADU think times, socket read/write
lengths, and socket inter-read/write delays. There was no attempt to create a
“realistic” application, just one that would create a random sample of plausi-
ble application-level behaviors that would exercise the adudump heuristics. The
generated ADU sizes and inter-ADU think times as recorded by the synthetic
applications comprise the ground truth, or the actual data. These synthetic ap-
plications were run on both sides of a monitored network link. We captured the
packets traversing the link, saving the trace as a pcap file which we then fed as
input to adudump, producing the measured data.5 In this way, we can determine
how correctly adudump functions.

We first tested adudump on sequential connections only and then on concurrent
connections only. We will consider each of these cases in turn.

5.1 Sequential Validation

These tests produced sequential traffic because the application instances using
a TCP connection take turns sending ADUs. That is, they do not send an ADU
until they finish receiving the previous ADU. A random packet loss rate of
1% was introduced by FreeBSD’s dummynet mechanism, which was also used to
introduce random per-connection round-trip times. As with application behavior
we use plausible randomized network path conditions to test adudump, but we
do not claim realism.

Figure 2(a) plots the actual and measured per-direction ADU size distribu-
tions. The distributions are nearly identical. The slight differences are because, in
the case of TCP retransmission timeouts (with sufficiently long RTT), adudump
splits the ADUs, guessing (incorrectly in this case) that the application intended
them to be distinct. The default quiet time threshold, which governs this behav-
ior, is 500 milliseconds, so RTTs shorter than this threshold do not split the
ADU. We chose 500 ms as a reasonable trade-off between structural detail and
solid inference of application intent.

Similarly, Figure 2(b) plots the actual and measured think-time distributions.
Note that the actual distributions were different for each direction. Note also
5 adudump, which uses CAIDA’s CoralReef library, works equally well analyzing offline

traces.

Passive, Streaming Inference of TCP Connection Structure 49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

ADU sizes (kilobytes)

actual (dir1)

actual (dir2)

measured (dir1)

measured (dir2)

(a) CDF of actual vs. measured ADU size
distributions, for either direction.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

think times (usec)

actual (dir1)

actual (dir2)

measured (dir1)

measured (dir2)

(b) CDF of actual vs. measured think-
time distributions, for either direction.

Fig. 2. Sequential validation results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

ADU sizes (kilobytes)

actual (dir1)

actual (dir2)

measured (dir1)

measured (dir2)

(a) CDF of actual vs. measured ADU size
distributions, for either direction.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

think times (sec)

actual (dir1)

actual (dir2)

measured (dir1)

measured (dir2)

(b) CDF of actual vs. measured think-
time distributions, for either direction.

Fig. 3. Concurrent validation results

that, unlike ADU sizes, adudump cannot exactly determine the actual time, be-
cause some non-negligible time elapses between the application’s timestamp and
the monitor’s packet capture. Even so, adudump’s measurements are very close
to the ground truth.

5.2 Concurrent Validation

In the concurrent tests, each application instance sends multiple ADUs with
interspersed think times without synchronizing on the ADUs they receive. We
did not introduce packet loss in this case.

Figure 3(a) plots the actual and measured per-direction ADU size distribu-
tions. The measured data tracks the actual data well for most of the distribution,
but diverges in the tail, demonstrating an important limitation of adudump’s pas-
sive inference abilities: if one of the applications in a concurrent connection has
a genuine application-level think time between ADU transmissions that is less
than the quiet-time threshold, then adudump will not detect it, and it combines

50 J. Terrell et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

ADU sizes (bytes)

requests

responses

(a) CDF of ADU sizes

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

Epochs per connection

(b) Complementary CDF of exchanges
per connection

Fig. 4. Connection structure information inferred by adudump for example server

the two ADUs into one that is larger. This is a type of inference error that is
unavoidable because we do not have access to applications running on end sys-
tems. Nevertheless, this is a sacrifice we gladly make, because it enables generic
access to the behavior of any server without any server instrumentation.

Figure 3(b) plots the actual and measured quiet-time distributions. The mea-
sured distributions track well with the actual distributions except that, as ex-
pected, there are no think times less than 500 ms, the quiet-time threshold.

6 Example Use

The UNC dataset contains records for every server on campus that communi-
cated with a client on the Internet. To demonstrate the usefulness of the data
generated by adudump, we examine the data pertaining to one such server, the
UNC webmail server. We selected this server more-or-less randomly from among
many popular UNC servers, yet this example shows the breadth and depth of
information available for any servers. Note that the information we present here
only scratches the surface of what is available for the webmail server (let alone
all UNC servers) and is presented merely to provide an example of the types of
analyses that are enabled by adudump data.

We start by looking at the broad picture offered by our 6-month dataset.
Figure 4(a) shows distributions of request sizes received by the webmail server
and response sizes sent by the server. The requests in particular exhibit strong
modality, with most of the distribution found in relatively few values. Because we
know the identity and purpose of this server, we can conjecture that the smooth
increase in response size between 500 and 1,000 bytes is because the size of
email messages vary smoothly in that range. We can also make educated guesses
about the behavior of these connections, given the (externally known) fact that
we are dealing with a HTTPS server. However, without additional information
(or system administrator knowledge), we cannot know for certain whether this
is the cause. This weakness, however, is also a strength: the bluntness of the

Passive, Streaming Inference of TCP Connection Structure 51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000

response times (s)

All data

Mon Aug 18

Thu Aug 21

Mon Aug 25

Thu Aug 28

Fig. 5. CDF of response times for example server, both for the entire dataset and
during selected days at the start of the semester

inferences that adudump makes also enables it to be more broadly applicable to
any server operating over TCP.

Another structure-revealing metric is the number of request-response
exchanges per connection. Figure 4(b) shows the distribution of exchanges per
connection over the entire trace. 86% of connections have exactly two exchanges,
96% have four or fewer, and the distribution exhibits classic heavy-tailed behav-
ior. This plot clearly suggests many avenues for additional analyses (which we are
pursuing). Our point in this paper is that adudump provides insight into interest-
ing and important application-level behaviors without requiring any knowledge
of what the application is or how it performs.

We also want to briefly explore the depth of data reported by adudump.
Figure 5 compares the overall distribution of webmail response times gathered
over the whole dataset with specific days. In general, this distribution is very
stable from day to day, differing little even on weekends and holidays. However,
we discovered a significant change during the beginning of the fall 2008 semester.
Monday, August 18th is the day before the start of the semester, and webmail
response times for this day are typical. Over the next several days, however, the
server takes longer to respond. Normal operation resumes by Thursday the 28th.
Although beyond the scope of this paper, we note that it is easy to drill down,
looking at response time distributions per hour, differences in request size or
response size distributions, or even a timeseries of the individual response time
measurements.

7 Case Study

One challenge we face is in detecting when performance anomalies occur, given
the quantitative and qualitative variation of response time distributions among

52 J. Terrell et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

response time (s)

ordinary days
mean distribution

+/- 1 stdev
bad days

Fig. 6. Illustration of performance anomaly detection using data from a campus web
server

servers. First, we note that, for our purposes, it makes little sense to compare
response time distributions for different servers. Even servers of the same type
(e.g. HTTP) will often have substantially different response time distributions.
Thus, we must compare a server’s current operation (e.g., the distribution over
the past hour or past day) to the same server’s historical operation. The prob-
lem of performance anomaly detection reduces to determining the likelihood
of the current distribution, given the historical distribution (both of which are
empirical, or non-parametric).

Figure 6 illustrates this process using two sets of distributions. The lighter
lines are CDFs of the response time distribution for a UNC web server for an
“ordinary” day. We refer to these as the “training” set. The four dashed lines are
response time distributions for days that were flagged by server administrators
as corresponding to days when performance problems were noted. In addition,
there is a line representing the mean distribution of the training set as well as
two lines representing the mean plus or minus one standard deviation.

The standard deviations were calculated using a method introduced in [8].
Each distribution was represented as a 40-bin quantile function. A quantile func-
tion can be thought of as a summarized inverse CDF. The distribution is first
evenly divided by quantile into 40 bins, so that, for example, the second bin
contains all values between the 2.5 and 5th percentiles. Each bin is then sum-
marized as a mean. The result is a vector of length 40, which can be thought of
as a point in 40-dimensional space. Principal components analysis (PCA) was
then performed on the 40-dimensional “cloud” of points to determine the two (or-
thogonal) directions of greatest variation, as well as the standard deviation along
these axes. Adding and subtracting these principal components (scaled by their
respective standard deviations) from the mean gives us an idea of the “spread”

Passive, Streaming Inference of TCP Connection Structure 53

of the overall population of distributions. The resulting sum (and difference) give
us the 1-standard-deviation “bounds”, as shown in Figure 6. The days marked
as “bad” fall well outside of the bounds, and thus are clearly anomalous. This
provides evidence that anomalous response times can be automatically detected
given a historical archive or response time distributions.

8 Conclusion

We have developed and validated a tool to passively infer the application-level
dialog in a TCP connection, for all connections on a link, in a passive, online,
streaming fashion, at gigabit speeds, on off-the-shelf hardware. Having acquired a
multi-month dataset of all TCP connections entering the UNC campus, we have
shown that it is possible to identify server response time performance anomalies
without knowledge of the function or operation of the server. We believe our tools
and methods enable a new paradigm of passive network and server management
wherein high-level application performance data can be gleaned from low-level
network measurements.

References

1. Feldmann, A.: BLT: Bi-Layer Tracing of HTTP and TCP/IP. In: Proc. of WWW-9
(2000)

2. Olshefski, D.P., Nieh, J., Nahum, E.: ksniffer: determining the remote client per-
ceived response time from live packet streams. In: Proc. OSDI, pp. 333–346 (2004)

3. Olshefski, D., Nieh, J.: Understanding the management of client perceived response
time. In: ACM SIGMETRICS Performance Evaluation Review, pp. 240–251 (2006)

4. Smith, F., Hernández-Campos, F., Jeffay, K.: What TCP/IP Protocol Headers Can
Tell Us About the Web. In: Proceedings of ACM SIGMETRICS 2001 (2001)

5. Weigle, M.C., Adurthi, P., Hernández-Campos, F., Jeffay, K., Smith, F.: Tmix: a
tool for generating realistic TCP application workloads in ns-2. ACM SIGCOMM
CCR 36(3), 65–76 (2006)

6. Hernández-Campos, F.: Generation and Validation of Empirically-Derived TCP Ap-
plication Workloads. Ph.D. dissertation, Dept. of Computer Science, UNC Chapel
Hill (2006)

7. Hernández-Campos, F., Jeffay, K., Smith, F.: Modeling and Generation of TCP
Application Workloads. In: Proc. IEEE Int’l Conf. on Broadband Communications,
Networks, and Systems (September 2007)

8. Broadhurst, R.E.: Compact Appearance in Object Populations Using Quantile Func-
tion Based Distribution Families. Ph.D. dissertation, Dept. of Computer Science,
UNC Chapel Hill (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

