

Rasch analysis of HTTPS reachability
George Michaelson

APNIC∗

ggm@apnic.net

Matthew Roughan Jonathan Tuke
UoA‡ and ACEMS†

{matthew.roughan,simon.tuke}@adelaide.edu.au

Matt P. Wand
UTS§ and ACEMS†

matt.wand@uts.edu.au

Randy Bush
IIJ¶

randy@psg.com

Abstract—The use of HTTPS as the only means to connect
to web servers is increasing. It is being pushed from both sides:
from the bottom up by client distributions and plugins, and from
the top down by organisations such as Google. However, there are
potential technical hurdles that might lock some clients out of the
modern web. This paper seeks to measure and precisely quantify
those hurdles in the wild. More than three million measurements
provide statistically significant evidence of degradation. We show
this through statistical techniques, in particular Rasch analysis,
which also shows that various factors influence the problem
ranging from the client’s browser, to their locale.

I. INTRODUCTION

There is a growing push for “HTTPS Everywhere,” where
HTTPS, or more exactly HTTP over TLS (Transport Layer
Security), is a more secure form of the standard Hyper-Text
Transfer Protocol. It is more secure in that it provides:

1. server authentication using certificates, i.e., a server can
prove its identity;

2. a private communications channel, i.e., it prevents eaves-
dropping; and

3. data integrity, i.e., it prevents standard man-in-the-middle
attacks.

HTTPS Everywhere is the ubiquitous use of HTTPS in pref-
erence to HTTP for all services, not only those specifically
requiring a secure connection.

The Electronic Frontier Foundation (EFF) is promulgating
a browser extension to this effect [1] as a defence against
spying, e.g., from nation states in the post-Snowden era.
Google supports the idea [2], and has announced that they
will give search-rank priority to HTTPS sites [3]. And the
increase in the number of clients accessing the Internet through
wireless connections mandates encryption at the connection
level. Reactions include the HTTPS-Only Standard [4], for
the US Federal Government.

There is a performance cost documented [5]–[7] as far back
as the 1990s. This cost arises primarily because the certificate
exchange requires an additional round trip at the start of a
connection. However, most HTTP requests don’t require a
full handshake, and with modern hardware the cryptography
overhead is not critical. For example Doug Beaver from

∗APNIC, South Brisbane, 4101, QLD, Australia.
†ARC Centre of Excellence for Math. & Stat. Frontiers.
‡University of Adelaide, Adelaide, 5005, SA, Australia
§University of Technology Sydney, Ultimo, 2007, NSW, Australia.
¶Internet Initiative Japan (IIJ) Research Lab, Tokyo, Japan.

Facebook, stated “We have found that modern software-based
TLS implementations running on commodity CPUs are fast
enough to handle heavy HTTPS traffic load without needing
to resort to dedicated cryptographic hardware. We serve all
of our [Facebook’s] HTTPS traffic using software running on
commodity hardware.” [8].

So on the face of it, HTTPS Everywhere is a “no brainer.”
There is even an “HTTP Shaming” web page.

HTTPS Everywhere seems to be happening. StatOperator
[9] reported that the number of (the top million) sites using
HTTPS as the default increased from around 103 to 219
thousand from 2016 to 2017. Google reports client usage
statistics [10], [11], and they show similar steady growth from
2015 to the present.

However, there is an important question to answer before
we convert the entire Internet to HTTPS: Will there be people
who are stranded behind port 80?

We know that HTTPS is not an issue for many people
(the current large-scale deployments of HTTPS prove that it
mostly works), but there could be locations, or users of specific
equipment that face challenges. Detailed reasons are given in
Section II. They range from concern about the quality of the
technology, to the rejection of compromised connections.

In this paper we provide evidence to inform the technical
and policy debate concerning the deployment of secure web
services, by measuring whether users can access HTTPS in
the wild. We collected 3.3 million observations using APNIC’s
web advertising infrastructure [12], from which we found that
there is sufficient evidence to show that HTTPS is not easily
accessible to all Internet users.

A secondary concern of this paper is the statistical rigour
necessary to allow such a statement to be made with confi-
dence. The proportion of users that failed to make an HTTPS
connection in our study was small. It has been common in
the past to simply report numbers, but our goal is to provide
statistically confident statements, despite a noisy and faint
signal. The ability to detect such faint signals is important — a
mere 0.1% of users now represents millions of individuals. We
do so using both standard statistical tests, and a tool that has
not been previously used in Internet measurement, but which
may find many other applications: Rasch analysis [13], [14].

We found statistically significant evidence that there are
clients that find HTTPS connections harder to complete than
HTTP, and that this difficulty was influenced by origin au-
tonomous system, browser, country of origin, and operating
system, suggesting a range of causes.

ISBN 978-3-903176-08-9 c©2018 IFIP

II. BACKGROUND AND RELATED WORK

A. Experimental Context

Simple web services with no protection against snooping or
identity are typically conducted over TCP port 80, using the
HTTP protocol. We call this ‘port 80’ service or HTTP.

Web services which are protected by Transport Layer
Security (TLS) are usually conducted over TCP port 443,
commonly called ‘port 443’ or HTTPS.

There have been many studies of HTTPS. However, they
have focused on two main topics.

1. The certificate landscape, e.g., see [15]–[17], in which the
problems with certificate distribution have led to security
holes, and consequent fixes1.

2. Comparisons between HTTP and HTTPS performance,
looking primarily at their latency difference, e.g., see [5],
[6], but also considering communications overhead and
energy consumption [7].

As a consequence of using HTTPS, an additional handshake
is needed to establish a connection. There can be no effective
proxy-caching of the content, and filtering (e.g., by firewalls)
is hampered. HTTPS also uses cryptography which induces
extra computational (and hence energy) costs, which may be
trivial on a modern computer, but may be important on battery-
operated devices, such as mobile phones.

A deeper consequence of the additional layer of complexity
is the potential for failures. Surprisingly, studies of HTTPS
appear to assume basic reachability, or more correctly, they
appear to assume that HTTPS reachability, while perhaps not
perfect, will be no worse than HTTP. However, it is not
obvious that this will be so. A prominent browser maker asked
if the Asia-Pacific Network Information Centre (APNIC) Labs
ad-based measurement system [12] could see if a statistically
significant number of users were unable to access TLS pro-
tected web resources.

So, what are the possible concerns? They range widely; the
following is an incomplete list.

1. A browser or OS may be too old to perform TLS at the cur-
rent specification. The web server used in this experiment
did not offer older approaches, such as RC4 cryptography,
so there is a chance that pre-TLS 1.x browsers will fail.
However, the older standards are no longer considered
secure, and it is our view that providing a false appearance
of security is worse than providing none. It might be
tempting to tell users to “catch up”, but this is infeasible
on mobile networks that sell captive locked phones left
behind on “old cold” protocol variants.

2. Some modern browsers use intermediate systems to speed
up or cache data. Opera, for instance, deployed a world-
wide “anycast” cloud of intermediates to offer speed-
up services, performing tasks such as JPG compression,
to make the web faster. It is possible that this service

1TLS security is predicated on valid certificates, and there have been significant
problems resulting from this weakness in the past. However, Certificate Transparency
mitigates many of these issues [16].

notionally works with TLS, but that it works badly for
flows it has in port 80 that move up into TLS because
the state doesn’t exist. Other well-meaning intermediary
systems might break such up-lifts.

3. The additional overhead of the extra handshake makes the
session more vulnerable to network problems, and hence
less stable.

4. TLS protects against the threat of bad actor man-in-the-
middle attacks. If an on-path attacker intercepts the session
and attempts to hijack an aspect of the content, TLS should
prevent the flawed connection. However, if such attacks are
prevalent, they become DoS attacks on the HTTPS service.

5. A firewall along the path might block encrypted traffic as
a matter of course. Though most firewalls allow port 80
traffic, they sometimes block all other ports. This might be
considered misconfiguration, but misconfiguration is not
uncommon [18].

6. Firewalls or other middle-boxes may perform their own
hijacking of a connection through installed certificates on
user machines.

7. Flaws in implementations or configuration [19], [20].
Our approach uses a cross-site reference within an adver-

tisement in order to create a measurement. The underlying
idea is not new. It has been used to measure DNSSEC and
IPv6 deployment, among other features, e.g., [21] (or for a
more general review see [22]). However, our approach differs
in several respects from [22]. The most important is that it
performs a pair of measurements: a control based on HTTP,
and an actual measurement of HTTPS, the focus. As far as
we are aware, past studies have typically lacked a control,
and therefore have been hard to interpret statistically.

However, APNIC’s measurement infrastructure also differs
from other approaches in that we use (paid) web-advertising
to instantiate the tests (details below). Additionally, all fetches
are to an APNIC-managed server, avoiding the major ethical
controversies of past experiments (see Section III-D for more
discussion of this issue).

B. Simple Statistical Background

Here we lay out the key statistical background. The material
is somewhat tutorial, but as these techniques are not commonly
applied in the Internet measurement context, we feel it is
valuable to be precise about the methods and their rationales.
We start by defining terminology:
Observation: the collected responses of a single client’s
connection attempts (see Section III-A for details).
Sample: the set of all observations.
Measurement: a particular feature of an observation, for
instance, whether a successful HTTPS GET was completed.
We also call these response variables, and denote them by
random variables (RV) Y (j), where j ∈ {HTTP,HTTPS} is
the treatment, and the measurement

Y (j) =

{
1, if measurement j succeeds,
0, otherwise.

The sample is the collection of instances {y(j)i } of this RV.

2

Test: a statistical test applied to the data.
Categorical variable: one that takes a set of discrete values.
Predictor: a variable, also called a covariate, whose value
may influence the outcome of the measurements.

We make a distinction here between a measurement and
a test, the latter meaning a hypothesis test to discriminate
between a null-hypothesis H0 and its alternative H1. The
advantage of a hypothesis test is that it is consistent and
repeatable with strict, precisely-defined assumptions and in-
terpretation. Through their use we can avoid making common
errors, such as over-interpreting limited evidence.

The test is conducted with respect to a significance level,
α, chosen at the outset of the experiment. Here we use the
common choice of α = 0.05. This sets the Type I error
probability (the chance we reject H0 incorrectly). The Type II
error probability (the probability we fail to reject H0 when it is
false) is determined by the power of the test on the particular
data. Thus we cannot control for it, but can ensure it is small
by providing enough observations.

We calculate a test statistic, determine from this a p-value,
and then reject the null-hypothesis if the p-value falls below
α. The common interpretation of the p-value is that it is the
probability, given the null-hypothesis is true, of observing
the at least the given test statistic. Hence, a small p-value
can be taken as evidence that the null-hypothesis is invalid.
However, we must be careful of this interpretation, because of
the underlying statistical nature of the problem.

When the null-hypothesis is true, we would expect to see
a uniform distribution of p-values over a set of repeated
experiments, which includes some values <α, leading to Type
I errors. In order to avoid incorrect inferences in repeated
experiments, we should try to control the Family-wise error
rate (FWER) not the Per-comparison error rates (PCER). We
shall do so here using the Bonferroni correction [23], in which
α is divided by the number of tests in the family. We should
note that this is rather conservative, and that there are other
more complex procedures available [23], but we deliberately
use a conservative FWER here.

Our experiment is a matched pairs experiment. That is,
the pair of measurements is conducted on the same client,
the question of interest being whether some users have more
trouble with HTTPS than HTTP. This cannot be answered
simply by comparing the proportions of successes for each
measurement, because in a matched pair experiments the
measurements are very likely correlated. Simply plotting the
two probabilities, while useful in an explanatory sense, would
not take these correlations into account.

However, the inclusion of our control experiment makes
it possible to ask this question in the formal context of
hypothesis testing using McNemar’s test [24], with hypotheses:
• H0 is that p1 = p2; and
• H1 is that p1 6= p2;

where pj is the probability that the jth measurement of any
particular observation is successfully completed. Rejecting the
null implies significant evidence that the difficulty of the two
measurements is different.

C. Rasch Modelling and Analysis

Hypothesis tests are an important starting point, but they
only tell us “if” but not “how much?” This paper further
proposes the use of Rasch analysis, an approach within the
broader area of Item Response Theory (IRT). It is best illus-
trated by its application to the analysis of exams. An exam
consists of a list of m questions, performed by n students.
Each student answers each question either correctly, or not,
forming the binary response variables Y (j)

i , where i is the
student (in our context an observation) and j is the question
(a measurement).

Rasch modelling is one of the most popular strategies within
IRT [13], [14]. It posits that there are latent variables, namely:
1. the ability or proficiency of student i, denoted αi; and
2. the difficulty of question j, denoted βj ;
that determine the probability that student i answers question
j correctly. The variables are latent in that we do not know
them a priori.

In its simplest case, i.e., a dichotomous response, we have
response variables Y (j)

i , which are Bernoulli random variables
indicating a successful answer to a question, whose probabil-
ities are modelled as

p
(j)
i = P

{
Y

(j)
i = 1

}
=

exp (αi − βj)
1 + exp (αi − βj)

. (1)

The logistic function above has an inverse called the logit
function. Applying the logit to (1) gives

logit(p(j)i) = log
(
p
(j)
i /(1− p(j)i)

)
= αi − βj , (2)

a linear relationship between the logit and the parameters.
Rasch modelling’s enduring appeal within IRT [13], [14]

arises because:
• it simplifies the relationships so that reasonable estimates

can be made, even though we have only one instance of
each student attempting each question;

• unlike the conventional statistical paradigm, where param-
eters are fit to data, and accepted or rejected based on the
accuracy of the fit, in Rasch modelling the objective is to
obtain “data” that fit the model, i.e., the latent predictor
variables; and

• the Rasch model embodies the principle of invariant
comparison, in which (broadly speaking) the effect on the
outcome of a question is separated into the affect of the
respondent, and the question’s difficulty.

The approach is not limited to modelling examinations, but
can be applied to a set of observations such as we have.
However, in traditional dichotomous Rasch analysis, each
student answers each question one of two ways (correctly or
incorrectly). Here, the naı̈ve approach would be to consider
each observation as a “student” with two questions (the HTTP
and HTTPS measurements), but then we would have well
above the number of students typically considered, blowing
up the computational load for most algorithms. Moreover, this
would be banal, as performance at this level of granularity is
immaterial to us.

3

0. "Ad" provided
 to Google

3.
 A

d.
 re

qu
es

t

1. W
eb request

2. R
eponse w

ith

 em
bedded link

Web server
(in arbitrary part
 of Internet)

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Donec
interdum vestibulum libero. Nam molestie
nisl at metus. Curabitur tincidunt tellus nec
purus. Aenean turpis ipsum, rhoncus vitae,
posuere vitae, euismod sed, ligula. Donec
nonummy lacinia leo. Curabitur risus urna,
placerat et, luctus pulvinar, auctor vel, orci.
Praesent a eros. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Quisque arcu ante, cursus in, ornare quis,
viverra ut, justo. Ut eu metus id lectus
vestibulum ultrices. Nam malesuada
sapien eu nibh. Aliquam imperdiet lobortis
metus. In hac habitasse platea dictumst.
Etiam sodales orci nec ligula. Vestibulum
ante ipsum primis in faucibus orci luctus et

User

4.
 "A

d"

APNIC Server(s)

5a. Primer (HTTP or HTTPS GET)

5b. Primer reponse (CID and list of measurements)

5c. Measurement 1: HTTPS GET

5d. Measurement 1: HTTPS Response

5e. HTTP "Results" (in constructed fetch) 6. Results

10 second timeout

Fig. 1: The observation process: numbers indicate sequence.

In practice, we would like to group measurements into
meaningful partitions, but we then depart from the standard
dichotomous Rasch model.

There are at least two alternative approaches; we might think
of these partition’s subsets as either being comprised of:
1. a group of similar students, who have an underlying

property in common (usually we assume members of the
group have proficiencies that are random variables with a
common mean and variance); or

2. a group of repeated measurements of a single “student”
who corresponds to the particular subset, and the responses
are now binomial random variables corresponding to the
number of correct measurements within the subset.

The two assumptions lead naturally to different algorithms,
and as the second is non-standard, we leave analysis its details
until Section IV.

III. EXPERIMENTAL METHOD

A. Measurements

APNIC Labs uses web advertising to measure browser
behaviour worldwide [12]. The advertisement is written in
HTML5 and fetches multiple pixels in the various protocol
exchanges under test (DNS, TCP/UDP, IP, TLS). The system
is 100 lines of JavaScript, gzip compressed to 5kb of data,
which is a small cost in web-page loading.

The process is illustrated in Figure 1. The observations start
(at 5a) with a primer query initiated by the advertisement
served to the user’s browser via standard advertisement in-
frastructure. The primer query is an HTTP GET, and the body
of the response is a set of measurements to be performed. Each
measurement is a discrete URL with the unique client identity
(CID) encoded in it, and is fetched under a ten-second timeout
via an asynchronous JavaScript web fetch; on completion of
a measurement, the time is recorded. On completion of all
measurements, or the ten-second timer, a result web query
is sent, which encodes the measurement results in the query
argument as a sequence of labels, showing the time or ‘null’
if they did not complete inside the time limit.

The web logs show whether a primer/result pair was valid,
and if so, we analyse the results. Observations without primer

TABLE I: Experiment duration, and number of observations. Analy-
sis focuses on the 3.3 million experiments initiated with HTTP (with
a subsequent HTTPS GET).

Duration
(days)

Unique
client IDs
(millions)

Valid
responses
(millions)

HTTPS
init.

(millions)

HTTP
init.

(millions)

25 192.5 132.4 129.1 3.3

and result success are filtered from the sample. The goal in
discarding these is to focus on the measurements with the
highest signal to noise ratio — measurements without a valid
pair indicate problems other than a failure of HTTPS, and
hence don’t add much information.

The primary goal of these measurements was to collect
information about ability to perform HTTPS. Google requires
that advertisements placed over a TLS-secured session remain
in TLS. Thus we could not recruit TLS users into a test of
insecure web access. However, we were permitted to take an
HTTP session and include fetches of web elements over TLS.
Therefore, our observations measure HTTP users who were
asked to fetch a web asset over TLS, thus detecting their ability
to upgrade to TLS, which is not precisely a raw HTTPS access.

We focused on connections initiated over HTTP because
this HTTP signal provides a “control.” The priming process
and the HTTP control measurement follow an identical con-
nection path. Hence, if the observation is valid, the client has
demonstrated the ability to perform an HTTP GET; therefore
failures of subsequent HTTP GETs provide an indication of
the “noise” in the system, i.e., the baseline rate of random loss
against which we should measure HTTPS connection failures.

The data were collected between the 10th of November
and 4th of December, 2016. Table I shows the total set of
client IDs, and the number of valid responses. A large number
of connection attempts defaulted to initiating over HTTPS.
Table I shows the decrease in the number of experiments as
we progress through HTTPS to only HTTP initiations.

Initial exploratory analysis suggested that a signal existed,
but at an intensity that could not be easily measured. The
situation is analogous to experiments conducted on mice who
are genetically modified to have cancer. We wished to measure
factors that affected a situation with small probability, and so
we inflate the probability of seeing the phenomena of interest.
In our case, we focused on observations where the initial
connection was HTTP, because these were the cases where
failures of HTTPS were most often expected to occur.

As noted, it is a standard statistical approach to collect
data in this way, but we must note that the observation is not
representative of a “typical” Internet user. For instance, were
we to measure a failure rate of 1% on these observations, this
does not mean that the general population has a 1% failure
rate. However, the question of interest here is not the absolute
value of the failure rate, but whether HTTPS is “harder” than
HTTP, and what factors affect the failure rate.

More formally, the main goal was to measure success/failure
for sessions upgrading to TLS and to see if those sessions
which could not upgrade to TLS were still successful on port

4

80. In other words: “are there stranded users?”
Google’s infrastructure does not carry forward the referring

site, and DHCP can reallocate IP addresses, so we cannot be
certain that there were no repeats. However, the advertising
infrastructure is intended to reach many discrete individuals, so
the number of repeats should be very small. We also removed
the small number of obvious duplicates from the data. There
is some complexity in this process, resulting from apparent
fetches from the same IP address that cannot be resolved due
to the potential presence of middle-boxes such as Network
Address Translators (NATs). We preserved entirely unique
requests for the primer, but removed additional fetches without
a new primer. As a result, we cannot claim that there are no
duplicated observations, but they should be minimal.

B. Data Collected

The experiment logged all of the web fetches, using domain
names directed to APNIC-managed DNS and web servers. We
also captured the packet flow to relevant services: port 80, port
443, ICMP, DNS, as well as any fragmented IP state.

The combination of web logs, DNS logs, and packet cap-
tures allowed us to collate experiments by their IP address and
identity in the DNS name, and as presented to the web. Thus
we were able to derive the exact sequences of events in any
observation.

In the case of this experiment, the data were processed into
the form of a series of flags indicating (1) the success or failure
of each stage, and (2) whether the measurement succeeded
within a timeout. The delays were recorded in each case up
to 120 seconds, but for our purposes we recorded success if
the measurement completed within a timeout of 10 seconds.

In the data analysed, unique client IDs were assigned to
anonymise the data. We used code which harvests system
entropy and time, to obtain probably unique (modulo birthday
paradox) non-sorted 96-bit numbers. We then mapped them
into hex (see [25], for the code that was embedded in the
NGINX [26] web server).

C. Classification of Covariates

The secondary goal here was to identify the qualities
behind the quantities: i.e., can we understand these users in
terms of browser type, ISP, economy, or operating system,
in order to identify specific problem causes? In practice, this
is important because the goal behind APNIC’s participation
in such experiments goes beyond simply finding problems.
Ideally, the experiment should also help develop strategies to
remediate any problems found.

For the purposes of the analysis, a set of qualities was
identified, which we felt were simple, easy to reproduce by
other people, and provided useful groupings for understanding
causes. These qualities were:
• country,
• region (based on United Nations sub-regions [27]),
• origin Autonomous System Number (ASN),
• browser, and
• Operating System (OS).

We used the daily BGP table collected at AS4608 to map IP
addresses to origin ASN. There are well-known problems in
such a mapping. However, those problems are most prevalent
in infrastructure addresses, and we measured “eye-balls” here;
inter-AS links do not browse [28].

Likewise, mapping of eye-balls to geographic locations is
more accurate [28] than mapping arbitrary IP addresses to ge-
ographic locations. In this paper, we used MaxMind [29] data
to geolocate the IP addresses, but only at the country/region
levels, and so expected a reasonably low error rate.

We also logged each client’s user-agent string, which pro-
vides details of the client’s browser, OS, and device. To collect
and parse the information we used the Python uabrowser
library [30]. It is known that the user-agent string is spoofed
in some cases, for instance the ToR browser bundle does so by
default (e.g., it pretends to be running on Windows, regardless
of the underlying OS). However, there is no easy way to avoid
this problem at present, and it remains a caveat on the browser-
and OS-level results.

We also considered categorising the client’s device-type,
but this was too noisy to be useful at this stage, due to the
large number of uniquely identified device types by vendor
and version-string.

For each of these categories, we collated them into a series
of unique values, and then used a one-way random relabelling
to anonymise the categories. There might be enough data
to perform some act of deanonymisation, to obtain values
for some categories, However, it is important to note that
this level of blinding was not intended for the protection
of individual privacy (already protected through the client
ID anonymisation, and unlikely to be compromised by the
additional coarse-grained categorisations). Rather it was in-
tended to allow the statistical analysis to proceed, unbiased
by preconceived notions of the likely results.

D. Ethical Concerns

Google’s advertising infrastructure was used here, and so
we reviewed compliance with Google and APNIC lawyers,
and complied with Google’s legal restrictions on the mea-
surements. In particular, these excluded use of Personally
Identifying Information (PII), which in any case we did not
require or want. End-user IP addresses were only used for
ASN and regional classification, and were then anonymised
via a one-way-mapping.

As in many Internet measurement experiments the nature of
the measurement technique precluded voluntary recruitment.
However, we strictly followed any suggestion that the users
wished to opt out of such studies. For instance, end users
who had enabled ‘do not track’, who had disabled JavaScript,
or who ran ad-blocking software were not recruited. Also, as
far as possible, no users were repeatedly asked to run the
experiment, in order to place minimum load on any one user.

These measurements were also less contentious than others
that have applied similar cross-origin requests e.g., [22]. TLS
is used ubiquitously for banking, login, end-user tracking
by less responsible advertisers, “bread crumbs” and web-site

5

country region ASN browser OS
0

0.1

0.2

0.3

0.4

0.5
p

H
T

T
P
 -

 p
H

T
T

P
S

Fig. 2: Box and whisker plot of difference pHTTP − pHTTPS

by covariate, showing the interquartile range (shaded region) the
confidence interval for the estimate of the median (notch), Tukey’s 1.5
IQR, (whiskers) and outliers (crosses). Note that the lower quartile is
always positive, as are all whiskers except those for ASN, suggesting
that HTTPS is harder than HTTP. Also, if covariates had no effect
on the result, these should all have similar interquartile range and
median, the differences therefore suggest some structure.

logistics. Evidence suggests that the rate of TLS in the public
web is high (above 50% [7]) and very likely significantly
higher given the age of that study, and that it has been rapidly
increasing in recent years [9], [10]. Therefore, the simple
presence of a request to fetch a web asset over TLS does
not represent a high-risk activity.

Moreover, the measurement site to which the advertisement
redirected requests is innocuous, belonging to a regional
address registry (APNIC), so we were not able to discern any
reasonable risk to participants from such a connection.

In this experiment, those researchers not employed by
APNIC were exposed only to anonymised data, except for
those statistics reported here.

IV. ANALYSIS

In this section, we discuss the results of the analyses. We
will start with “broad brush” simple hypothesis tests, then
focus on those same tests, applied to country, region, ASN, OS
and browser. This will be followed by a more comprehensive
Rasch model, which analyses the data as a whole.

Figure 2 shows a box and whisker plot [31], [32] of the
differences organised by the various predictors. Note that the
lower quartile is always positive, as are all whiskers except
those for ASN, suggesting that HTTPS is harder than HTTP.
Our task is to determine whether this effect is statistically
significant.

Also, if covariates had no effect on the result, these should
all have similar interquartile range and median, the differences
therefore suggest some structure.

A. Standard Statistical Tests

We applied McNemar’s test with a significance level of
α = 0.05, applying the appropriate Bonferroni corrections
when conducting a set of multiple tests (i.e., we used signifi-
cance α/n for a family of n tests). Note that in some cases,
e.g., when we were testing against ASN, n was quite large,
and so the actual threshold was very small. Less conservative

TABLE II: Statistical tests applied to the whole dataset. Note that
very small p-values are reported via a bound.

Test p-value Accept/Reject
Fisher < 2× 10−16 Reject null

McNemar < 2× 10−16 Reject null

corrections exist (for instance the Sidak or Holm-Bonferroni)
but the results here are conclusive without needing the extra
power gained through these more accurate corrections.

The results, shown in Table II, for the test applied to
the whole dataset was a p-value less than 10−16 strongly
supporting a difference in the two measurements. This finding
must be qualified: although the two measurements are matched
they occur in order, and hence, there may be some effect on
the second measurement resulting from the state created by
the first. So we must understand that this experiment concerns
lifting a connection up from HTTP to HTTPS, not an arbitrary
HTTPS connection (see the detailed notes in Section III).

It is important, also, to verify that this is not caused by
some confounding effect of the covariates. If the covariates
were truly irrelevant, we would expect that interquartiles and
medians should be the same (within the ranges of natural
variation shown by the confidence in intervals in the case of
the median), and hence Figure 2 provides evidence that the
covariates are important.

Therefore we now consider what part the covariates (coun-
try, region, ASN, OS and browser) play. We chose, at least
initially, to be conservative by only analysing groupings with
at least 500 observations. It is quite possible that smaller
groupings would have been amenable to analysis, but we had
no need (here) to describe the relationships between all of
the rarer groupings, as our goal was to ascertain whether the
overall result was supported on a finer level of granularity.

The number 500 was chosen through an initial exploratory
analysis, which noted that some of the probabilities in question
were quite close to 1, and hence statistical rules of thumb
required a moderately large number of observations. As we did
not know exactly what these probabilities were a priori, we
chose a conservative lower bound. We also found, as Table III
shows, that excluding the groups with a small number of
observations excluded only a small percentage of the data.

The results can be seen in Figure 3, which shows histograms
of the distributions of p-values over the set of tests grouped
by the various categorical covariates described above. The
important fact to note is that most of the p-values are small.
We cannot see (at the resolution of the plot) whether the p-
values fall below the threshold, so Table III summarises the
tests, showing that in a large proportion of the cases we should
reject the null-hypotheses. Thus we have significant evidence
for a difference in most of the groupings.

Interestingly, ASN is the grouping with the lowest propor-
tion of rejected null-hypotheses, while we might have expected
that ASN would have a larger effect on the network aspects
of the problem. However, remember the large Bonferroni
correction in this case, which leads to a very conservative test.

Hypothesis testing could be expanded here in several ways.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p-value

0

0.5

1

p
ro

p
o

rt
io

n

country

region

ASN

browser

OS

Fig. 3: The distributions of p-values for the McNemar tests, applied across country, region, ASN, browser and OS. The distributions in all
cases vary dramatically from a uniform distribution, with values heavily skewed in the direction of p = 0.

TABLE III: Hypothesis tests summaries for different covariates. Ñ
is the number of groups left after excluding those with fewer than
500 observations. The “% of data” is that retained by this filtering.
And the final column reports the proportion of McNemar tests for
which we reject the null hypothesis over the Ñ groups.

covariate Ñ % of data McNemar
country 119 99.6 0.840

region 20 100.0 0.950
ASN 458 93.1 0.555

browser 28 99.9 0.929
OS 14 100.0 1.000

Multiple-comparisons could be applied, for instance, to test
differences between countries or some other covariate. How-
ever, in doing so there would be O(n2) comparisons for n
countries, and these hypothesis tests are not all independent of
each other, complicating the test procedure greatly. Moreover,
much of this theory has been developed in domains where the
each measurement requires a physical or social experiment,
and therefore it seeks to make best use of a limited set of
costly measurements. We have many measurements, and so
these refinements are not needed. Instead, in our next step we
opt to apply an approach called Rasch analysis.

B. Rasch Analysis

The disadvantage of the previous tests is they provide only a
yes/no answer (or really a yes/maybe answer), while we would
like, for instance, to be able to say how large the difference is.
Here we use Rasch modelling to perform this analysis, but as
we are not interested in the per-observation performance we
use a grouping strategy. We start by defining Gk to be the kth
group of observations determined by a covariate. We consider
here two modelling approaches.

The first model still follows (2), but now we assume that the
proficiency of each student is distributed as αi ∼ N(λk, σ

2),
for i ∈ Gk, where λk is the group mean proficiency, and σ2

is the common standard deviation within groups. The task is
then to estimate λk and σ2. The careful reader will note the
additional assumptions introduced by this model.

The second approach takes a simpler model, that

logit(p(j)i) = αk − βj . (3)

for i ∈ Gk, We now only estimate a group proficiency αk,
not individual proficiencies. This has the disadvantage that it

might not be able to fit the data as accurately, but it frees from
distributional assumptions.

The former approach has been developed further, in that
exact results are known, and there are off-the-shelf solvers
using Marginal Maximum Likelihood Estimation (MMLE). We
use IRTm [33], [34], a Matlab toolbox allowing quite general
models to be estimated. Apart from its additional assumptions,
in MMLE each categorical variable with m categories is
deconstructed into m binary variables, each an indicator for
one possible state of the original variable. For instance, the 119
countries in our data result in constructing a covariate vector
consisting of 119 binary elements, leading to an estimation
procedure taking considerable memory and time.

The results are illustrated below, in conjunction with those
of the second approach, in which we assume each group
consists of a set of repeated measurements. However, the stan-
dard Binomial Rasch models assumes each measurement is
repeated a fixed number of times. For instance, in partial-credit
Rasch models [35], a student may obtain some proportion
of the marks for a question, but each student answers the
same question, with the same total possible marks. But in our
groupings, the number of “total marks” would vary, depending
on the number of client observations that fall into the group.
This case does not appear to have been treated in the literature,
and hence we wrote our own Alternating Least Squares (ALS)
algorithm (also in Matlab) to estimate the parameters.

The algorithm alternates between fitting the αk and the βj
values, keeping the other parameters fixed. It also needs an
additional fixed point of reference (because the variables αk

and βj are not otherwise uniquely determined), which we fix,
without loss of generality, by E[αk] = 0.

We assessed the two approaches in this (somewhat non-
standard) application by comparing computation times, and
Root-Mean-Square (RMS) fitting errors, as shown in Figure 4.
All computations were made on an 8 core, Intel i7-6900K 3.2
GHz, running Linux Mint 18, and Matlab R1016b (the largest
case for the MMLE algorithm did not complete within 24
hours and so is excluded), The ALS algorithm is orders of
magnitude more accurate and faster, and so in what follows
we focus on the ALS approach. Note also that the estimation
errors in ALS reach a maximum in the order of 5%, which is
reasonable given the problem of interest.

Ideally, we could group by all covariates at once. However,

7

0 100 200 300 400 500

number of categories

10
-4

10
-2

10
0

10
2

ti
m

e
 (

s
e

c
o

n
d
s
)

0

0.05

0.1

0.15

0.2

R
M

S
 e

rr
o

r

MMLE

ALS

Fig. 4: Computation times (blue) and RMS errors (red) for the two
approaches to Rasch modelling.

this results a very large number of covariates in the MMLE
approach, while in the ALS approach, we end up with very
few observations in many of the bins, due to the combinatorial
number of bins. Thus we analyse each of the categories as
separate groupings. As before, we consider only groupings
with at least 500 observations.

The first detail to consider is the βj values, indicating
the difficulty in completing the two measurements (HTTP,
and HTTPS). The estimated values are shown in Table IV,
along with their difference. Larger values indicate additional
difficulty with a measurement. The positive values of the
difference indicate additional difficulty in the HTTPS measure-
ments compared to HTTP. From all points of view, HTTPS is
more difficult than HTTP.

We also see some consistency, namely, the differences in
βj are similar for location (country, region and ASN), and for
end-point software (OS and browser), as you might expect.
Notably the former group seems to have a larger impact on
success than the latter, so it appears that while a client’s device
is important, the location from which one accesses the Internet
is more important.

The second set of parameters to examine are the αi values,
namely, the ability or proficiency of a particular covariate
group to perform any of the measurements, large values being
better. Figure 5 shows the distribution of αi values for the
region, OS, and browser covariates. We see that they might be
coarsely considered to follow a Normal distribution. The data
by OS fit this assumption least well, but remember that there
are only 14 values here, and we expect to see some natural
variation here, because of measurement noise.

Note that we do not draw, from these values, inferences
about the particular quality of HTTPS in a particular country
(or other grouping). The αk variables record the ability of a
group to perform both HTTP and HTTPS measurement. This
parameter separates out the “noise” inherited from the quality
of Internet connections through a particular country from the
HTTP v HTTPS question.

However, we also see outliers, here defined as those values
that fall more than 1.96 times the standard deviation from the
mean, i.e., outside the 95th percentiles. These are not extreme
outliers, but there may be some interest in these, so we have
reversed the mapping (for these outliers only).

TABLE IV: ALS estimates of Rasch “difficulty” parameters with
different groupings. Larger values indicate a smaller chance of
measurement success. Note the increase in difficulty for HTTPS.

country region ASN browser OS
βHTTP -5.26 -4.91 -6.07 -3.94 -3.99
βHTTPS -2.92 -2.74 -3.80 -2.29 -2.12

Difference 2.34 2.16 2.27 1.65 1.86

• country: five positive outliers: Suriname, Macau, Cyprus,
Latvia, Korea; and one negative: Macedonia.

• region: no outliers.
• ASN: there is a list of 22 positive outliers, but only one

negative: AS58539 (listed as China Telecom).
• browser: positive outlier: Amazon Silk and no negatives.
• OS: one positive outlier: ChromeOS and no negatives.

Some of these might be slightly surprising – for instance, many
may not have expect Suriname to be in the list of positive out-
liers. However, it should be remembered that the measurement
methodology filters participants who successfully complete the
primer and results query successfully. So this result really says
that, those who have a good connection, have a very good
connection, i.e., , if they complete the primer and result, they
are very likely to be able to complete the other measurements.

Similarly, the positive outliers ChromeOS and Amazon
Silk (the Kindle Fire’s browser) are perhaps indications of
consistency amongst all such devices, because of the stronger
constraints on these devices. For instance, Amazon Silk routes
requests through remote proxy servers powered by Amazon
EC2, which provide high-performance connection speeds and
computing power not normally available to a mobile form
factor, and apparently improve the consistency of responses.

Hence, though these outliers may be interesting, the un-
derlying point is not that any particular location or device
group has a given αk, so much as the parameter allows us to
disentangle these effects from those of the two measurements
(HTTP and HTTPS), and thus see the latter in isolation.

In summary, there are two main conclusions to be drawn.

1. The measurements show that there is significantly more
difficulty in performing HTTPS than HTTP measurements.
The difference is often small, necessitating some extra care
in order to determine whether the difference is significant.

2. There are country, OS, and browser differences, mainly
important through a small set that exhibits more extreme
variations from the norm.

One last important insight is that the dependence on the
covariates indicates that the results are not an artefact of
APNIC’s measurement infrastructure, as that would remove
dependency on point of origin effects.

V. CONCLUSION AND FURTHER WORK

Using a large set of measurements (data provided at
bandicoot.maths.adelaide.edu.au/HTTPS/), and detailed statis-
tical modelling we have shown that a small cohort of users in
the real world will be adversely affected if HTTPS is adopted
universally. That cohort is not a large proportion of Internet
users, but those users deserve our attention.

8

-4 -2 0 2 4 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6
p
ro

p
o
rt

io
n

country

region

ASN

browser

OS

Fig. 5: Histograms of αk values for ALS algorithm. Positive values
indicate a favourable probability of measurement success.

We have categorised measurements by country and region,
their provider (origin ASN), browser and operating system,
and shown that all of these factors affect a client’s facility with
HTTPS. The range of factors points to a range of causes for
the blockages. The browser/OS combination suggests a tech-
nological problem, but the other covariates suggest problems
based in the network near the clients.

In the future, we plan to further investigate, and use the
details of the analysis with extensions to understand better
correlations in covariates, to help focus efforts onto relevant
development to mitigate the problem.

The use of careful statistical methods was vital in this
study. The underlying signal is weak, and hence required
“amplification” and careful analysis so as to be able to make
confident statements.

ACKNOWLEDGEMENTS

We would like to thank the Australian Research Council for
funding through the Centre of Excellence for Mathematical &
Statistical Frontiers (ACEMS), and grant DP110103505.

The Javascript code used by APNIC originates in a library
written by Emile Aben, RIPE-NCC.

APNIC Labs has received support and in-kind assistance
from Google, ICANN, RIPE-NCC and ISC in its experiments.

REFERENCES

[1] “HTTPS everywhere,” on-line: downloaded April 24th, 2017, https://
www.eff.org/https-everywhere.

[2] “HTTPS everywhere,” Google I/O, https://docs.google.com/presentation/
d/15H8Sj-Zol1tcum0CSylhmXns5r7cvNFtzYrcwAzkTjM/edit#slide=
id.g12f3ee71d 10.

[3] “HTTPS as a ranking signal,” https://webmasters.googleblog.com/2014/
08/https-as-ranking-signal.html, August 2016.

[4] “The HTTPS-Only standard,” on-line: downloaded April 24th, 2017,
https://https.cio.gov/.

[5] A. Goldberg, R. Buff, and A. Schmitt, “A comparison of HTTP and
HTTPS performance,” in CMG98, 1998, http://www.cs.nyu.edu/artg/
research/comparison/comparison.html.

[6] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance analysis of tls
web servers,” ACM Trans. Comput. Syst., vol. 24, no. 1, pp. 39–69, Feb.
2006. [Online]. Available: http://doi.acm.org/10.1145/1124153.1124155

[7] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of
the ‘S’ in HTTPS,” in 10th ACM International on Conference
on Emerging Networking Experiments and Technologies (CoNEXT),
New York, NY, USA, 2014, pp. 133–140. [Online]. Available:
http://doi.acm.org/10.1145/2674005.2674991

[8] D. Beaver, “HTTP2 expression of interest,” on-line: downloaded April
24th, 2017, July 2012, http://lists.w3.org/Archives/Public/ietf-http-wg/
2012JulSep/0251.html.

[9] “HTTPS usage statistics on top websites,” on-line: down-
loaded April 24th, 2017, https://statoperator.com/research/
https-usage-statistics-on-top-websites/.

[10] “HTTPS usage,” on-line: downloaded April 24th, 2017, https://www.
google.com/transparencyreport/https/metrics/?hl=en.

[11] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS adoption on the web,” in USENIX Securit, 2017.

[12] G. Michaelson and G. Huston, “Experience with large-scale end user
measurement techniques,” in Telecommunication Networks and Applica-
tions Conference (ATNAC), 2014 Australasian. IEEE, 2014, pp. 1–5.

[13] B. Wright and M. Mok, Introduction to Rasch Measurement: Theory,
Models, and Applications. Journal of Applied Measurement, 2004, ch.
An Overview of the Family of Rasch Measurement Models, jampress.
org/irmch1.pdf.

[14] B. D. Wright, “Solving measurement problems with the Rasch model,”
Journal of Educational Measurement, vol. 14, no. 2, pp. 97–116, 1977.
[Online]. Available: http://www.jstor.org/stable/1434010

[15] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis
of the HTTPS certificate ecosystem,” in ACM Sigcomm Internet
Measurement Conference, 2013, pp. 291–304. [Online]. Available:
http://doi.acm.org/10.1145/2504730.2504755

[16] B. Laurie and C. Doctorow, “Secure the internet,” Nature, vol. 491, pp.
325–6, 2012.

[17] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to
the HTTPS protocol,” IEEE Security Privacy, vol. 7, no. 1, pp. 78–81,
Jan 2009.

[18] D. Ranathunga, M. Roughan, H. Nguyen, P. Kernick, and N. Falkner,
“Case studies of SCADA firewall configurations and the implications for
best practices,” IEEE Transactions on Network and Service Manage-
ment, 2016, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
7529047&isnumber=5699970.

[19] “SSL/TLS - typical problems and how to debug them,” on-line: down-
loaded April 24th, 2017, https://maulwuff.de/research/ssl-debugging.
html.

[20] S. Fahl, Y. Acar, H. Perl, and M. Smith, “Why Eve and Mallory (also)
love webmasters: A study on the root causes of SSL misconfigurations,”
in ASIA CCS, 2014.

[21] M. Casado and M. J. Freedman, “Peering through the shroud: The
effect of edge opacity on IP-based client identification,” in Proceedings
of the 4th USENIX Conference on Networked Systems Design &
Implementation, ser. NSDI’07, 2007, pp. 13–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973430.1973443

[22] S. Burnett and N. Feamster, “Encore: Lightweight measurement of
web censorship with cross-origin requests,” in ACM SIGCOMM, 2015,
pp. 653–667. [Online]. Available: http://doi.acm.org/10.1145/2785956.
2787485

[23] J. P. Shaffer, “Multiple hypothesis testing,” Annu.Rev.Psychol., vol. 46,
pp. 561–584, 1995.

[24] A. Agresti, Categorical Data Analysis, 2nd ed. Wiley, 2002.
[25] “ngx txid,” https://github.com/APNIC-Labs/ngx txid, accessed May

16th, 2017.
[26] “nginx,” http://nginx.org/, accessed May 16th, 2017.
[27] “Standard country or area codes for statistical use (M49),” https://unstats.

un.org/unsd/methodology/m49/, accessed May 16th, 2017.
[28] A. H. Rasti, N. Magharei, R. Rejaie, and W. Willinger, “Eyeball ASes:

From geography to connectivity,” in ACM Sigcomm IMC, Melbourne,
Australia, 2010.

[29] “GeoIP databases & services: Industry leading IP intelligence,” https:
//www.maxmind.com/en/geoip2-services-and-databases, accessed May
16th, 2017.

[30] “A Python implementation of the UA parser,” https://github.com/
ua-parser/uap-python, accessed May 16th, 2017.

[31] R. McGill, J. W. Tukey, and W. A. Larsen, “Variations of box plots,”
The American Statistician, vol. 32, no. 1, pp. 12–16, 1978. [Online].
Available: http://www.jstor.org/stable/2683468

[32] H. Wickham and L. Stryjewski, “40 years of boxplots,” had.co.nz, Tech.
Rep., 2012, http://vita.had.co.nz/papers/boxplots.html.

[33] J. Braeken and F. Tuerlinckx, “Investigating latent constructs with
item response models: a MATLAB IRTm toolbox,” Behavior Research
Methods, vol. 414, no. 4, pp. 1127–37, 2009.

[34] “IRTm,” https://ppw.kuleuven.be/okp/software/irtm/.
[35] G. M. Masters, “A Rasch model for partial credit scoring,” Psychome-

trika, vol. 47, no. 2, pp. 149–174, 1982.

9

PathFinder: Capturing DDoS Traffic Footprints
on the Internet

Lumin Shi∗, Mingwei Zhang∗, Jun Li∗, Peter Reiher†
∗ University of Oregon

{luminshi, mingwei, lijun}@cs.uoregon.edu
† University of California, Los Angeles

reiher@cs.ucla.edu

Abstract—While distributed denial-of-service (DDoS) attacks
are easy to launch and are becoming more damaging, the defense
against DDoS attacks often suffers from the lack of relevant
knowledge of the DDoS traffic, including the paths the DDoS
traffic has used, the source addresses (spoofed or not) that appear
along each path, and the amount of traffic per path or per source.
Though IP traceback and path inference approaches could be
considered, they are either expensive and hard to deploy or
inaccurate. We propose PathFinder, a service that a DDoS defense
system can use to obtain the footprints of the DDoS traffic to the
victim as is. It introduces a PFTrie data structure with multiple
design features to log traffic at line rate, and is easy to implement
and deploy on today’s Internet. We show that PathFinder can
significantly improve the efficacy of a DDoS defense system, while
PathFinder itself is fast and has a manageable overhead.

Index Terms—distributed denial-of-service; DDoS; traffic foot-
print; autonomous system (AS); PFTrie

I. INTRODUCTION

Today’s Internet is vulnerable to distributed denial-of-
service (DDoS) attacks. During a DDoS attack, an attacker
controls many compromised machines to flood the victim with
unwanted traffic in order to exhaust the network or compu-
tational resources of the victim. DDoS attacks have become
more frequent and damaging to many network services [1].
For example, a recent large-scale DDoS attack on Dyn [2]
disabled its domain name service, and crippled many major
web services that relied on it such as Twitter, Netflix, PayPal,
and over fifty others for hours.

While many DDoS defense systems have been proposed,
a primary challenge in effectively defending against DDoS
attacks is that a DDoS defense system usually has little
knowledge regarding which paths DDoS traffic has traveled
along, how much traffic traveled along each path, and also
which source addresses or prefixes of the DDoS traffic are
associated with each path. Such information about the DDoS
traffic, which we collectively call the footprints of the DDoS
traffic, if available, can enable a DDoS defense system to

ISBN 978-3-903176-08-9 c© 2018 IFIP
This project is in part the result of funding provided by the Science and

Technology Directorate of the United States Department of Homeland Security
under contract number D15PC00204. The views and conclusions contained
herein are those of the authors and should not be interpreted necessarily
representing the official policies or endorsements, either expressed or implied,
of the Department of Homeland Security or the US Government.

most effectively handle the DDoS attack. It will become more
informed regarding where to deploy DDoS traffic filters or
take other defense actions; for example, it may learn which
autonomous systems (ASes) or AS paths have seen a large
amount of traffic to the victim, thus deploying filters there. It
can also know better which source addresses (or more likely
the source IP prefixes, for scalability) to filter in the case of
source-based filtering. And it could also conduct traffic pattern
analysis if the footprints are continuously provided.

Various approaches to obtaining such information could be
considered, including numerous IP traceback approaches and
path inference methods that aim to address the asymmetric
nature of Internet paths and ascertain the paths traveled by
DDoS packets to reach the victim. Unfortunately, as we will
discuss in more detail in Sec. II, these approaches have
serious drawbacks. For example, the path inference methods
are often inaccurate, and IP traceback approaches introduce
significant changes to router hardware or software, rely on
inter-AS collaboration, and need routers on the Internet to
constantly monitor the traffic. These approaches are also not
well-equipped to provide other footprint information, such as
total or per-source bandwidth consumption information or the
addresses or prefixes of DDoS sources.

We therefore introduce the PathFinder system as a service
for DDoS defense systems. Upon request from a DDoS
defense system on behalf of a DDoS victim, PathFinder can
gather and provide the footprints of the traffic to the victim.
We make the following contributions:
• PathFinder consists of an architecture that is easy to
implement and deploy on today’s Internet. Every AS can join
PathFinder without reliance on other ASes, and it employs
an on demand service model with low overhead.
• We design the setup and operations of each component
of the architecture while considering a series of real-world
factors and the high speed and large scale of DDoS traffic.
• We design a new data structure called PFTrie that supports
fast and easy storage and retrieval of traffic footprint infor-
mation. And we also design a set of PFTrie optimization
methods.
• We show the benefits of using PathFinder for DDoS
defense, and we further evaluate PathFinder to show it is
fast and has a manageable overhead.

An apparent issue here is IP spoofing. The DDoS traffic
could carry spoofed IP source addresses. However, we note
that regardless whether the IP source addresses of DDoS traffic
are spoofed or not, PathFinder will still discover the correct
set of paths that DDoS traffic take to reach the victim, thus
enabling a DDoS defense system to use the path information,
together with other traffic footprints information, to block the
DDoS traffic en route accordingly. On the other hand, if a
DDoS defense system needs to filter DDoS traffic based on
the source addresses of DDoS traffic, the DDoS defense itself
needs to handle the IP spoofing separately, which is out of the
scope of PathFinder.

The rest of this paper is organized as follows. We first
discuss related work in Sec. II, followed by an overview of
PathFinder in Sec. III. We then describe individual components
of PathFinder, including the PathFinder monitor in Sec. IV,
the PFTrie data structure for traffic logging in Sec. V, and
the PathFinder proxy in Sec. VI. We evaluate PathFinder in
Sec. VII, discuss some open issues in Sec. VIII, and conclude
the paper in Sec. IX.

II. RELATED WORK

A. IP Traceback

IP traceback, first introduced in [3], allows a victim to trace
the source of an IP packet it has received and reconstruct the
router-level path taken by the packet, even if the source address
of the packet is spoofed. While many IP traceback solutions
have been proposed [4], marking and logging are the two most
well-developed approaches.

In a marking approach, such as those described in [5], [6],
[7], when a router along a path forwards a packet to the
victim, the router marks the packet with its own IP address
(or its hashed result) or an edge that the packet has traversed,
typically using some unused fields in the IP header of the
packet. When the victim receives enough marked packets, even
if routers en route mark packets with certain probability rather
than all the time, the victim can then reconstruct the paths of
these packets (assuming the paths are stable).

In a logging approach such as [8], [9], as a router along a
path forwards a packet to the victim, instead of marking the
packet, the router uses some data structure (e.g., a Bloom filter)
to store the digest of the packet (rather than the packet itself in
order to save space), enabling it to later determine whether it
has seen the packet. When the victim wants to trace a packet,
it can query its upstream routers, asking whether they have
seen the packet. Similarly, a router that has seen the packet
can query its own neighboring routers about the packet, and
so on. Eventually the victim can reconstruct the packet’s path
using an ordered list of routers that have seen the packet.

PathFinder has advantages over existing IP traceback ap-
proaches in the following respects:
• Operation: PathFinder is also essentially a logging ap-
proach, but while the previous logging-based IP traceback
approaches try to trace the path(s) of any packets (such as
packets from a specific source) that a victim has received,

PathFinder aims to discover the paths of upcoming packets
(often all upcoming packets within a time window) toward
a victim when requested. So, while existing IP traceback
approaches record packet information or mark packets con-
stantly, PathFinder is an on-demand service and PathFinder
monitors will only record traffic information when requested.
• Overhead: Because it operates on demand, PathFinder
incurs much less operational overhead than existing IP trace-
back approaches. In addition, packet marking approaches
will modify packets before forwarding them, which will
introduce delays in processing packets and could downgrade
the network throughput significantly, especially when dealing
with a high-bandwidth link.
• Accuracy: The accuracy of the marking approaches de-
pends on how many marked packets the victim can receive
to reconstruct the paths of packets. The accuracy can suffer
if the victim cannot receive enough marked packets, such
as when its inbound link is congested with DDoS traffic.
The existing logging approaches (and also PathFinder), on
the other hand, as long as their monitoring mechanism
can process packet headers at line speed, can log packet
information with little loss and thus reach a high accuracy
in tracing packets.
• Deployability: Existing IP traceback approaches face obsta-
cles for deployment: Whether based on marking or logging
techniques, they introduce significant hardware or software
changes to routers, and also require inter-AS collaboration.
PathFinder instead introduces few changes to routers, and
PathFinder-participating ASes talk directly with a PathFinder
proxy and do not need to communicate with each other.

B. Path Inference

Researchers have studied how to infer the path between two
end points on the Internet. Without assuming any control over
the network infrastructure or access to end points, research
in [10] investigated how to leverage Border Gateway Protocol
(BGP) tables collected from multiple vantage points to infer
the AS path between any two end points on the Internet.
Also, via the probing from multiple vantage points and the IP
timestamp and record route options, research in [11] proposed
a “reverse traceroute” to allow a user to infer the path from
a remote end point to the user, without accessing the remote
end point. Inference-based approaches do not require changes
to network equipment and are easy to deploy, however, in
general they are subject to some degree of inaccuracy (e.g.,
the accuracy from the research in [10] is 70-88%). Moreover,
since they are not based on watching traffic in real time, they
will not be able to report the bandwidth consumption and other
traffic-related information associated with the path.

III. PATHFINDER OVERVIEW

A. PathFinder as a Service for DDoS Defense

We design PathFinder as a service for DDoS defense. Upon
request from a DDoS defense system, PathFinder can provide
the footprints of all the traffic toward a victim that each
participating AS has witnessed. Note that PathFinder does

11

not distinguish DDoS traffic from the legitimate traffic, which
PathFinder assumes to be the job of the DDoS defense. The
footprints include:

• all the AS paths taken by the traffic;
• if requested, the source IP addresses or prefixes of the

traffic; and
• if requested, the amount of traffic per source address, or

per source prefix, or per AS en route, or other information
about the traffic.

When requesting the PathFinder service, a DDoS defense
can specify to PathFinder a set of parameters regarding the
traffic footprints, including:

• the destination address of the victim, which could be an
IP address or prefix, or an IP address plus a port number;

• the length of time for which to collect the traffic footprints
(typically during the DDoS attack);

• from which ASes (if not all the ASes supporting
PathFinder) to collect the traffic footprints;

• whether to collect the source addresses or prefixes of the
traffic, and if so, the prefix granularity (e.g., /24 is to
learn all the /24 source prefixes; /32 is to learn all the
/32 source prefixes, i.e., all the source IP addresses); and

• whether to collect the bandwidth consumption of the traf-
fic, and if so, the granularity of the bandwidth information
(per source address, per source prefix, or per AS en route)
and the unit (packets per second or bits per second).

B. Architecture

PathFinder is a log-based system that enables a client (which
is DDoS defense in this paper) to learn the AS paths, sources,
bandwidth consumption, and other information of the traffic
toward a DDoS victim, i.e., the footprints of the traffic. As we
will show in the following, it is easy to deploy as it requires
minimal reconfiguration of routers; it is scalable as it will
continue to perform well if there is more traffic from more
sources or if more ASes support PathFinder; and it is accurate,
fast, and efficient in providing the traffic information.

Fig. 1: PathFinder architecture.

Fig. 1 shows the high-level architecture of PathFinder. It
consists of three types of entities:
• PathFinder clients who interact with their proxy to request
the PathFinder service, and retrieve from their proxy the
footprints of the inbound traffic to a DDoS victim;
• PathFinder proxies which (1) pass their clients’ requests
(including all parameters described in Section III-A) to all
participating ASes—actually their PathFinder monitors; (2)
receive and process from these ASes the PathFinder logs,

which we call PFLogs, to derive the DDoS traffic footprints;
and (3) return the footprints to their client; and
• PathFinder monitors at all participating AS which, ac-
cording to the request from a proxy, (1) process the traffic
that their AS originates or forwards towards the victim
specified in the request; (2) generate PFLogs of the traffic,
which record the AS path, source addresses (if requested),
and amount (if requested) of the traffic; and (3) return the
PFLogs to the proxy. Note that monitors from different ASes
do not need to interact with each other, thus not introducing
into the architecture any reliance on inter-AS collaboration.

IV. PATHFINDER MONITOR

A. Addressing Design Requirements

Foremost, the monitor at each PathFinder-participating AS
faces the following two design requirements. First, the monitor
needs to consult routers within the AS to learn the AS path
from the AS to the victim. Second, it also needs to access
the traffic toward the victim in order to record their source
addresses and/or amount, if requested. As an AS can have a
complicated topology with inter-connected border routers and
inside routers, some routers may not be on any path toward
the victim at all and some may be on the same path. To meet
both requirements, for every path of the traffic to the victim,
the monitor must be able to talk with at least one router that
is on the path, in order to learn its AS path to the victim or
access its traffic to the victim. For the former (to learn its AS
path), as every border router on the Internet runs BGP and
maintains a Routing Information Base (RIB), the monitor can
query the RIB at the router. Note that BGP router vendors
such as Cisco [12] and Juniper [13] all support the query of
AS paths. For the latter (to access traffic), the monitor needs
to receive a copy of the traffic by applying traffic mirroring
or tapping techniques (we rule out the possible hardware
telemetry support from routers; although they produce traffic
records such as those in NetFlow or IPFIX format, the records
are only exported periodically, often with a long interval).

The monitor may further face a third requirement if it needs
to produce PFLogs with source information or also the traffic
amount records. There may be a huge amount of traffic from
many distinct sources toward the victim, especially if the
victim is currently under a severe DDoS attack, thus making it
challenging for the monitor to record all the sources and their
corresponding bandwidth consumption at a high speed. The
most obvious solution is to use a digest-oriented data structure
such as a Bloom filter or hash table. However, while the
monitor can use a Bloom filter to easily answer whether it has
seen an IP address or prefix or not, it is not good at recording
which specific source IP addresses or prefixes it has seen. A
hash table is better, but it can only output whatever is stored
in itself as is; it is not flexible in processing or aggregating
IP address and prefix information, thus scaling poorly when
the logs are of a huge size. We therefore design a new, trie-
based data structure called PFTrie to facilitate the recording
and transmission of PFLogs, which we detail in Section V.

12

B. Setup

A PathFinder-participating AS needs to set up its PathFinder
monitor and its working environment as follows. First, the
monitor needs to set up the traffic mirroring or tapping with
every border router from which it will need to obtain traffic
in real time. To do so, given the autonomy of ASes, each AS
may adopt a different procedure that it prefers. For a small AS
without many routers, it can physically wire the monitor with
every router for wiretapping (Fig. 2a shows an example). For
a large AS with many routers over a large geographic region,
we assume it can first learn which routers the AS has and then
use virtual circuits for traffic mirroring with the routers [14],
[15]. Further, a large AS may employ multiple monitors, with
one monitor configured as a master monitor that can assign the
workload across all the monitors. (Without losing generality,
we assume one monitor per AS in the rest of the paper.)

Second, the monitor needs to be able to remotely login to
each router that it is wired with and execute commands on
the router, such as querying the AS path or the next hop from
the router to any destination IP address. To do so, we assume
every router supports secure shell (ssh), which is true for most
routers nowadays, such as Cisco and Juniper routers [16], [17].

Finally, the monitor must be easy to discover by every
PathFinder proxy. While the monitor can employ a running
daemon process with a publicly known port number, proxies
must also know the monitor’s IP address. Many options exist;
for example, the monitor can have its IP address and other
information maintained at a web page. Or, the AS can set
up a Domain Name System (DNS) record for its PathFinder
monitor; e.g., 3582.pathfinder.org may point to the
PathFinder monitor of AS 3582.

C. Operation

The monitor at every PathFinder-participating AS operates
on demand, remaining idle unless it receives a request from a
PathFinder proxy, in which case the monitor will learn the IP
address or prefix of the victim in question, together with the
parameters in the request as defined in Sec. III-A, and start to
generate PFLogs on behalf of the victim.

The very first step that the monitor takes is to identify a
set of routers in its AS that are both sufficient and necessary
to capture all the possible traffic that the AS may originate
or forward toward the victim. Note the AS may also originate
traffic toward the victim from any router of the AS itself. We
therefore use all possible egress routers from which the traffic
to the victim may exit the AS. For example, in Fig. 2b as the
AS forwards two traffic flows toward the victim and both exit
the AS from egress router R3, the monitor will select R3 to
produce PFLogs for the victim. Further, it is straightforward to
decide which routers are possible egress routers for the traffic
to the victim. The monitor can query every border router’s RIB
to learn its next hop to reach the victim’s IP. If the next hop
is a router still within the AS, the border router in question is
not an egress router; otherwise, it is an egress router.

Once the routers are selected, the monitor then talks with
them to collect and produce PFLogs. First, the monitor will

(a) The setup of a PathFinder-
participating AS.

(b) The snapshot when the monitor
is capturing traffic.

Fig. 2: An example setup of a PathFinder-participating AS.

query each selected router to retrieve its AS path to the victim
from its RIB. Furthermore, if the client requests the bandwidth
consumption information of the total traffic to the victim via
the AS, since the monitor is mirroring or tapping the traffic
from these routers (among others), the monitor can observe the
traffic from these routers and count their total volume (# of
packets or # of bits), either per time unit or over a period
of time (as specified in the request or based on a default
value). Note that the mirrored or tapped traffic is only the
traffic to the victim and more importantly, not on the path of
the production traffic, therefore they will not impose a burden
on the production traffic.

At this point, if the client did not request the source
addresses or prefixes of the traffic, or source-based bandwidth
consumption or other information, the monitor has collected
all the PFLogs for the client, and thus can return them to the
proxy of the client. We call this mode of operation source-
agnostic mode. Otherwise, the monitor will operate in the
source-aware mode to further produce source-based PFLogs
via PFTrie (see Sec. V) before it returns them to the proxy.

Finally, note that each monitor only communicates with
PathFinder proxies. No inter-AS collaboration is needed. In
other words, monitors from different ASes are not required
to communicate or collaborate, and each AS independently
participates in PathFinder without any reliance on other ASes.

V. PFTRIE—A PATHFINDER DATA STRUCTURE FOR
TRAFFIC LOGGING

When in source-aware mode, the monitor at every
PathFinder-participating AS will need to record all the sources
that the AS has seen sending traffic to the victim in question,
and if requested, the bandwidth consumption information per
source. In doing so, the monitor needs to employ a data
structure and accompanying algorithms to log sources, count
bandwidth consumption, and transmit such data, all at a high
speed to keep up with the line-speed packet arrival rate.
Meanwhile, due to its speed, the trie data structure has been
popular in storing IP addresses and prefixes, such as those in
the Forwarding Information Base (FIB) of routers. A trie is
also called a prefix tree, where every node on the trie uses its
position on the tree to store the key of the node, such as the IP

13

address or prefix represented by the node. We therefore adopt
the trie data structure for this purpose. Furthermore, to meet
the design requirements discussed in Sec. IV-A, we enhance
the trie data structure and design the PFTrie as follows.

A. Basic PFTrie Operations

The monitor captures and processes every packet toward the
victim. It will make sure the IP source address of the packet
is stored into the PFTrie via a put process. In this process, the
monitor may modify the PFTrie by adding new nodes to store
the IP, or discover that the address is already stored due to a
previous packet with the same IP. The put process will return
a node representing the IP, which the monitor can further
update with bandwidth consumption information incurred by
the current packet, if requested.

In the put process, the monitor will traverse the trie from
the root downwards. It will traverse a node at each level—
which we also call an anchor—to further move to the next
level; clearly, when the traversal starts the anchor is the root
of the trie. At the same time, it iterates through the bits of the
IP address, starting from the leftmost bit, as follows:

(1) If the current bit in the IP address is 0, it traverses to the
left child of the anchor, otherwise it traverses to the right child;
either way, the chosen child will become the new anchor.

(2) In case the new anchor does not exist, the monitor will
detect a fault, i.e., the trie has not stored this IP address yet;
the monitor will then add the missing child onto the trie, and
use this child as the new anchor. (Note that this new anchor
will also avoid the same fault for the next time.)

(3) If the current bit is already the rightmost bit of the IP
address, the monitor then knows that the IP address is stored
in the trie as represented by the new anchor, and thus return
the new anchor node. Otherwise, it still needs to move to the
next bit of the IP address; it then uses the new anchor as the
current anchor to repeat step (1) above. Note the returned node
is always a leaf node on the trie.

Fig. 3 shows an example of inserting a new IP address that
ends with 101. When it traverses to node a by following bit 1,
it needs to follow bit 0 to go to a’s left child; since it does not
exist, the monitor adds node b as a’s left child. It then needs
to follow the last bit 1 to go to b’s right child; since it does
not exist either, node c is then added, which also represents
the newly stored IP address.

Fig. 3: Store an IP address that ends with 101.

B. Trie Optimization

We further optimize the PFTrie toward a faster traversal
process. First, with the design in Sec. V-A, for every bit of

Fig. 4: PFTrie optimization: Aggregating sibling leaf nodes
into one new leaf node.

an IP address, the trie must maintain a node at each level;
for example, an IPv4 address will lead to 32 nodes at 32
respective levels on the PFTrie. We address this issue with
two optimization methods that can go in parallel: the bottom-
up aggregation of leaf nodes and the top-down collapse of
prefixes. Furthermore, we also introduce a method to avoid
duplicate traversal of the PFTrie when a source address is
already stored. We describe each method below.

1) Bottom-up Aggregation of Leaf Nodes: Because of traffic
locality, sometimes there can be multiple sources from the
same prefix sending traffic to the victim. For example, besides
seeing the 32-bit source IP xxx...x101 to the victim,
the monitor may also see traffic to the victim from another
source IP xxx...x100, which only differs from the former
source IP by the very last bit; in other words, they share
the same 31-bit prefix. When such locality is detected, two
leaf nodes at level 32 are not needed to represent the two IP
addresses. Instead, as shown in Fig. 4, we can aggregate the
two leaf nodes into one new level-31 leaf node, indicating
the monitor has seen traffic from both IP addresses in the
31-bit prefix. Furthermore, this aggregation can continue if
the new leaf node has a sibling leaf node. Clearly, this
bottom-up aggregation process can reduce the depth of certain
branches of the PFTrie, thus speeding up the put process. One
challenge here is the logging of the bandwidth consumption
information. After aggregation, the monitor could simply copy
the bandwidth consumption of each old leaf node into the new
leaf node; or, it can also sum the bandwidth consumption of the
two leaf nodes, thus recording the bandwidth consumption of
the IP prefix represented by the new leaf node. The choice here
depends on the client’s request regarding the prefix granularity
for recording the bandwidth consumption information (e.g.,
a /32 prefix granularity means to record the information per
IP address, while a /0 prefix means the total bandwidth
consumption for the whole IP space).

2) Top-down Collapse of Prefixes: We notice that in the
put process the nodes at the top portion of the PFTrie are
frequently traversed. Rather than traversing these nodes one
by one each time, we collapse them into all the IP prefixes
they represent, allowing the sub-trie below each prefix to be
reached by directly indexing an array. Fig. 5 shows an example
of collapsing /24 prefixes into an array (the monitor can
collapse prefixes of other lengths, such as all the /16 prefixes,
similarly). We populate the array with all /24 prefixes that exist
in the PFTrie. For every /24 prefix, the monitor treats the 24

14

Fig. 5: PFTrie optimization: Collapsing all /24 prefixes into
an array with 224 entries.

bits of the prefix as an integer, use the integer as the index
to directly locate the entry of the array, and have that entry
point to the sub-trie originally below the prefix. So, instead
of traversing 24 nodes of a /24 prefix and then traversing the
sub-trie of the prefix, the monitor can immediately locate the
entry for this prefix in the array, access from the entry the
sub-trie of this prefix, and then traverse the sub-trie as before.

3) Avoidance of Duplicate Traversal: So far, if the PFTrie
has recorded an IP address, when a packet with the same IP
address arrives, the monitor will still run the put process and
traverse the PFTrie, only to find the IP address is already
stored. With n more packets from the same IP address, the
extra overhead will be multiplied by n times.

We introduce a bitmap for each one of M most recently
visited sub-tries. After storing an IP address in a sub-trie, the
monitor will also set the bit in the bitmap corresponding to
this IP to 1, so that the put process for the same IP later
will return very quickly. For example, the sub-trie for prefix
a.b.c/24 can have a bitmap of 28 bits, with the bit at index
d corresponding to IP address a.b.c.d.

If we also need to update the bandwidth consumption
information for the IP address (or its prefix), we will need
to access its leaf node. To still have a speedy put process for
duplicate IP addresses, we replace the bitmap with an array of
pointers, and setting a bit to 1 above becomes inserting into
the array a pointer that points to this leaf node. In the above
example, the pointer at index d will be either null or point to
the leaf node for IP address a.b.c.d (or its prefix).

VI. PATHFINDER PROXY

A. Addressing Design Requirements

The purpose of a PathFinder proxy is to learn the footprints
of the traffic toward a victim. Since on the AS-path of the
traffic there can be multiple ASes, when the monitors of such
ASes report the AS-paths of the traffic, the AS-paths reported
by them may overlap. The proxy must determine which AS-
path includes the largest number of ASes. Furthermore, if
source-based traffic footprint is requested, these monitors may
also store and report the same IP address or prefix. The design
of the proxy should resolve the potential conflict between
monitors regarding the same IP address or prefix. Finally, the
proxy’s design should be cost-aware. Since the proxy does
not contact monitors unless requested by a PathFinder client,
clearly the best operation mode of the proxy is also on demand.

B. Setup

Every PathFinder proxy will make itself available to poten-
tial PathFinder clients. If a PathFinder client needs PathFinder
service, it will register itself at a proxy, including setting up
all security credentials. The client then can send a request to
the proxy when it needs to obtain the traffic footprints of a
DDoS victim.

We assume the proxy has a list of PathFinder-participating
ASes (which the proxy can obtain, for example, through a web
page). Further, it knows how to locate the PathFinder monitor
of each AS, as described in Sec. IV-B.

C. Operation

Like any PathFinder monitor, every proxy also operates on
demand. Once a proxy receives a request from a client, it will
verify that the request is authentic and valid, and if so, learn
who the victim is from the request and forward the request
to monitors at PathFinder-participating ASes (or a subset of
them if specified in the request).

If the footprints do not need to be source-based, each
monitor will function in source-agnostic mode and the proxy
will receive PFLogs from each monitor that contain the AS
path from the monitor’s AS to the victim, as well as bandwidth
consumption information if requested. The proxy then adds the
path to a path pool, with two exceptions: (1) If the path is just a
part—i.e., a sub-path—of another path in the pool, the proxy
can ignore this path. (2) Conversely, if a path from the pool
is a sub-path of this path, the latter will replace the former in
the pool. As a result, the proxy will learn a set of AS paths
to the victim, and can return them to the client, together with
the bandwidth information if requested.

However, if the footprints need to be source-based, the
proxy will construct a local PFTrie based on the PFTries it
receives from monitors. Every monitor incrementally transmits
its PFTrie to the proxy; e.g., whenever it can fit newly added
PFTrie nodes into an IP packet or a timer expires, the monitor
will transmit the updates of its PFTrie to the proxy. For each
leaf node of the PFTrie from each monitor, which represents
an IP address or prefix S that the monitor has captured, the
proxy will store S in its local PFTrie, following the same
put process described in Sec. V-A. Furthermore, assuming the
monitor’s AS is AS k, the proxy also marks the leaf node
that represents S with k, in order to indicate the AS-path of
traffic from S to the victim is the AS-path from AS k to the
victim. However, if S is already in the local PFTrie, the proxy
will retrieve the marked AS number of the leaf node for S,
say o, and mark the leaf node for S with either k or still
o, whichever AS is upstream. We thus always can obtain the
most complete AS-path from S to the victim.

VII. EVALUATION

A. Goals

We now evaluate PathFinder in terms of the following:
• Benefits of PathFinder for DDoS defense: Since PathFinder
footprints include path and traffic information, any DDoS

15

defense system that deploys filters inside the network to
discard DDoS traffic can take advantage of the footprints to
make better filter deployment decisions. We build a DDoS
attack and defense simulation to study how PathFinder can
benefit a DDoS defense system and make it more effective.
We look at four different strategies of placing DDoS traffic
filters and show that a DDoS defense system—when utilizing
PathFinder—uses much less resource and achieves a much
higher level of success.
• Speed and Overhead of PathFinder: At the core of
PathFinder are the PFTrie-based operations at each monitor
and proxy, particularly the put process. Therefore, we eval-
uate the time to store an IP address or prefix S in a PFTrie
under two scenarios. In one scenario, S is new and the PFTrie
needs to be updated with a set of new nodes, including the
leaf node that represents S. In another scenario, S is in the
PFTrie, so the put process will check and return the current
leaf node that represents S. We call these two scenarios
put_a_new and put_an_old, respectively. Furthermore, we
evaluate the memory overhead of the PFTrie at each monitor
and proxy when producing source-aware footprints and the
network overhead when transmitting a PFTrie.

B. Benefits of PathFinder for DDoS Defense

To quantify the benefits of PathFinder for DDoS defense,
we first define the model of DDoS attack and defense, and then
compare the simulation results of a DDoS defense system with
and without PathFinder.

1) DDoS Attack and Defense Model: The DDoS attack
and defense model includes a botnet, an attack victim, a
DDoS defense system, and the PathFinder system. The botnet
contains 100,000 bots, where each bot is at a random tier-3 AS
and has a fixed uplink bandwidth of 25 Mbit/s. The victim can
at most handle 10 Gbit/s incoming traffic. During an attack,
the victim applies the DDoS defense system to filter DDoS
traffic, with or without the help of PathFinder to locate best
locations for filters. We allow only tier 2 and 3 ASes that are
close to the attack sources to deploy filters, as in practice the
ASes close to the victim are subject to link congestion under
DDoS attack (often too late for them to filter the DDoS traffic).

Since the same set of bots tend to take the same paths to
send traffic toward the victim, these bots will no longer be
effective once filters are deployed to filter their traffic. An
intelligent attacker therefore would periodically switch to a
new batch of bots to launch its attack. We define the attack
cycle as the time window for every batch of bots used by the
attacker. On the other hand, upon a newly seen DDoS traffic,
we assume it takes T seconds in total for PathFinder to collect
traffic footprints and also for the DDoS defense system to
place the filters. In this study, we evaluate PathFinder system
under the worst-case scenario where the attack cycle is no
greater than T ; in another words, before the DDoS defense
places filters for the current bots attacking the victim, the
attacker already switches to a new attack cycle with a new
batch of bots.

 1000

 2000

 3000

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

er
 o

f
fi

lt
er

s
d

ep
lo

y
ed

Defense success ratio

no PathFinder, with spoofing
no PathFinder, without spoofing
with PathFinder, filters randomly placed
with PathFinder, filters placed at top congested AS

Fig. 6: DDoS defense with and without PathFinder

2) DDoS Defense Efficacy with PathFinder: We then com-
pare the DDoS defense efficacy without and with PathFinder.
When the DDoS defense does not have help from PathFinder,
it uses the inferred AS-level topology to place filters, with
two cases: 1) there is a 30% chance that a filter deployed
is ineffective due to asymmetric routing on the Internet [10];
2) further with some portion of the bots using IP spoofing,
there is then a 50% chance that a filter will be ineffective.
When PathFinder is in place, we use two AS selection methods
for filter placement with the help of PathFinder: 1) randomly
select an upstream AS; 2) select an AS that belongs to top k
ASes that carry most of the DDoS traffic.

Figure 6 shows results for all four cases defined above. We
see the results of DDoS defense system without PathFinder
performs much worse than both cases when PathFinder is
available. With PathFinder in place, and by applying filters
at top congested ASes (which requires path and bandwidth
information from PathFinder), the victim can survive 90% of
the attack cycles with roughly 500 filters, whereas it takes at
least 3,500 filters for a DDoS defense system to subdue 90% of
the attack cycles if there was no PathFinder. In the case when
the DDoS defense system uses only path information from
PathFinder and places filters randomly at ASes, the system
still uses a much smaller number of filters compared to the
two defense cases without PathFinder.

C. Speed and Overhead of PathFinder

1) Experiment Setup: To evaluate the PFTrie speed and its
memory overhead, we used a desktop with Intel i7-4790 at
3.6 GHz with an 8-MB L3 cache and a 32-GB RAM at 1600
MHz. We implemented the PFTrie in C, and used the Clang
compiler with the optimization level 2 to compile the code.
We also created 50 synthetic traffic traces that contain 150
thousand to 64 million IP addresses; for each size we created
five traces with different levels of source address locality, with
0%, 25%, 50%, 75%, and 100% addresses, respectively, that
belong to the same IP prefix and can be aggregated.

2) Speed of PathFinder (i.e., PFTrie): We compare
PFTrie’s performance against Adaptive Radix Tree (ART) [18]
and the well-known Generalized Prefix Tree [19] (also called
Patricia Trie) under the two scenarios defined in Sec. VII-A.
We use the synthetic traces that contain one to four magnitude

16

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

: Patricia fails at this point

T
im

e
(m

s
)

of sources

PFTrie
ART

Patricia

(a) put_a_new scenario.

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

: Patricia fails at this point

T
im

e
(m

s
)

of sources

PFTrie
ART

Patricia

(b) put_an_old scenario.

Fig. 7: PFTrie speed.

more IP addresses, in order to evaluate the three different data
structures under stress.

Fig. 7a shows the comparison results under the put_a_new
scenario for storing all IP addresses in a trace as new addresses
into a data structure. For every synthetic trace size ranging
from 160,000 to 64 million source addresses, when storing a
new IP address or prefix, PFTrie always outperforms ART and
Patricia. For example, to store 16 million IP addresses, it takes
more than 1300ms for ART but it only takes around 700ms
for PFTrie. In general, PFTrie spends 50% less time than ART
to store the same number of IP addresses. Even to store 64
million IP addresses, it takes only 2.93s.

Fig. 7b shows results under the put_an_old scenario for
performing 15 million put processes of storing an IP address
or prefix already stored. Here, the time needed by PFTrie is
virtually constant at about 27.0ms, much less than that in the
put_a_new scenario; e.g., we can deduce with 64 million IP
addresses, it would be about 115ms as opposed to 2.93s in
the put_a_new scenario. Moreover, the time is also further
less compared to ART and Patricia, and PFTrie is at least 10
times faster than ART in every case. This speed is because
of the PFTrie optimizations we introduced, including the top-
down collapse of prefixes (Sec. V-B2) and the avoidance of
duplicate traversals (Sec. V-B3).

While the PFTrie operations are a combination of the two
scenarios, from various real-world traces we notice that the
put_an_old scenario is more frequent than the put_a_new
scenario. For example, in the Booter 3 DDoS trace [20][21],
the put_an_old scenario will happen 369 times more than the
put_a_new scenario.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1x10
6

 1x10
7

M
em

o
ry

 u
sa

g
e

(M
B

y
te

s)

of sources

a=0%
a=25%
a=50%
a=75%

a=100%

Fig. 8: PFTrie memory overhead across five different
source profiles. Each profile has a different percentage of
aggregatable addresses (a).

3) Overhead of PFTrie: We are particularly interested in
the memory cost of PFTrie when there are millions of IP
source addresses. We used synthetic traces that include a huge
number of IP source addresses, and evaluated the memory
usage for each number of sources under five different profiles,
as shown in Fig. 8. We can see the logarithm of the memory
cost is basically a linear function of the logarithm of the
number of sources, and overall the memory cost is manageable
under all five profiles. Moreover, a profile with a higher
address locality can have much lower memory cost. This
feature is due to the optimization via bottom-up aggregation of
PFTrie leaf nodes (Sec. V-B1). Because of the tree nature of
PFTrie, the memory cost complexity for storing 2n addresses
in a PFTrie is O(2n) with n levels of nodes, but if it shrinks
to k levels, the memory cost will become O(2k), a reduction
of O(2n−k) times.

We also evaluated the network overhead across 25 different
AS-level Internet topologies, using one million IP source
addresses. For each AS-level topology, we assigned every IP
address to an AS, where the number of addresses assigned
to each AS is proportional to its IP address space size. Fig. 9
shows the network transmission overhead for an AS to transmit
the PFTrie for 1 million source addresses to a proxy. Clearly,
the further away an AS is from the victim, the smaller the
network overhead it introduces. The AS that is the last hop
to reach the victim would see traffic from all addresses, thus
incurring the largest overhead, but only about 3.9MB.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1 2 3 4 5 6+

Bytes

AS-hop counts from the victim

Fig. 9: Network overhead in transmitting PFTries of
1 million source addresses.

17

VIII. DISCUSSIONS AND OPEN ISSUES

PathFinder is an approach to obtaining the DDoS traffic
footprints at the Internet scale, and we have made many design
choices in order to provide a line-rate, cost-effective, and
deployable solution. Nonetheless, some issues remain to be
addressed due to space limitations:

One obvious issue is IP spoofing. Clearly, nothing would
be affected if a monitor’s mode of operation is source-
agnostic, but if a PathFinder client requests source-based traffic
footprints, the PathFinder system may learn some source IP
addresses that are spoofed. An attacker may even generate
many spoofed sources to overwhelm every monitor and the
proxy of the client. We point out that even if a source address
is spoofed, the path that the client learns about the source will
still be valid, since the monitor that reported the source was on
the path of the packet with the spoofed source. Furthermore, if
the client notices multiple paths for the same source address
or prefix, the client will know that either a routing change
occurred, or at least some of them are spoofed sources.

We have also assumed that every AS (via its PathFinder
monitor) is willing and able to communicate with any
PathFinder proxy for the common good for DDoS defense.
While we have shown the traffic overhead when a proxy
communicates with every AS is not a concern (Sec. VII-C3),
it is likely that this assumption is not true for some ASes due
to incentive or connectivity issues, which we treat as an open
issue out of the scope of this paper.

Another issue is to make PathFinder work for IPv6. In fact,
the design of the PFTrie is independent of the length of an
IP address and works for both IPv4 and IPv6. In the future,
we plan to evaluate its speed and memory cost when handling
millions of IPv6 addresses.

We do not fully discuss the security of PathFinder. We
assume that every node in the PathFinder system must be
authenticated before it can talk to other nodes in the sys-
tem. We also assume that the system employs state-of-the-
art defense mechanisms to protect itself against any security
attacks; for example, a PathFinder proxy can employ a DDoS
defense solution to protect itself and its communication with
PathFinder monitors from DDoS attacks.

IX. CONCLUSIONS

While DDoS attacks have become more frequent and dam-
aging and, once launched, can cause severe damage to services
on the Internet, defense against DDoS attacks has often suf-
fered from the lack of relevant knowledge of the DDoS traffic.
However, it is fairly challenging to grasp the topological nature
of the DDoS traffic while the attack is occurring: the DDoS
traffic often originates from many different locations, follows
various paths to reach the victim, sometimes carry spoofed
source addresses, and can be extremely dynamic. Currently
the best options are various IP traceback or path inference
approaches, but they impose stringent demands to run and
deploy. We fill this gap by proposing the PathFinder system
as a service that a DDoS defense system can use to obtain the
footprints of the DDoS traffic to a victim, including specifying

many details of the footprints such as whether the source
address and/or bandwidth information is needed. In particular,
PathFinder embraces an architecture that not only eases its
deployment in today’s Internet, but also ensures it has a low
cost (e.g., its on-demand model) and is fast to meet the line
rate of the packets it must capture.

REFERENCES

[1] Akamai. (2016) Q4 2016 state of the Internet security report. http://
www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/
global-state-of-the-internet-security-ddos-attack-reports.jsp.

[2] K. York. (2016) Dyn statement on 10/21/2016 DDoS attack. http://dyn.
com/blog/dyn-statement-on-10212016-ddos-attack.

[3] H. Burch and B. Cheswick, “Tracing anonymous packets to their ap-
proximate source,” in USENIX Large Installation System Administration
Conference (LISA), 2000, pp. 319–327.

[4] K. Singh, P. Singh, and K. Kumar, “A systematic review of IP traceback
schemes for denial of service attacks,” Computers & Security, vol. 56,
pp. 111–139, 2016.

[5] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for IP traceback,” in ACM SIGCOMM, 2000, pp. 295–306.

[6] A. Yaar, A. Perrig, and D. Song, “FIT: fast Internet traceback,” in
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 2, 2005, pp. 1395–1406.

[7] K. J. Argyraki and D. R. Cheriton, “Active Internet traffic filtering: Real-
time response to denial-of-service attacks,” in USENIX Annual Technical
Conference, 2005, pp. 135–148.

[8] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-based IP traceback,” in ACM
SIGCOMM, 2001, pp. 3–14.

[9] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale IP traceback in high-
speed Internet: Practical techniques and theoretical foundation,” in IEEE
Symposium on Security and Privacy, 2004, pp. 115–129.

[10] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang, “On AS-level path
inference,” in ACM SIGMETRICS, 2005, pp. 339–349.

[11] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry,
P. Van Wesep, T. E. Anderson, and A. Krishnamurthy, “Reverse
traceroute,” in USENIX Symposium on Networked Systems Design and
Implementation, vol. 10, 2010, pp. 219–234.

[12] Cisco. (2016) Cisco IOS IP routing: BGP command reference.
http://www.cisco.com/c/en/us/td/docs/ios/iproute_bgp/command/
reference/irg_book/irg_bgp5.html.

[13] J. Stretch. (2016) JUNOS-to-Cisco IOS/XR command reference.
http://web.archive.org/web/20140114070827/http://packetlife.net/wiki/
junos-cisco-iosxr-command-reference.

[14] Cisco. (2016) Catalyst switched port analyzer (SPAN) config-
uration example. http://www.cisco.com/c/en/us/support/docs/switches/
catalyst-6500-series-switches/10570-41.html.

[15] Juniper. (2016) Example: Configuring port mirroring for local
monitoring of employee resource use on EX series switches.
https://www.juniper.net/documentation/en_US/junos/topics/example/
port-mirroring-local-ex-series.html.

[16] Cisco. (2007) Configuring secure shell on routers and switches run-
ning cisco ios. http://www.cisco.com/c/en/us/support/docs/security-vpn/
secure-shell-ssh/4145-ssh.html.

[17] Juniper. (2015) Configuring SSH service for remote access to the
router or switch. https://www.juniper.net/documentation/en_US/junos/
topics/task/configuration/ssh-services-configuring.html.

[18] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pp. 38–49.

[19] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information
coded in alphanumeric,” Journal of the ACM, vol. 15, no. 4, pp. 514–
534, 1968.

[20] SimpleWeb.org. (2015) Traces. https://www.simpleweb.org/wiki/index.
php/Traces.

[21] J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wier-
bosch, L. Zambenedetti Granville, and A. Pras, “Booters - an analysis
of ddos-as-a-service attacks,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2015, pp. 243–251.

18

CellPAD: Detecting Performance Anomalies in

Cellular Networks via Regression Analysis

Jun Wu1, Patrick P. C. Lee2, Qi Li1, Lujia Pan3,4, Jianfeng Zhang4

1Tsinghua University 2The Chinese University of Hong Kong
3Xi’an Jiaotong University 4Huawei Noah’s Ark Lab

Abstract—How to accurately detect Key Performance Indicator
(KPI) anomalies is a critical issue in cellular network manage-
ment. We present CELLPAD, a unified performance anomaly
detection framework for KPI time-series data. CELLPAD re-
alizes simple statistical modeling and machine-learning-based
regression for anomaly detection; in particular, it specifically
takes into account seasonality and trend components as well as
supports automated prediction model retraining based on prior
detection results. We demonstrate how CELLPAD detects two
types of anomalies of practical interest, namely sudden drops
and correlation changes, based on a large-scale real-world KPI
dataset collected from a metropolitan LTE network. We explore
various prediction algorithms and feature selection strategies, and
provide insights into how regression analysis can make automated
and accurate KPI anomaly detection viable.

Index Terms—anomaly detection, cellular network manage-
ment, measurement and analysis

I. INTRODUCTION

The continuing advances of cellular network technologies

make high-speed mobile Internet access a norm. However,

cellular networks are large and complex by nature, and hence

production cellular networks often suffer from performance

degradations or failures due to various reasons, such as back-

ground interference, power outages, malfunctions of network

elements, and cable disconnections. It is thus critical for

network administrators to detect and respond to performance

anomalies of cellular networks in real time, so as to maintain

network dependability and improve subscriber service quality.

To pinpoint performance issues in cellular networks, a com-

mon practice adopted by network administrators is to monitor

a diverse set of Key Performance Indicators (KPIs), which

provide time-series data measurements that quantify specific

performance aspects of network elements and resource usage.

The main task of network administrators is to identify any KPI

anomalies, which refer to unexpected patterns that occur at a

single time instant or over a prolonged time period.

Today’s network diagnosis still mostly relies on domain

experts to manually configure anomaly detection rules [25];

such a practice is error-prone, labor-intensive, and inflexible.

Recent studies propose to use (supervised) machine learn-

ing for anomaly detection in cellular networks (e.g., [3],

[8], [10], [11], [13], [34]) and search engines (e.g., [25]).

However, machine-learning-based anomaly detection is subject

to several well-known challenges [9], [25]: (i) the issues of

which machine-learning algorithms should be used and how

features should be configured depend on the actual anomaly

detection problems and are difficult to address; (ii) labeling

which time instants are anomalies for large-scale datasets is

time-consuming; (iii) differentiating between normal data and

anomalies is challenging and often requires domain knowledge

to resolve; and (iv) anomalies occur much more infrequently

than normal data, and this imbalanced nature can degrade

learning accuracy [17].

In the context of cellular networks, we need to address

additional challenges in anomaly detection. First, Internet traf-

fic often exhibits periodic diurnal patterns [35] and different

trends after long-term usage. In addition, the performance of

cellular networks depends on not only the data transmission

usage as in the traditional Internet, but also the radio resource

usage [30]. Their corresponding KPIs, and hence anomalies,

are often correlated. Such properties need to be properly

addressed in the anomaly detection design. Thus, we are

motivated to look into the following issues: (i) How should

we define useful KPI anomalies that correspond to practical

cellular network performance degradation problems? (ii) Can

we design a unified anomaly detection framework that can

incorporate various anomaly detection algorithms and detect

various types of anomalies for one or multiple KPIs? (iii) Can

our anomaly detection framework be automated with limited

manual intervention, while still achieving accurate detection?

We present CELLPAD, a unified performance anomaly

detection framework for cellular networks. CELLPAD builds

on regression analysis, which predicts the expected quantities

of KPI time-series data so as to provide prediction results for

anomaly detection. We consider two types of anomalies that

are of practical interest to cellular network management based

on our internal communication with network administrators:

sudden drops, which indicate the unexpected degradations of

a KPI, and correlation changes, which indicate the inconsis-

tency between the current and historical correlations of two

correlated KPIs. Using CELLPAD, we conduct trace-driven

evaluation to demonstrate how regression analysis achieves

automated and accurate KPI anomaly detection. To summarize,

this paper makes the following contributions:

• We first present a trace-driven analysis on a large-scale KPI

dataset from a real-world metropolitan LTE network. Our

dataset spans six KPIs, 17 weeks of duration, and 12,463

cells. We show the presence of anomalies in the dataset and

motivate the practical need of anomaly detection.

• We design CELLPAD for anomaly detection in cellular net-ISBN 978-3-903176-08-9 ©2018 IFIP

works. CELLPAD supports various prediction algorithms,

including simple statistical modeling, linear regression, and

tree-based regression (the latter two belong to machine-

learning-based regression). In particular, it takes into ac-

count both seasonality and trend components in KPI time-

series data, and provides a feedback loop for retraining the

prediction models using prior detection results to improve

detection accuracy.

• We conduct trace-driven evaluation on CELLPAD based

on our KPI dataset to explore a range of prediction al-

gorithms and different feature selection strategies. We also

show that CELLPAD achieves more accurate sudden drop

detection than Twitter’s time-series anomaly detection tool

[2]. We make several observations, such as the accuracies

of different prediction algorithms, the robustness against

parameter choices, and the importance of prediction model

retraining for accurate anomaly detection. We find that no

single prediction algorithm is an absolute winner in both

sudden drop and correlation change detection.

The source code of CELLPAD is available for download at

http://adslab.cse.cuhk.edu.hk/software/cellpad.

The rest of the paper proceeds as follows. Section II presents

the background details and analysis of our KPI dataset and

motivates the need of anomaly detection. Section III presents

our design of CELLPAD. Section IV evaluates different pre-

diction algorithms and design choices of CELLPAD. Section V

reviews related work. Finally, Section VI concludes the paper.

II. DATASET

In this section, we provide an overview of the KPI dataset

that we collected from a production cellular network. We also

motivate the need of detecting anomalies in such a network.

A. LTE Network Architecture

In this work, we focus on the 4G LTE cellular technologies.

We first provide a high-level overview of an LTE network

architecture. An LTE network comprises three main entities:

User Equipments (UEs), the Radio Access Network (RAN),

and the Evolved Packet Core (EPC). Each UE refers to a user’s

mobile device. The RAN comprises multiple base stations

called Evolved NodeBs (eNodeBs), each of which manages

the radio resources of UEs and provides UEs with wireless

connectivity. The EPC comprises the Mobility Management

Entity (MME), the Serving Gateway (SGW), and the Packet

Data Network Gateway (PGW): the MME manages UEs’

control-plane functions (e.g., user authentication, mobility

management), while both the SGW and PGW manage UEs’

data-plane functions (e.g., data routing). To send or receive

data via the Internet, a UE first sets up a radio connection with

an eNodeB and a signaling channel with the MME. It then sets

up a data session with the EPC atop the radio connection, and

uses the data session for data transmission.

Each eNodeB serves multiple geographical areas called

cells, each of which covers a number of UEs. The size

of each cell depends on the local user population and the

TABLE I
DESCRIPTIONS OF SIX CELL-LEVEL KPIS.

KPIs Descriptions

USER It refers to the number of active users.

RRC It refers to the number of radio resource control (RRC)
connection requests between a UE and an eNodeB.
Each RRC connection works at the control plane and
carries signaling messages for managing the radio re-
sources of the UE.

ERAB It refers to the number of E-UTRAN Radio Access
Bearer (ERAB) requests between a UE and the EPC.
Each ERAB works at the data plane and carries the data
traffic of the UE.

PRB It refers to the number of physical resource blocks
allocated. It indicates the radio resource usage.

THR It refers to the data transmission throughput in the
downlink direction.

DUR It refers to the duration of active data transmission in
the downlink direction.

radio coverage. A production LTE network typically covers

thousands of cells.

B. Data Collection

Network administrators deploy probes in the EPC and every

eNodeB to periodically collect KPI values, which will be

sent to a centralized network management system (NMS).

We call each collected input an instance, which specifies the

time and value for a KPI. In this work, we collected per-cell

KPI instances from the NMS of an operational LTE network

deployed in a metropolitan city in China. Each instance is

recorded on an hourly basis and describes the performance

of a cell in the latest hour. We consider six types of KPIs,

as summarized in Table I. The six types of KPIs address

the cellular network performance in three aspects: (i) user

population (i.e., USER), (ii) radio resource usage (i.e., RRC,

ERAB, and PRB), and (iii) data transmission load (i.e., THR

and DUR).

Our KPI dataset covers three collection periods for a total

of 17 weeks: (i) November 7, 2016 to January 8, 2017, (ii)

February 13, 2017 to March 12, 2017, and (iii) April 10, 2017

to May 7, 2017. We only select the cells that have the complete

KPI data over the entire 17 weeks; in other words, each cell

has a total of 24×7×17= 2,856 instances for each of the six

KPIs. Finally, we identify 12,463 cells. To the best of our

knowledge, our dataset is among the largest being studied

in the literature (in terms of the collection period and the

number of cells being covered) regarding KPI measurements

in operational LTE networks.

C. A First Look at the Dataset

We first examine the statistical properties of our collected

dataset, so as to understand the behaviors of the cellular

network. Our observations are summarized as follows: (i) there

exist strong seasonality and trend components in the dataset;

(ii) some KPIs are strongly correlated; and (iii) there exist

non-negligible variances in KPI values across the same hour

of different days.

20

(a) USER (b) RRC (c) ERAB

(d) PRB (e) THR (f) DUR

Fig. 1. Seasonality components of six KPIs. The x-axis represents the 168
hours of a week, and the y-axis represents the weekly normalized aggregated
KPI value in each hour. We plot each week of KPIs separately in grey, while
the black curve represents the average of 17 points in each hour.

Seasonality: We first analyze the seasonality component (i.e.,

the recurring patterns over a time series) in all six KPIs.

We first aggregate the KPI values at each hour across all

cells. We then normalize each aggregate result x to the range

[0, 1] as
x−min{x}

max{x}−min{x} , where max{x} and min{x} represent

the maximum and minimum of all 2,856 hours, respectively.

Figure 1 plots the weekly normalized aggregate results for all

17 weeks. We see that all six KPIs show fairly stable diurnal

patterns, albeit some abrupt increases or drops in some hours.

Trend: We next study the trend component (i.e., the increasing

or decreasing patterns over a time series) in all six KPIs. We

compute the trend component on a per-cell basis. Specifically,

for each KPI, we compute the average KPI value of a cell

at the i-th hour, denoted by yi, over a sliding time window

of 168 hours (a week) using the recent past and future KPI

values, starting from the (i-84)-th hour to the (i+83)-th hour,

where i ≥ 84. We then compute the trend variation as
max{yi}−min{yi}

ȳi
, where max{yi}, min{yi}, and ȳi denote

the maximum, minimum, and mean of the sequence of yi’s,

respectively. In our analysis, we pick the first time period

from November 7, 2016 to January 8, 2017, in which we can

compute 1,344 yi’s over the 9-week period. Intuitively, if the

trend variation is close to zero, then the time series remains

stable across any weekly cycle; otherwise, the time series has

a strong trend component. For example, if the trend variation

is larger than one, it means that the maximum differences

between the average KPI values of any sliding windows can

be larger than the overall average KPI value. Figure 2 shows

the cumulative distribution of the trend variations of all cells

for each KPI. We see that for each KPI, the trend variation is

larger than one for a non-negligible fraction of cells.

Correlation: KPIs may be correlated; for example, if the

number of active users increases, both the radio resource

usage (i.e., RRC, ERAB, and PRB) and the data transmission

load (i.e., THR and DUR) also increase. We compute the

Pearson coefficient (PC) (a measure of linear correlation of

two variables) for every pair of KPI time-series data of each

cell, and obtain the average PC across all cells. If the PC is

(a) USER (b) RRC (c) ERAB

(d) PRB (e) THR (f) DUR

Fig. 2. Trend components of six KPIs. The x-axis represents the trend
variation, and the y-axis represents the cumulative density function.

TABLE II
AVERAGE PEARSON COEFFICIENTS OF KPI PAIRS ACROSS ALL CELLS.

USER RRC ERAB PRB THR DUR

USER 1.000 0.895 0.907 0.829 0.771 0.817

RRC - 1.000 0.961 0.709 0.602 0.654

ERAB - - 1.000 0.716 0.610 0.659

PRB - - - 1.000 0.942 0.814

THR - - - - 1.000 0.776

DUR - - - - - 1.000

closer to 1.0, it implies that the two KPIs have high positive

linear correlation. Table II shows the results. We observe all

six KPIs have positive linear correlation. In particular, the pairs

(RRC, ERAB), (PRB, THR), and (USER, RRC) are the top-3

pairs with the strongest correlation.

KPI variations: KPI values may fluctuate over time due to

performance changes in cellular networks, thereby implying

the presence of performance anomalies. To understand the

frequency of such KPI variations, we calculate the coefficient

of variation (CV) (i.e., the ratio of the standard deviation to

the mean) of a KPI at each hour of a day for each cell. A

large CV implies that the specific cell has a high deviation

of the KPI. Here, we focus on USER. Figure 3(a) shows the

boxplots1 of CVs across all cells. We observe that the majority

of CVs are close to zero, yet a few cells exhibit high CVs.

Interestingly, we observe higher CVs during nighttime (from

23:00 to 06:00) than during daytime (from 08:00 to 18:00).

We also observe significant KPI variations in the correla-

tions across a KPI pair in some of the cells. We calculate the

PC of a KPI pair at each hour of a day for each cell. We

focus on USER and RRC (which show a high PC according

to Table II). Figure 3(b) shows the boxplots of PCs across

all cells. While the majority of cells show a high PC (close

to one), some cells show a negative PC, which is unexpected

and may be anomalies.

D. Definitions of Anomalies

Based on our analysis and internal communication with

network administrators, we study two types of KPI anomalies,

1A boxplot shows the minimum, first quartile, median, third quartile, and
maximum of all samples.

21

(a) Coefficients of variation (CVs) of USER

(b) Pearson coefficients (PCs) of USER and RRC

Fig. 3. KPI variations, in terms of boxplots at different hours of a day across
all cells. Here, the x-axis represents the hour of a day (e.g., 1 means 0100).

namely sudden drops and correlation changes, that are of

practical interest to cellular network management. A sudden

drop refers to the sudden performance degradation of a KPI

instance within a cell. For example, if there exists a sudden

drop in USER, it may imply that a cell fails to provide

connectivity to a significant portion of users. In general,

a sudden drop happens when a KPI value is significantly

less than the expected one. On the other hand, a correlation

change refers to the large deviation of two correlated KPI

instances within a cell. For example, a cell failure may increase

the number of RRC request attempts (i.e., RRC), while the

number of active users (i.e., USER) remains relatively un-

changed. Thus, both sudden drops and correlation changes are

complementary to each other in characterizing performance

anomalies of cellular networks. In practice, if either one of

the KPI anomalies persists for a prolonged period (e.g., a few

hours), it may indicate the presence of network failures and

requires network administrators to investigate further. In the

following discussion, we propose a unified framework that can

effectively detect both sudden drops and correlation changes.

Our anomaly detection focuses on a per-cell basis by

inspecting the time-series instances of multiple KPIs in each

cell. In this work, we do not consider the correlation across

multiple cells. Also, we do not identify the root causes of the

anomalies due to insufficient information in our dataset. We

pose these issues as future work.

III. DESIGN

We present CELLPAD, a cellular network performance

anomaly detection framework. It takes the time-series data of

multiple KPIs as inputs, and detects both sudden drops and

correlation changes with high accuracy by taking into account

both seasonality and trend components in KPI time-series data.

It also provides a feedback loop to incrementally update the

prediction models based on the past detection outputs, thereby

Feature

Engineering
Predictors

Anomaly

Detection

Anomaly?
Y

KPI Streams

Normal

Instances

N

Retrain
Sudden

Drop

Correlation

Change

Fig. 4. CELLPAD architecture.

eliminating the manual efforts of specifying labeled data (i.e.,

ground truths) for model training.

A. Main Idea

CELLPAD builds on regression analysis to predict the

normal values of KPI instances in order to detect anomalies.

Figure 4 shows the CELLPAD architecture, which provides a

unified regression framework for detecting both sudden drops

and correlation changes. At a high level, CELLPAD takes

multiple time-series streams of KPI instances at different time

intervals (hours in our case) as inputs. It first performs feature

engineering to extract a set of features, whose values are

derived from the KPI instances that are observed up to the

current hour. The feature values serve as inputs to different

predictors, each of which performs a specific prediction algo-

rithm and outputs a predicted KPI value, which is the expected

value for a KPI at each hour in normal situations (i.e., without

anomalies). For sudden drop detection, CELLPAD returns one

predicted KPI value for each KPI instance being considered,

while for correlation change detection, it returns two predicted

KPI values for each pair of KPI instances being considered.

Finally, CELLPAD performs anomaly detection based on the

prediction at each hour by checking the deviations between

the actual and predicted KPI values. It concludes that the

current KPI instances are either anomalies (i.e., sudden drops

or correlation changes) or normal instances. For the latter case,

CELLPAD also feeds back the normal instances to retrain the

prediction models for improved detection accuracy.

One major design issue is to properly select the predictors

and features. In particular, the features depend on not only

what types of anomalies (sudden drops or correlation changes)

being detected, but also the predictors being used. In the fol-

lowing, we formulate the regression framework of CELLPAD

in detail, in which we first state the predictors that CELLPAD

supports, followed by the corresponding feature engineering

procedures.

B. Predictors

CELLPAD supports three families of predictors: simple sta-

tistical modeling, linear regression, and tree-based regression;

the latter two belong to machine-learning-based regression

approaches. Each predictor returns a predicted value for each

hour based on the underlying prediction algorithm. Here, we

summarize the algorithms that we consider under each family.

Simple statistical modeling: CELLPAD implements four

algorithms:

22

Hour

<2

>=5

Day

<6 >=6

Hour

<5

Day

>=2

Value=0

<5

Value=100 Hour

…

…

>=5

Value=10

<6

…

>=7

(a) Huber regression (b) Regression tree

Fig. 5. Regression applied in CELLPAD

• EWMA (Exponentially Weighted Moving Average) [19]: It

computes the predicted value based on the weighted values

of a set of instances, such that the weights are exponentially

decayed for older instances.

• WMA (Weighted Moving Average) [29]: Its prediction is also

based on the weighted instances as in EWMA, except that

the weights are linearly decayed.

• HW (Holt-Winters) [37]: It is a triple exponential smoothing

method that extends EWMA to deal with seasonality and

trend. It computes the predicted value as a function of the

weighted inputs of both instances as well as the seasonality

and trend components. It also estimates the seasonality and

trend components from the instances using EWMA.

• LCS (Local correlation score) [28]: It measures the corre-

lation of two time-series. It holds two synchronous sliding

windows to compute the auto-covariance matrices continu-

ously and then aggregates the matrices using their exponen-

tially weighted averages. We mainly use LCS for detecting

correlation changes.

Linear regression: CELLPAD implements two linear regres-

sion algorithms to model the linear relationships between

features and predicted values:

• SLR (Simple linear regression) [5]: It computes the predicted

values based on the optimal linear combination of the values

of a feature that can minimize the mean square deviation.

• HR (Huber regression) [21]: It enhances simple linear

regression to be robust against noise, by controlling whether

instances are classified as outliers via an epsilon parameter

(a smaller epsilon is more robust to outliers). For example,

Figure 5(a) shows how Huber regression excludes outliers

from modeling as opposed to simple linear regression.

Tree-based regression: To model the non-linear relationships

between features and predicted values, CELLPAD also imple-

ments two tree-based regression algorithms:

• RT (Regression tree) [7]: It organizes the feature space

into a tree structure, in which each non-leaf node is a

decision-making process that splits the feature space based

on a selected feature, while each leaf node holds a local

predictor that averages all instances that fall into the feature

partition. Figure 5(b) shows a regression tree example, in

which we choose the hour and day indexes as the features

(see Section III-C for details). The predicted value is 10

if the features satisfy “(Hour == 5) and (6 ≤ Day ≤ 7)”.

Choosing which feature for decision making and how to split

the feature space can be controlled by a set of parameters,

which we omit details here.

• RF (Random forest) [6]: It is an ensemble learning algo-

rithm. It samples different subsets of instances and features

to form multiple regression trees and take their average

prediction result. It is robust against irrelevant features and

noises than a single regression tree in general.

Discussion: Simple statistical modeling is easy to implement,

as it can return the predicted values based on the observed

instances. However, it has the major limitation that the pre-

diction accuracy heavily depends on the parameter settings.

In contrast, both linear regression and tree-based regression

are less dependent on parameters, which can be “learned”

from input instances. However, they require careful feature

engineering for the regression analysis, as we will explain in

the next subsection.

C. Feature Engineering

We now elaborate the feature engineering process for lin-

ear regression and tree-based regression. CELLPAD extracts

different features for sudden drop and correlation change

detection. We also describe how we address seasonality and

trend.

Sudden drops: CELLPAD uses two types of features for sud-

den drop detection. The first type is called indexical features,

in which we use the time indexes of each KPI instance as

features. To take into account seasonality, we index the hour

and day from 0 to 23 and from 0 to 6, respectively, and use

the hour and day indexes as the features (called Hour and

Day, respectively). Intuitively, if we group the instances by

the same Hour only, we capture daily seasonality; if we group

the instances by both the same Hour and Day, we capture

weekly seasonality. In this work, we mainly focus on weekly

seasonality. The indexical features are mainly used by tree-

based regression (see Figure 5(b)).

The second type is called numerical features, in which we

apply some numerical operations to KPI instances to extract

features. We define each numerical feature as 〈win, oper〉, in

which we run oper on the KPI instances in the past win weeks.

For instance, 〈5,mean〉 means that we take the mean of KPI

values in the past five weeks. By sampling different values of

win and types of oper, we can generate a number of numerical

features. To account for weekly seasonality, we only pick the

KPI instances with the same Hour and Day. The numerical

features can be used by both linear regression and tree-based

regression.

Correlation changes: For correlation change detection (say,

for KPI1 and KPI2), CELLPAD trains two predictors, one for

KPI1 and one for KPI2. The predictor for KPI1 (resp. KPI2)

takes the value of the current instance of KPI2 (resp. KPI1) as

a feature. The rationale is that if the two KPIs are correlated,

each KPI instance is dependent on another KPI instance at any

given time. Linear regression uses this feature for prediction,

while tree-based regression additionally takes Hour and Day

as features for prediction.

23

Trend removal: As the changes in the KPI values caused by

the trend component affect anomaly detection accuracy, we

provide an option of removing the trend component from the

raw KPI time-series. CELLPAD removes the trend component

before extracting the features based on the idea of time-series

decomposition [22]. Specifically, for a given KPI instance at

some hour, CELLPAD computes the average KPI value of

over a sliding window of 168 hours using the recent past

and future KPI values as in Section II-C (note that we do

not start anomaly detection until we collect enough past KPI

instances for trend removal). To remove the trend component,

CELLPAD divides the raw KPI value by the computed average

value and feeds the result to feature engineering. Note that we

can treat the trend component as additive or multiplicative, yet

we choose the latter as it achieves better detection accuracy

after trend removal based on our experience. We study the

effect of trend removal in Section IV.

D. Anomaly Detection

To perform anomaly detection, we first calculate the degree

of deviation. For sudden drop detection, CELLPAD computes

the drop ratio D =
KPIa−KPIp

KPIp
, where KPIa and KPIp denote

the actual and predicted KPI values, respectively. If D is much

less than 0, it likely implies a sudden drop. To detect corre-

lation changes of two KPIs (say, KPI1 and KPI2), CELLPAD

computes the change ratio for KPI1 by C1 =
KPI1a−KPI1p

KPI1p
, and

that for KPI2 by C2 =
KPI2a−KPI2p

KPI2p
, where KPI1a and KPI1p

(resp. KPI2a and KPI2p) denote the actual and predicted KPI

values of KPI1 (resp. KPI2), respectively.

CELLPAD uses the “N -sigma rule” for anomaly detection,

in which an anomaly is expected to deviate from the mean by

a significant number N of standard deviations. At each hour,

we calculate the mean µ and standard deviation σ for the drop

ratios or change ratios in the last 168 hours. We call a KPI

instance a sudden drop if D < µ − Nσ, and call two KPI

instances a correlation change if C1 /∈ [µ − Nσ, µ + Nσ] or

C2 /∈ [µ − Nσ, µ + Nσ]. By default, we set N = 3, yet we

also consider different values of N for the threshold selection.

Finally, CELLPAD outputs the anomalies, or feeds back the

remaining normal instances to retrain the prediction model (see

Figure 4), which extracts features from the normal instances

for prediction.

IV. EVALUATION

We have implemented a CELLPAD prototype in Python.

For EWMA, WMA, and LCS, we implement their algorithms

directly; for HW, we use the open-source code [26], which

selects the optimized weights that minimize a loss function;

for SLR, HR, RT, and RF, we implement them using scikit-

learn [1].

We evaluate the anomaly detection accuracy of CELLPAD,

and compare CELLPAD with Twitter’s open-source time-

series anomaly detector [2] (called TWITTER for short). We

address the following questions: (i) What is the accuracy of

different predictors in sudden drop and correlation change

detection? (ii) How do seasonality and trend affect detection

accuracy? (iii) How is CELLPAD compared with TWITTER?

A. Methodology

It is a labor-intensive task for network administrators to

identify real anomalies (i.e., labels) from our dataset, which

is large and complex by nature; the same problem is also

reported by previous work [3], [8], [24], [36]. Thus, we

resort to injecting synthetic anomalies into the raw data of

our dataset for evaluation. Specifically, we randomly select

80 cells from our dataset for evaluation. We aggregate the

three collection periods into a continuous 17-week period (see

Section II-B). In each cell, we randomly pick 1.5% of hours

and three continuous segments with a uniformly distributed

length of 3 to 24 hours each to inject anomalies. For sudden

drops, we decrement the KPI values of each anomaly hour by

a percentage uniformly distributed from 30% to 100%. For

correlation changes, we pick one of the two KPIs of each

anomaly hour, and either increments or decrements its value

by a percentage uniformly distributed from 30% to 100%.

We also apply a simple rule-based method to label the

obvious anomalies from the dataset based on the raw values.

For sudden drops, we treat a KPI instance whose raw value is

75% smaller than either one of the KPI values at the same hour

and day in the past two weeks as a sudden drop. For correlation

changes, we compute and rank the ratios of the values of all

KPI instance pairs, and treat the top 0.5% and lowest 0.5% of

pairs as correlation changes. Finally, we have roughly 3-4% of

anomalies in the whole 17-week dataset in each cell, and this

percentage is consistent with the real-world scenarios based

on our internal discussion with network administrators.

We use the first two weeks of KPI instances, including both

normal instances and synthetic anomalies, to bootstrap our

predictors. We then start our evaluation from the third week

onwards. We do not exclude the synthetic anomalies in our

bootstrapping process; instead, we rely on prediction model

retraining to improve the robustness of our prediction.

B. Sudden Drop Detection

We first evaluate CELLPAD in sudden drop detection. We

consider the metric PRAUC (Area Under Precision-Recall

Curve), which is shown to be robust when the distributions of

normal instances and anomalies are highly imbalanced [15].

Here, we use the drop ratio (see Section III-D) as the predic-

tion input to PRAUC, which computes various precision and

recall pairs against different thresholds to obtain an accuracy

measure between 0 and 1 (higher means more accurate). We

only present the results for the KPI USER.

We consider the following predictors:

• EWMA, WMA, and HW: We compute the average using the

values with the same hour and day indexes from the first

week to the previous week. For EWMA, we set the weight

to 0.8; for WMA, the weights are set based on the number

of previous weeks; for HW, we set the seasonal period as

168 weeks and use it to compute the optimized weights [26].

24

(a) With trend removal

(b) Without trend removal

Fig. 6. PRAUC of different predictors in sudden drop detection.

• SLR and HR: The features are the mean and median of the

values with the same hour and day indexes in the past w
weeks, where w is sampled at w = 3, 5, 7, 10, 13; for HR,

we set ǫ = 1.35.

• RT and RF: We consider four variants for each of RT and

RF. (i) RT time and RF time, which use the hour and day

indexes as indexical features; (ii) RT mean and RF mean,

which use the mean and median features as in SLR; (iii)

RT ma and RF ma, which use the moving averages of both

EMWA and WMA as features; and (iv) RT all and RF all,

which use all features as described in (i), (ii), and (iii). For

RF, we set the number of trees as 100.

Figure 6 shows the boxplots of PRAUC for different

predictors. Figure 6(a) first considers the case in which we

remove the trend components. Simple statistical modeling and

tree-based regression generally achieve good accuracy; for

example, EWMA, WMA, RT time, RF time, and RF all have

an average PRAUC of more than 0.9. On the other hand, HW,

SLR, and HR have low accuracy, with an average PRAUC

of below 0.8. We note that RF maintains high accuracy using

different features (with a mean of at least 0.86).

Figure 6(b) shows the results when we do not remove trend

components. We see that the accuracy of all predictors drops

significantly. This justifies the necessity of removing trend

components in sudden drop detection.

C. Correlation Change Detection

We now study correlation change detection, in which

we consider the following predictor implementations in

CELLPAD:

• LCS: We set the sliding window size as 20 hours and the

smoothing constant as 0.8.

• SLR and HR: For each of the predictors of a KPI, we set

the value of another KPI as the only feature.

(a) With trend removal (b) Without trend removal

Fig. 7. PRAUC of different predictors in correlation change detection.

• RT and RF: We consider two variants for each of RT and

RF. (i) RT and RF, which use the value of another KPI as

the only feature as in SLR and HR; and (ii) RT+ and RF+,

which use the value of another KPI as a feature as well

as the hour and day indexes as the indexical features. The

rationale of using indexical features in RT+ and RF+ is to

take into account weekly seasonality.

We use PRAUC as the accuracy metric. We use the average

of two absolute change ratios 1

2
(|C1|+|C2|) (see Section III-D)

as the input to PRAUC. Here, we focus on the KPI pairs

(USER, RRC).

Figure 7 shows the boxplots of PRAUC for different pre-

dictors. Depending on the predictors, the accuracy may be

improved or degraded with trend removal. As opposed to

sudden drop detection, RF does not achieve high accuracy

here, even though using different features. Overall, HR without

trend removal (i.e., using the raw KPI data for anomaly

detection) achieves the highest PRAUC (with a mean 0.93).

D. Comparisons with TWITTER

We now compare CELLPAD with TWITTER [2] in sudden

drop detection. TWITTER is an open-source anomaly detection

system that also takes into account the seasonality and trend

components in the anomaly detection of time-series data. Since

TWITTER is designed for anomaly detection in a single time-

series (as opposed to two time-series in correlation change

detection), we only focus on sudden drop detection. Also,

TWITTER only tells if a time point is an anomaly, but does

not return an anomaly measure for us to compute PRAUC for

different thresholds. Thus, we consider the following accuracy

metrics instead: (i) precision, (ii) recall, and (iii) F1-score (i.e.,

2×Precision×Recall / (Precision + Recall)). For CELLPAD,

we pick RF all (with trend removal) as the predictor.

Figure 8 compares CELLPAD and TWITTER in sudden drop

detection for the KPI USER. CELLPAD has much higher

precision than TWITTER, but with slightly lower recall. Over-

all, CELLPAD achieves higher F1-score than TWITTER (with

means 0.90 and 0.82, respectively). One possible reason is

that TWITTER builds on statistical modeling, while CELLPAD

uses random forest regression here to achieve high accuracy;

we pose further investigations as future work.

E. Effects of Model Retraining

Finally, we study the effect of retraining the predictor by

feeding back the prior detection results. Here, we consider

25

(a) Precision (b) Recall (c) F1-score

Fig. 8. Comparisons between CELLPAD and TWITTER.

(a) Sudden drop

(b) Correlation change

Fig. 9. Effects of model retraining.

two cases: (i) the baseline case, which uses all instances

(including normal instances and anomalies) to update the

predictor and (ii) our CELLPAD design, which uses only

the normal instances to update the predictor. In addition,

we test different thresholds in anomaly detection by varying

the number of standard deviations from the mean; here, we

consider 2σ, 2.5σ, and 3σ. We use RF all (with trend removal)

and HR (without trend removal) as the predictors for sudden

drop detection and correlation change detection, respectively.

Figure 9 shows the results for both sudden drop and

correlation change detection; the former considers all six KPIs,

while the latter considers six KPI pairs which show high PC

(see Table II). We make the following observations. First, both

RF all and HR maintain high accuracy for different KPIs and

KPI pairs in sudden drop detection and correlation change

detection, respectively. Second, the baseline and CELLPAD

do not show significant difference in sudden drop detection,

while CELLPAD achieves higher accuracy than the baseline

in correlation change detection. This justifies the need of

retraining the predictor using normal instances only. Finally,

we do not see significant difference for different thresholds

in CELLPAD, meaning that CELLPAD remains robust in

threshold selection.

F. Summary

We summarize our main findings as follows:

• In sudden drop detection, random forest regression with

trend removal achieves high PRAUC using different fea-

tures, although some simple statistical modeling algorithms

such as EWMA and WMA can also achieve high PRAUC.

• In correlation change detection, Huber regression without

trend removal achieves the highest PRAUC across all pre-

dictors.

• Trend removal improves detection accuracy in sudden drop

detection across all predictors, while its accuracy varies

across predictors in correlation change detection.

• CELLPAD achieves higher F1-Score than TWITTER in

sudden drop detection (note that TWITTER currently does

not support correlation change detection).

• Retraining the predictor with normal instances only im-

proves PRAUC in correlation change detection.

• CELLPAD remains robust for different choices of thresholds

in anomaly detection.

V. RELATED WORK

In this section, we review related work on performance

characterization and anomaly detection specifically in the

context of cellular networks.

Performance characterization: Several measurement stud-

ies analyze real-world traffic traces collected at the cellular

network core. Most studies focus on production 3G UMTS

cellular networks. For example, Qian et al. [30] characterize

the cellular network state machine and analyze how control

parameters affect radio resource usage and mobile devices’

energy consumption. He et al. [18] and Qian et al. [31] study

the interactions between cellular data traffic and signaling

overhead. Chen et al. [10] uses the supervised regression

approach RuleFit [16] to how the round-trip time and loss

rates are influenced by different factors such as traffic load

and application types. Shafiq et al. [32] study the performance

degradations in two crowded events. Given the emergence

of 4G LTE, Huang et al. [20] study the TCP performance

based on 10-day traffic traces collected in an LTE network

and identify the limitations of TCP over LTE. Our work also

analyzes real-world traces based on the measurements at the

network core, with specific emphasis on anomaly detection.

Anomaly detection: Some measurement studies pay special

attention to anomaly detection in cellular networks. For exam-

ple, Theera-Ampornpunt et al. [34] use classification models

to predict network drops and drop duration. Chen et al. [11]

use customer care calls to infer anomalies through regression.

Ahmed et al. [3] infer end-to-end performance degradations in

four aspects: user locations, content providers, device types,

and application types, and their inference models build on

robust regression and associative mining. Casas et al. [8] apply

decision-tree-based classification for anomaly detection, and

specifically focus on DNS query performance.

Prior studies perform anomaly detection based on cellular

KPIs as in our work. Ciocarlie et al. [13] propose an adaptive

26

ensemble learning method to address concept drifts in cell

anomaly detection. Some studies [4], [14], [23], [27], [33]

present automated diagnosis to further identify the root causes

of detected KPI anomalies. Chernogorov et al. [12] propose a

data mining approach to detect unavailable cells that do not

trigger alarms. Besides cellular network management, Twitter

[2], [36] proposes an anomaly detection framework for long-

term time-series data by addressing seasonality and trend

components, yet our evaluation shows that it cannot achieve

high detection accuracy as in CELLPAD based on our KPI

dataset. Opprentice [25] focuses on KPI anomaly detection in a

global search engine and applies machine learning techniques

for anomaly detection. In contrast, CELLPAD focuses on

providing a unified framework to detect both sudden drops

and correlation changes, while correlation changes are not

considered by any previous work.

VI. CONCLUSIONS

We study the problem of detecting performance anomalies

in cellular networks, and motivate the problem based on a

large-scale real-world KPI dataset collected from an opera-

tional LTE network. We present CELLPAD, a unified per-

formance anomaly detection framework for cellular networks.

CELLPAD targets two types of anomaly detection problems,

namely sudden drop detection and correlation change de-

tection. It has the following design elements: (i) support

of various statistical and machine-learning-based regression

algorithms, (ii) addressing the seasonality and trend patterns

in anomaly detection, and (iii) providing a feedback loop

for prediction model retraining. Our trace-driven evaluation

demonstrates how CELLPAD achieves automated and accurate

anomaly detection.

ACKNOWLEDGMENTS

This work was supported by Research Grants Council of

Hong Kong (GRF 14204017) and National Natural Science

Foundation of China (61572278). This work was done while

Jun Wu was visiting the Chinese University of Hong Kong.

REFERENCES

[1] scikit-learn. http://scikit-learn.org/.
[2] Twitter: AnomalyDetection R package. https://github.com/twitter/

AnomalyDetection.
[3] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J. Wang, and H. Yan. Detecting

and Localizing End-to-End Performance Degradation for Cellular Data
Services. In Proc. of IEEE INFOCOM, 2016.

[4] R. Barco, V. Wille, and L. Diez. System for Automated Diagnosis in
Cellular Networks Based on Performance Indicators. European Trans.

on Telecommunications, 16(5):399–409, 2005.
[5] S. Bolton and C. Bo. Linear regression and correlation. Nurse

Anesthesia, 1990.
[6] L. Breiman. Random Forests. Machine Learning, 45(1):5, 2001.
[7] L. I. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifi-

cation and Regression Trees (CART). Biometrics, 2015.
[8] P. Casas, P. Fiadino, and A. D’Alconzo. Machine-learning Based Ap-

proaches for Anomaly Detection and Classification in Cellular Networks.
In Proc. of IFIP TMA, 2016.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey.
ACM Computing Surveys, 41(3):15, 2009.

[10] Y. Chen, N. Duffield, P. Haffner, W.-L. Hsu, G. Jacobson, Y. Jin, S. Sen,
S. Venkataraman, and Z.-L. Zhang. Understanding the Complexity of
3G UMTS Network Performance. In Proc. of IFIP Networking, 2013.

[11] Y.-C. Chen, G. M. Lee, N. Duffield, L. Qiu, and J. Wang. Event
Detection Using Customer Care Calls. In Proc. of IEEE INFOCOM,
2013.

[12] F. Chernogorov, S. Chernov, K. Brigatti, and T. Ristaniemi. Sequence-
based Detection of Sleeping Cell Failures in Mobile Networks. Wireless

Networks, 22(6):2029–2048, 2016.
[13] G. Ciocarlie, U. Lindqvist, K. Nitz, S. Nováczki, and H. Sanneck. On

the Feasibility of Deploying Cell Anomaly Detection in Operational
Cellular Networks. In Proc. of NOMS, 2014.

[14] G. F. Ciocarlie, C. Connolly, C.-C. Cheng, U. Lindqvist, S. Nováczki,
H. Sanneck, and M. Naseer-ul Islam. Anomaly Detection and Diagnosis
for Automatic Radio Network Verification. In Proc. of MONAMI, 2014.

[15] J. Davis and M. Goadrich. The Relationship Between Precision-Recall
and ROC Curves. In Proc. of ICML, 2006.

[16] J. H. Friedman and B. E. Popescu. Predictive Learning via Rule
Ensembles. The Annals of Applied Statistics, 2008.

[17] H. He and E. A. Garcia. Learning from Imbalanced Data. IEEE Trans.

on Knowledge and Data Engineering, 21(9):1263–1284, Sep 2009.
[18] X. He, P. P. C. Lee, L. Pan, C. He, and J. C. S. Lui. A Panoramic View

of 3G Data/Control-Plane Traffic: Mobile Device Perspective. In Proc.

of IFIP Networking, 2012.
[19] C. C. Holt. Forecasting Seasonals and Trends by Exponentially Weighted

Moving Averages. International Journal of Forecasting, 20(1):5–10,
2004.

[20] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck. An In-depth Study of LTE: Effect of Network Protocol
and Application Behavior on Performance. In Proc. of ACM SIGCOMM,
2013.

[21] P. J. Huber. Robust Statistics. Wiley-Interscience, 2011.
[22] M. G. Kendall and A. Stuart. The Advanced Theory of Statistics. Vol.3:

Design and Analysis, and Time-series. Journal of the Royal Statistical

Society, 1983.
[23] R. M. Khanafer, B. Solana, J. Triola, R. Barco, L. Moltsen, Z. Altman,

and P. Lazaro. Automated Diagnosis for UMTS Networks Using
Bayesian Network Approach. IEEE Trans. on Vehicular Technology,
57(4):2451–2461, 2008.

[24] N. Laptev, S. Amizadeh, and I. Flint. Generic and Scalable Framework
for Automated Time-series Anomaly Detection. In Proc. of ACM

SIGKDD, 2015.
[25] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng. Op-

prentice: Towards Practical and Automatic Anomaly Detection Through
Machine Learning. In Proc. of ACM IMC, 2015.

[26] E. Lundquist. Implement Additive and Multiplicative Holt-Winters Time
Series Forecasting Algorithm. https://github.com/etlundquist/holtwint.

[27] S. Nováczki. An Improved Anomaly Detection and Diagnosis Frame-
work for Mobile Network Operators. In Proc. of DRCN, 2013.

[28] S. Papadimitriou, J. Sun, and S. Y. Philip. Local Correlation Tracking
in Time Series. In Proc. of IEEE ICDM, 2006.

[29] B. Pfaff. Weighted Moving Average. Springer US, 2001.
[30] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.

Characterizing Radio Resource Allocation for 3G Networks. In Proc.

of ACM IMC, 2010.
[31] L. Qian, E. W. W. Chan, P. P. C. Lee, and C. He. Characterization of

3G Control-Plane Signaling Overhead from a Data-Plane Perspective.
In Proc. of ACM MSWiM, 2012.

[32] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, S. Venkataraman, and J. Wang.
Characterizing and Optimizing Cellular Network Performance During
Crowded Events. IEEE/ACM Trans. on Networking, 24(3):1308–1321,
Jun 2016.

[33] P. Szilagyi and S. Nováczki. An Automatic Detection and Diagnosis
Framework for Mobile Communication Systems. IEEE Trans. on

Network and Service Management, 9(2):184–197, 2012.
[34] N. Theera-Ampornpunt, S. Bagchi, K. R. Joshi, and R. K. Panta. Using

Big Data for More Dependability: A Cellular Network Tale. In Proc.

of HotDep, 2013.
[35] P. Tune and M. Roughan. Internet Traffic Matrices: A Primer. In Recent

Advances in Networking. ACM SIGCOMM, 2013.
[36] O. Vallis, J. Hochenbaum, and A. Kejariwal. A Novel Technique for

Long-Term Anomaly Detection in the Cloud. In Proc. of USENIX

HotCloud, 2014.
[37] P. R. Winters. Forecasting Sales by Exponentially Weighted Moving

Averages. Management Science, 1960.

27

An M : N Shared Regenerator Protection Scheme
in Translucent WDM Networks

Elias A. Doumith
TICKET Lab - Antonine University

B.P. 40016 Hadat-Baabda - Lebanon

Email: elias.doumith@ua.edu.lb

Sawsan Al Zahr
LTCI - Telecom ParisTech - Université Paris-Saclay

46, rue Barrault F 75634 Paris Cedex 13 - France

Email: sawsan.alzahr@telecom-paristech.fr

Abstract—Most studies addressing translucent network design
targeted a tradeoff between minimizing the number of deployed
regenerators and minimizing the number of regeneration nodes.
The latter highly depends on the carrier’s strategy and is
motivated by various considerations such as power consump-
tion, maintenance and supervision costs. However, concentrating
regenerators into a small number of nodes exposes the network
to a high risk of data loss in the eventual case of regenerator
pool failure. In this paper, we address the problem of survivable
translucent network design taking into account the simultaneous
effect of four transmission impairments. We propose an exact
approach based on a mathematical formulation to solve the
problem of regenerator placement while ensuring the network
survivability in the hazardous event of a regenerator pool
failure. For this purpose, for each accepted request requiring
regeneration, we determine several routing paths along with
associated valid wavelengths going through different regeneration
nodes. In doing so, we implement an M : N shared regenerator
protection scheme. Simulation results highlight the gain obtained
by reducing the number of regeneration nodes without sacrificing
network survivability.

I. INTRODUCTION

The demands for higher bandwidth at lower cost is in-

creasing substantially in today’s communication networks.

End-users are using more applications that require reliable

connectivity and faster data transfer. This constant growth of

broadband services is pushing service providers and equipment

vendors to look for scalable optical networks. However, the

major limitations to scalability are the optical signal reach

and the power consumption. Indeed, transmission impairments

induced by long-haul optical equipment may significantly

degrade the quality of the optical signal [1], [2]. In order to

compensate for the signal degradation and to extend the signal

reach, 3R (reamplification, reshaping, and retiming) regener-

ators may be deployed in the network which will increase

the deployment cost as well as the power consumption. Thus,

the only viable solution for most wide-area networks is the

translucent approach where a small number of regenerators

will be deployed in the network.

Since the early 2000s, many researches have addressed

the optimal design of translucent optical networks. These

studies highlighted that an intelligent deployment of the 3R

regenerators allows a translucent optical network to perform

similarly to a fully opaque network [3], [4]. The early studies

in this field tried to minimize the number of regenerators based

on the network topology (such as the number of neighbors or

the average distance to neighbors). Indeed, in [4]–[7], a few

number of nodes, with the highest number of pre-computed

shortest paths traversing them, are selected as regeneration

nodes. Afterward, regenerators are assigned to traffic requests

based on a QoT evaluation method. In contrast with [4]–[6],

additional regeneration nodes may be added during the routing

and wavelength assignment process in order to maximize the

number of satisfied requests while minimizing the number

of regenerators and regeneration nodes [7]. However, these

approaches are not realistic as the regenerator placement does

not account for signal degradation. Other studies targeted

the minimization of the number of regenerators in order to

satisfy a given static traffic matrix [3], [8]–[11]. It was until

2011 that the problem of regenerator placement has been

first investigated under dynamic but deterministic traffic model

[12]. Under such a traffic pattern, one can take advantage from

the dynamics of the traffic model so that deployed regenerators

may be shared among multiple time-disjoint requests.

In the early 2000s, all studies that addressed the regenerator

placement problem were based on empirical laws or heuristic

approaches [3], [8]. It was until 2008 that Pan et al. proposed

in [9] the first exact approach for regenerator placement. The

aim was to minimize the number of regeneration nodes under

static traffic requests with 1+1 protection scheme. The QoT

constraint was considered as a maximum optical reach. Later

on, two exact approaches were proposed taking into account

different linear and nonlinear impairments [10], [11]. In these

studies, the problem of regenerator placement was formulated

as a virtual topology design problem where the QoT constraint

was considered as a minimum admissible Q -factor. In [10],

the network topology is represented by an equivalent graph

where two non-adjacent nodes, interconnected by a path with

an admissible Q -factor, are connected by a crossover edge in

the equivalent graph. In [11], a set of pre-computed paths is

selected and regenerators are deployed along these paths. By

routing a set of static traffic requests on the virtual topology,

the aim of the proposed approaches is to minimize the number

of regenerators or the number of regeneration nodes.

In our previous works [12], [13], we proposed an exact

formulation for the problem of translucent network design in

order to determine the optimal number of regenerators andISBN 978-3-903176-08-9 c© 2018 IFIP

regeneration nodes. Instead of considering permanent/semi-

permanent traffic requests commonly used for network design

purposes, we considered a more generic and realistic traffic

model referred to as Scheduled Lightpath Demands (SLDs).

Such a model allows us to easily represent the dynamism of

the traffic without losing its deterministic aspect required in

order to design the network. In [14], we extended our work

to account for the traffic forecast uncertainty. More precisely,

instead of designing a translucent network that can accom-

modate a single set of traffic requests, we considered in the

design phase different sets of traffic requests that correspond

to the traffic forecasts at different epochs in the future. The

resulting optimal translucent optical network design can be

used to accommodate any of the considered traffic forecasts.

In all the previous works, researchers tried to achieve the

optimal translucent network design motivated by restrictions

on capital and operational expenditures (CapEx/OpEx). Such

a design consists in achieving a trade-off between minimizing

the number of regenerators and minimizing the number of

regeneration nodes. As the number of deployed regenerators

has been reduced to a minimum, their utilization ratio is

relatively high exposing the network to a high risk of data

loss in the eventual case of regenerator pool failure. Indeed, if

a regenerator pool fails, most of the traffic requests that were

planned to be regenerated at this node cannot be regenerated at

the other operational regenerator pools because of their high

utilization ratio. Subsequently, the impacted traffic requests

will suffer from excessive optical signal degradation and their

data will be lost. In order to ensure high network availability,

the network typically has redundant hardware that makes it

available despite failures. The same analysis is applicable if we

investigate the failure of multi-channel all-optical regenerators

instead of electrical regenerators pool [15].

In this paper, we target to achieve the optimal translu-

cent network design taking into account both operational

and backup regenerators. For this purpose, for each accepted

request requiring regeneration, we determine several routing

paths along with associated valid wavelengths going through

different regeneration nodes. In doing so, we implement an

M : N shared regenerator protection scheme minimizing the

number of regenerators and regeneration nodes without sac-

rificing network survivability. In order to shorten the time

needed to reach the optimal regenerator deployment solution,

we tighten the formulation by adding constraints that will

help discard equivalent solutions without omitting the optimal

solution. As for the QoT constraint, we consider a minimum

admissible Q -factor reflecting the simultaneous effect of four

well known transmission impairments, namely chromatic dis-

persion, polarization mode dispersion, amplified spontaneous

emission, and self phase modulation.

The remainder of this paper is organized as follows. In

Section II, we present a description of the investigated sce-

narios. Our approach of survivable translucent network design

is provided in Section III followed in Section IV by an analysis

of the numerical results. Finally, we draw our conclusions in

Section V.

�

�

�

�
�

�

�

	

��

��

��

��

��

Links Dist. (km) Links Dist. (km) Links Dist. (km)

u10-u14 680 u11-u14 400 u12-u13 680

Links Dist. (km)

u1-u2 480

u1-u3 680

u1-u9 1500

u2-u3 480

u2-u4 680

u3-u6 850

u4-u5 300

u4-u11 1500

u5-u6 480

u5-u7 400

u6-u8 850

u6-u13 1500

u7-u9 400

u8-u10 620

u9-u10 400

u10-u12 480

u13-u14 400

Fig. 1. The north American 14-node 20-link NSF backbone network.

1 3

4

5

6

7

8

9

11

12

13

14

15
19

16
17

18

20

21

2

10

Links Dist. (km) Links Dist. (km) Links Dist. (km)

u9-u12 1010 u9-u17 430 u11-u12 730

u12-u15 800 u13-u14 1140 u13-u20 550

u14-u19 310 u15-u16 60 u15-u17 260

u16-u19 170 u17-u18 540 u19-u20 660

Links Dist. (km)

u1-u2 1730

u1-u3 530

u2-u4 490

u3-u5 1110

u3-u11 1210

u4-u5 360

u4-u6 340

u4-u7 380

u5-u10 300

u6-u7 180

u6-u10 190

u7-u8 650

u7-u9 380

u7-u18 1150

u8-u17 670

u9-u10 210

u9-u11 400

u12-u14 540

u14-u15 280

u16-u17 310

u19-u21 680

u20-u21 310

Fig. 2. The European 21-node 34-link EBN backbone network.

II. INVESTIGATED SCENARIOS

A. Network Environment

A network node is modeled as an optical cross-connect

(OXC) consisting of several wavelength selective switches

(WSSs) and an access unit responsible for adding/dropping

traffic requests [3], [16]. A limited number of network nodes

are equipped with a pool of regenerators. A regenerator is a

tunable transmitter-receiver pair along with a processing unit

responsible for re-amplifying, re-shaping, and re-timing the

optical signal in the electrical domain. A network link is com-

posed of two unidirectional standard single mode fibers (one

SMF in each direction) carrying each W = 20 wavelengths in

the C-band. In order to compensate for the attenuation and

the chromatic dispersion, double stage Erbium-doped fiber

amplifiers (EDFAs) are deployed every 80 km along with

dispersion compensating fibers (DCFs). Furthermore, inline

optical gain equalizers are deployed every 400 km. For the

numerical evaluation, we consider the 14-node 20-link NSF

network (Figure 1) as well as the 21-node 34-link EBN

network (Figure 2). Table I summarizes the parameters of all

the equipment deployed in the network.

Transmission impairments induced by long-haul optical

equipment accumulate along lightpaths and may significantly

degrade the quality of the optical signal. We distinguish

between two types of impairments, namely linear and non-

29

TABLE I
TRANSMISSION SYSTEM PARAMETERS

Parameter Value Parameter Value Parameter Value

Number of wavelengths 20 SMF PMD (ps/
√

km) 0.1 Switching loss (dB) −13

Wavelengths (nm) 1538.97−1554.13 SMF dispersion (ps/nm.km)
av.
= 171 Inline EDFA Noise Figure (dB)

av.
= 61

Channel spacing (GHz) 100 DCF input power (dBm) −7 Booster EDFA Noise Figure (dB)
av.
= 5.251

Channel bit rate (Gbps) 10 DCF loss (dB/km) 0.6 Pre-compensation (ps) −800

SMF input power (dBm) −1 DCF dispersion (ps/nm.km)
av.
= −901 Dispersion slope (ps/nm/span) 100

SMF loss (dB/km) 0.23 DCF PMD (ps/
√

km) 0.08 Q -factor threshold (dB) 15.6

1 It is only the mean value; the real value depends on the selected wavelength value.

linear impairments. Linear impairments are proportional to

the traveled distance and depend on the signal itself (e.g.,
chromatic dispersion CD, polarization mode dispersion PMD,

amplified spontaneous emission ASE), while nonlinear impair-

ments arise from the signal itself and from the interaction

between neighboring channels (e.g., self-phase modulation

SPM, cross-phase modulation XPM, four wave mixing FWM)

[17]. Various metrics can be used to evaluate the signal

quality at the end of a lightpath. Among these metrics,

the bit error rate (BER) is the most appropriate criterion

because it aggregates the effects of all physical impairments.

In this paper, we make use of “BER-Predictor” previously

introduced in [18] to estimate the BER value at the end of

each operational lightpath. BER-Predictor computes the Q -

factor as a function of the penalties simultaneously induced

by four physical impairments, namely ASE, CD, PMD, and

SPM. The analytical relation between the Q -factor and the

aforementioned impairments has been derived from analytical

formulas and experimental measurements [2]. BER-Predictor

can be used assuming either flat or non-flat spectral responses

of optical equipment. A flat transmission system behaves the

same regardless the wavelength value, while in a non-flat trans-

mission system, the impairments induced by some equipment

such as fibers and amplifiers depend on the wavelength value.

B. Traffic Model
In this paper, we make use of the SLD traffic model that

allows us to capture the long-term aspect of the traffic as well

as its dynamism. The ith SLD request δi is represented by

the tuple (si,ri,αi,βi). The source node si and the destination

node ri of a request are chosen uniformly among the network

nodes such that there is no demand between two adjacent

nodes. The idea is to exclude one-hop lightpaths that do not

require any regeneration. The attributes αi and βi denote the

set-up and tear-down dates of a request. We first assume that

all the requests arrive at the same time (αi = 0, ∀i) and,

if accepted, will hold the network for the whole simulation

period (βi = Δ, ∀i). Such requests are known as permanent

lightpath demands (PLDs). Without changing the source and

destination nodes of the requests, we then reduce the period

where they are active according to a parameter π (0 < π � 1).

More precisely, the activity period (βi−αi) of a request δi is

chosen uniformly in the interval [Δ×π−1,Δ×π+1], and the

set-up date αi is chosen randomly while ensuring that δi still

ends before the expiration of the simulation period (βi � Δ).

III. M : N SHARED REGENERATOR PROTECTION SCHEME

We target to achieve the optimal translucent network design

taking into account both operational and backup regenerators.

These regenerators are required in order to cope with transmis-

sion impairments and for wavelength conversion needs. Given

the network topology and the set of traffic requests, we seek to

maximize the number of accepted requests. For each accepted

request requiring regeneration, we determine several routing

paths along with associated valid wavelengths going through

different regeneration nodes. In doing so, we implement an

M : N shared regenerator protection scheme minimizing the

number of regenerators and regeneration nodes without sacri-

ficing network survivability. The optimal translucent network

design is achieved by formulating the problem as a Mixed-

Integer Linear Program and solving it using traditional solvers.

In order to improve the scalability of our approach, we

decompose the problem into the “Routing and Regenerator

Placement” (RRP) sub-problem and the “Wavelength Assign-

ment and Regenerator Placement” (WARP) sub-problem. In

the former, we place regenerators and route the traffic requests

while assuming that the QoT is independent of the wavelength

value. In the latter, additional regenerators may be required

to overcome the dependency of the QoT on the wavelength

value. Deployed regenerators may be shared among multiple

non-concurrent requests. The common parameters for these

two sub-problems are:

• The network topology represented by a graph G = (V ,E),
where V = {uv,v = 1 · · ·N} is the set of network nodes

and E = {ee = (uv,uu) ∈ V ×V ,e = 1 · · ·L} is the set of

unidirectional fiber-links connecting these nodes.

• The set of available wavelengths Λ = {λ�, �= 1 · · ·W} on

each fiber-link in the network.

• The threshold Qth for an admissible Q -factor.

As we are concerned by the failure of a regenerator pool that

can be located at any node of the network, we consider, for

each of the sub-problems, N +1 different scenarios. Scenario

‘0’ corresponds to the case where all the regenerator pools are

fully operational, while scenario ‘s’ (s = 1 · · ·N) corresponds

to the case where the regenerator pool at node us is down.

A. Routing and Regenerator Placement

In this sub-problem, we assume that the QoT is independent

of the wavelength value. In other words, the QoT of a lightpath

transmitted over a wavelength λ� is the same as if the lightpath

30

was transmitted over the reference wavelength λc = 1550 nm.

This is obtained by setting BER-predictor to operate under the

flat spectral response configuration. The RRP sub-problem is

formulated as follows:

1) Parameters:

• The set of traffic requests D = {δi, i = 1 · · ·D}. Each request

δi is represented by a tuple (si ∈ V ,ri ∈ V ,αi,βi).
• The ordered set T grouping the set-up and tear-down dates

of all the requests in D .

T =
⋃

δi∈D
{αi,βi}= {τ1, · · · ,τT} (1)

such that τ1 < τ2 < · · ·< τT and T= |T |
• The request matrix Θ = {θi,t , i = 1 · · ·D, t = 1 · · ·T} repre-

senting the traffic requests over time. An element θi,t of this

matrix is a binary value specifying the presence (θi,t = 1) or

the absence (θi,t = 0) of request δi at time instant τt .

θi,t =

{
1 if αi � τt < βi,

0 otherwise.
(2)

• For each request δi, we compute K-shortest paths in terms

of real length (cf. Figures 1 and 2) connecting its source node

si to its destination node ri. Let Pi = {pi, j, j = 1 · · ·K} be

the set of available shortest paths for request δi. The jth-

shortest path pi, j of δi is the ordered set of unidirectional

links {ee1
,ee2

, · · · ,ee|pi, j | } traversed in the source-destination

direction (si �→ ri).

• For each link pair (em,en) along a path pi, j, we compute

by means of BER-Predictor the Q -factor value Qm,n
i, j of the

directed path-segment delimited by the source node of link em
and the destination node of link en (em � en). As we assumed a

flat spectral response, Qm,n
i, j is constant for all the wavelengths

along this directed path-segment.

2) Variables:

• The binary acceptance variables ai, i = 1 · · ·D.

ai = 1, if request δi is accepted. ai = 0, otherwise.

• The binary variables ps,i, j, s = 0 · · ·N, i = 1 · · ·D, j = 1 · · ·K.

ps,i, j = 1, if in scenario ‘s’, request δi is routed over the jth-

shortest path between si and ri. ps,i, j = 0, otherwise.

• The binary variables ζm,n
s,i, j, s = 0 · · ·N, i = 1 · · ·D, j = 1 · · ·K,

m = 1 · · ·L, n = 1 · · ·L.

ζm,n
s,i, j is an intermediate variable used to insure that the Q -

factor at the end of the directed path-segment delimited by

the source node of link em and the destination node of link

en along the jth-shortest path pi, j used by the request δi in

scenario ‘s’ exceeds the predefined threshold.

• The binary variables ds,i,u, s = 0 · · ·N, i = 1 · · ·D, u = 1 · · ·N.

ds,i,u = 1, if in scenario ‘s’, request δi is regenerated at node

uu. ds,i,u = 0, otherwise.

• The non-negative integer variables ψs,u,t , s = 0 · · ·N,

u = 1 · · ·N, t = 1 · · ·T.

ψs,u,t is equal to the number of regenerators that are in use in

scenario ‘s’ at node uu and time instant τt .

• The binary variables φu, u = 1 · · ·N.

φu = 1, if node uu is selected as a regeneration node. φu = 0,

otherwise.

• The non-negative integer variables Ru, u = 1 · · ·N.

Ru denotes the number of regenerators deployed at node uu.

3) Constraints:
• If request δi is accepted, it is routed over a single path

among the available K-shortest paths between si and ri in each

of the considered scenarios. ∀s = 0 · · ·N, ∀i = 1 · · ·D,

∑
j=1···K

ps,i, j = ai (3)

• In each scenario ‘s’, the number of requests routed over a

single fiber-link em must not exceed, at any time, the number

of wavelengths on that fiber-link. ∀s = 0 · · ·N, ∀t = 1 · · ·T,

∀m = 1 · · ·L,

∑
i=1···D

θi,t × ∑
j=1···K\em∈pi, j

ps,i, j �W (4)

• In each scenario ‘s’, the Q -factor at the end of the path-

segment delimited by any two distinct nodes along the se-

lected path of an accepted request must exceed the predefined

threshold Qth. Otherwise, regenerators must be deployed at

some intermediate nodes along this path-segment. This can be

expressed mathematically as follows: ∀s = 0 · · ·N, ∀i = 1 · · ·D,

∀ j = 1 · · ·K, ∀en ∈ pi, j,

∑
em∈pi, j\em�en

ζm,n
s,i, j×Qm,n

i, j � ps,i, j×Qth (5a)

∑
em∈pi, j\em�en

ζm,n
s,i, j = ps,i, j (5b)

• By collecting all the previous constraints on the variables

ζm,n
s,i, j, we can determine, for each scenario ‘s’, all the interme-

diate nodes uu where request δi should be regenerated (except

at its source node si). ∀s = 0 · · ·N, ∀i = 1 · · ·D, ∀ j = 1 · · ·K,

∀em = (uu,uv) ∈ pi, j, ∀en ∈ pi, j such that em � en and uu �= si,

ds,i,u � ζm,n
s,i, j (6)

• In each scenario ‘s’, the number of regenerators ψs,u,t in

use at node uu and time instant τt can then be computed as:

∀s = 0 · · ·N, ∀u = 1 · · ·N, ∀t = 1 · · ·T,

ψs,u,t = ∑
i=1···D

θi,t ×ds,i,u (7)

• The number of regenerators Ru deployed at node uu is

the maximum number of regenerators that are in use at any

time for all the considered scenarios. ∀s = 0 · · ·N, ∀u = 1 · · ·N,

∀t = 1 · · ·T,

Ru � ψs,u,t (8)

• A node is considered as a regeneration node if it hosts at

least a single regenerator. ∀u = 1 · · ·N,

φu � 10−3×Ru (9)

• Finally, regenerator pool failure at node us is simulated by

setting to zero the number of regenerators that can be de-

ployed at this node in its corresponding scenario. ∀s = 1 · · ·N,

∀t = 1 · · ·T,

ψs,s,t = 0 (10)

4) Objective: The objective of the RRP sub-problem is to

maximize the number of accepted requests while minimizing

the number of regenerators and regeneration nodes. This

objective is expressed as:

31

max γ1×∑
i=1···D

ai− γ2× ∑
u=1···N

φu− γ3× ∑
u=1···N

Ru (11)

where γ1, γ2, and γ3 are three non-negative real numbers used

to stress the regenerators concentration into a limited num-

ber of regeneration nodes, the minimization of the required

number of regenerators, the maximization of the number

of accepted requests, or any combination of the previous

objectives.

5) Performance Improvement: Although the previous for-

mulation is correct, the feasible solution space is quite large.

In order to shorten the time needed to solve the RRP sub-

problem, we reduce the solution space while paying attention

to not omit the optimal solution. This is achieved by cutting

regions of the solution space that do not contain any improve-

ment. Indeed, if we notice that when node us is not selected as

a regeneration node, the scenario ‘s’ representing the failure

of the regenerator pool at this node is obvious as it should not

affect the accepted requests nor their associated paths. More

precisely, the paths assigned to the requests in scenario ‘s’

should be identical to the paths obtained in scenario ‘0’. This

is obtained by replacing Equation (3) with the following:

• If request δi is accepted in scenario ‘0’ (no regenerator pool

failure), it is routed over a single path pi, j among the available

K-shortest paths between si and ri. ∀i = 1 · · ·D,

∑
j=1···K

p0,i, j = ai (12)

• For each failure scenario ‘s’, if node us is a regeneration

node (φs = 1), we select a single path pi, j for each accepted

request δi. Conversely, if node us is not a regeneration node

(φs = 0), we set all the variables ps,i, j to zero. In this way,

we do not assign any path to the accepted requests. Once we

obtain the optimal solution, we route, in a post-processing

step, each accepted request in scenario ‘s’ on the same

path as in scenario ‘0’. This is expressed mathematically as:

∀s = 1 · · ·N, ∀i = 1 · · ·D,

∑
j=1···K

ps,i, j = ai×φs (13)

The expression ai×φs is non-linear since it is the product of

two binary variables. However, this product can be linearized

by means of additional constraints. Thus, Equation (13) can

be written in linear form as follows: ∀s = 1 · · ·N, ∀i = 1 · · ·D,

∑
j=1···K

ps,i, j ≤ ai (14a)

∑
j=1···K

ps,i, j ≤ φs (14b)

∑
j=1···K

ps,i, j ≥ ai +φs−1 (14c)

B. Wavelength Assignment and Regenerator Placement

In the solution obtained at the end of the RRP sub-problem,

some requests are accepted; others are rejected. Rejected

requests are definitely dropped and removed from the problem.

Let D̂ = {δ̂i, i = 1 · · · D̂} be the set of accepted requests. Each

accepted request has been assigned a single path between its

source and its destination nodes in the normal operational

scenario (s = 0) as well as in each considered failure scenario

(s = 1 · · ·N). This request may have been regenerated at some

intermediate nodes along its path. Without altering its selected

path, an accepted request requiring regeneration in a particular

scenario is divided into path-segments whenever it passes

through its regeneration node. As the routes and the regener-

ators assigned to a given request may vary from one scenario

to another, its decomposition into sub-paths will also vary.

Let D̃s = {δ̃s,d ,d = 1 · · · D̃s} be the modified sets of accepted

requests (one modified set of requests for each considered

scenario s = 0 · · ·N) containing the accepted requests with an

admissible QoT (no regeneration required) as well as the path-

segments of the accepted requests requiring regeneration.

In the WARP sub-problem, we assign to each request δ̃s,d
in a scenario ‘s’ a single continuous wavelength between its

source and its destination nodes. When this is not possible,

additional regenerators are deployed to serve as wavelength

converters. Moreover, all these requests have an acceptable

QoT if they are transmitted over the reference wavelength

λc = 1550 nm. If a request δ̃s,d is transmitted over another

wavelength, its QoT may be degraded due to the non-flat

spectral response of optical equipment. This problem can

be resolved by deploying additional regenerators at some

intermediate nodes along the path assigned to δ̃s,d . However,

it may happen that the required additional regenerator for

a request δ̃s,d in scenario ‘s’ needs to be deployed at node

us. Recalling that scenario ‘s’ corresponds to the case where

the regenerator pool at node us is down, no regenerators

can be deployed at node us and the corresponding request

will be rejected. In order to optimize the network ressources’

utilization, whenever a request δ̃s,d is rejected, we also reject

the original request δ̂i and all its path-segments from all the

scenarios. Furthermore, we remove all the regenerators that

were required by the original request δ̂i in the RRP sub-

problem. For this purpose, we define the function F(.) that

returns, for each request δ̃s,d ∈ D̃s, the index of the associated

original request δ̂i ∈ D̂ .

F
(

δ̃s,d

)
= i (15)

Finally, we take advantage of the regenerators deployed in

the RRP sub-problem when they are not in use. Hence, the

WARP sub-problem is formulated as follows:

1) Parameters:

• The set of original requests D̂ = {δ̂i, i = 1 · · · D̂} that were

accepted in the RRP sub-problem. Each accepted original

request δ̂i is represented by a tuple (si ∈ V ,ri ∈ V ,αi,βi).
• For each considered scenario ‘s’, an accepted original

request δ̂i is routed over a single path and may be regenerated

at some intermediate nodes along this path. This is captured by

the binary parameters d̂s,i,u, s = 0 · · ·N, i = 1 · · · D̂, u = 1 · · ·N.

d̂s,i,u = 1, if original request δ̂i was regenerated in scenario ‘s’

of the RRP sub-problem at node uu. d̂s,i,u = 0, otherwise.

• The modified sets of requests D̃s = {δ̃s,d ,d = 1 · · · D̃s}
(s = 0 · · ·N) obtained by dividing the original requests into

path-segments at the nodes where they were regenerated.

32

Each request δ̃s,d is represented by a tuple (ss,d ∈ V ,rs,d ∈
V ,αs,d ,βs,d).

• At the end of the RRP sub-problem, each request δ̃s,d is

routed over a single path ps,d represented as the ordered set

of unidirectional links {ee1
,ee2

, · · · ,ee|ps,d |
} traversed in the

source-destination direction (ss,d �→ rs,d). For each wavelength

λ� ∈ Λ, we compute by means of BER-Predictor the Q -factor

value Q�
s,d at the destination node rs,d of the selected path

ps,d . In this sub-problem, BER-predictor operates under the

non-flat spectral response configuration.

• The ordered set T = {τt , t = 1 · · ·T} grouping the set-up and

tear-down dates of all the requests in D̂ (cf. Equation (1)).

• The request matrix Θ̂ = {θ̂i,t , i = 1 · · · D̂, t = 1 · · ·T} repre-

senting the original requests δ̂i over time. An element θ̂i,t of

this matrix is a binary value specifying the presence (θ̂i,t = 1)

or the absence (θ̂i,t = 0) of request δ̂i at time instant τt .

θ̂i,t =

{
1 if αi � τt < βi,

0 otherwise.
(16)

• For each scenario ‘s’ (s = 0 · · ·N), the new request matrix

Θ̃s = {θ̃s,d,t ,d = 1 · · · D̃s, t = 1 · · ·T} representing the requests

δ̃s,d over time. An element θ̃s,d,t of this matrix is a binary value

specifying the presence (θ̃s,d,t = 1) or the absence (θ̃s,d,t = 0)

of request δ̃s,d at time instant τt .

θ̃s,d,t =

{
1 if αs,d � τt < βs,d ,

0 otherwise.
(17)

2) Variables:
• The binary acceptance variables ai, i = 1 · · · D̂.

ai = 1, if original request δ̂i is still accepted. ai = 0, otherwise.

• The binary variables ρ�
s,d,m, s = 0 · · ·N, d = 1 · · · D̃s,

m = 1 · · ·L, �= 1 · · ·W .

ρ�
s,d,m = 1, if in scenario ‘s’, request δ̃s,d is transmitted over

wavelength λ� along link em. ρ�
s,d,m = 0, otherwise.

• The binary variables ds,d,u, s = 0 · · ·N, d = 1 · · · D̃s,

u = 1 · · ·N.

ds,d,u = 1, if in scenario ‘s’, request δ̃s,d is regenerated in the

WARP sub-problem at node uu. ds,d,u = 0, otherwise.

• The non-negative integer variables ψs,u,t , s = 0 · · ·N,

u = 1 · · ·N, t = 1 · · ·T.

ψs,u,t is equal to the number of regenerators that are in use in

scenario ‘s’ at node uu and time instant τt .

• The binary variables φu, u = 1 · · ·N.

φu = 1, if node uu is a regeneration node. φu = 0, otherwise.

• The non-negative integer variables Ru, u = 1 · · ·N.

Ru denotes the total number of regenerators deployed at node

uu (including those already deployed in the RRP sub-problem).

3) Constraints:
• If original request δ̂i remains accepted, a single wavelength

is reserved on all the links that are traversed by its sub-paths

δ̃s,d in all the scenarios. ∀s = 0 · · ·N, ∀d = 1 · · · D̃s, ∀m = 1 · · ·L,

∑
�=1···W

ρ�
s,d,m =

⎧⎨⎩a
F
(

δ̃s,d

) if em ∈ ps,d ,

0 otherwise.
(18)

• In each scenario ‘s’, each wavelength on a link can be used

at most once at a given time instant. ∀s = 0 · · ·N, ∀m = 1 · · ·L,

∀�= 1 · · ·W , t = 1 · · ·T,

∑
d=1···D̃s

ρ�
s,d,m× θ̃s,d,t � 1 (19)

• A path ps,d must use the same wavelength on any two

consecutive links unless a regenerator is deployed at the

node in common to the two links. ∀s = 0 · · ·N, ∀d = 1 · · · D̃s,

∀�= 1 · · ·W , ∀em = (uv,uu) ∈ ps,d , ∀en = (uu,ul) ∈ ps,d ,

ρ�
s,d,m−ρ�

s,d,n � ds,d,u (20a)

ρ�
s,d,n−ρ�

s,d,m � ds,d,u (20b)

• The Q -factor at the destination node of a request must

exceed the predefined threshold Qth. Otherwise, a regenerator

is deployed at an intermediate node along the path of

the degraded request. ∀s = 0 · · ·N, ∀d = 1 · · · D̃s, ∀�= 1 · · ·W ,

∀em ∈ ps,d ,

Q�
s,d×ρ�

s,d,m +Qth× ∑
en=(uu,uv)∈ps,d\uu �=ss,d

ds,d,u � Qth×ρ�
s,d,m (21)

• In each scenario ‘s’, the number of regenerators ψs,u,t in use

at node uu and time instant τt is equal to the sum of:

• the number of regenerators already deployed in the cor-

responding scenario ‘s’ of the RRP sub-problem for the

original requests that remained accepted,

• and the number of regenerators added to serve as wave-

length converters and/or to cope with the QoT degradation

due to the non-flat spectral response of optical equipment.

These constraints allow the WARP sub-problem to reuse, when

possible, the regenerators deployed in the RRP sub-problem.

ψs,u,t is computed as: ∀s = 0 · · ·N, ∀u = 1 · · ·N, ∀t = 1 · · ·T,

ψs,u,t = ∑
i=1···D̂

θ̂i,t × d̂s,i,u×ai + ∑
d=1···D̃s

θ̃s,d,t ×ds,d,u (22)

• The number of regenerators Ru deployed at node uu is

the maximum number of regenerators that are in use at any

time for all the considered scenarios. ∀s = 0 · · ·N, ∀u = 1 · · ·N,

∀t = 1 · · ·T,

Ru � ψs,u,t (23)

• A node is considered as a regeneration node if it hosts at

least a single regenerator. ∀u = 1 · · ·N,

φu � 10−3×Ru (24)

• Finally, a regenerator pool failure at node us is simulated

by setting to zero the number of regenerators that can be de-

ployed at this node in its corresponding scenario. ∀s = 1 · · ·N,

∀t = 1 · · ·T,

ψs,s,t = 0 (25)

4) Objective: The objective of the WARP sub-problem

remains the same as in the RRP sub-problem. We recall that

this objective is expressed as:

max γ1×∑
i=1···D

ai− γ2× ∑
u=1···N

φu− γ3× ∑
u=1···N

Ru (26)

IV. NUMERICAL RESULTS

In this paper, we aim to emphasize the cost benefit brought

by the M : N shared regenerator protection scheme. To the

best of our knowledge, this is the first paper to deal with the

optimal translucent network design taking into account both

33

operational and backup regenerators. Thus, the only available

reference scenario is the 1 : 1 regenerator protection scheme.

For the sake of fairness, we consider an exact approach for

the 1 : 1 regenerator protection scheme. This is achieved by

recalling the work in [12] which computes the optimal number

of regenerators and regeneration nodes without any consider-

ation of network survivability. The 1 : 1 regenerator protection

scheme can be derived from the latter approach by deploying

two identical regenerator pools at each regeneration node; one

pool of regenerators serving during normal operations and the

other dedicated to backup operations.

In the sequel, we compare the results of the proposed model

with the results of the reference scenario in terms of average

acceptance ratio ā, average number of regeneration nodes φ̄, as

well as average number of regenerators R̄. For each request,

we compute beforehand 5-shortest paths between its source

and destination nodes. The parameters γ1, γ2, and γ3 are set

to 103, 1, and 10−3, respectively. In other words, our main

objective is to maximize the number of accepted requests,

then we give higher priority to regenerator concentration over

minimizing the number of regenerators. It should be noted that

the number of regenerators additionally deployed in the WARP

sub-problem rarely exceeds 2 regenerators. These additional

regenerators are used to overcome the dependency of the

signal quality on the assigned wavelength and to alleviate

the wavelength continuity constraint. This demonstrates that

decomposing the translucent network design problem into

RRP and WARP sub-problems does not sacrifice the optimality

of the final result.

A. Translucent NSF Network Design

In this section, we consider 10 sets of 200 SLDs where

the activity period π is set to 0.4. For these traffic sets, we

compute the optimal number of regenerators and the optimal

distribution of regeneration nodes under 1 : 1 and M : N
regenerator protection schemes. It is worth noting that all the

SLDs are accepted for all the considered sets of requests and

for both protection schemes. Moreover, we should highlight

that 9 nodes out of 14 (u1, u2, u3, u7, u8, u11, u12, u13, and

u14) are never selected as regeneration nodes in both protection

schemes.

Under 1 : 1 regenerator protection scheme, the optimal

number of regeneration nodes varies between 1 and 2 with an

average value φ̄ equal to 1.6 regeneration nodes. The optimal

number of regenerators varies between 52 and 66 with an

average value R̄ equal to 57.33 regenerators. Under M : N
shared regenerator protection scheme, the optimal number

of regeneration nodes is always equal to 3 and the optimal

number of regenerators varies between 40 and 50 with an

average value R̄ equal to 43.33 regenerators. This represents

an average gain of 24.4% in terms of number of deployed

regenerators.

Let us detail the solution of the translucent network design

for a randomly selected set of 200 SLDs. Under 1 : 1 regener-

ator protection scheme, nodes u4 and u10 are selected as the

optimal regeneration nodes. Node u4 contains two regenerator

pools of 23 regenerators each, while node u10 contains two

regenerator pools of 6 regenerators each. This corresponds to

a total of 2 regeneration nodes and 58 regenerators. For the

same set of SLDs, nodes u4, u5, and u10 are selected as the

optimal regeneration nodes under M : N shared regenerator

protection scheme. The optimal number of regenerators at

nodes u4, u5, and u10 is equal to 15, 15, and 14, respectively.

This corresponds to a total of 3 regeneration nodes and 44

regenerators. During the normal operations of the network

where all the regenerator pools are fully operational (Scenario

‘0’), 11 regenerators are used at node u4, 12 regenerators are

used at node u5, and 6 regenerators are used at node u10. When

we assume that the regenerator pool at node u4 has failed

(Scenario ‘4’), 15 regenerators are needed at node u5 and 14

regenerators are needed at node u10 in order to accommodate

the 200 SLDs. Similarly, when we assume that the regenerator

pool at node u5 has failed (Scenario ‘5’), 15 regenerators

are needed at node u4 and 14 regenerators are needed at

node u10. Finally, when we assume that the regenerator pool

at node u10 has failed (Scenario ‘10’), 14 regenerators are

needed at node u4 and 15 regenerators are needed at node u5.

To summarize, N = 29 operational regenerators are protected

using M = 44−29 = 15 backup regenerators. This highlights

the cost benefit brought by the M : N shared regenerator

protection scheme.

Furthermore, it should be noted that the number of SLDs

that required regeneration varies between 40 and 41 requests

according to the considered failure scenario. If we use a

dedicated regenerator for each SLD requiring regeneration, the

resulting routing solution would require 40 or 41 regenerators.

However, thanks to the resource reutilization between time-

disjoint SLDs, the number of regenerators used in these

scenarios is only equal to 29 regenerators.

To conclude, we note that the optimal number of regener-

ation nodes for the NSF network under medium traffic loads,

while ensuring network survivability, is equal to 3 nodes.

Concentrating regenerators into 1 or 2 nodes exposes the

network to a high risk of data loss in the eventual case of

regenerator pool failure. Furthermore, we note that M : N
shared regenerator protection scheme evenly distributes the

number of required regenerators over the regeneration nodes.

B. Impact of Traffic Load on Regenerator Distribution

In this section, we consider three different loads of per-

manent requests (D ∈ {100,200,300}). For each traffic load,

we generate 10 sets of PLDs. Table II summarizes the results

obtained for the different traffic loads considered in our evalu-

ation. Figure 3 shows the median distribution of the deployed

regenerators over the network nodes. It is obvious that the

number of regenerators and regeneration nodes increase with

the traffic load. For 100 PLDs, the M : N and 1 : 1 protection

schemes achieve the same results. However, the M : N shared

regenerator protection scheme achieves in average a reduction

of 22% to 25% in the number of deployed regenerators

compared to the 1 : 1 regenerator protection scheme for the

sets of 200 and 300 PLDs.

34

0

10

20

30

40

50

Regenerator Distribution for M:N Shared Regenerator Protection Scheme

u
1

u
2

u
3

u
4

u
5
 u

6
 u

7
 u

8
 u

9
 u

10
u

11
u

12
u

13
u

14

N
um

be
r o

f r
eg

en
er

at
or

s
100 PLDs 200 PLDs 300 PLDs

0

10

20

30

40

50

Regenerator Distribution for 1:1 Regenerator Protection Scheme

u
1

u
2

u
3

u
4

u
5
 u

6
 u

7
 u

8
 u

9
 u

10
u

11
u

12
u

13
u

14

2
x

N
um

be
r o

f r
eg

en
er

at
or

s

Fig. 3. Median regenerator distribution Ru for various loads of PLDs.

0

10

20

30

40

50

Regenerator Distribution for M:N Shared Regenerator Protection Scheme

u
1

u
2

u
3

u
4

u
5
 u

6
 u

7
 u

8
 u

9
 u

10
u

11
u

12
u

13
u

14

N
um

be
r o

f r
eg

en
er

at
or

s

π = 0.75 π = 0.5 π = 0.4 π = 0.3 π = 0.2 π = 0.1

0

10

20

30

40

50

Regenerator Distribution for 1:1 Regenerator Protection Scheme

u
1

u
2

u
3

u
4

u
5
 u

6
 u

7
 u

8
 u

9
 u

10
u

11
u

12
u

13
u

14

2
x

N
um

be
r o

f r
eg

en
er

at
or

s

Fig. 4. Median regenerator distribution Ru for various sets of 200 SLDs.

TABLE II
RESULTS FOR VARIOUS LOADS OF PERMANENT PLDS.

D M : N protection 1 : 1 protection

ā φ̄ R̄ ā φ̄ R̄

100 100% 2 42 100% 1 42

200 100% 4.33 48.67 100% 2.67 62.67

300 87.56% 9.33 87.33 88.33% 4 119.33

TABLE III
RESULTS FOR VARIOUS SETS OF 200 DYNAMIC SLDS.

π M : N protection 1 : 1 protection

ā φ̄ R̄ ā φ̄ R̄

0.75 100% 5.67 68 100% 3 96.67

0.5 100% 5.33 65.33 100% 3 85.33

0.4 100% 3 43.33 100% 1.6 57.33

0.3 100% 2 40.67 100% 1 40.67

0.2 100% 2 28.67 100% 1 28.67

0.1 100% 2 18.67 100% 1 18.67

C. Impact of Time-Correlation on Regenerator Distribution

In this section, we investigate the impact of the requests’

time-correlation on the number of regenerators and regener-

ation nodes by considering dynamic requests with different

activity periods (π ∈ {0.1,0.2,0.3,0.4,0.5,0.75}). For each

value of the time-correlation, we generate 10 sets of 200 SLDs.

Table III summarizes the results obtained for the different

sets of SLDs. Figure 4 shows the median distribution of the

deployed regenerators over the network nodes. We notice that

for small values of π (π ∈ {0.1,0.2,0.3}), the M : N and 1 : 1

regenerator protection schemes achieve the same results, and

the nodes u5 and u10 are the only regeneration nodes. For large

values of π (π ∈ {0.4,0.5,0.75}), nodes u4, u6, u9, and u10

host more than 80% of the deployed regenerators. Moreover,

for the latter values, the reduction in the number of deployed

regenerators varies between 23% and 30% when comparing

the M : N and 1 : 1 regenerator protection schemes.

D. Translucent EBN Network Design

In this section, we consider the EBN backbone network and

generate 10 different sets of 150 SLD requests with an activity

period π of 0.4. In the case of 1 : 1 protection scheme, all the

SLDs are accepted, while in the M : N protection scheme, the

number of rejected SLDs varies between 10 and 19 with an

average value of 14 rejected requests. This corresponds to an

average acceptance ratio ā of 90.66%. It is worth noting that

nodes u1, u2, u4, u8, u13, u18, u20, and u21 are never selected

as regeneration nodes in both protection schemes.

In the case of 1 : 1 protection scheme, the optimal number

of regeneration nodes is always equal to 4 and the optimal

number of regenerators varies between 96 and 132 with an

average value R̄ equal to 108 regenerators. In the case of M : N
protection scheme, the optimal number of regeneration nodes

varies between 4 and 6 with an average value φ̄ equal to 5.6
regeneration nodes, while the optimal number of regenerators

varies between 41 and 66 with an average value R̄ equal

to 51.4 regenerators. However, it is not fair to compute the

average gain as the two protection schemes do not have the

same rejection ratio.

V. CONCLUSION

Reducing the number of regenerators and regeneration

nodes is highly motivated by the reduction in power consump-

tion and maintenance cost. However, excessively concentrating

the regenerators into a small number of nodes exposes the

network to a high risk of data loss in the hazardous event of a

regenerator pool failure. The same analysis is applicable if we

investigate the failure of multi-channel all-optical regenerators

instead of electrical regenerators pool. Indeed, a multi-channel

all-optical regenerator can be used to simultaneously regener-

ate several wavelengths and the failure of such device will

impact all the requests that are planned to be regenerated at

this node.

Therefore, it is essential to keep in mind the network

survivability concern while dimensioning the network. In this

paper, we propose an exact approach based on a mathematical

formulation that implements an M : N shared regenerator pro-

tection scheme where N operational regenerators are protected

using M backup regenerators. The proposed formulation com-

pute the optimal number of regeneration nodes and seeks to

evenly distribute the number of required regenerators over the

regeneration nodes. In order to improve the scalability of our

approach, we decompose the problem into the “Routing and

35

Regenerator Placement” (RRP) sub-problem and the “Wave-

length Assignment and Regenerator Placement” (WARP) sub-

problem. We showed that decomposing the original problem

into two sub-problems does not sacrifice the optimality of the

final result. Furthermore, in order to shorten the time needed to

reach the optimal regenerator deployment solution, we tighten

the formulation by adding constraints that will help discard

equivalent solutions without omitting the optimal solution.

As a rule of thumb, we can conclude that when the deployed

regenerators can be concentrated into a single regeneration

node under the 1 : 1 regenerator protection scheme, the M : N
shared regenerator protection scheme achieves comparable

results to those obtained by the 1 : 1 regenerator protection

scheme. This is usually achieved by equally splitting the

number of required regenerators over two distinct regenera-

tion nodes. However, when the number of regenerator nodes

increases, the M : N shared regenerator protection scheme

outperforms its counterparts by evenly distributing the number

of required regenerators over several regeneration nodes. The

gain obtained by the M : N shared regenerator protection

scheme may rapidly exceed 25% in terms of number of

deployed regenerators.

REFERENCES

[1] T. Schmidt, C. Malouin, R. Saunders, J. Hong, and R. Marcoccia,
“Mitigating channel impairments in high capacity serial 40 G and 100
G DWDM transmission systems,” in Digest of the IEEE/LEOS Summer
Topical Meetings, 2008, pp. 141–142.

[2] A. Morea, N. Brogard, F. Leplingard, J.-C. Antona, T. Zami, B. Lavigne,
and D. Bayart, “QoT function and a* routing: an optimized combination
for connection search in translucent networks,” OSA JON, vol. 7, no. 1,
pp. 42–61, Jan. 2008.

[3] X. Yang and B. Ramamurthy, “Sparse regeneration in translucent
wavelength-routed optical networks: architecture, network design and
wavelength routing,” Springer PNC, vol. 10, no. 1, pp. 39–50, Jul. 2005.

[4] G. Shen, W. Grover, T. Cheng, and S. Bose, “Sparse placement of elec-
tronic switching nodes for low-blocking in translucent optical networks,”
OSA JON, vol. 1, no. 12, pp. 424–441, Dec. 2002.

[5] Q. Rahman, Y. Aneja, S. Bandyopadhyay, and A. Jaekel, “Optimal
regenerator placement in survivable translucent networks,” in Proc. of
IEEE DRCN, 2014.

[6] R. Ramlall, Q. Rahman, Y. Aneja, and S. Bandyopadhyay, “Optimal
regenerator placement for path protection in impairment-aware WDM
networks,” in Proc. of IEEE HPSR, 2015.

[7] M. Youssef, S. Al Zahr, and M. Gagnaire, “Translucent network design
from a CapEx/OpEx perspective,” Springer PNC, vol. 22, no. 1, pp.
85–97, Aug. 2011.

[8] S. Pachnicke, T. Paschenda, and P. Krummrich, “Assessment of a
constraint-based routing algorithm for translucent 10 Gbits/s DWDM
networks considering fiber nonlinearities,” OSA JON, vol. 7, no. 4, pp.
365–377, Apr. 2008.

[9] Z. Pan, B. Chatelain, D. Plant, F. Gagnon, C. Tremblay, and E. Bernier,
“Tabu search optimization in translucent network regenerator allocation,”
in Proc. of IEEE BROADNETS, 2008, pp. 627–631.

[10] W. Zhang, J. Tang, K. Nygard, and C. Wang, “Repare: Regenerator
placement and routing establishment in translucent networks,” in Proc.
of IEEE GLOBECOM, 2009, pp. 1–7.

[11] K. Manousakis, K. Christodoulopoulos, E. Kamitsas, I. Tomkos, and
E. Varvarigos, “Offline impairment-aware routing and wavelength as-
signment algorithms in translucent WDM optical networks,” IEEE/OSA
JLT, vol. 27, no. 12, pp. 1866–1877, June 2009.

[12] E. A. Doumith, S. Al Zahr, and M. Gagnaire, “Mutual impact of
traffic correlation and regenerator concentration in translucent WDM
networks,” in Proc. of IEEE ICC, 2011, pp. 1–6.

[13] S. Al Zahr, E. A. Doumith, and M. Gagnaire, “An exact approach
for translucent WDM network design considering scheduled lightpath
demands,” in Proc. of IEEE ICT, 2011, pp. 450–457.

[14] M. Gagnaire, E. A. Doumith, and S. Al Zahr, “A novel exact approach
for translucent WDM network design under traffic uncertainty,” in Proc.
of IEEE ONDM, 2011, pp. 1–6.

[15] F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude,
J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel
all-optical regeneration based on fiber technology,” IEEE Journal of
Selected Topics in Quantum Electronics, vol. 18, no. 2, pp. 689–700,
March 2012.

[16] S. Gringeri, V. Basch, B.and Shukla, R. Egorov, and T. J. Xia, “Flexible
architectures for optical transport nodes and networks,” IEEE Commu-
nications Magazine, vol. 48, no. 7, pp. 40–50, Jul. 2010.

[17] G. P. Agrawal, Fiber optic communication systems. Wiley-Interscience
Publication, 1997.

[18] S. Al Zahr, “WDM translucent networks planning with guaranteed qual-
ity of transmission,” https://pastel.archives-ouvertes.fr/pastel-00004014,
École Nationale Supérieure des Télécommunications, Paris - France,
2007.

36

SRv6Pipes: enabling in-network bytestream
functions

Fabien Duchene, David Lebrun, Olivier Bonaventure
ICTEAM, Université catholique de Louvain

Louvain-la-Neuve, Belgium
Email: firstname.lastname@uclouvain.be

Abstract—IPv6 Segment Routing is a recent IPv6 extension
that is generating a lot of interest among researchers and in
industry. Thanks to IPv6 SR, network operators can better
control the paths followed by packets inside their networks.
This provides enhanced traffic engineering capabilities and is
key to support Service Function Chaining (SFC). With SFC, an
end-to-end service is the composition of a series of in-network
services. Simple services such as NAT, accounting or stateless
firewalls can be implemented on a per-packet basis. However,
more interesting services like transparent proxies, transparent
compression or encryption, transcoding, etc. require functions
that operate on the bytestream.

In this paper, we extend the IPv6 implementation of Segment
Routing in the Linux kernel to enable network functions that
operate on the bytestream and not on a per-packet basis.
Our SRv6Pipes enable network architects to design end-to-end
services as a series of in-network functions. We evaluate the
performance of our implementation with different microbench-
marks.

I. INTRODUCTION

Middleboxes play an important role in today’s enterprise
and datacenter networks. In addition to the traditional switches
and routers, enterprise networks contain other devices that
forward, inspect, modify or control packets. There is a wide
variety of middleboxes [1], ranging from simple NAT, IP
firewalls, various forms of Deep Packet Inspection, TCP
Performance Enhancing Proxies (PEP), load balancers, Appli-
cation Level Gateways (ALG), proxies, caches, edge servers,
etc. Measurement studies have shown that some networks have
deployed as many middleboxes as the number of traditional
routers [2].

Those middleboxes were not part of the original TCP/IP
architecture. They are typically deployed by either placing
the middleboxes on the path of the traffic that needs to be
handled, e.g., on the link between two adjacent routers, or by
using specific routing configurations to force some packets to
pass through a particular middlebox. These two deployment
approaches are fragile and can cause failures that are hard
to diagnose and correct in large networks. Pothraju and Jain
have shown in [3] that middlebox failures are significant and
that many of them belong to a grey zone, i.e., they cause
link flapping or connectivity errors that are difficult to debug
and impact the end-to-end traffic. Researchers and vendors
have proposed Network Function Virtualization (NFV) [4] and

Service Function Chaining (SFC) [5] to solve some of the
problems caused by middleboxes.

In a nutshell, the NFV paradigm argues that all network
functions should be virtualised and executed on commod-
ity hardware instead of requiring specific devices. On the
other hand, SFC [5] proposes to support chains of network
functions which can be applied to the packets exchanged
between communicating hosts. Several realisations for SFC
are being discussed within the IETF. The SFC working group
is developing the Network Service Header [6]. This new
header can be used to implement service chains and replaces
already deployed proprietary solutions. Another approach is to
leverage the extensibility of IPv6. Given the global deployment
of IPv6 [7], several large enterprises have already announced
plans to migrate their internal network or their datacenters
to IPv6-only to avoid the burden of managing two different
networking stacks [8]. In addition to having a larger addressing
space than IPv4, IPv6 provides several interesting features to
support middleboxes in enterprise and datacenter networks.
One of these is the native support for Segment Routing [9],
[10]. Segment Routing (SR) is a modern variant of source
routing that enables network administrators to enforce specific
network paths.

In this paper, we demonstrate the benefits that the IPv6
Segment Routing (SRv6) architecture can bring to support
middleboxes in enterprise and datacenter networks. With
SRv6, middleboxes can be exposed in the architecture and
visible end-to-end. This significantly improves the manage-
ability of the network and the detection of failures while
enabling new use cases where applications can select to use
specific middleboxes for some end-to-end flows. This paper is
organized as follows.

In Section II, we describe some use cases that can benefit
from middleboxes. In Section III, we present SRv6Pipes,
a modular SRv6-based architecture to support arbitrary in-
network Virtual Functions, that can be applied on bytestreams
and chained together. In Section IV, we detail a prototype
implementation of our architecture, running on Linux. In
Section V, we demonstrate the feasibility of our approach and
evaluate the performance of our prototype through various
tests and microbenchmarks. Finally, we cover some related
work in Section VI and conclude in Section VII. Future work
is discussed in VIII.ISBN 978-3-903176-08-9 c© 2018 IFIP

II. USE CASES

Middleboxes can perform two different types of network
functions: per-packet and per-bytestream. The per-packet
functions operate on a per-packet basis. They include Network
Address Translation and simple firewalls. These functions
typically operate on the network and sometimes transport
headers. The per-bytestream functions are more complex, but
also more useful. These functions operate on the payload
of the TCP packets. For example, firewalls and Intrusion
Detection Systems (IDS) need to match patterns in the packet
payload while transparent compression and/or encryption need
to modify the payload of TCP packets. Such functions need
to at least reorder the received TCP packets but often need to
include an almost complete TCP implementation. We describe
some of these per-bytestream functions in more details in this
section.

A. Application-level Firewalling

To cope with various forms of packet reordering,
application-level firewalls and Intrusion Detection/Prevention
Systems need to at least normalize the received packets [11]
before processing them. Another approach is to use a transpar-
ent TCP proxy on the firewall to terminate the TCP connection
and let the firewall/IDS process the reassembled payload. An
end-to-end connection would thus be composed of two sub-
connections: one between the client and the middlebox and
another one between the middlebox and the server.

Network operators often configure access lists to associate
IP prefixes to some security checks performed by the IDS. For
example, students would be subject to different policies than
servers.

B. Multipath TCP Proxies

Multipath TCP [12] (MPTCP) is a recent TCP extension
that enables hosts to send packets belonging to one connection
over different paths. One of the benefits of MPTCP is that it
allows to aggregate the bandwidth of multiple connections.
This enables, e.g., network operators to bond xDSL and LTE
networks to better serve rural areas [13]. However, MPTCP
being an end-to-end protocol, the client and the server re-
quire an MPTCP-enabled kernels. To leverage the benefits of
MPTCP without modifying the client or server network stacks,
operators started developing MPTCP-aware proxies [13], [14]
to convert regular TCP to MPTCP and conversely.

To allow the bundling of xDSL and LTE, an NFV deploy-
ment could be leveraged to implement the same behavior, by
placing a proxy in the CPE to convert regular TCP to MPTCP
and a second proxy in the operator’s network to convert
MPTCP to regular TCP. This would allow non-MPTCP clients
and servers to use different networks simultaneously.

In practice, network operators could want to support dif-
ferent services on the same proxy, e.g. (i) a business proxy
that always maximizes bandwidth for business customers, (ii)
a low-cost proxy that only uses the LTE network when the
xDSL network is fully utilized or (iii) a gaming proxy that
always uses the network that provides the lowest delay. Such

proxies can be deployed by tuning the packet scheduler and
the path manager of Multipath TCP implementations.

C. Multimedia transcoding

Multimedia transcoding has been a research topic for a
long time [15], [16]. Since, it has been widely deployed by
companies like Amazon [17]. In this context, a proxy placed
between the client and the server that hosts the multimedia
file can be used to transcode the multimedia file hosted on the
server into a format compatible with the client. This allows
to distribute the computation intensive task of transcoding the
content over several proxies, while the server simply hosts the
original files. In this setup, parameters could be passed to the
proxy to specify for instance the maximum bitrate that a client
is entitled to (based on technical or subscription limitations),
the maximum number of streams allowed for this client or the
type of content authorized for this client.

III. ARCHITECTURE

Middleboxes and other in-network functions are installed,
configured, and managed by network administrators according
to business (e.g. security regulations impose the utilisation
firewalls) and technical (e.g. performance issues force the
utilisation of performance enhancing proxies, or addressing
issues force the utilisation of NAT) needs. Usually, network
administrators impose the utilisation of specific network func-
tions by configuring routing policies or placing physical boxes
on links that carry specific traffic (e.g. firewalls are often
attached to egress links). This is both cumbersome and costly
since all possible links must be covered by each intended
network function.

Like NFV, our architecture assumes that network functions
are software modules which can be executed anywhere in the
network. A firewall function that only needs to process the
external flows does not need to be installed on the egress
router, it can be executed on any server or router inside an
enterprise network. Each network function is identified by an
IPv6 prefix which is advertised by the equipment hosting the
function (see section III-C). For redundancy or load-balancing,
the same function can be hosted on different equipments in the
network.

To understand the different elements of our architecture,
let us consider a simple scenario. A client host needs to
open a TCP connection towards a remote server. The network
administrator has decided that the packets belonging to such
a connection must be processed by two network functions:
(i) a stateless firewall which blocks prohibited ports and (ii)
a DPI which inspects all external TCP connections. Three
elements of our architecture are used to support this sequence
of network functions in enterprise networks.

The first element is IPv6 Segment Routing (SRv6) [18].
Our architecture uses the SRv6 header (SRH) to enforce an
end-to-end path between the client and the server which passes
through the two equipments hosting the mandatory networking
functions. We describe SRv6 in more details in section III-A.

38

The second element of our architecture is how the client
learns the SRH suitable to reach a given destination. For this,
we modify the enterprise DNS resolver. Instead of simply
resolving names into addresses, our DNS resolver acts as a
controller [19], [20] which has been configured by the network
administrator with various network policies. When a client
sends a DNS request to the resolver, it replies with the intended
response and additional records which contain the SRH that
the client has to apply to reach the specified addresses.

Thanks to the SRH which is attached by the client, all the
packets belonging to the TCP connection will pass through the
stateless firewall and the DPI. Consider now what happens
if some packets are lost and need to be retransmitted. The
stateless firewall is not affected since it only processes the
network and transport headers that are present in each packet.
On the other hand, the DPI function needs to include a
TCP implementation to be able to detect out-of-order packets
or other TCP artifacts. Instead of requiring each network
function to include a TCP implementation, our architecture
leverages the TCP stack that is already present in the Linux
kernel. Each equipment that hosts a network function uses a
transparent TCP proxy that transparently terminates the TCP
connections and exposes bytestreams to the network functions
as in FlowOS [21]. This greatly simplifies the implementation
of per-bytestream network functions

A. IPv6 Segment Routing

Segment Routing (SR) is a modern variant of the source
routing paradigm, currently under standardization at the
IETF [18]. SR can be used on top of an MPLS or IPv6
dataplane to steer packets through an ordered list of segments.
SR is now well-supported on commercial routers [23] and
Linux hosts [24] and deployed by major ISPs [9].

The IPv6 flavor of Segment Routing (SRv6) leverages
a dedicated IPv6 routing extension header, named Segment
Routing Header (SRH) [10]. Each segment is an IPv6 address
representing a node or link to traverse, or an intermediate
function to be executed. The SRH contains a full list of
segments. The active segment is referenced by an index, the
segment pointer. As the list of segments is encoded in reverse
order, the index is first initialized to the last element of the list
(i.e., the first segment of the path), and decremented at each
segment endpoint. The segment pointer thus reaches zero when
arriving at the last segment of the path. The active segment is
also written as the destination address in the IPv6 header. As
such, transit nodes on the path to an active segment simply
needs to support plain IPv6 forwarding. SRv6 support is only
required at the segment endpoints.

In SRv6Pipes, we leverage the SRv6 architecture to steer
TCP flows through arbitrary network functions. See Figure 1
for an illustration. Consider that the client C establishes a
connection to a server S, with two intermediate network
functions at P1 and P2. To realise that, the client attaches
an SRH to its packets, containing three segments. The first
two segments represent the functions to be executed at resp.
P1 and P2. The third segment is the address of S. When the

C

P1 P2

S

Router
Endpoint

SR-steered path
Shortest IGP path

Fig. 1: Traffic steering through two off-path network functions
P1 and P2 (e.g., firewall and IDS).

2001:0123:4567:8901:2345:AAAA:BCDE:FFFF
Proxy range Function Parameters

Fig. 2: IPv6 address encoding.

packets are transiting between C and P1, and between P1 and
P2, their IPv6 destination address is thus the address of the
function to execute at the corresponding proxy. Between P2
and S, the segment pointer is decremented to zero and the
IPv6 destination address of the packets is the address of S.

B. Transparent TCP Proxy

The proxy is the core component of our architecture to
support per-bytestream network functions. It is transparent at
the network layer, meaning that even if the proxy actually
terminates the TCP connection with the client, the destination
server will receive packets coming from the client’s IP address,
and not from the proxy’s IP address. The transparent proxy
is placed on path using the IPv6 Segment Routing Header
(SRH) [10]. It intercepts each new connection that matches
a given pattern (e.g., a destination port) and terminates it.
Then, the proxy establishes a downstream connection to the
next segment specified in the SRH of the inbound connection.
When the proxy receives data from the client, it applies a trans-
formation function (i.e., the Virtual Function) to the received
data and forwards the result on its outbound connection to the
next segment of the path. This process is then repeated until
reaching the final destination of the path.

C. Encoding Functions and Parameters

As shown in section II, some parameters can be passed
to the per-bytestream function. Such parameters are usually
specified in the proxy configuration files. However, such
configurations can be large and complex if some parameters
can change on a per connection basis. Consider for example a
first proxy that encrypts the payload and a second that decrypts
it. Those encryption/decryption proxies would have to be
configured with the encryption/decryption keys for each flow.
A possible approach would be to define one key per host or set
of hosts. A better approach is to configure a set of keys on the
proxies and associate each key with a unique identifier. When
a connection starts, the encryption proxy selects a random key
and places the identifier of the chosen key in the SRH towards
the decryption proxy.

To enable such a granularity in the choice of transformation
functions and parameters, we leverage the large addressing
space available in IPv6. Each proxy announces one or more
IPv6 prefixes that correspond to the Virtual Functions it hosts.

39

Within the host part of the prefixes, we allocate a given
amount of bits to encode the identifier of the function to
apply as proposed in [25]. The remaining low order bits are
used to specify parameters of the virtual function such as the
decryption key in the above example. Consider Figure 2 for an
illustration. The proxies announce /80 prefixes. The first 80
bits of the address thus specify the proxy to traverse. The 16
following bits identify the function to apply to the payload, and
the low-order 32 bits contain the parameters of these functions.
The SRH then contains a list of proxies with their respective
functions and parameters. This approach allows the clients to
use any combination of function/parameter available in the
network.

Consider the network described in figure 1. In this network,
the client might require to encrypt the traffic between P1 and
P2. In our architecture, the client will use the function bits
of the address of P1 to specify the identifier of the encrypt
function, and the parameters bits to specify the identifier
of an encryption key. The same will be done in the address of
P2 with the decrypt function. This allows to have different
encryption keys for different connections without having to
store a configuration for each connection in the proxy. The
processing of the return traffic is discussed in IV-E.

D. SRv6 Controller

In our architecture, a TCP client is able to specify arbitrary
functions to apply to its traffic. However, keeping track of
all the functions, parameters, and proxies addresses represents
a significant amount of complexity. This complexity can be
abstracted by a central SDN-like controller. We leverage
the SDN Resolver, which is a DNS-based, SRv6 controller
introduced in [19], [20]. Before establishing a connection, the
client sends a request to the controller with the address of
the server and a list of functions to apply to the traffic. The
controller then computes a path that matches the request and
returns an SRH to the client. A key element of this controller
is that the SRH returned to the client does not contain the
full list of segments. Instead, it contains only one segment,
called the binding segment. The access router of the client is
configured by the controller to translate this binding segment
into the full list of segments. This abstraction enables the
clients to be oblivious to changes in the SRH induced by,
e.g., a network failure. The architectural and implementation
details of SDN Resolver are available in [19], [20]. Note that
the DNS protocol serves as an example, that can be replaced
by any ad-hoc application-facing protocol.

E. Security Considerations

The ability to execute and chain arbitrary functions in the
network has obvious security implications. To restrict the
privilege of using SRv6Pipes proxies, we can leverage the
central controller presented in the previous section, as well
as its binding segment mechanism. By configuring all access
routers to accept only SRHs with known binding segments,
we can effectively prevent an uncontrolled usage of network
functions. The decision to accept or deny the use of a given

set of functions is made by the controller, which can identify
clients through independent channels [19].

IV. IMPLEMENTATION

To demonstrate the feasibility of our approach, we imple-
mented a prototype of our solution by extending the imple-
mentation of IPv6 Segment Routing in the Linux kernel [24].
The main new component of our prototype is a transparent,
SR-aware, TCP proxy. For this, we extended the kernel imple-
mentation of SRv6 with a new type of function. An overview
of the various data paths in our prototype is shown in Figure 3.

To ensure that our proof of concept could easily be used to
reproduce our results on any off-the-shelf hardware, we im-
plemented it using the regular Linux mechanisms. Alternatives
solutions are discussed in Section VIII

A. Transparent SR-Aware TCP Proxy

The core objective of our proxy is to process and relay
TCP streams between two segments of a segment routed path.
To achieve this, the proxy must (i) intercept and terminate
incoming TCP flows, (ii) optionally apply transformation
functions to the bytestreams, and (iii) initiate and maintain
the corresponding TCP flows to the next segment of the path.

To intercept TCP flows, the proxy must accept connections
towards pairs of IP/port that are not local to the machine,
which is not possible by default. The Linux kernel provides
the TPROXY iptables extensions, enabling such interceptions.
It works by redirecting all packets matching an iptables rule
towards a local IP/port pair. The proxy is then able to intercept
the corresponding TCP flows by listening to this local pair.

Once a TCP flow is intercepted and terminated, the proxy
needs to retrieve the associated SRH, decrement its segment
pointer, and install it on the corresponding outbound socket.
The IPV6_RECVRTHDR socket option could be used to fetch
any attached Routing Header (RH) as ancillary data, using
the recvmsg() system call. However, this feature is only
implemented for datagram protocols such as UDP, where
a single RH is associated to each datagram. In bytestream
protocols such as TCP, packets can be merged and the 1 : 1
mapping to RHs is lost. In our prototype, we rely on the
SRH included in the SYN packet of a given TCP flow. As
the kernel does not expose Routing Headers for TCP flows,
we leverage the NFQUEUE iptables extension to capture SYN
packets in user space. The proxy opens a netlink channel with
the kernel and receives through it all SYN packets matching
the corresponding iptables rule. Then, the proxy extracts the
5-tuple and the SRH from the SYN packet and stores them in
a flows_srh map. Finally, the packet is reinjected into the
kernel. Following its normal data path, the SYN packet will
trigger a connection request to the proxy. Using the 5-tuple,
the proxy is then able to retrieve the SRH previously stored in
the flows_srh map. While capturing every packet in user
space can severely degrade the performances, our solution does
not suffer from such degradation as we only capture the first
packet of each flow.

40

(a) Traversal of a SYN packet through
the proxy. The SRH is recorded for the

5-tuple.

(b) Traversal of data packets. (c) Traversal of return packets.

Fig. 3: Overview of possible data paths within SRv6Pipes.

After having intercepted a TCP flow and extracted its SRH,
the proxy must establish the corresponding TCP flow to the
next iteration of the path. To achieve this, the proxy creates
the outbound socket and attaches to it the corresponding
SRH. Additionally, the connection must appear as originating
from the actual source of the flow. Using the IP_FREEBIND
socket option, the proxy is able to bind to a non-local IP/port
pair. Finally, the connection is established and data can be
exchanged.

Once both connections (inbound and outbound) are es-
tablished, the proxy only needs to forward data coming
from one socket to the other one, after going through an
optional transformation function. In our prototype, we use an
application-level buffer to transfer data from one connection
to the other. Another possible solution would be to use the
splice() system call to let the kernel directly move data
between file descriptors. However, this solution prevents the
proxy from actually modifying the data. Our approach allows
the implementation of arbitrary transformation functions. The
termination of connections is straightforward. Once one socket
is closed, any in-flight data is flushed and the other socket is
also closed.

We implemented a multi-threaded architecture, enabling the
proxy to scale with the load. One dedicated thread handles the
NFQUEUE channel, receives the SYN packets, and populates
the flows_srh map accordingly. A configurable number
of threads (typically one per CPU thread) accept incoming
connections, establish the outbound connection, and process
the data exchanged between them. Each of these threads
leverages the SO_REUSEPORT socket option, enabling them
to simultaneously listen to the same local IP/port. The result
is that the kernel maintains distinct accept queues for each
thread. Consequently, incoming connections are equally load-
balanced across the running threads.

B. Kernel Extensions

When a packet to be processed by the proxy enters the
kernel, its IPv6 destination address corresponds to the local
proxy function. However, the TCP checksum was originally
computed for the actual destination of the packet. As such,
it is transiently incorrect, due to the SR-triggered change of

destination address. Additionally, the packet will be associated
to the proxy’s local socket by the TPROXY module, and
subsequently injected in the local stack. However, the segment
pointer of the associated SRH is non-zero. The packet will
thus enter the SRH processing and the kernel will attempt
to forward it to the next segment, bypassing the local TCP
processing [24].

To address those two issues, we extend the SRv6 kernel
implementation available in Linux 4.14 and add a new type of
function called End.VNF. This function takes one parameter
(an egress interface) and performs the following actions. First,
it updates the destination address of the packet to its final
destination. Then, it sets the segment pointer to zero1. Finally,
it injects the resulting packet into the specified egress interface
using netif_rx(). In our prototype, we leverage a virtual
dummy interface (nfv0). As a result, all packets to be
intercepted by the proxy are received through this particular
interface and are thus easily distinguished from background
traffic.

C. System Configuration

To instantiate the proxy, a non-trivial configuration of
iptables and routing tables is required. An example of this
configuration is shown in Figure 4. The first two lines create
the nfv0 interface to receive all packets to be intercepted
by the proxy. Lines 3 − 5 create a DIVERT iptable chain
that sets the mark 1 on packets and accepts them. Line
6 creates an NFQUEUE rule that matches all SYN packets
whose destination address corresponds to the local proxy
(PROXY_FUNC_ADDR) and sends them to the queue number
0. Line 7 matches all TCP packets received on interface nfv0
and sends them to the TPROXY target. The latter will set
the mark 1 on those packets and will associate them to a
socket bound on a local PROXY_LOCAL_PORT port. Line 8
matches all TCP packets that can be associated to an open
socket and sends them to the previously configured DIVERT
chain. In practice, this rule will catch the inbound return
packets that are not caught by the two previous rules. Line

1As the SRH of the SYN packet was previously extracted by the proxy,
this information is not lost.

41

1: ip link add nfv0 type dummy
2: ifconfig nfv0 up
3: ip6tables -t mangle -N DIVERT
4: ip6tables -t mangle -A DIVERT -j MARK --set-mark 1
5: ip6tables -t mangle -A DIVERT -j ACCEPT
6: ip6tables -t mangle -A PREROUTING -d \$PROXY_FUNC_ADDR -p tcp --syn -j NFQUEUE --queue-num 0
7: ip6tables -t mangle -A PREROUTING -i nfv0 -p tcp -j TPROXY --tproxy-mark 0x1/0x1 --on-port \$PROXY_LOCAL_PORT
8: ip6tables -t mangle -A PREROUTING -p tcp -m socket -j DIVERT
9: ip -6 rule add fwmark 1 table 100
10: ip -6 route add local ::/0 dev lo table 100
11: ip -6 route add \$PROXY_FUNC_ADDR/128 encap seg6local action End.VNF oif nfv0 dev eth0
12: sysctl net.ipv6.conf.nfv0.seg6_enabled=1

Fig. 4: System configuration for the proxy.

9 creates a routing rule instructing the kernel to lookup table
100 for all packets having the mark 1. Line 10 creates a single
routing entry into table 100 that matches all packets and sends
them in the local stack (instead of forwarding them). Line 11
creates an SRv6 routing entry that matches all packets towards
PROXY_FUNC_ADDR and applies the End.VNF function,
using nfv0 as the egress interface2. Finally, line 12 enables
the processing of SRv6 packets on interface nfv0.

D. Modular Transformation Functions

To support transformation functions in a modular way, our
SRv6Pipes proxy leverages Linux dynamic libraries. Func-
tions can be compiled in .so (shared object) files. Those
files are independent modules that can be loaded and un-
loaded at run-time by the proxy. Each module exports an
all_funcs symbol. This symbol refers to an array of
func_desc structures. Each of those structures describes a
single transformation function, through the following symbols.
The func_init() symbol is called once, on module load.
It registers the function with a given function identifier, which
is passed in the IPv6 destination addresses (see Section III-C).
The func_spawn() symbol is called each time a new
intercepted TCP flow matches the function identifier. Any
parameter passed in the low-order bits of the IPv6 destination
address is passed as argument. The role of this symbol is
to initialize per-connection data. The func_process()
symbol is the actual transformation function. It reads data
from an input buffer and writes the transformed data in an
output buffer. The func_despawn() symbol is called at
connection termination and it frees previously allocated per-
connection data. Finally, the func_deinit() symbol is
called at module unload and de-registers function identifiers.

Such an architecture enables to easily add, modify, and re-
move transformation functions, without updating nor restarting
the proxy’s binary.

E. Return Traffic

The previous sections detailed the processing of the up-
stream traffic (from client to server). However, if the middle-
boxes are not located in-path, the downstream traffic (from the
server to client) must also be augmented with an SRH. This

2While this interface is considered egress from the point of view of
End.VNF, packets are actually received on that interface and it is thus
considered ingress for the next components in the datapath.

is also necessary to enable asymmetrical processing functions,
i.e., using different transformation functions depending on the
direction of the traffic. To achieve this, multiple options exist.

The straightforward option is to simply "reverse" the SRH
received from the client or from the previous proxy. Each
proxy can simply apply the segments of the initial SRH in
reverse order. While this solution is simple and does not incur
a significant overhead, it as a major limitation: the segments
must necessarily be symmetrical, making asymmetrical pro-
cessing functions impossible.

To enable asymmetrical processing functions, another op-
tion is to embed the return SRH in a TLV extension of the
initial SRH. With this solution, after inserting the SRH, the
client inserts a TLV to the socket before establishing the
connection. Then, each proxy and the server extract the SRH
to be used on the return path from the TLV received in the
initial packet (SYN). The TLV could also be transmitted with
every upstream packet, but this would increase the overhead.
With this TLV, it is important to note that the return path must
include every proxy that is present in the upstream path, but
that others segments, e.g. corresponding to specific paths or
routers, can be added or suppressed.

In our prototype, we implemented the second solution by
modifying the Linux kernel to add support for such a TLV.
When a new TCP socket is created after receiving an SR-
enabled SYN packet containing the return-path TLV, this
return path is extracted and installed as an outbound SRH for
the newly created socket. If the proxies are located in-path, our
prototype can also work without an SRH on the return path.
This is realized using the DIVERT rules shown in figure 4. In
Section V, we evaluate this on-path mode.

V. EVALUATION

In this section, we use microbenchmarks to evaluate the
performance of our prototype in our lab. For this evaluation,
we use three Linux PCs connected with 10Gbps interfaces as
shown in figure 5.

Client ServerM1 10Gbps10Gbps

Fig. 5: Lab setup. M1 can be configured as router or proxy.

42

The client is a 2,53Ghz Intel Xeon X3440 with 16GB of
RAM. M1 and the server use the same hardware configuration
but with only 8GB of RAM. They are all equipped with
Intel 82599 10Gbps Ethernet adapters and use 9000 bytes
MTU. They all use our modified version of the latest IPv6
Segment Routing kernel based on the Linux kernel version
4.14. The server runs lighttpd version 1.4.35. The client
uses wrk [26] 4.0.2-5 to load the server with HTTP 1.1
requests. We slightly modified wrk to add an IPv6 SRH as
a socket option when creating TCP connections. M1 can be
configured either as a router or with our transparent proxy.
When used as a router, we create static routes and use the
standard Linux IPv6 forwarding.

A. Maximum throughput

First, we compare the performance of one of our proxies
against the performance of a Linux router running on the same
platform. In this setup, our client uses wrk [26] to simulate
200 web client downloading static web pages of given sizes
during 120 seconds. It uses 8 threads with 25 connections per
thread. The proxy was configured with a virtual function that
directly copies that bytestreams without any processing.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

2000

4000

6000

8000

10000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0% loss and 0.0ms delay

Router

Proxy

Fig. 6: Raw throughput.

Figure 6 shows the total transfer rate when the client is
downloading web pages. This figure shows that there is no
significant difference in transfer rates between our proxy and
the router. With 10MB files, our proxy reaches a throughput
of 9841 Mb/s where the router achieves 9838 Mb/s. A closer
look at the small page sizes in figure 6, shows that our proxy
slightly underperforms the router. With 1KB files, our proxy
achieves a rate of 253 Mb/s, while the router achieves a rate
of 272 Mb/s.

In term of requests per second, for 1KB files, our proxy
completes 26634 requests per second, while the router com-
pletes 28613 requests per second. This difference in perfor-
mance between large and small files can be explained by the
fact that when our proxy receives a new connection from the
client, it needs to establish a new connection to the server
before starting to forward packets. With smaller files, there are
significantly more three-way handshakes to perform, making
this overhead more important while this cost is amortized for
larger files. With 100KB files, the number of requests per

seconds is already on par at ≈11945 requests per second for
both the proxy and the router.

B. Impact of packet losses and latency on the proxies

The previous section explored the maximum rate that our
proxies can sustain. In those measurements, the TCP stack
running on M1 did not have to buffer packets or handle re-
transmissions. As those operations can affect its performance,
we added netem to simulate different delays and different
packet loss ratios.

We start by adding a 1% loss and a 25ms delay on the
four links of figure 5. This corresponds to an end-to-end loss
of ≈4%, and an end-to-end latency of 100ms. The results
of this measurement are shown on figure 7. Under such
circumstances, our proxy outperforms the router. This is not
surprising since in this setup, our proxy acts as a Performance
Enhancing Proxy (PEP). While figure 7 clearly shows a large
improvement for large file sizes, our measurements indicated
that this is also true for small file sizes. This can be explained
by the fact that when M1 is configured as a router all packet
losses need to be recovered end-to-end. When a packet is lost
on the same link with our proxy, the retransmission is done
by the proxy.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

500

1000

1500

2000

2500

3000

3500

R
at

e
(M

bi
ts

/s
ec

)
Transfer rates with 1% loss per link and 25.0ms delay per link

Router

Proxy

Fig. 7: Transfer rate with 1% of loss and 25ms of latency per
link.

To confirm our findings, we run the same measurement, but
adding latency and loss only on the link between the server
and the proxy, the objective being to mimic a network where
the loss would happen only on the link between the proxy and
the server. To replicate our previous configuration, we add 2%
of loss per link, to get an end-to-end loss of ≈4%, and 50ms
of latency per link to get an end-to-end latency of 100ms.
As shown by figure 8, under such conditions, the proxy and
the router are both significantly affected by the performance
degradation in the same fashion, confirming our findings.

C. CPU-intensive Virtual Functions

With our architecture, various types of Virtual Functions
can be implemented. Some like a PEP simply proxy the
connections and do not need to process the payload. Others
like DPIs, transparent compression or transparent encryption
need to process the payload and thus consume CPU cycles. To

43

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

1200

1400

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 2% loss and 50.0ms delay on server links

Router

Proxy

Fig. 8: Transfer rate with 2% of loss per link and 50ms of latency
per link between the proxy and the server.

measure the impact of the Virtual Function on the performance
of our proxy, we developed a simple microbenchmark that
performs 2 × n passes over the bytestream and XORs each
byte with a key at each pass. This VF leaves the bytestream
unmodified, but consumes both CPU and accesses memory.

The results with this microbenchmark are shown in figure 9.
When our VF performs two passes on the bytestream, the
maximum throughput is similar to the one we obtained without
bytestream modification in figure 6. When the VF performs
four passes on the bytestream, the maximum throughput with
pages larger than 100KB is divided by 2. This throughput
continues to drop with the CPU load on the VF. To confirm
that the reduction in throughput was due to the CPU intensive
computations, we ran perf [27] that yielded 96% of cycles
spent in the XOR function.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

2000

4000

6000

8000

10000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with different XOR executions
1 execution

2 executions

4 executions

8 executions

16 executions

Fig. 9: Maximum throughput with Virtual Functions performing
n passes over the bytestream.

D. Chaining middleboxes

With our architecture, middleboxes can be used in chains
where one middlebox performs the opposite function of the
previous one. Typical examples include transparent compres-
sion/decompression or transparent encryption. To demonstrate
this use case, we implemented a VF that simply XORs each
byte of the bytestream with a constant. When two such
middleboxes are used in sequence, the bytestream output of

the downstream one is the same of the input of the upstream
one. This is illustrated in figure 10.

Client ServerP1 P2
10101010 01011010 10101010

00110011 11000011 00110011

XOR 11110000 XOR 11110000

Fig. 10: Demonstration of middlebox chaining with simple XOR
transformations.

Due to limitations of our lab, we could only perform this
experiment over 1 Gbps links. Figure 11 shows that with the
two chained middleboxes, the maximum throughput was the
same as when passing through two routers. This is expected
given the results of figure 9 with 10Gbps interfaces.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

300

400

500

600

700

800

900

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0% loss and 0.0ms delay at 1Gbps

Router

Proxy

Fig. 11: Transfer rate of wrk with 2 proxies applying a XOR.

VI. RELATED WORK

AbdelSalam et al. propose in [28] to use IPv6 Segment
Routing to support Virtual Network Function Chaining and
implement a prototype as a Linux kernel module. They lever-
age namespaces to support virtual network functions but only
support packet-based functions while our solution leverages
the Linux TCP stack to provide a bytestream abstraction to the
network functions. In FlowOS, Bezahaf et al. [21] proposed
a Linux kernel module that exposes a bytestream abstraction
to network functions but they do not describe how flows are
routed through the network functions. NetVM [29] leverages
virtualization techniques and a user-space packet processing
platform to provide fast, chainable network functions in virtual
machines. Their work focuses on packet processing and does
not consider bytestream functions. Other solutions such as
XOMB [30] focus on the system aspects of implementing
virtual functions to support middleboxes through a flexible
programming model. Our architecture leverages IPv6 Segment
Routing to forward the packets to the middleboxes. Another
related work is /dev/stdpkt proposed by Utsumi et al
in [31]. /dev/stdpkt uses the Linux Kernel Library to
implement virtual functions that can be chained together.

VII. CONCLUSION

Given its ability to enforce precise network paths for specific
flows, IPv6 Segment Routing appears to be an excellent

44

candidate to support middleboxes in entreprise networks. We
leverage this IPv6 extension in our architecture designed for
enterprise networks. Its main benefit is that the middleboxes
are explicitly exposed. This significantly improves the man-
ageability of the network. Our architecture supports both
middleboxes that operate on a per-packet basis (e.g. NAT,
stateless firewalls) and those that need to process bytestreams
(e.g. DPI, Application Level Gateways, . . .). For the latter, we
use transparent TCP proxies that process the IPv6 Segment
Routing Header. We implement3 this architecture in the Linux
kernel and evaluate its performance with various benchmarks
in our lab. Our measurements indicate that our architecture is
well suited to support middleboxes that process bytestreams.

VIII. FUTURE WORK

In this paper, we implemented a proof of concept using the
regular Linux mechanisms. While kernel bypass techniques
such as DPDK or user-space TCP stacks like mTCP allow
significant performance boosts, they are often specific to a
subset of network hardware. By leveraging the kernel data-
path, our solution remains generic and can be deployed on
any Linux-supported hardware, ranging from high-end servers
to home routers. Should an operator require performance only
available through kernel bypass techniques, our high-level
network architecture would remain identical and our userspace
implementation of the proxy would require minimal changes
to plug-in with a DPDK-like library. These modifications can
be realized as future work.

IX. ACKNOWLEDGEMENTS

This work was partially supported by the ARC-SDN project
and a Cisco URP grant.

REFERENCES

[1] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC
3234 (Informational), February 2002.

[2] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s
problem: network processing as a cloud service. ACM SIGCOMM
Computer Communication Review, 42(4):13–24, 2012.

[3] Rahul Potharaju and Navendu Jain. Demystifying the dark side of the
middle: a field study of middlebox failures in datacenters. In Proceedings
of the 2013 conference on Internet measurement conference, pages 9–22.
ACM, 2013.

[4] Kaustubh Joshi and Theophilus Benson. Network function virtualization.
IEEE Internet Computing, 20(6):7–9, 2016.

[5] J. Halpern and C. Pignataro. Service Function Chaining (SFC) Archi-
tecture. RFC 7665 (Informational), October 2015.

[6] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH).
Internet draft, draft-ietf-sfc-nsh-28, November 2017.

[7] Mehdi Nikkhah and Roch Guérin. Migrating the internet to ipv6:
an exploration of the when and why. IEEE/ACM Transactions on
Networking, 24(4):2291–2304, 2016.

[8] Mat Ford. Landmark ipv6 report published: State of deployment
2017. CircleID, http://www.circleid.com/posts/20170606_landmark_
ipv6_report_published_state_of_deployment_2017/, June 2017.

[9] Clarence Filsfils et al. The segment routing architecture. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1–6. IEEE,
2015.

3To ensure the reproducibility of our results, our implementation and the
measurement scripts will be released on http://segment-routing.org/index.php/
SRv6Pipes at publication time.

[10] Stefano Previdi et al. IPv6 Segment Routing Header (SRH). Internet-
Draft draft-ietf-6man-segment-routing-header-07, Internet Engineering
Task Force, July 2017. Work in Progress.

[11] Christian Kreibich, Mark Handley, and V Paxson. Network intrusion
detection: Evasion, traffic normalization, and end-to-end protocol se-
mantics. In Proc. USENIX Security Symposium, volume 2001, 2001.

[12] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824 (Experi-
mental), January 2013.

[13] Olivier Bonaventure and SungHoon Seo. Multipath TCP deployments.
IETF Journal, 2016, November 2016.

[14] Olivier Bonaventure, Mohamed Boucadair, Bart Peirens, SungHoon
Seo, and Anandatirtha Nandugudi. 0-RTT TCP Converter. Internet-
Draft draft-bonaventure-mptcp-converters-02, Internet Engineering Task
Force, October 2017. Work in Progress.

[15] Elan Amir, Steven McCanne, and Randy Katz. An active service
framework and its application to real-time multimedia transcoding. In
ACM SIGCOMM Computer Communication Review, volume 28, pages
178–189. ACM, 1998.

[16] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. Digital video transcoding.
Proceedings of the IEEE, 93(1):84–97, 2005.

[17] Amazon Elastic Transcoder. https://aws.amazon.com/fr/
elastictranscoder/. Accessed: 2018-04-05.

[18] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene,
Stephane Litkowski, and Rob Shakir. Segment Routing Architecture.
Internet-Draft draft-ietf-spring-segment-routing-14, Internet Engineering
Task Force, December 2017. Work in Progress.

[19] David Lebrun. Reaping the Benefits of IPv6 Segment Routing. PhD the-
sis, UCLouvain / ICTEAM / EPL http://hdl.handle.net/2078.1/191759,
October 2017.

[20] David Lebrun, Mathieu Jadin, François Clad, Clarence Filsfils, and
Olivier Bonaventure. Software resolved networks: Rethinking enterprise
networks with ipv6 segment routing. In SOSR’18: Symposium on SDN
Research, 2018.

[21] Mehdi Bezahaf, Abdul Alim, and Laurent Mathy. Flowos: A flow-
based platform for middleboxes. In Proceedings of the 2013 Workshop
on Hot Topics in Middleboxes and Network Function Virtualization,
HotMiddlebox ’13, pages 19–24, New York, NY, USA, 2013. ACM.

[22] Bhavish Agarwal, Aditya Akella, Ashok Anand, Athula Balachandran,
Pushkar Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and
George Varghese. Endre: An end-system redundancy elimination service
for enterprises. In NSDI, pages 419–432, 2010.

[23] Clarence Filsfils, Francois Clad, Pablo Camarillo, Jose Liste, Prem
Jonnalagadda, Milad Sharif, Stefano Salsano, and Ahmed AbdelSalam.
Ipv6 segment routing. In SIGCOMM’17, Industrial demos, August 2017.

[24] David Lebrun and Olivier Bonaventure. Implementing IPv6 Segment
Routing in the Linux Kernel. In Proceedings of the 2017 Applied
Networking Research Workshop. ACM, July 2017.

[25] P. Camarillo et al. Srv6 network programming. Internet draft, draft-
filsfils-spring-srv6-network-programming-02, work in progress, October
2017.

[26] wrk - a HTTP benchmarking tool. https://github.com/wg/wrk. Accessed:
2017-12-31.

[27] perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/. Accessed: 2018-03-29.

[28] Ahmed AbdelSalam, Francois Clad, Clarence Filsfils, Stefano Salsano,
Giuseppe Siracusano, and Luca Veltri. Implementation of virtual
network function chaining through segment routing in a linux-based nfv
infrastructure. In IEEE Conference on Network Softwarization (NetSoft),
Bologna, Italy, July 2017.

[29] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High
performance and flexible networking using virtualization on commodity
platforms. In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’14, pages 445–458,
Berkeley, CA, USA, 2014. USENIX Association.

[30] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and
Amin Vahdat. xomb: Extensible open middleboxes with commodity
servers. In Proceedings of the Eighth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS ’12,
pages 49–60, New York, NY, USA, 2012. ACM.

[31] Motomu Utsumi, Hajime Tazaki, , and Hiroshi Esaki. /dev/stdpkt:
A service chaining architecture with pipelined operating system in-
stances in a unix shell. In AINTEC ’17: Asian Internet Engineering
Conference, Bangkok, Thailand, November 20–22 2017.

45

SERA: SEgment Routing Aware Firewall for
Service Function Chaining scenarios

Ahmed Abdelsalam⇤, Stefano Salsano†, Francois Clad‡, Pablo Camarillo‡, Clarence Filsfils‡,
⇤Gran Sasso Science Institute, †University of Rome Tor Vergata, ‡Cisco Systems

Abstract—In this paper we consider the use of IPv6 Segment
Routing (SRv6) for Service Function Chaining (SFC) in an NFV
infrastructure. We first analyze the issues of deploying Virtual
Network Functions (VNFs) based on SR-unaware applications,
which require the introduction of SR proxies in the NFV infras-
tructure, leading to high complexity in the configuration and in
the packet processing. Then we consider the advantages of SR-
aware applications, focusing on a firewall application. We present
the design and implementation of the SERA (SEgment Routing
Aware) firewall, which extends the Linux iptables firewall. In
its basic mode the SERA firewall works like the legacy iptables
firewall (it can reuse an identical set of rules), but with the
great advantage that it can operate on the SR encapsulated
packets with no need of an SR proxy. Moreover we define an
advanced mode, in which the SERA firewall can inspect all
the fields of an SR encapsulated packet and can perform SR-
specific actions. In the advanced mode the SERA firewall can
fully exploit the features of the IPv6 Segment Routing network
programming model. A performance evaluation of the SERA
firewall is discussed, based on its result a further optimized
prototype has been implemented and evaluated.

Index Terms—Service Function Chaining (SFC), NFV, Segment
Routing, Linux networking, Firewall, Iptables

I. INTRODUCTION

The advent of Network Function Virtualization (NFV) [1]
is dramatically changing the way in which telecommunication
networks are designed and operated. Traditional specialized
physical appliances are replaced with software modules run-
ning on a virtualization infrastructure made up of general
purpose servers. Such virtualization infrastructure can even be
composed of a set of geographically distributed data centers.
In traditional “pre-NFV” networking, the physical appliances
were placed en-route, i.e. along the path of the flows. In
NFV scenarios, the Virtual Network Functions (VNFs) that
replace the physical appliances can be arbitrarily located in
the distributed virtualization infrastructure, hence the need of
steering the traffic flows through the sequence of VNFs to be
accessed. The VNFs can also be denoted as Service Functions
(SF) and the Service Function Chaining (SFC) [2] denotes the
process of forwarding packets through the sequence of VNFs.
Examples of VNFs categories are NATs (Network Address
Translation), firewalls, DPIs (Deep Packet Inspection), IDSs
(Intrusion Detection System), load balancers, HTTP proxies,
CDN nodes.

This work has been partially supported by the Cisco University Research
Program Fund

The IETF SFC Working Group (WG) has investigated
the SFC scenarios and issues [3] and proposed a reference
architecture [4]. A specific mechanism, called Network Ser-
vice Header (NSH) [5] has been proposed by the SFC WG
to support the encapsulation of packets with a header that
specifies the sequence of services (VNFs) to be crossed.

In this paper, we consider the use of the IPv6 Segment Rout-
ing (SRv6) architecture to support Service Function Chaining,
as already discussed in [6]. In the SRv6 architecture an IPv6
extension header (the Segment Routing Header - SRH) allows
including a list of segments in the IPv6 packet header [7].
This segment list can be used to steer the packet though a
set of intermediate steps in the path from the source to the
destination, following a (loose) source routing approach. The
use of Segment Routing for SFC has been documented in [8].
The typical network scenario is that an edge node classifies
the traffic and consequently includes a segment list in the IPv6
packet header. Note that the application of SRv6 is not limited
to SFC, there are many other important use cases [9] like
for example traffic engineering, fast restoration, support of
Content Delivery Networks. The concept of SRv6 has been
extended in [10], from the simple steering of packets across
nodes to a general network programming approach. The idea
is to encode instructions and not only locations in a segment
list. This is feasible, thanks to the huge IPv6 addressing space.
Under this network programming model, the edge node can
program a sequence of nodes to be crossed and the packet
processing/forwarding behaviors to be executed by the nodes
on the packet.

In section II we discuss how the IPv6 Segment Routing
can be used to support SFC, what are the implications of
using SR-unaware applications and the potential advantages
of having SR-aware applications. As we will extend the open
source Linux iptables firewall, section III provides a short
introduction to its architecture. In section IV we analyze some
design requirements and use case scenarios for the SR-aware
applications, focusing on a firewall application. An important
contribution here is the inclusion of a scenario in which some
instructions to the firewall (e.g. actions to be executed on some
class of packets) can be included in the segment list associated
to a packet, without the need of reconfiguring the rules in the
firewall running in the core of the NFV infrastructure and in
line with the SRv6 network programming approach [10]. From
the requirements, we design the architecture of the proposed
SEgment Routing Aware (SERA) firewall, which extends the
iptables firewall. In section V some details of the implemen-ISBN 978-3-903176-08-9 c� 2018 IFIP

tation are given. To the best of our knowledge, the SERA
firewall can be considered the first SRv6-aware application.
Section VI provides the description of the testbed and the
result of the performance evaluation. Based on these results,
we have identified some shortcomings of the iptables design
for our use cases. We implemented and evaluated a proof-of-
concept that shows a significant performance improvement.

II. SFC BASED ON IPV6 SEGMENT ROUTING

Following the terminology defined in [4], the SFC encap-
sulation carries the information to identify the sequence of
Service Functions (VNFs) that are required for processing a
given packet. In the SRv6 approach considered here, the IPv6
Segment Routing Header (SRH) [7] contains such information.
The SRH contains a segment list, a segment in this list
identifies a VNF. Moreover, additional information related to
the VNF chain can be carried in the optional Tag-Length-Value
(TLV) section at the end of the SRH.

When a VNF that processes the packets is a legacy VNF,
which is not aware of the Segment Routing based SFC
encapsulation, we refer to it as an SR-unaware application.
In this case an SFC proxy is needed, to remove the SFC
encapsulation and deliver a clean IP packet to the SR-unaware
application. Considering our focus on the Segment Routing
based solution, we refer to the SFC proxy as SR-proxy. For
the packets that are sent by the SR-unaware application, the SR
proxy needs to (re)apply the SFC encapsulation after proper
classification of the received packets. The operations of the
SR proxies tend to be complex and in general they are not
efficient. The main issue is that the information contained in
the SFC encapsulation is removed from the packet when the
packet is delivered to the SR-unaware application and may
need to be re-added to the packet. This process typically
requires a lot of state information to be configured in the
classifier components of all nodes of a VNF chain and can
consume a considerable amount of packet processing resources
in the nodes.

Different types of VNFs can process the IP packets in a
VNF chain. Some VNFs only need to inspect IP packets (e.g.
DPI or network monitoring applications), other can drop or
admit packets (e.g. firewall), other can modify IP and trans-
port layer headers (e.g. NATs), other may need to terminate
transport layer connections and reopen new ones (e.g. HTTP
proxies, TCP optimizers). In general, the operations of an SR
proxy depend on the type of VNF. If the VNF is not operating
on the connections at transport layer (i.e. it is not modifying
the 5-tuple of IP and transport layer source and destination
addresses) it is possible in principle to re-classify the packets,
at the price of repeating the flow-level classification in all
nodes of the VNF chain. If the VNF is terminating / opening
new transport level connections, it is not always possible to
re-classify the packets and associate them to a specific chain.

As described in the SRv6 network programming docu-
ment [10], the SR information can be added to a packet in
two different modes, insert or encap. Figure 1 shows the
original IPv6 packet and how it is carried in the two different

encapsulation modes. In the insert mode the SRH header is
inserted in the original IPv6 packet, immediately after the
IPv6 header and before the transport level header. Note that
the original IPv6 header is modified, in particular the IPv6
destination address is replaced with the IPv6 address of the
first segment in the segment list, while the original IPv6
destination address is carried in the SRH header as the last
segment of the segment list. In the encap mode the original
IPv6 packet is carried as the inner packet of an IPv6-in-IPv6
encapsulated packet. The outer IPv6 packet carries the SRH
header with the segment list.

Fig. 1: SRv6 encapsulated packets

An SR-unaware application is not able to process the
SRH information in the traffic it receives. An SR proxy is
used to process the SRH information on behalf of the SR-
unaware application. As discussed above, the behavior and the
applicability of an SR proxy depend on the type of processing
of the application. In [8], a set of behaviors of the SR-proxy
have been defined, among them we mention:

• Static proxy
• Dynamic proxy
• Masquerading proxy
Both the Static and the Dynamic proxies support IPv6

SR packets encapsulated only in encap mode. They remove
the SR information from packets before sending them to
an SR-unaware application. These proxies receive back the
packets from the SR-unaware application and reapply the SR
encapsulation which includes the information on the VNF
chain. They work under the assumption that the specific SR-
unaware application running in the VNF is inserted in only one
VNF chain, because all packets going out from the VNF are
re-associated to the same chain. If multiple VNF chains needs
to be supported, a different instance of the VNF is needed for
each chain. The difference between the Static and the Dynamic
proxies is that the SR information is statically configured in
the Static case and is read from the incoming packets in the
Dynamic case.

The Masquerading proxy supports SR packets encapsulated
in insert mode. It masquerades SR packets before they are sent
to an SR-unaware application, replacing the IPv6 destination
address (which correspond to the current segment of the
segment list) with the original IPv6 destination (i.e. the last
segment in the segment list). When the packets are received
back from the SR-unaware application, the Masquerading
proxy retrieves the VNF chain information from the SRH
header and changes the IPv6 destination address so that it
reflects the current segment of the segment list. This process

47

is refered to as de-masquerading. The assumption is that the
SR-unaware application simply ignores the SRH header and
that the SRH header is preserved in the processing. Moreover,
this type of proxy can be only used with applications that do
not change the packet headers and just inspect them.

Following the above discussion on the SR-unaware appli-
cations, we can state that their use in combination with SR
proxies is conditioned by some constraints and characterized
by high configuration complexity. It can also be affected by
performance issues. Of course these problems will be faced
and solved in practical use cases, considering the importance to
support legacy SR-unaware applications in NFV deployments.
On the other hand, in this work we take a more forward-
looking approach and consider the design and development of
SR-aware applications. Such applications are able to process
the SFC encapsulation included in the IP packets, that is in
our scenario the IPv6 SRH header that contains the segment
list. The greatest benefit of using SR-aware applications is
that the SR proxy is not needed and the SFC information
carried in the SRH header is preserved when the packet
is processed by the application. This approach avoids the
need to maintain state information in the internal nodes. The
configuration and management of the NFV infrastructure is
simplified and the performance of the NFV enabled nodes is
not affected by complex classification procedures. Moreover
advanced features are possible by letting the applications
interact with the SFC functionality offered by the network.

In this paper, we focus on the design and implementation
of an SR-aware firewall application, but most of the design
considerations have a more general applicability to other types
of applications that can be deployed in SR based Service
Function Chaining scenarios.

III. LINUX IPTABLES FIREWALL

A firewall [11] essentially works according to a set of rules
to accept or drop received packets. Each rule is composed of
a condition and an action. The condition is based on set of
attributes of received packets.

Once a packet satisfies the condition expressed by a rule
condition, the associated action is performed on that packet.
Iptables is a flexible and modular firewall and it is a standard
component of most Linux distributions. It is built on top on the
netfilter framework. In this section we provide a short tutorial
on Iptables and netfilter architecture and implementation,
which will be the base for the design of our solution.

A. Netfilter Framework

The netfilter framework [12] is a set of hooks in the packet
traversal through the Linux protocol stack, which allows access
to packets at different points. The current netfilter implemen-
tation provides five different hooks (PREROUTING, INPUT,
FORWARD, OUTPUT, POSTROUTING) distributed along the
receive and transmit path of packets as shown in Fig. 2. Kernel
modules can register callback functions at any of these hooks.
A callback function, after processing a packet, returns to the

netfilter hook the action to be taken on the packet, such as
DROP, ACCEPT, QUEUE (queue for user space processing).

Fig. 2: Netfilter hooks and their associated tables

B. Iptables

Iptables represents the userspace implementation which
allows access to the kernel-level netfilter framework hooks.
It defines a set of rules that instruct the kernel what to do
with packet coming to or traversing the protocol stack. The
implementation of netfilter includes some pre-defined tables,
as shown in Figure 2. Each table has a set of chains where
iptables rules can be inserted. The supported tables are: filter
(the default table, it contains rules that are used to filter
IP packets); nat (mainly used to re-write the source and/or
destination addresses of IP packets); mangle (a specialized
table for mangling packet as they go through the kernel);
raw (mainly used for connection tracking). Each iptables rule
defines a set of matching criteria based on information from
different layers of the protocol stack. Once the packet matches
a rule, iptables takes an action on this packet. The standard
actions are: ACCEPT, DROP, or QUEUE. Those correspond to
the callback functions return values. Listing 1 shows examples
of iptables rules.

C. Iptables extensions

The iptables framework is modular and extendible. New
match extensions and target extensions can be developed
separately and added to the iptables as new modules.

Listing 1: Examples of iptables rules

Standard iptables rule
Matches destination address of a packet
ip6tables -I INPUT -d fc00:d1::/64 -j DROP

Extended iptables rule
Matches destination address and hop-by-hop header
ip6tables -I INPUT -d fc00:d1::/64 \
-m hbh --hbh-len 40 -j DROP

48

Match extensions are used to add more matching options
to iptables. They can be used alone or in combination with
the default match options. They provide the ability to have
sophisticated iptables rules in order to look deeper into IP
packets. e.g., hbh, which matches the parameters in IPv6 Hop-
by-Hop extensions header. An example of extended iptables
rule is shown in Listing 1.

Target extensions are new actions added to the default ones
of iptables. A new iptables target usually performs an action
different from the default ones (ACCEPT, DROP, etc.,). It can
be used for logging/profiling or it can modify the packet before
returning it back to the netfilter framework. Destination NAT
(DNAT) is an example of iptables target extension, which is
used to modify the destination address of a packet.

IV. SEGMENT ROUTING AWARE (SERA) FIREWALL

In an SRv6 SFC scenario, the VNFs are deployed over
the servers of the NFV infrastructure. The Segment Routing
Header (SRH) is added to packets to enforce a VNF chain,
i.e. the sequence of VNFs to be crossed by the packets. The
SR-unaware applications rely on the SR-proxy that removes
the SRH from the packet. On the other hand, the SR-aware
applications are capable of processing the SR information
in the packets. We focus on a specific type of SR-aware
applications, namely a firewall application. In this section,
we start by analyzing some design requirements and use
case scenarios for the SR-aware applications. The following
considerations are focused on a firewall application, but they
have a more general value as they can be applied to similar
applications that needs to be deployed on an SR based SFC
environment (e.g. DPI, IDSs). We assume that an SR-aware
firewall should support two working modes: basic mode and
advanced mode.

In the basic mode the SR-aware firewall must be able
to work as a legacy firewall, but with no need of the SR-
proxy. In particular, the SR-aware firewall should be able to
use the same set of rules defined for the legacy firewall and
apply them directly to the SFC encapsulated packets that carry
the SRH information. It must be able to handle SR packets
encapsulated in encap as well as insert modes and logically
apply the rules to the original packets rather than to the
SFC encapsulated packets. To make a concrete example, if an
existing rule includes a condition on the source IPv6 address
and the original IPv6 packet has been encapsulated in (IPv6-
in-IPv6) it makes no sense to consider the IPv6 source address
of the received packet as the condition should be checked on
the source address of the packet. The use case scenario is to
virtualize the legacy firewalls, executing them in servers on
the NFV infrastructure, without changing the legacy rules and
with no need of SR-proxy functionality.

In the advanced mode the SR-aware firewall should support
rules with extended conditions that can explicitly include
attributes not only from the original packet but also from the
SRH and the outer packet. In particular, the SR-aware firewall
could leverage SRv6 SID arguments, TLVs, or TAG. It could
also apply differentiated processing based on the active SRv6

SID (i.e., apply different rule sets for different SIDs). As for
the actions, in the advanced mode the SR-aware firewall should
be able to support some SR-specific actions. For example, an
SR-specific action could be to skip the next SID in the segment
list, so that it is possible to operate a “branching” instead of
the usual linear exploration of the VNF chain, when some
conditions on the packet are met. A use case scenario for this
feature is to consider a service chain which includes a firewall
followed by an Intrusion Detection System and allow skipping
the IDS for a subset of traffic that matches some conditions. A
further requirement is that the SR-aware firewall application
should be able to select the actions to be performed based
on information contained in the SID. This is aligned with the
SRv6 network programming approach of minimizing the state
information maintained in the nodes and storing explicit state
information in the packets. The use case scenario in this case is
that instead of re-configuring some firewall rules in a specific
firewall running in the core of the NFV infrastructure, it is
possible to obtain the same result by changing a SID in the
SID list that is injected to the packet in the edge node. The
big advantage is that the reconfiguration is only needed in the
edge node, which in any case has to manage per-flow state to
perform the classification operations.

In the following subsections we propose the architecture of
the SERA firewall (for basic and advanced modes) that meets
the above requirements, extending the Linux iptables.

A. SERA basic mode

In the basic mode, SERA is an SR-aware firewall that can
apply the normal firewall processing to the original packets
even if they have an SR based SFC encapsulation. The
proposed packet processing architecture is shown in Figure 3.
Each received packet goes through an SR pre-processor that
splits traffic into SR and non-SR traffic. Non-SR traffic is
processed as in an SR-unaware firewall, as represented with
the solid-line path in Figure 3. SR traffic follows a different
path through the firewall, represented with double-line path
in Figure 3. In this path, the firewall evaluates the defined
rules on the original packet, properly taking into account the
impact of the SR encapsulation. It supports both encap and
insert mode, which implies that the original IPv6 source and
destination information of received packets may be encoded
differently as follows:

• Encap mode: original source and destination are the ones
of the packet.

• Insert mode: packets have only one IPv6 header. The
original source information is in the source address of the
IPv6 header, while the original destination is encoded as
the last SID in the SRH.

The Inner match functional block is responsible for getting the
original source and destination information from SR packets
and compare them to the defined rules. Once a packet hits a
condition of a rule, the associated standard action (ACCEPT,
DROP, etc.) is triggered on that packet.

49

B. SERA advanced mode

In the advanced mode, SERA extends the iptables capa-
bilities by offering new matching capabilities and new SR-
specific actions. It introduces new iptables rules (SERA rules)
that have extended conditions involving attributes from outer
packet, inner packet, and the SRH header. The architecture
of advanced mode (Figure 4) is defined incrementally with
respect to the basic mode (Figure 3), by adding the SRH
match functional block and replacing the Action block with the
Extended Action block. Since the matching could be performed
on both the original and the outer packet headers, the SR traffic
follows a more complex path, as shown in Figure 4. Unlike in
the basic mode SERA, all received packet are first processed
by the Outer match block, which applies parts of the extended
rules on the outer packet. The SR pre-processor does the same
job as in the basic mode SERA by splitting traffic into non-
SR and SR traffic. Non-SR traffic goes directly to the Action
functional block while SR traffic is directed to the the Inner
match block. The Inner match block works as in the basic
mode, but the rules that drive its behavior are written in a
different way. For example, with an extended rule it is possible
to match on the outer source and destination IPv6 addresses
(denoted as src, dst) and on the original ones (denoted as
inner-src, inner-dst). The Inner match block takes
care of the matching of the inner source and destination
(the ones of the original packet). The SRH match block is
concerned with the matching between SRH extension part of
the rules and the SRH of received SR packets. Finally, each
packet (SR or non-SR) that satisfies the matching condition
of a rule goes to the Extended Action block. It extends the
Action block present in the architecture of the Basic mode by
allowing the introduction of SR-specific actions in addition to
the standard ones.

An SR-specific action is an advanced action that can be
applied to SR-encapsulated packets. It may modify or process
SR-encapsulated packets based on SRH information. We list
here some examples of SR-specific actions, but the set of these
actions can be extended to cover more complex SFC use-cases.

• seg6-go-next: the default action of the SEG6 target.
It is similar to the Endpoint function from the SRv6 net-
work programming model [10]. It sends packets towards
the next SID from SRH. The seg6-go-next serves as
an ACCEPT action for SRv6 encapsulated packets.

• seg6-skip-next: it instructs the SERA firewall to
skip the next SID in the SRH.

• seg6-go-last: it instructs the SERA firewall to skip
the remaining part of the segment list and process the last
segment.

• seg6-eval-args: the generic action that supports
SRH programmed actions.

Following the traditional iptables model, the above defined
SR-specific actions are included in statically configured rules
which are executed in a SERA firewall running as a VNF.
Taking into account the concepts of the SRv6 programming
model, we have designed a more dynamic approach, which

Fig. 3: Architecture of basic mode SERA

allows to define the action to be executed as a result of a
match on a packet by packet basis, by putting information
in the Segment IDentifier (SID). For this purpose, a special
SR-specific action is defined, called eval-args. It does not
represent a concrete action, but instructs the SERA firewall to
look into the current SID to find the action to be executed. As
described in [10], an SRv6 local SID is an IPv6 address that
can be logically split into three fields: LOC:FUNCT:ARGS.
LOC uses the L most significant bits, ARGS the R rightmost-
bits and FUNCT the remaining 128 � (L + R) bits in the
middle. In our case, the LOC part is used as a locator to
forward the packets to the NFV node that runs the firewall,
and it is advertised by the routing protocols. The FUNCT
part identifies a specific VNF on the NFV node (in our case
the SERA firewall instance). The ARGS part may contain
information required by the VNF and may even change on a
per-packet basis. Note that the ARGS part will be ignored in
most cases (or omitted setting R=0), whenever there is no need
to carry additional information in the SID. To give an example,
the LOC field can be 64 bits long and uniquely identify an
NFV node. This leaves 128-64=64 bits for the identification
of the VNF in the NFV node and for the arguments if needed.

In the advanced mode of SERA it is possible to use the
ARGS part of the SID to encode a firewall action to be
executed in case of match. This requires that a set of rules with
action eval-args is configured in the SERA firewall. For all
packets that match one of these rules, the action to be executed
is contained in the ARGS field of the SID. The advantage of
this approach is that it is possible to (re)configure the action
to be executed on a given subset of packets by operating at
the network edge, with no need to update the configuration of
the SERA firewall instance running in the core of the NFV
infrastructure.

V. IMPLEMENTATION

We implemented the SERA firewall as an extension of
Linux iptables described in section III.

50

Fig. 4: Architecture of advanced mode SERA

A. Implementation of basic mode SERA

In the Linux kernel the ip6_tables module is respon-
sible for checking the iptables rules against the received
packets. It implements the ip6_packet_match() function
that evaluates the defined iptables rules against the outermost
IPv6 header of a received packet. In order to implement the
basic mode of the SERA firewall, we extended the existing
ip6_tables module to operate according to the architecture
shown in Figure 3. We added the SR pre-processor block.
The SR packets are forwarded to the Inner match functional
block, implemented in the inner_match() function, which
evaluates iptables rules against the original packet. It supports
SR packets encapsulated in both encap and insert mode.

We added a new sysctl parameter (ip6t_seg6) to
switch between legacy iptables mode and SERA basic
mode. The system administrator can enable the SERA ba-
sic mode on the fly with the command: sysctl -w
net.ipv6.ip6t_seg6=1, which activates the SR pre-
processor.

We have realized a first version of basic mode SERA that
implements only a subset of the normal classification rules,
namely those involving the IP src and destination addresses.
On this first version we have performed the evaluation that is
reported in the paper. Then we have implemented a second
version that supports all the classification rules and it is now
available at [13].

B. Implementation of advanced mode SERA

We implemented the advanced mode SERA by exploit-
ing the iptables extension features. We added a new match
extension as well as a new target extension to the iptables
implementation both at kernel and user-space levels. Thanks to
these extensions it is possible to match on the SRH fields, this
allow to have a full control on where the packets is directed
(the next SIDs) and which nodes it has crossed before.

At kernel level, we implemented two additional kernel mod-
ules: the ip6t_srh as match extension and ip6t_SEG6
as target extension. The ip6t_srh module implements the
SR pre-processor, the Inner match, and the SRH match from

the advanced SERA architecture. The ip6t_SEG6 module
implements the Extended Action. It is a new target (SEG6)
for iptables rules that supports a set of SR-specific actions.

To support the advanced mode SERA at user-space level, we
extended the iptables user-space utility with two new shared
libraries: libip6t_srh and libip6t_SEG6. They allow
the iptables user to define SERA rules. These rules can have
attributes from outer packet, inner packet, and SRH. List. 2
shows a list of match options supported by the libip6t_srh
extension.

The ibip6t_SEG6 extension supports the new SR (SEG6)
target with some SR-specific actions (shown in List. 3). For

Listing 2: Options of srh match extension

#ip6tables -m srh -h
srh match options:
[!] --inner-src addr[/mask] Inner packet src
[!] --inner-dst addr[/mask] Inner packet dst
[!] --srh-next-hdr next-hdr SRH Next Header
[!] --srh-len-eq hdr_len SRH Hdr Ext Len
[!] --srh-len-gt hdr_len SRH Hdr Ext Len
[!] --srh-len-lt hdr_len SRH Hdr Ext Len
[!] --srh-segs-eq segs_left SRH Segments Left
[!] --srh-segs-gt segs_left SRH Segments Left
[!] --srh-segs-lt segs_left SRH Segments Left
[!] --srh-last-eq last_entry SRH Last Entry
[!] --srh-last-gt last_entry SRH Last Entry
[!] --srh-last-lt last_entry SRH Last Entry
[!] --srh-tag tag SRH Tag
[!] --srh-psid addr[/mask] SRH previous SID
[!] --srh-nsid addr[/mask] SRH next SID

SRH programmed actions, we introduced a new sysctl variable
(ip6t_seg6_args) that defines the number of rightmost
bits in the active SID to be used as ARGS. The SEG6 target
decodes the ARGS bits to decide which action should be taken
on the packet. If the decoded value does not correspond to
any of the supported actions, SERA will send back an ICMP
Parameter Problem message point to the active SID. Such
ICMP message can be used to understand which actions are
supported by the firewall.

Listing 3: Options of SEG6 target extension

#ip6tables -j SEG6 -h
SEG6 target options:
[--seg6-action action]
Valid SEG6 actions:
seg6-go-next SEG6 go next
seg6-skip-next SEG6 skip next
seg6-go-last SEG6 go last
seg6-eval-args SEG6 eval args

VI. PERFORMANCE EVALUATION

A. Testbed description
In order to verify the correctness of SERA implementation

and to evaluate the performance aspects, we designed a
testbed environment that can be easily replicated, shown in

51

Fig. 5. For the experiments described in this section, we have
deployed the testbed on CloudLab [14]. Cloudlab is a flexible
infrastructure dedicated to scientific research on the future of
cloud computing. Our testbed is composed of three identical
nodes. Each node is a bare metal server with Intel Xeon E5-
2630 v3 processor with 16 cores (hyper-threaded) clocked at
2.40GHz, 128 GB of RAM and two Intel 82599ES 10-Gigabit
network interface cards. The three nodes are Linux servers and
respectively represent an ingress node, NFV node, and egress
node of an SRv6 based SFC scenario. The links between any
two nodes X and Y are assigned IPv6 addresses in the form
fc00:xy::x/64 and fc00:xy::y/64. For example, the
two interfaces of the link between the ingress node (node
1) and the NFV node (node 2) are assigned the addresses
fc00:12::1/64 and fc00:12::2/64. Each node owns
an IPv6 prefix to be used for SRv6 local SID allocation. The
prefix is in the form fc00:n::/64, where n represents the
node number. For example, the NFV node (node 2) owns the
IPv6 prefix fc00:2::/64. SRv6 local SIDs are in form
LOC:FUNCT:ARGS, where LOC is the most significant 64-
bits, ARGS is rightmost 16-bits and FUNCT is the 48-bits in
between LOC and ARGS. The ingress node is used as a source
for SR encapsulated traffic. The NFV node runs the SERA
firewall inside a network namespace. The SERA firewall is
instantiated on the SRv6 local SID fc00:2::f1:0/112.
We have two destination servers d1 and d2 that are used as
traffic sinks. Each destination server is assigned a prefix in
the form fc00:dn::/64, where n is the destination server
number. We configured the ingress node with two different SR
SFC policies as shown in Listing 4. The first SR SFC policy
is used to encapsulate traffic destined to d1 as SR packets in
encap mode, while the second one encapsulates traffic destined
to d2 as SR packets in insert mode. The SRv6 SFC policies
are used to steer traffic through the SERA firewall, then to the
egress node which removes SR encapsulation from packets as
they leave the SR domain towards destinations (d1 and d2).
The ingress and egress nodes are running Linux kernel 4.14
[15] and have the 4.14 release of iproute2 [16] installed. The
NFV node runs a compiled Linux kernel 4.15-rc2 with SRv6
enabled and SERA firewall included [17]. In order to saturate

Fig. 5: Performance evaluation testbed.

the CPU of the NFV node, we used only one processor core for
processing all the received packets by disabling the irqbalance
service and assigning the IRQ for all interfaces to be served by
the same CPU core. We used iperf [18] to generate traffic on
the ingress node. All traffic generated by iperf goes through
the SRv6 SFC policies configured on the ingress node.

Listing 4: SR SFC policy

SR SFC policy - encap mode
ip -6 route add fc00:d1::/64 encap seg6 mode \
encap segs fc00:2::f1:0,fc00:3::d6 dev enp6s0f0

SR SFC policy - insert mode
ip -6 route add fc00:d2::/64 encap seg6 mode \
inline segs fc00:2::f1:0,fc00:3::d6 dev enp6s0f0

Listing 5: SR pre-processor implementation

static inline bool
sr6_pre_processor(const struct sk_buff *skb,

int *innoff,int *srhoff,int *encap)
{

/* SRv6 traffic (encap mode) detector

if (ipv6_find_hdr(skb, innoff, IPPROTO_IPV6,

NULL, NULL) > 0)){

*encap=1;

return true;

}

/* SRv6 traffic (insert mode) detector */

if (ipv6_find_hdr(skb, srhoff,IPPROTO_ROUTING,
NULL, NULL) > 0)

return true;
return false;

}

B. Measurements
In order to evaluate the performance of our implementation,

we generated SR traffic with a rate of 1 Mpps (106 packets per
second). Each packet has a payload size of 1 KB. We wanted
to measure the processing capacity (or throughput) of the
firewall in processed packets per second (pps). We configured
iptables with a rule that drops all traffic going from ingress
node towards the destinations. Therefore, the counter of this
rule represents the number of SR packets that the firewall has
been able to process. In order to evaluate the performance
for different numbers of rules, we add a sequence of N-1
non-matching rules before the matching rule. In particular, we
repeated each experiment for ten different number of rules N
from 1 to 512. Each value plotted in Figures 6-9 represents
the average of 30 runs, each run with duration of 60 seconds.
The confidence intervals are so close to the average that we
have not plotted them.

We conducted five experiments as follows:
• Exp. 1: default iptables on plain IP packets.
• Exp. 2: basic mode SERA with SR encap mode.
• Exp. 3: basic mode SERA with SR insert mode.
• Exp. 4: advanced mode SERA with SR encap mode.
• Exp. 5: advanced mode SERA with SR insert mode.

In experiment 1 (default iptables), we used a rule that matches
the IPv6 source and destination address of the received
packets. The non-matching rules have the same structure,
but different source and destination addresses. With only
one rule configured (N=1), the throughput is 911 Kpps. As
expected, the achieved throughput decreases with the number

52

Fig. 6: Basic SERA vs. default iptables

Fig. 7: Basic SERA vs. advanced SERA (encap mode)

of rules, as shown in Figure 6. This is due to the operations
that are executed for each rule. In particular, the function
ip6_packet_match() is called for each rule.

In experiments 2 and 3, we evaluate the throughput of basic
mode SERA with the same rules as the ones in the experiment
1 (matching the source and destination address). In these
experiments, we are considering SR encapsulated packets and
we set the ip6t_seg6 sysctl to apply the rule to the original
packets. When there is only the matching rule (N = 1) the
throughput is 875 Kpps in encap mode and 873 Kpps in insert
mode (Figure 6). For larger N , the degradation of the perfor-
mance is more evident. The performance reduction of basic
SERA with respect to iptables default is due to the SR pre-
processor functional block, whose implementation is reported
in Listing 5. This block has the task to look for the inner IPv6
header in the packet or for the SRH header in case of insert
mode (we have re-used the ipv6_find_hdr function used
by iptables). These operations are computationally expensive
and are the reason for the reduction of the throughput visible
in Figure 6. According to the design philosophy of iptables,
the SR pre-processor is executed once for each rule, because
each rule operates in a stateless way and no state related
to the packet is saved. From a performance point of view,

this is clearly not efficient. Therefore, in order to improve
the throughput result shown in Figure 6 we are considering
alternate design choices which can achieve higher performance
when a large number of rules may need to be applied to
the packets. The insert mode has lower throughput than the
encap mode due to our implementation of the SR pre-processor
block, which detects SR packets in encap mode before those
in insert mode (Listing 5). We decided to add the encap mode
detection before the insert mode since it works also for IPv6-
in-IPv6 tunnels.

In experiments 4 and 5, we evaluated the throughput of
advanced mode SERA. We considered an extended rule that
matches source and destination address from both inner and
outer packet. The results are similar to the basic mode SERA,
the throughput is 857 Kpps in encap mode and 849 Kpps in
insert mode when one rule is configured (N = 1) and the
performance degradation with respect to the default iptables
is higher when the number of rules N increases (the Figure is
not reported for space reasons). In Figure 7, we compare the
throughput of basic and advanced mode SERA, considering
the SR packets in encap mode. Both in the basic and in the
advanced mode the SR pre-processor is executed once for each
rule, the advanced mode SERA achieves a lower throughput
because it has to perform two match operations (Inner and
Outer) rather than a single one.

We wanted to verify that the throughput reduction when
several rules per packet are executed was not caused by
problems in our implementation. Hence, we conducted a new
experiment using an already existing iptables extension, the
Routing Header extension (implemented in ip6t_rt kernel
module). This extension is able to match the common fields
of the IPv6 Routing Header, including the Routing Type field
(but is not able to parse the content of the SRH header, for
which we have developed the proposed extension). We run the
test for the different numbers of rules N as in the previous
experiments. For matching we used an extended rule that drops
packets with Routing Type 4, i.e. the SR packets with the SRH
header. As shown in Figure 8 the obtained throughput perfectly
matches our SERA implementation, confirming that the poor
performance is inherently related to the iptables design.

Finally, we tackled the issue of performance degradation
and we were able to design and implement a solution focusing
on one specific scenario, the basic mode SERA operating on
SR packets encapsulated in encap mode. In this scenario,
a set of existing rules needs to be applied to the original
packets that are encapsulated with IPv6-in-IPv6. As shown
in Figure 6, there is a performance penalty which becomes
significant when the number of rules is large. We revised the
design of our iptables extension so that we can execute the
SR pre-processor once for each packet instead of re-executing
it for every rule. The idea is to modify the pointers that point
to the memory area in which the headers of the packet is
stored once before executing all the rules and then to properly
keep into account these modifications in the processing of the
results of the matching. The throughput measurements of the
revised design are shown in Figure 9. Only in case of a single

53

rule, the throughput is slightly reduced do to the operations
that are performed once for the packet. When the number of
rules increases, there is no throughput degradation as for the
basic mode SERA, and the performance approaches the one
of the default iptables operating on plain (not encapsulated)
IPv6 packets.

Fig. 8: Existing RH iptables extension vs. advanced SERA

Fig. 9: Revised iptables design vs. Basic SERA

VII. CONCLUSIONS

In this work we have shown that it is possible to modify
an existing application (the Linux iptables firewall) and make
it Segment Routing aware. Thanks to this awareness, it is
possible to setup chains of VNFs in a simple and efficient way,
with no need of SR proxy. In the basic mode, the proposed
SERA firewall solution avoids the need of (re)classification
of packets in the intermediate NFV nodes that host the SR-
aware firewall. In the advanced mode, new firewall actions can
operate on the SR segment list, allowing to make branches in
the VNF chain. We have also described how it is possible
for the edge node to put instructions in the SR segment list,
which can dynamically change the firewall actions that will
be executed. This can be done by the edge node even on a
packet-by-packet basis. In this way the firewall VNF could
become stateless so that it can be scaled, replicated, moved
arbitrarily in the NFV infrastructure.

From the performance analysis of the SERA implementa-
tion we have highlighted a throughput degradation when the
number of rules to be checked for each packet increases. This
is due to the iptables design that operates in a stateless way
and repeats all operations per each rule. We have implemented
a proof-of-concept that overcomes this issue in a specific
scenario, showing the performance gain that can be obtained.

We provided an open source implementation for SERA [17].
We submitted our implementation to the the Linux kernel and
a part of it has been merged into version 4.16 [13]. We also
contributed to the netfilter.org project to extend the iptables
user-space utility to support the new match options and SR-
specific actions (part of our work is in release 1.6.2 of iptables
[19]).

REFERENCES

[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[2] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[3] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” Internet Requests for Comments, RFC Editor, RFC 7498,
April 2015.

[4] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Ar-
chitecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015.

[5] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” Internet-Draft, November 2017. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-sfc-nsh

[6] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and
L. Veltri, “Implementation of Virtual Network Function Chaining
through Segment Routing in a Linux-based NFV Infrastructure,” in 3rd
IEEE Conference on Network Softwarization (NetSoft 2017), Bologna,
Italy, July 2017.

[7] S. Previdi (ed.) et al., “IPv6 Segment Routing Header (SRH),”
Internet-Draft, September 2016. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-6man-segment-routing-header-02

[8] F. Clad et al., “Segment Routing for Service Chaining,” Internet-
Draft, October 2017. [Online]. Available: https://tools.ietf.org/html/
draft-clad-spring-segment-routing-service-chaining-00

[9] J. Brzozowski et al., “IPv6 SPRING Use Cases,” Internet-
Draft, December 2017. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-spring-ipv6-use-cases

[10] C. Fisfils et al., “SRv6 Network Programming,” Internet-
Draft, March 2017. [Online]. Available: https://tools.ietf.org/html/
draft-filsfils-spring-srv6-network-programming-04

[11] J. R. Vacca and S. Ellis, Firewalls: Jump start for Network and Systems
Administrators. Elsevier, 2005.

[12] R. Russell and H. Welte, “Linux netfilter Hacking Howto.”
[Online]. Available: http://www.netfilter.org/documentation/HOWTO/
netfilter-hacking-HOWTO.html

[13] “Linux community. linux 4.16 changelog,” Web site. [Online].
Available: https://kernelnewbies.org/Linux_4.16

[14] “CloudLab home page,” Web site. [Online]. Available: https:
//www.cloudlab.us/

[15] “Kernel 4.14 release,” Web site. [Online]. Available: https:
//kernelnewbies.org/Linux_4.14

[16] “iproute2 4.14 release,” Web site. [Online]. Available: https://mirrors.
edge.kernel.org/pub/linux/utils/net/iproute2/

[17] “SERA - SEgment Routing Aware Firewall,” Web site. [Online].
Available: https://github.com/SRouting/SERA

[18] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” Web
site. [Online]. Available: http://iperf.fr

[19] “iptables releases. iptables-1.6.2 changelog,” Web site, February 2018.
[Online]. Available: https://netfilter.org/projects/iptables/downloads.
html#iptables-1.6.2

54

Charting the Complexity Landscape of
Virtual Network Embeddings
Matthias Rost

Technische Universität Berlin
Email: mrost@inet.tu-berlin.de

Stefan Schmid
University of Vienna

Email: stefan schmid@univie.ac.at

Abstract—Many resource allocation problems in the cloud can
be described as a basic Virtual Network Embedding Problem
(VNEP): the problem of finding a mapping of a request graph (de-
scribing a workload) onto a substrate graph (describing the phys-
ical infrastructure). Applications range from mapping testbeds
(from where the problem originated), over the embedding of
batch-processing workloads (virtual clusters) to the embedding
of service function chains. The different applications come with
their own specific requirements and constraints, including node
mapping constraints, routing policies, and latency constraints.
While the VNEP has been studied intensively over the last years,
complexity results are only known for specific models and we lack
a comprehensive understanding of its hardness.

This paper charts the complexity landscape of the VNEP
by providing a systematic analysis of the hardness of a wide
range of VNEP variants, using a unifying and rigorous proof
framework. In particular, we show that the problem of finding
a feasible embedding is NP-complete in general, and, hence,
the VNEP cannot be approximated under any objective, unless
P =NP holds. Importantly, we derive NP-completeness results
also for finding approximate embeddings, which may violate, e.g.,
capacity constraints by certain factors. Lastly, we prove that our
results still pertain when restricting the request graphs to planar
or degree-bounded graphs.

I. INTRODUCTION

At the heart of the cloud computing paradigm lies the idea
of efficient resource sharing: due to virtualization, multiple
workloads can co-habit and use a given resource infrastruc-
ture simultaneously. Indeed, cloud computing introduces great
flexibilities in terms of where workloads can be mapped. At the
same time, exploiting this mapping flexibility poses a funda-
mental algorithmic challenge. In particular, in order to provide
predictable performance, guarantees on all, i.e. node and edge,
resources need to be ensured. Indeed, it has been shown that
cloud application performance can suffer significantly from
interference on the communication network [1].

The underlying algorithmic problem is essentially a graph
theoretical one: both the workload as well as the infrastructure
can be modeled as graphs. The former, the so-called request
graph, describes the resource requirements both on the nodes
(e.g., the virtual machines) as well as on the interconnecting
network. The latter, the so-called substrate graph, describes
the physical infrastructure and its resources (servers and links).
Figure 1 depicts an example of embedding a request graph.

The problem is known in the networking community under
the name Virtual Network Embedding Problem (VNEP) and

2 5

0 3 1

3

2 2

2 2

A B

CD

1 4

3 1

AC B

D

1

11

1

6

substrate and embeddingrequest

Fig. 1. Example request (left) together with an exemplary embedding on a
substrate network (right). The numeric labels at the network elements denote
the resource demands (of the request) and the available capacity (of the
substrate), respectively. In the embedding, the single request edge (C,D)
(green) is realized via a path of length two in the substrate. As request nodes
A and C are collocated on the same substrate node, the edge (A,C) does
not use any substrate edges and hence uses no edge resources. Note that the
allocations induced by the embedding do not exceed the substrate’s capacities.

has been studied intensively for over a decade [2], [3]. Be-
sides the rather general study of the VNEP, which emerged
originally from the study of testbed provisioning, essentially
the same problems are considered in the context of Service
Function Chaining [4], [5], as well as in the context of em-
beddings Virtual Clusters, a specific batch processing request
abstraction [6], [7].

A. Related Work

a) Objectives & Restrictions: Depending on the setting,
many different objectives are considered for the VNEP. The
most studied ones concern minimizing the (resource alloca-
tion) cost [2], [3], maximizing the profit by exerting admission
control [8], [9], and minimizing the maximal load [4], [10].

Besides commonly enforcing that the substrate’s physical
capacities on servers and edges are not exceeded to provide
Quality-of-Service [3], additional restrictions have emerged:
• Restrictions on the placement of virtual nodes first arose to

enforce closeness to locations of interest [2], but were also
used in the context of privacy policies to restrict mappings
to certain countries [11]. However, these restrictions are
now also used in the context of Service Function Chaining,
as specific functions may only be mapped on x86 servers,
while firewall appliances cannot [4], [5].

• Routing restrictions first arose in the context of expressing
security policies, as for example some traffic may not beISBN 978-3-903176-08-9 c© 2018 IFIP

TABLE I
OVERVIEW ON RESULTS OBTAINED IN THIS PAPER.

V
N

E
P

va
ri

an
ts Identifier according to Definition 8 〈VE | - 〉 〈E |N 〉 〈V |R 〉 〈 - |NR 〉 〈 - |NL 〉

Enforcing Node Capacities X ? X ? ?

Enforcing Edge Capacities X X ? ? ?

Enforcing Node Placement Restrictions ? X ? X X
Enforcing Edge Routing Restrictions ? ? X X ?

Enforcing Latency Restrictions ? ? ? ? X

R
es

ul
ts

Section IV NP-completeness and inapproximability under any objective Thm. 19 Thm. 20 Thm. 21 Thm. 22 Thm. 22

Section V

NP-completeness and inapproximability when increasing node capacities by a factor α < 2 Thm. 23 - Thm. 23 - -
Inapproximability when increasing edge capacities by a factor β ∈ Θ(logn/ log logn)

(unless NP ⊆ BP-TIME(
⋃
d≥1 n

d log logn)) Thm. 25 Thm. 25 - - -

NP-completeness and inapproximability when loosening latency bounds by a factor γ < 2 - - - - Thm. 24

Section VI
Results are preserved for acyclic substrates (except for Thm. 25) Obs. 26

Results are preserved for acyclic, planar, degree-bounded requests Thm. 31

routed via insecure domains or physical links shall not be
shared with other virtual networks [3], [12].

• Restrictions on latencies were studied for the VNEP in [13]
and have been recently studied intensely in the context of
Service Function Chaining to achieve responsiveness and
Quality-of-Service [4], [5].

b) Algorithmic Approaches: Several dozens of algo-
rithms were proposed to solve the VNEP and its siblings,
including the Virtual Cluster Embedding [6] and Service Func-
tion Chain Embedding problem [3]. Most approaches to solve
the VNEP either rely on heuristics [2] or metaheuristics [3].
On the other hand, several works study exact (non-polynomial
time) algorithms to solve the problem to (near-)optimality or
to devise heuristics. Mixed Integer Programming is the most
widely used exact approach [4], [9], [13].

Only recently, approximation algorithms providing quality
guarantees for the VNEP have been presented. In particular,
the embedding of chains is approximated under assumptions
on the requested resources and the achievable benefit in [14].
In [15] approximations for cactus request graphs are detailed,
while [16] presents fixed-parameter tractable approximations
for arbitrary request graph topologies.

c) Complexity Results: Surprisingly, despite the rele-
vance of the problem and the large body of literature, the
complexity of the underlying problems has not received much
attention. While it can be easily seen that the Virtual Network
Embedding Problem encompasses several NP-hard problems
as e.g. the k-disjoint paths problem [17], the minimum linear
arrangment problem [18], or the subgraph isomorphism prob-
lem [19], most works on the VNEP cite a NP-hardness result
contained in a technical report from 2002 by Andersen [20].
The only other work studying the computational complexity is
one by Amaldi et al. [21], which proved the NP-hardness and
inapproximability of the profit maximization objective while
not taking into account latency or routing restrictions and not
considering the hardness of embedding a single request.

Bibliographic Note: An extended version of this paper
was published as a technical report [22]. In addition to the
contents found in this paper, it contains a detailed Integer
Programming formulation able to solve the VNEP variants

considered in this paper. Furthermore, it contains the proof of
Theorem 25, that is omitted here due to space constraints.

B. Contributions and Overview
In this work, we initiate the systematic study of the com-

putational complexity of the VNEP. Taking all the aforemen-
tioned restrictions into account, we first compile a concise
taxonomy of the VNEP variants in Section II. Then, we
present a powerful reduction framework in Section III, which
is the base for all hardness results presented in this paper. In
particular, we show the following (see also Table I):
• We show the NP-completeness of five different VNEP

variants in Section IV. For example, we consider the
variant only enforcing capacity constraints, but also one in
which only node placement and latency restrictions must
be obeyed in the absence of capacity constraints.

• We extend these results in Section V and show that
the considered variants remain NP-complete even when
computing approximate embeddings, which may exceed
latency or capacity constraints by certain factors.

• Lastly, we show in Section VI that the respective VNEP
variants remain NP-complete even when restricting sub-
strate graphs to directed acyclic graphs (DAGs) and request
graphs to planar, degree-bounded DAGs.

As we are proving NP-completeness throughout this pa-
per, the implications of our results are severe. Given the
NP-completeness of finding any feasible solution, finding an
optimal solution subject to any objective is at least NP-hard.
Furthermore, unless P =NP holds, the respective variants
cannot be approximated to within any factor.

Table I summarizes our results and is to be read as follows.
Any of the five rightmost columns represents a specific VNEP
variant. The X symbol indicates restrictions that are enforced,
while the ? symbol indicates restrictions which are not con-
sidered. Importantly, enabling a ? restriction, does not change
the results (cf. Lemma 9). Considering a specific variant, the
respective column should be read from top to bottom. Consid-
ering for example 〈VE | - 〉, its NP-completeness is shown in
Theorem 19 while its inapproximability when relaxing node
capacity constraints is shown in Theorem 23. Lastly, all results
also hold under the graph restrictions of the two bottom rows.

56

II. FORMAL MODEL

We now formally introduce the VNEP and its variants.
Notation: The following notation is used throughout this

work. We use [x] to denote {1, 2, . . . , x} for x ∈ N. For a
directed graph G = (V,E), we denote by δ+(v) ⊆ E and
δ−(v) ⊆ E the outgoing and incoming edges of node v ∈ V .
When considering functions on tuples, we omit the parantheses
of the tuple and simply write f(a, b) instead of f((a, b)).

A. Basic Problem Definition

We refer to the physical network as substrate network and
model it as directed graph GS = (VS , ES). Capacities in the
substrate are given by the function cS : VS∪ES → R≥0∪{∞}.
The capacity cS(u) of node u ∈ VS may represent for example
the number of CPUs while the capacity cS(u, v) of edge
(u, v) ∈ ES represents the available bandwidth. By allowing
to set substrate capacities to ∞, the capacity constraints on
the respective substrate elements can be effectively disabled.
We denote by PS the set of all simple paths in GS .

A request is similarly modeled as directed graph
Gr = (Vr, Er) together with node and edge capacities (de-
mands) cr : Vr ∪ Er → R≥0.

The task is to find a mapping of request graph Gr on the
substrate network GS , i.e. a mapping of request nodes to
substrate nodes and a mapping of request edges to paths in
the substrate. Virtual nodes and edges can only be mapped on
substrate nodes and edges of sufficient capacity. Accordingly,
we denote by V iS = {u ∈ VS |cS(u) ≥ cr(i)} the set of
substrate nodes supporting the mapping of node i ∈ Vr and by
Ei,jS = {(u, v) ∈ ES |cS(u, v) ≥ cr(i, j)} the substrate edges
supporting the mapping of virtual edge (i, j) ∈ Er.
Definition 1 (Valid Mapping). A valid mapping of request Gr
to the substrate GS is a tuple m = (mV ,mE) of functions that
map nodes and edges, respectively, s.t. the following holds:
• The function mV : Vr → VS maps virtual nodes to suitable

substrate nodes, such that mV (i) ∈ V iS holds for i ∈ Vr.
• The function mE : Er → PS maps virtual edges (i, j) ∈
Er to simple paths in GS connecting mV (i) to mV (j),
such that mE(i, j) ⊆ Ei,jS holds for (i, j) ∈ Er. �

Considering the above definition, note the following. Firstly,
the mapping mE(i, j) of the virtual edge (i, j) ∈ Er may
be empty, if (and only if) i and j are mapped on the
same substrate node. Secondly, the definition only enforces
that single resource allocations do not exceed the available
capacity. To enforce that the cumulative allocations respect
capacities, we introduce the following:

Definition 2 (Allocations). We denote by Am(x) ∈ R≥0
the resource allocations induced by valid mapping
m = (mV ,mE) on substrate element x ∈ GS and define

Am(u) =
∑
i∈Vr:mV (i)=u cr(i)

Am(u, v) =
∑

(i,j)∈Er:(u,v)∈mE(i,j) cr(i, j)

for node u ∈ VS and edge (u, v) ∈ ES , respectively. �

We call a mapping feasible, if the (cumulative) allocations
do not exceed the capacity of any substrate element:

Definition 3 (Feasible Embedding). A mapping m represents
a feasible embedding, if the allocations do not exceed the
capacity, i.e. Am(x) ≤ cS(x) holds for x ∈ GS . �

In this paper we study the decision variant of the VNEP,
asking whether there exists a feasible embedding:

Definition 4 (VNEP, Decision Variant). Given is a single
request Gr that shall be embedded on the substrate graph GS .
The task is to find a feasible embedding or to decide that no
feasible embedding exists. �

B. Variants of the VNEP & Nomenclature

As discussed when reviewing the related work in Sec-
tion I-A, additional requirements are enforced in many set-
tings. Accordingly, we now formalize (i) node placement, (ii)
edge routing, and (iii) latency restrictions. Node placement and
edge routing restrictions effectively exclude potential mapping
options for nodes and edges. For latency restrictions we
introduce latency bounds for each of the virtual edges.

Definition 5 (Node Placement Restrictions). For each virtual
node i ∈ Vr a set of forbidden substrate nodes V

i

S ⊂ VS is
provided. Accordingly, the set of allowed nodes V iS is defined
to be {u ∈ VS \ V

i

S | cS(u) ≥ cr(i)}. �

Definition 6 (Routing Restrictions). For each virtual edge
(i, j) ∈ Er a set of forbidden substrate edges E

i,j

S ⊆ ES
is provided. Accordingly, the set of allowed edges Ei,jS is set
to be {(u, v) ∈ ES \ E

i,j

S | cS(u, v) ≥ cr(i, j)}. �

Definition 7 (Latency Restrictions). For each substrate edge
e ∈ ES the edge’s latency is given via lS(e) ∈ R≥0.
Latency bounds for virtual edges are specified via the func-
tion lr : Er → R≥0 ∪ {∞}, such that the latency along the
substrate path mE(i, j), used to realize the edge (i, j) ∈ Er,
is less than lr(i, j). Formally, the definition of feasible em-
beddings (cf. Definition 3) is extended by including that∑
e∈mE(i,j) lS(e) ≤ lr(i, j) holds for (i, j) ∈ Er. �

We introduce the following taxonomy to denote the different
problem variants.

Definition 8 (Taxonomy). We use the notation 〈C |A 〉 to
indicate whether and which of the capacity constraints C and
which of the additional constraints A are enforced.
C We denote by V node capacities, by E edge capacities, and

by - that none are used. When node or edge capacities are
not considered, we assume the capacities of the respective
substrate elements to be ∞.

A Considering the additional restrictions, the abbreviations
-, N, L, and R stand for no restrictions, node placement,
latency, and routing restrictions, respectively. �

Accordingly, 〈VE | - 〉 indicates the classic VNEP without
additional constraints while obeying capacities and 〈 - |NL 〉
indicates the combination of node placement and latency

57

restrictions while neither considering node or edge capacities.
We note that the introduction of more restrictions only makes
the respective problem harder:

Lemma 9. A VNEP variant 〈A |C 〉 that encompasses all
restrictions of 〈A’ |C’ 〉 is at least as hard as 〈A’ |C’ 〉.
Proof. The capacity constraints as well as the additional
requirements are all formulated in such a fashion that any one
of these can be disabled. Considering capacities and latencies,
one may set the respective substrate capacities to ∞ and
the latencies of substrate edges to 0, respectively. For node
placement and edge restrictions one may set the forbidden
node and edge sets to the empty set. Hence, a trivial reduction
from 〈A |C 〉 to 〈A’ |C’ 〉 exists and the result follows. �

C. Relaxing Constraints: Approximate Embeddings

Within this work, we show the VNEP to be NP-complete
under many meaningful restriction combinations. This in turn
also implies the inapproximability of the respective VNEP
variants (unless P =NP holds). Hence, it is natural to con-
sider a broader class of (approximation) algorithms that may
violate constraints by a certain factor: instead of answering the
question whether a valid embedding exists that satisfies all ca-
pacity constraints, one might for example seek an embedding
that uses at most two times the actual capacities. We refer to
these embeddings as approximate embeddings:

Definition 10 (α- / β- / γ-Approximate Embeddings).
A mapping m is an approximate embedding, if it is valid

and violates capacity or latency constraints only within a
certain bound. Specifically, we call an embedding α- and β-
approximate, when node and edge allocations are bounded by
α and β times the respective node or edge capacity. Consid-
ering latency restrictions, we call a mapping γ-approximate
when latencies are within a factor of γ of the original bound.
Formally, the following must hold for α, β, γ ≥ 1:

Am(u) ≤α · cS(u) ∀u ∈ VS
Am(u, v) ≤ β · cS(u, v) ∀(u, v) ∈ ES∑

e∈mE(i,j)

lS(e) ≤ γ · lr(i, j) ∀(i, j) ∈ Er �

III. REDUCTION FRAMEWORK

This section presents the main insight and contribution of
our paper, namely a generic reduction framework that allows to
derive hardness results by slightly tailoring the proof for the
individual problem variants. Our reduction framework relies
on 3-SAT and we first introduce some notation. Afterwards
we continue by constructing a (partial) VNEP instance, whose
solution will indicate whether the 3-SAT formula is satisfiable.

A. 3-SAT: Notation and Problem Statement

We denote by Lφ = {xk}k∈[N] a set of N ∈ N literals
and by Cφ = {Ci}i∈[M] a set of M ∈ N clauses, in which
literals may occur either positively or negated. The formula
φ =

∧
Ci∈Cφ Ci is a 3-SAT formula, iff. each clause Ci is the

disjunction of at most 3 literals of Lφ. Denoting the truth

values by F and T, 3-SAT asks to determine whether an
assignment α : Lφ → {F,T} exists, such that φ is satisfied.
3-SAT is one of Karp’s 21 NP-complete problems:

Theorem 11 (Karp [23]). Deciding 3-SAT is NP-complete.

For reducing 3-SAT to VNEP, it is important that the
clauses be ordered and we define the following:

Definition 12 (First Occurence of Literals). We denote by
C : Lφ → [M] the function yielding the index of the clause
in which a literal first occurs. Hence, if C(xk) = i, then xk is
contained in Ci while not contained in Ci′ for i′ ∈ [i− 1]. �

As we are interested the satisfiability of a 3-SAT formula
φ, we define the set of satisfying assignments per clause:

Definition 13 (Satisfying Assignments). We denote by
Ai = {ai,m : Li → {F,T} | ai,m satisfies Ci} the set of all
possible assignments of truth values to the literals Li of Ci
satisfying Ci. Note that all elements of Ai are functions. �

Lastly, to abbreviate notation, we employ Li,j = Li ∩ Lj
to denote the intersection of the literal sets of Ci and Cj .

B. General VNEP Instance Construction

For a given 3-SAT formula φ, we now construct a VNEP
instance consisting of a substrate graph GS(φ) and a request
graph Gr(φ). The question whether the formula φ is satisfiable
will eventually reduce to the question whether a feasible
embedding of Gr(φ) on GS(φ) exists. Figure 2 illustrates the
construction described in the following.

Definition 14 (Substrate Graph GS(φ)). For a given
3-SAT formula φ we define the substrate graph GS(φ) =
(GS(φ), ES(φ)) as follows. For each clause Ci ∈ Cφ and each
potential assignment of truth values satisfying Ci, a substrate
node is constructed, i.e. we set VS(φ) =

⋃
Ci∈Cφ Ai. We

connect two substrate nodes ai,m ∈ VS(φ) and aj,n ∈ VS(φ),
iff. a literal xk is introduced in the clause Ci for the first time
and is also used in clause Cj , and ai,m and aj,n agree on the
truth values of the literals contained in both clauses. Formally,
we set:

ES(φ) =

{
(ai,m, aj,n)

∣∣∣∣ ∃xk ∈ Li,j with C(xk) = i and
ai,m(xl) = aj,n(xl) for xl ∈ Li,j

}
Capacities etc. are introduced in the respective reductions. �

Definition 15 (Request Graph r(φ)). For a given 3-SAT
formula φ we define the request graph Gr(φ) = (Vr(φ), Er(φ))
as follows. For each clause Ci ∈ Cφ a node vi is introduced,
i.e. Vr(φ) = {vi | Ci ∈ Cφ}. Matching the construction
of the substrate graph GS(φ), we introduce directed edges
(vi, vj) ∈ Er(φ) only if there exists a literal xk ∈ Ci being
introduced in Ci and being also used in the clause Cj :

Er(φ) = {(vi, vj) | ∃xk ∈ Li,j with C(xk) = i}

Demands etc. are introduced in the respective reductions. �

58

φ: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

GS(φ):

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2Gr(φ):

x1, x2, x4 : TFT

mr(φ):

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x4 : TTF x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x1, x2, x4 : TFT

Fig. 2. Visualization of the construction of substrate and request graphs for
the 3-SAT formula φ (cf. Definitions 14 and 15). Additionally, a mapping m
satisfying the conditions of Lemma 16 is shown. Accordingly, the formula φ
is satisfied. Concretely, the mapping represents the assignment of truth values
x1 = T, x2 = T, x3 = F, x4 = F.

C. The Base Lemma

Nearly all of our results are based on the following lemma.

Lemma 16. The 3-SAT formula φ is satisfiable

if and only if

there exists a valid mapping m of Gr(φ) on GS(φ), such that
1) each virtual node vi is mapped on a substrate node

corresponding to assignments Ai of the i-th clause, i.e.
mV (vi) ∈ Ai holds for all vi ∈ Vr(φ), and

2) virtual edges are embedded using a single substrate edge,
i.e. |mE(vi, vj)| = 1 holds for all (vi, vj) ∈ Er(φ).

Proof. We first show that if φ is satisfiable, then such a
mapping m must exist. Afterwards, we show that if such a
mapping m exists, then φ must be satisfiable.

Assume that φ is satisfiable and let α : Lφ → {F,T}
denote an assignment of truth values, such that α satisfies φ.
We construct a mapping m = (mV ,mE) for request r(φ) as
follows. The virtual node vi ∈ Vr(φ) corresponding to clause
Ci is mapped onto the substrate node ai,m ∈ Ai ⊆ VS(φ), iff.
ai,m agrees with α on the assignment of truth values to the
contained literals, i.e. ai,m(xk) = α(xk) for xk ∈ Ci. As α
satisfies φ, it satisfies each clause and hence mV (vi) ∈ VS(φ)
holds for all Ci ∈ Cφ. The virtual edge (vi, vj) ∈ Er(φ) is

mapped via the direct edge between mV (vi) and mV (vj). This
edge (mV (vi),mV (vj)) must exist in ES(φ), as the existence
of virtual edge (vi, vj) implies that clause Ci is the first
clause introducing a literal of Li,j and mV (vi) = ai,m and
mV (vj) = aj,n must agree by construction on the assignment
of truth values for all literals. Clearly, the constructed mapping
m fulfills both the conditions stated in the lemma, hence
completing the first half of the proof.

We now show that if there exists a mapping m meeting
the two requirements stated in the lemma, then the formula
φ is indeed satisfiable. We constructively recover an assign-
ment of truth values α : Lφ → {F,T} from the mapping
m by iteratively extending the initially empty assignment.
Concretely, we iterate over the mappings of the virtual nodes
corresponding to clauses Cφ one by one (according to the
precedence relation of the indices). By our assumption on
the node mapping, mV (vi) ∈ Ai holds. Accordingly, as
the substrate node mV (vi) represents an assignment of truth
values to the literals of clause Ci, we extend α by setting
α(xk) ,

[
mV (vi)

]
(xk) for all literals xk contained in Ci.

We first show that this extension is always valid in the sense
that previously assigned truth values are never changed. To this
end, assume that the clauses C1, C2, . . . , Ci−1 were handled
without any such violations. Hence the literals

⋃
j<i Lj have

been assigned truth values in the first i − 1 iterations not
contradicting previous assignments. When extending α by the
mapping of mV (vi) in the i-th iteration, there are two cases
to consider. First, if none of the literals Li were previously
assigned a truth value, i.e. Li ∩

⋃
j<i Lj = ∅ holds, then

the extension of α as described above cannot lead to a
contradiction. Otherwise, if Li,pre = Li ∩

⋃
j<i Lj 6= ∅ holds,

we show that extending α by mV (vi) = ai,m does not change
the truth value of any literal xk contained in Li,pre.

For the sake of contradiction, assume that xk ∈ Ci is a
literal, for which α(xk) does not equal

[
mV (vi)

]
(xk). As xk

was previously assigned a value, there must exist a clause
Cj in which xk was first used, such that j < i holds. Let
mV (vi) = ai,m ∈ Ai and mV (vj) = aj,n ∈ Aj . As
the edge (vj , vi) is contained in Er(φ) by definition and
all edges are mapped using a single substrate edge by our
assumptions, mE(vi, vj) = 〈(aj,n, ai,m)〉 must hold. Hence,
as (aj,n, ai,m) ∈ ES(φ) must hold and edges are only
introduced if assignments agree with each other, we have[
mV (vj)

]
(xk) = aj,n(xk) = ai,m(xk) =

[
mV (vi)

]
(xk). This

contradicts our assumption that α(xk) 6=
[
mV (vi)

]
(xk) holds.

Hence, the extension of α is always valid.
By construction of the substrate graph GS(φ), the node set

Ai ⊆ VS(φ) contains only the assignments of truth values for
the literals Li of clause Ci ∈ Cφ that satisfy the respective
clause. Hence, α satisfies all of the clauses and hence satisfies
φ, completing the proof of the base lemma. �

The base lemma is the heart of our reduction framework for
obtaining our results and we note that the construction of the
substrate and the request graph is polynomial in the size of the
3-SAT formula. Indeed, the base lemma forms the basis for

59

polynomial-time reductions for the different VNEP decision
variants. Concretely, consider some VNEP variant 〈X |Y 〉.
If this variant is ‘expressive’ enough such that any feasible
embedding must meet the criteria of Lemma 16, then 〈X |Y 〉
is – by reduction from 3-SAT – NP-hard. Furthermore, the
existence of an Integer Program for each of the VNEP variants
(cf. technical report [22]) shows that the variants lie inNP and
hence the successful application of the base lemma shows the
NP-completeness of the respective variants. As a result, for
the considered VNEP variants, any optimization problem (e.g.
cost) cannot be approximated within any factor. The following
lemma formalizes this observation:

Lemma 17. If there is a polynomial-time reduction from
3-SAT to the VNEP decision variant 〈X |Y 〉, then the
VNEP variant 〈X |Y 〉 is NP-complete. Furthermore, any
optimization problem over the same set of constraints is (i)
NP-hard and (ii) inapproximable (within any factor), unless
P =NP holds.

Lastly, the following lemma will prove useful when apply-
ing the base lemma.

Lemma 18. Exactly one of the following two following
properties holds for formula ϕ:
1) The clauses of φ can be ordered such that within the cor-

responding request graph Gr(φ) only the node v1 ∈ Vr(φ)
has no incoming edges.

2) ϕ can be decomposed into formulas ϕ1 and ϕ2, such that
the sets of literals occurring in ϕ1 and ϕ2 are disjoint,
while ϕ = ϕ1 ∧ ϕ2 holds. Hence, ϕ is satisfiable iff. ϕ1

and ϕ2 are (independently) satisfiable.

Proof. We prove the statement by a greedy construction and
assume that the clauses are initially unordered. We iteratively
assign an index to the clauses, keeping track of which clauses
were not assigned an index yet. Initially, pick any of the
clauses and assign it the index 1. Now, iteratively choose
any clause which contains a literal that already occurs in
the set of indexed clauses. If no such clause exists, then the
clauses already indexed and the clauses not indexed obviously
represent a partition of the literal set and hence the second
statement holds true. However, if the greedy step succeeded
every time, then the following holds with respect to the con-
structed ordering: any virtual node vi corresponding to clause
Ci, for i > 1, must have an incoming edge by Definition 15 as
the clause overlapped with the already introduced literals. �

IV. NP -COMPLETENESS OF THE VNEP

We employ our reduction framework outlined in the pre-
vious section to derive a series of hardness results for the
VNEP. In particular, we first show the NP-completeness
of the original VNEP variant 〈VE | - 〉 in the absence of
additional restrictions. Given this result, we investigate several
other problem settings and show, among others, that also
deciding 〈 - |LN 〉 is NP-complete. Hence, even when the
physical network does not impose any resource constraints
(i.e., nodes and edges have infinite capacities), finding an

embedding satisfying latency and node placement restrictions
is NP-complete. Again, it must be noted that adding further
restrictions only renders the VNEP harder (cf. Lemma 9).

A. NP-Completeness under Capacity Constraints

We first consider the most basic VNEP variant 〈VE | - 〉.
Theorem 19. VNEP 〈VE | - 〉 is NP-complete and cannot
be approximated under any objective (unless P =NP).

Proof. We show the statement via a polynomial-time reduction
from 3-SAT according to Lemmas 16 and 17. Given is a
3-SAT formula φ. We assume for now that the first statement
of Lemma 18 holds, i.e. that within the request graph Gr(φ)
only the first node v1 ∈ Vr(φ) has no incoming edge.

To enforce the properties of Lemma 16, we set the substrate
and request capacities for some small λ, 0 < λ < 1/|Cφ|,
as follows. The capacity of substrate nodes is determined by
the clause whose assignments they represent. Furthermore, the
capacities decrease monotonically with each clause. Similarly,
but now increasing per clause, the capacities of edges are
determined by the clause that the edge’s head corresponds to:

cS(ai,m) = 1 + λ · (M − i) ∀ Ci ∈ Cφ, ai,m ∈ Ai
cS(e) = 1 + λ · i ∀ Ci ∈ Cφ, e ∈ δ−(Ai)

The demands are set to match the respective capacities:

cr(φ)(vi) = 1 + λ · (M − i) ∀ vi ∈ Vr(φ)
cr(φ)(e) = 1 + λ · i ∀ vj ∈ Vr(φ), e ∈ δ−(vj)

Due to the decreasing node demands and capacities, virtual
node vj ∈ Vr(φ) corresponding to clause Ci can only be
mapped on substrate nodes

⋃j
k=1Ak. Due to the choice of

λ, the capacity of any substrate node is less than 2 while
each virtual node has a demand larger than 1. Hence, two
virtual nodes can never be collocated (mapped) on the same
substrate node. Thus, all virtual edges must be mapped onto
at least a single substrate edge. Considering the virtual edge
e = (vi, vj) ∈ Er(φ) with demand cr(φ)(e) = 1 + λ · j,
the virtual node vj must be mapped on a substrate node
having an incoming edge of at least capacity 1 + λ · j. As
the edge capacities increase with the clause index, only the
substrate nodes in

⋃M
k=j Ak satisfy this condition. Hence, if

node vj has an incoming edge, it can only be mapped on
nodes in

⋃j
k=1Ak ∩

⋃M
k=j Ak = Aj . As we assumed that

the first statement of Lemma 18 holds for φ and hence all
nodes v2, . . . , vM have an incoming edge, we obtain that
the virtual node vi must be mapped on Ai ⊆ VS(φ) for
i = 2, . . . ,M . Considering the first node v1, we observe
that only nodes in A1 offer sufficient capacity to host v1.
Hence, any feasible embedding will obey the first statement
of Lemma 16 regarding the node mappings.

We now show that any feasible mapping will also obey
the second property of Lemma 16, namely, that any virtual
edge is mapped on exactly one substrate edge. To this end,
assume for the sake of contradiction that (vi, vj) ∈ Er(φ) is
not mapped on a single substrate edge. As vi must be mapped

60

on some node ai,m ∈ Ai and vj must be mapped on some
node aj,n ∈ Aj , and as both the request and the substrate
are directed acyclic graphs, the mapping of edge (vi, vj) must
route through at least one intermediate node. Denote by ak,l ∈
Ak for i < k < j the first intermediate node via which the
edge (vi, vj) is routed. By construction, the capacity of the
substrate edge (ai,m, ak,l) is 1 + λ · k. However, as k < j
holds and the edge (vi, vj) has a demand of 1+λ · j, the edge
(vi, vj) cannot be routed via ak,l. Hence, the only feasible
edges for embedding the respective virtual edges are the direct
connections between any two substrate nodes.

Therefore, all feasible solutions indicate the satisfiability of
the formula φ. Any algorithm computing a feasible solution to
the VNEP obeying node and edge capacities, decides 3-SAT.

Lastly, we argue for the validity of our assumption on the
structure of φ, namely that the first statement of Lemma 18
holds. If this were not to hold, then the second statement of
Lemma 18 holds true and the formula can be decomposed (po-
tentially multiple times) into disjoint subformulas ϕ1, . . . , ϕk,
such that (i) ϕ =

∧k
i=1 ϕi holds, and (ii) such that the first

condition of Lemma 18 holds for each subformula. Accord-
ingly, assuming that an algorithm exists which can construct
feasible embeddings whenever they exist, this algorithm can
be used to decide the satisfiability of each subformula, hence
deciding the original satisfiability problem. �

B. NP-completeness under Additional Constraints

Building on the above NP-completeness proof, we can
adapt it easily to other settings.

Theorem 20. VNEP 〈E |N 〉 is NP-complete and cannot be
approximated under any objective (unless P =NP).

Proof. In this setting node placement restrictions and substrate
edge capacities are enforced. We apply the same construction
as in the proof of Theorem 19. Employing the node placement
restrictions, we can force the mapping of virtual node vi ∈
Vr(φ) onto substrate nodes Ai by setting V

vi
S = VS(φ) \Ai for

all vi ∈ Vr(φ). By the same argument as before, virtual edges
cannot be mapped onto paths as the intermediate nodes do not
support the respective demand. �

Theorem 21. VNEP 〈V |R 〉 is NP-complete and cannot be
approximated under any objective (unless P =NP).

Proof. In this setting only node capacities must be obeyed,
while routing restrictions may be introduced. We employ the
same node capacities as in the proof of Theorem 19, such
that virtual node vi ∈ Vr(φ) may only be mapped on nodes⋃i
k=1Ak. Routing restrictions are set to only allow direct

edges, i.e. E
vi,vj
S = ES(φ) \ (Ai × Aj) holds for each

(vi, vj) ∈ Er(φ). Again, v1 ∈ Vr(φ) must be mapped on a
node in A1, while all other virtual nodes have at least one
incoming edge according to Lemma 18. As multiple virtual
nodes cannot be placed on the same substrate node and virtual
edges must span at least one substrate edge, any node vj can
only be mapped on nodes in Aj for j ∈ {2, . . . ,M}. Together

with the routing restrictions both requirements of Lemma 16
are safeguarded and the result follows. �

Theorem 22. VNEP variants 〈 - |NR 〉 and 〈 - |NL 〉 are
NP-complete and cannot be approximated under any objec-
tive (unless P =NP).

Proof. In both cases capacities are not considered at all.
Allowing for node placement restrictions, the first property
of Lemma 16 is easily safeguarded (cf. proof of Theorem 20).
By employing the same routing restrictions as in the proof of
Theorem 21 the result follows directly for the case 〈 - |NR 〉.
Latency restrictions can be easily used to enforce that virtual
edges do not span more than a single substrate edge. Con-
cretely, we set unit substrate edge latencies and unit virtual
edge latency bounds: if an edge was to be embedded via
more than one edge, the latency restrictions would be violated.
Hence, the result also holds for 〈 - |NL 〉. �

V. NP -COMPLETENESS OF COMPUTING
APPROXIMATE EMBEDDINGS

Given the hardness results presented in Section IV, the
question arises to which extent the hardness can be overcome
when only computing approximate embeddings (cf. Defini-
tion 10), i.e. embeddings that may violate capacity constraints
or exceed latency constraints by certain factors. Based on the
proofs presented in Section IV, we first derive hardness results
for computing α-approximate embeddings (allowing node
capacity violations) and γ-approximate embeddings (allowing
latency violations). For β-approximate embeddings (allowing
edge capacity violations) a reduction from an edge-disjoint
paths problem is presented in our technical report [22].

Theorem 23. For 〈VE | - 〉 and 〈V |R 〉 finding an α-
approximate embedding is NP-complete as well as inapprox-
imable under any objective (unless P =NP) for any α < 2.

Proof. Assume that there exists an algorithm computing α-
approximate embeddings for α = 2− ε, 0 < ε < 1. We adapt
the proofs of Theorem 19 and 21 slightly. First, note that for
α-approximate mappings validity still has to hold according
to Definition 10. Hence, by the decreasing node capacities
the virtual node vj can only be mapped on substrate nodes⋃j
k=1Ak. Furthermore, by either enforcing edge capacities

or edge routing restrictions, the node vj can still only be
mapped on Aj . Hence, the only missing piece to show that
the respective proofs still hold is the fact that still at most
a single virtual node can be mapped on a single substrate
node. To ensure, that this still holds, we adapt the capacities.
Concretely, we choose λ, such that λ < ε/(2 · |Cφ|) holds.
Hence, the capacity of any substrate node is less than 1+ε/2.
By relaxing the capacity constraints by the factor 2 − ε,
the allowed substrate node allocations are upper bounded by
(1 + ε/2) · (2 − ε) = 2 − ε − ε2/2 < 2. As the demand of
any virtual node is larger than 1, still at most a single virtual
node can be mapped on a substrate node. Hence, the respective
proofs still apply and the results follow. �

61

The result for γ-approximate embeddings can be obtained
in a very similar fashion.

Theorem 24. For 〈 - |NL 〉 finding an γ-approximate embed-
ding is NP-complete as well as inapproximable under any
objective (unless P =NP) for any γ < 2.

Proof. The proof of Theorem 22 relied on the fact that due
to the latency constraints each virtual edge must be mapped
on a single substrate edge. As the latencies of substrate edges
are uniformly set to 1 and all latency bounds are 1 as well,
computing a γ-approximate embedding for γ < 2 implies that
each virtual edge can still only be mapped on a single substrate
edge. Hence, the result of Theorem 22 remains valid. �

For β-approximate embeddings similar results can be ob-
tained via a reduction from an edge-disjoint paths problem.
Due to space constraints we only state our main result and
refer the reader to our technical report for the proof [22].

Theorem 25. Finding a β-approximate embedding for the
VNEP variants 〈VE | - 〉 and 〈E |N 〉 is hard to approximate
for β ∈ Θ(log n/ log log n), n = |VS |, unless NP ⊆
BP-TIME(

⋃
d≥1 n

d log logn) holds.

Note that above BP-TIME(f(n)) denotes the class of
problems solvable by probabilistic Turing machines in time
f(n) with bounded error-probability [24].

VI. NP -COMPLETENESS UNDER GRAPH RESTRICTIONS

All of our NP-completeness results (except Theorem 25)
are based on a reduction from 3-SAT, yielding a specific
directed-acylic substrate graph GS(φ) and a specific directed
acyclic request graph Gr(φ) and we note the following.

v1 v3v2

u1 u2 u4u3 u1 u2 u4u3

u1 u2 u4u3

planar graph Gφ

planar graph Gr(φ)

v1 v3v2 v1 v3v2

v1 v3v2

Fig. 3. Depicted is the transformation process of a planar graph Gφ
(cf. Definition 27) to the planar graph Gr(φ). Concretely, the example for-
mula of Figure 2 is revisited, i.e. φ = C1∧C2∧C3, with C1 = x1∨x2∨x3,
C2 = x̄1 ∨ x2 ∨ x4, and C3 = x2 ∨ x̄3 ∨ x4. In the first step all edges are
directed, such that edges from clause nodes are oriented towards literal nodes
iff. the literal occurs in the respective clause for the first time (according to the
ordering of clause nodes). In the second step, each outgoing edge of a literal
node is joined with the single incoming edge (duplicating it when necessary),
hence allowing to remove the literal nodes. In the last step, duplicate edges are
removed, yielding the request graph Gr(φ). Each step of this transformation
process safeguards the graph’s planarity.

Observation 26. Theorems 19 - 24 still hold when restricting
the request and the substrate to acyclic graphs.

Given the hardness of the VNEP and as for example
Virtual Clusters (an undirected star network) can be optimally
embedded in polynomial time [7], one might ask whether the
hardness is preserved when restricting request graphs further.

In this section, we derive the result that the VNEP variants
considered in this paper remain NP-complete when request
graphs are planar and degree-bounded. Our results are obtained
by considering a planar variant of 3-SAT. The planarity of a
formula φ is defined according φ’s graph interpretation:

Definition 27 (Graph Gφ of formula φ). The graph Gφ =
(Vφ, Eφ) of a SAT formula φ is defined as follows. Vφ contains
a node vi for each clause Ci ∈ Cφ and a node uk for each
literal xk ∈ Lφ. An undirected edge {vi, uk} is contained in
Eφ, iff. the literal xk is contained in Ci (either positive or
negative). Note that the graph Gφ is bipartite. �

An example for the interpretation Gφ is depicted in Fig-
ure 3. Kratochvı́l [25] considered the following variant of
4P3C-3-SAT and proved its NP-completeness.

Definition 28 (4P3C-3-SAT). The 4-Bounded Planar 3-
Connected 3-SAT (4P3C-3-SAT) considers only 3-SAT for-
mulas φ for which the following holds:
(1) In each clause, exactly 3 distinct literals are used.
(2) Each literal occurs in at most 4 clauses.
(3) The graph Gφ is planar.
(4) The graph Gφ is vertex 3-connected. �

Theorem 29 ([25]). 4P3C-3-SAT is NP-complete.

The following lemma connects 4P3C-3-SAT formulas φ
with the corresponding request graphs Gr(φ).

Lemma 30. Given a 4P3C-3-SAT formula φ, the following
holds for the request graph Gr(φ) (cf. Definition 15):
1) The request graph Gr(φ) is planar.
2) The node-degree of Gr(φ) is bounded by 12.

Proof. We consider an arbitrary 4P3C-3-SAT formula φ to
which the conditions of Definition 28 apply. We first show that
the corresponding request graph Gr(φ) is planar by detailing
a transformation process leading from Gφ to Gr(φ) while
preserving planarity (see Figure 3 for an illustration).

Starting with the undirected graph Gφ, the edges are first
oriented: an edge is oriented from a clause node to a literal
node iff. the literal occurs in the respective clause for the
first time according to the clauses’ ordering. Note that while
many reductions in Section IV required the reordering of
clause nodes according to Lemma 18, this reordering preserves
planarity as the structure of the graph Gφ does not change.

Given this directed graph, the literal nodes are now removed
by joining the single incoming edge of the literal nodes
with each outgoing edge of the corresponding literal node.
In particular, consider the literal node x2 of Figure 3: the
single incoming edge (C1, x2) is joined with the outgoing
edges (x2, C2) and (x2, C3) to obtain the edges (C1, C2)

62

and (C1, C3), respectively. As the duplication of the single
incoming edge cannot refute planarity and all incoming and
outgoing edges connect to the same node, the planarity of
the graph is preserved in this step. Lastly, duplicate edges are
removed to obtain the graph Gr(φ), which is, in turn, planar.

It remains to show, that the request graph Gr(φ) corre-
sponding to φ exhibits a bounded node-degree of 12 (in the
undirected interpretation of the graph Gr(φ)). To see this,
we note the following: based on the first two conditions of
Definition 28, each clause node connects to exactly 3 literal
nodes and each literal node connects to at most 4 clause nodes.
Hence, when removing the literal nodes in the transformation
process, the degree of each node may increase at most by
a factor of 4. As any clause node had 3 neighboring literal
nodes, this implies that the degree of any node is at most 12
after the transformation process, completing the proof. �

Given the above, we easily derive the following theorem:
Theorem 31. Theorems 19 - 24 hold when restricting the
request graphs to be planar and / or degree 12-bounded.
Theorem 25 holds for planar and degree 1-bounded graphs.

Proof. Our NP-completeness proofs in Section IV and Sec-
tion V (except for Theorem 25) relied solely on the reduction
from 3-SAT to VNEP using the base Lemma 16. As formulas
of 4P3C-3-SAT are a strict subset of the 3-SAT formulas, the
base Lemma 16 is still applicable for 4P3C-3-SAT formulas.
However, due to the structure of 4P3C-3-SAT formulas, the
corresponding requests in the reductions are planar and exhibit
a node-degree bound of 12 by Lemma 30. Hence, solving the
VNEP is NP-complete, even when restricting the requests to
planar and / or degree-bounded ones. Lastly, as proven in our
technical report [22], Theorem 25 holds for planar and degree
1-bounded requests, concluding the proof. �

VII. CONCLUSION

We presented a comprehensive set of hardness results for the
VNEP and its variants, which lie at the core of many resource
allocation problems in networks. Our results are negative in
nature: we show that the problem variants are NP-complete
and hence inapproximable (unless P =NP) and that this
holds true even for restricted classes of request graphs.

We believe that our results are of great importance for
future work on several of the virtual network embedding
problems. For example, our results on the variant enforcing
node placement and latency restrictions are of specific interest
for Service Function Chaining. Surprisingly, the respective
problem is hard even when not considering any capacity
constraints. Furthermore, we have shown that it is hard to
compute embeddings satisfying latency bounds within a factor
of (less than) two times the original bounds. In turn, whenever
latency bounds must be obeyed strictly, one needs to rely on
exact algorithmic techniques as e.g. Integer Programming.

ACKNOWLEDGEMENTS

This work was partially supported by Aalborg University’s
PreLytics project as well as by the German BMBF Software
Campus grant 01IS1205.

REFERENCES

[1] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 5, 2012.

[2] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual net-
work embedding with coordinated node and link mapping,” in IEEE
INFOCOM, 2009.

[3] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, 2013.

[4] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), 2014.

[5] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, Oct. 2015.

[6] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proceedings of the ACM SIGCOMM
2011 Conference, New York, NY, USA, 2011.

[7] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting
virtual cluster embeddings,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 3, 2015.

[8] G. Even, M. Medina, G. Schaffrath, and S. Schmid, “Competitive and
deterministic embeddings of virtual networks,” Theoretical Computer
Science, vol. 496.

[9] M. Rost, S. Schmid, and A. Feldmann, “It’s about time: On optimal
virtual network embeddings under temporal flexibilities,” in IEEE 28th
International Parallel and Distributed Processing Symposium, 2014.

[10] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, Feb. 2012.

[11] G. Schaffrath, S. Schmid, and A. Feldmann, “Optimizing long-lived
cloudnets with migrations,” in Proceedings of the 2012 IEEE/ACM Fifth
International Conference on Utility and Cloud Computing, 2012.

[12] L. R. Bays, R. R. Oliveira, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Security-aware optimal resource allocation for virtual network
embedding,” in Proceedings of the 8th International Conference on
Network and Service Management. IFIP, 2013.

[13] J. Inführ and G. R. Raidl, “Introducing the virtual network mapping
problem with delay, routing and location constraints,” in Network
Optimization, J. Pahl, T. Reiners, and S. Voß, Eds. Springer, 2011.

[14] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in sdns,” in Structural Information
and Communication Complexity, J. Suomela, Ed. Springer, 2016.

[15] M. Rost and S. Schmid, “Virtual Network Embedding Approximations:
Leveraging Randomized Rounding,” in (to appear) Proceedings IFIP
Networking 2018, 2018, preprint available at arXiv:1803.03622 [cs.NI].
[Online]. Available: http://arxiv.org/abs/1803.03622.

[16] ——, “(FPT-)Approximation Algorithms for the Virtual Network
Embedding Problem,” Tech. Rep. arXiv:1803.04452 [cs.NI], March
2018. [Online]. Available: http://arxiv.org/abs/1803.04452

[17] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar, “Hardness of
routing with congestion in directed graphs,” in Proceedings of the Thirty-
ninth Annual ACM Symposium on Theory of Computing, 2007.

[18] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout problems,”
ACM Computing Surveys, vol. 34, no. 3, Sep. 2002.

[19] D. Eppstein, “Subgraph isomorphism in planar graphs and related
problems,” in Graph Algorithms and Applications I, 2011.

[20] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.
2002, [Online]. Available: http://repository.cmu.edu/compsci/86/.

[21] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the computa-
tional complexity of the virtual network embedding problem,” Electronic
Notes in Discrete Mathematics, vol. 52, pp. 213 – 220, 2016.

[22] M. Rost and S. Schmid, “NP-Completeness and Inapproximability
of the Virtual Network Embedding and Its Variants,” CoRR, vol.
abs/1801.03162, 2018. [Online]. Available: http://arxiv.org/abs/1801.
03162

[23] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[24] S. Arora and B. Barak, Computational complexity: a modern approach.
Cambridge University Press, 2009.

[25] J. Kratochvı́l, “A special planar satisfiability problem and a consequence
of its np-completeness,” Discrete Applied Mathematics, vol. 52, no. 3,
1994.

63

Breaking Service Function Chains with Khaleesi
Sara Ayoubi, Shihabur Rahman Chowdhury, and Raouf Boutaba

David R. Cheriton School of Computer Science, University of Waterloo
{sayoubi | sr2chowdhury | rboutaba}@uwaterloo.ca

Abstract—Network Function Virtualization (NFV) has recently
emerged as a means to replace vendor specific, purpose built
equipment with commodity hardware and leverage the open APIs
and application orchestration for on demand deployment and
scaling of network services. A well studied problem in NFV is
the orchestration of Service Function Chains, (SFCs), i.e., a set of
Virtual Network Functions (VNFs) chained together to realize a
network service. State-of-the-art literature on SFC orchestration
assumes a strict traversal order of VNFs in an SFC and less
attention has been paid to SFCs with relaxed VNF orderings. In
this paper, we address the problem of Flexible Service Function
Chain Orchestration that jointly allocates compute and network
resources for SFCs while considering a relaxed traversal order for
some pairs of VNFs. We propose Khaleesi, a suite of solutions that
consists of: (i) an Integer Linear Program (ILP) for optimally
solving the problem; and (ii) a heuristic algorithm to scale to
larger instances of the problem. Our simulation results show
that flexible SFCs can increase revenue earned per unit cost by
as much as ≈10% compared to a rigid SFC.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] has received
significant traction in recent years for its ability to decouple
packet processing software, i.e., Network Functions (NFs)
from specialized hardware middleboxes. NFV proposes to run
the NFs as Virtual Network Functions (VNFs) on commodity
hardware and leverages advances in application orchestra-
tion for on-demand provisioning of Service Function Chains
(SFCs), i.e., an ordered sequence of VNFs that implements a
network service. The capability of on-demand service provi-
sioning and the consolidation of multiple NFs on commodity
hardware enable the network operators to reduce their opera-
tional and capital expenditures.

However, the full benefits offered by NFV cannot be fully
reaped without efficient resource allocation mechanisms for
provisioning the SFCs. As a result, a significant body of
research has been dedicated to address the problem of SFC
orchestration, i.e., joint allocation of compute and network
resources to provision SFCs with Quality of Service (QoS)
(e.g., minimum bandwidth or maximum delay) requirements.
SFC orchestration has been shown to be NP-hard [2] and
a number of its variants have been studied in the research
literature [3]. Despite the significant research efforts in solving
SFC orchestration, little attention has been paid to the actual
semantics of the VNFs while allocating resources for them. As
a result, SFC has been mostly considered as a rigid sequence
of VNFs, i.e., the order of the VNFs cannot be modified. In this
work, we take a closer look at the semantics of VNFs and show
that VNF traversal order can be changed without modifying the

semantics of an SFC, and that such flexibility can be leveraged
to perform better resource allocation for SFCs.

As an illustrative example, consider the following VNFs:
a WAN optimizer that compresses and decompresses HTTP
payload and a Probe that counts flows with a given layer 3
and layer 4 signature. These VNFs work on disjoint parts
of a packet. Therefore, if they are next to each other in an
SFC, swapping their order will neither affect the set of packets
exiting the chain, nor the internal state of the VNFs (we call
such VNFs reorder-compatible). Now consider the example
SFC in Fig. 1(a), where the Probe, WAN Optimizer and Shaper
requires 2, 3, and 2 CPU cores, respectively. If we consider the
SFC to be rigid (i.e., the order of VNFs cannot be modified)
then the only possible provisioning solution is the one shown
in Fig. 1(b). However, if we consider the reorder-compatibility
of Probe and the WAN Optimizer, then we can swap their
order in the SFC and provision the SFC as shown in Fig. 1(c).
Note that, by leveraging the flexibility in VNF ordering, we
provisioned the same SFC with 50% less network bandwidth.

Considerations for flexible SFCs are not entirely new. Early
works in this area [4]–[6] proposed languages and data models
to represent flexible SFC requests. However they do not
discuss how the flexibility can be determined in the first
place. More recently, Parabox [7] and NFP [8] proposed to
parallelize VNF execution in an SFC by introducing additional
components. In contrast, we do not assume any additional
components for changing the order of VNFs in an SFC.
Moreover, no quantifiable results exist in the research literature
that demonstrates if any benefit can be gained from flexibility
in VNF ordering. In this paper, we fill this gap in research
literature with the following contributions:

• Theoretical foundation for determining reorder compati-
bility of VNFs and the mathematical models to represent
such flexibility in an SFC.

• The first quantifiable result showing the benefits of flexi-
ble SFC orchestration over its rigid counterpart. Our em-
pirical results demonstrate as much as 10% improvement
in revenue earned per unit cost compared to rigid SFCs.

• Khaleesi1, a suite of solutions to the Flexible SFC or-
chestration problem consisting of: (i) OPT-Khaleesi, an
Integer Linear Program (ILP) formulation for optimally
solving the flexible SFC orchestration problem. To the
best of our knowledge, this is the first optimal solution
proposed for such problem, and (ii) FAST-Khaleesi, A

1A character in popular fantasy novel “A Song of Ice and Fire”, who is
also known as the breaker of chains

ISBN 978-3-903176-08-9 2018 IFIP

(a) Service Function Chain (b) Placement of a Rigid SFC (c) Flexible SFC (Probe and WANX
swapped)

Fig. 1. Motivational Example

heuristic algorithm to solve larger instances of the prob-
lem. Simulation results show that FAST-Khaleesi allocates
≈2× extra resources and accepts ≈20% less SFC re-
quests on average compared to the optimal solution.

The rest of the paper is organized as follows. We begin with
a discussion of related work in Section II. Next, we present
the theoretical foundations for identifying re-order compatible
VNFs in Section III. In Section IV we present the system
model and formally define the problem. We present our ILP
formulation in Section V, followed by the heuristic in Sec-
tion VI. Our evaluation results are presented in Section VII. In
Section VIII we provide a brief discussion on the operational
aspects that may limit the flexibility of SFCs. Finally, we
conclude with some future research directions in Section IX.

II. RELATED WORK

Since the publication of introductory white paper in late
2013, research in NFV has gained significant traction over the
past few years. In the following, we discuss the state-of-the-
art in SFC orchestration with a specific focus on research that
considers relaxed order of VNFs in an SFC.

SFC orchestration is one of the most well studied problem in
NFV. It has been addressed with different objective functions
e.g., maximizing the number of admitted SFCs [9], minimiz-
ing operational cost [2], minimizing the number of servers
used [10], minimizing network resource utilization [11], min-
imizing the number of VNF instances used [4], [12] among
others. For a comprehensive survey on resource allocation in
NFV readers are referred to [3]. Approaches to solve these
problems include variants of Linear Programming [4], [10],
[11], Cut-and-solve method [9], polynomial time heuristic
design [2], [12], approximation algorithm [13], etc. However,
majority of these works assume a rigid SFC and do not
leverage the flexibility of reorder compatibility between NFs.

Only a handful of research has considered relaxed ordering
of NFs in an SFC. For instance [5] proposes a context free
grammar to represent an SFC request with flexible parts. The
flexible parts are segments of NFs that can be traversed in any
arbitrary order. An extension of this work is presented in [6]
where the authors propose a YANG data model to represent
flexible structures. The authors also propose a Pareto-optimal

solution and a heuristic to allocate resources for such SFCs
with flexible parts. However, works such as [5], [6], [14]
neither quantify the advantages in resource allocation stem-
ming from flexible VNF ordering in an SFC over its rigid
counterpart, nor do they shed light on the aspects that may
affect such flexibility. More recently, Parabox [7] and NFP [8]
proposed to relax the strict ordering of VNFs in an SFC
and parallelize some of them to reduce end-to-end latency.
However, to do so, additional components were introduced for
splitting incoming packets to parallelized functions and also to
combine their output. This incurs overhead in terms of network
resources and processing delays. In contrast, we identify “re-
order compatible” VNFs that can be swapped without adding
any additional functions.

III. RE-ORDER COMPATIBILITY OF VNFS

Flexible SFCs can bring benefits in terms of resource
allocation, thereby freeing up resources for more SFCs to be
admitted. This can indeed increase infrastructure provider’s
revenue in the long run. Flexible SFCs have been preliminarily
addressed before in [6] and [7]. However, in [6], the flexibility
of the chain is an input to the orchestration problem. In
[7], [8], the authors identify independent VNFs to increase
parallelism in the chain. The concept of independent VNFs is
somewhat similar to reorder compatible VNFs, however, not
every independent pair of VNFs is re-order compatible. To
the best of our knowledge, no existing work has yet formally
defined re-order compatible VNFs. In the following, we lay
the necessary theoretical foundation for identifying reorder
compatible VNFs.

In a nutshell, two VNFs are considered re-order compatible
if swapping their order in an SFC does not violate the SFC’s
semantics, i.e., results in two semantically equivalent SFCs.
We formally define semantically equivalent SFCs as follows:

Definition 1. Semantically Equivalent SFC: Two SFCs S1

and S2 composed of the same set of VNFs, F , in different order
are semantically equivalent if: (i) for an ordered sequence of
input packets pin, both S1 and S2 produce identical ordered
sequence of output packets, and (ii) after processing a packet

65

p ∈ pin the internal state of any VNF fi ∈ F is identical in
both S1 and S2.

As a packet traverses an SFC, a VNF in the SFC performs
any combination of the following three actions: (i) reads from
the packet, (ii) modifies the packet, and (iii) updates its own
internal state. For instance, while traversing a NAT, the source
IP and source MAC address of a packet are modified, as well
as the NAT’s address translation table. In another instance, a
probe may keep a count of the number of UDP packets that
are sent/received and updates the count after a packet passes
through it. Since SFCs provide a form of value-added service,
therefore it is important to ensure that any flexible structure
of the SFC provides the same service to the flows as well as
the constituent VNFs have identical internal states.

To formalize this, we refer to the set of packet2 fields that a
VNF reads or modifies as “interest fields”, denoted as Hi

f , and
the set of packet fields that affects the internal state of a VNF
as “state fields”, denoted as Hs

f . Every h ∈ H = Hi
f ∪ Hs

f

is expressed as a (byte offset, byte length) pair (e.g., source
MAC can be expressed as a pair (6, 6)), which allows us to
express interest fields and header fields in a protocol agnostic
way (similar to [15]). By comparing the interest and state fields
of two VNFs, we can determine their re-order compatibility.

Two VNFs are re-order compatible when their interest and
state fields are mutually exclusive (e.g., an application-layer
firewall and a network-layer firewall). Furthermore, even when
two VNFs share the same interest and/or state fields, as long as
they do not modify the shared interest and/or state fields their
processing functions remain independent (e.g., a probe and a
Deep Packet Inspector (DPI)). For each VNF, we represent the
set of interest and state fields by a |H|× 3 binary matrix M,
illustrated in Table I. The rows in M represent the different
fields h ∈ H. The columns r and w indicate whether this
particular VNF, f , reads and/or modifies h, respectively. The
column x indicates whether h affects the internal state of f ,
denoted by x = if(h ∈ Hs

f); x ∈ {0,1}. Given two VNFs u and
v and their corresponding matricesMu andMv , respectively,
u and v are re-order compatible if:

∀h ∈ H,∀(k, k′) ∈ {(u, v), (v, u)} :

(Mk[h][r] ∧Mk′ [h][w]) ∨
(Mk[h][w] ∧Mk′ [h][w]) ∨

(Mk[h][x] ∧Mk′ [h][r]) = 0 (1)

Finding the interest and state fields of a VNF is a non-trivial
task and is in fact a separate problem on its own. Different
approaches have been taken in the past including middlebox
modeling [16] [17] [18], header space analysis [19], white-
box testing [20], black-box testing [21], etc. However, it is an
orthogonal problem and is out of the scope of this paper.

A. Illustrative Example

Table II illustrates a re-order compatibility matrix for
some commonly deployed NFs [22], namely firewall, web

2In the rest of the paper by packet we refer to a Layer-2 frame.

TABLE I
INTEREST & STATE FIELD MATRIX M

r w x
h1

h2

....
h|H|

TABLE II
REORDER COMPATIBILITY MATRIX

Firewall Proxy IPS Shaper NAT DPI WANX Probe
Firewall X X X X

Proxy X X X
IPS X X X X

Shaper X X X X X
NAT X
DPI X X X X

WANX X X X X
Probe X X X

proxy, Intrusion Prevention System (IPS), Traffic Shaper, NAT,
payload-DPI, and WAN Optimizer (WANX). We obtained the
interest and state fields for these different VNFs by investigat-
ing existing middlebox models [16], middlebox catalog [23],
IETF drafts [24], Click configuration files [25], and related
research literature [7]. By applying (1) on the obtained interest
and state fields, we obtained the matrix in Table II.

We observe that a network Firewall (besides changing the
MAC address) typically examines layer 2-4 headers, e.g.,
source IP, destination IP, and port numbers, and either forwards
or drops a packet. An IPS analyzes the packet (header and/or
payload) and takes automated actions (drops packet, blocks
traffic, sends alarm, or resets connection). Since a network
firewall and an IPS perform “read-only” actions on common
interest fields they can be swapped without affecting chain
semantics. A traffic shaper classifies network traffic for QoS,
a payload-DPI inspects the packet payload and raises an
alarm if the packet matches a malicious signature. These
VNFs are clearly re-order compatible with a network Firewall.
Finally, a WANX can perform functions such as payload
compression/de-compression, QoS tagging etc., which do not
affect the interest and state fields of a network firewall. This
renders them also re-order compatible. However, a network
firewall and a network probe may not be re-order compatible
because of the Probe’s internal state. For instance, if a probe
is counting the number of incoming connections to port 80,
placing a firewall before the probe will yield a different count
than placing it after the probe.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

We first present a mathematical representation of the inputs,
i.e., the substrate network and the SFC request, then we for-
mally define the problem of orchestrating SFCs with flexible
VNF ordering with lowest resource provisioning cost (Flexible
SFC orchestration for short).

A. Substrate Network

We represent the substrate network (SN) as an undirected
graph Gs = (N,L); where every node n ∈ N is associated

66

with residual compute resource capacity cn and internal-
switching capacity bn. Further, every link l : (i, j) ∈ L is
associated with residual bandwidth capacity bi,j .

B. Virtual Network Functions

The set of available VNFs is represented by F . Each VNF
f ∈ F has compute resource requirement (e.g., number of
CPU cores) df . Additionally, we have a |F×F| matrix R that
represents reorder compatibility between the VNFs. Rf,f ′ = 1
if VNF f ∈ F and f ′ ∈ F are reorder compatible according
to the definition in Section III, 0 otherwise.

C. SFC Request

We represent an SFC request as an directed graph Gv =
(F,E, no, nt), where F is the set of VNFs in the SFC.
Note that we focus on SFCs that are structured as chains.
Considerations for branching in SFCs is left as a future work.
The requested chain E is represented by a set of directed
virtual links, where each virtual link e ∈ E consists of a
pair of consecutive VNFs, and is associated with bandwidth
demand de. Further, each SFC is associated with an ingress
node no ∈ N and an egress node nt ∈ N .

D. Problem Statement

Given an SN Gs, set of VNFs F , a reorder compatibility
matrix R, and a SFC request Gv:

• Place VNF f ∈ F on a server n ∈ N .
• Route exactly |F | − 1 virtual links between the VNFs to

form a chain structure.
• Map each virtual link either to a single substrate path or

to a server.
• The cost of allocating bandwidth from the network to

route the virtual links are minimized subject to the
following constraints:

– Servers and network links cannot be over-committed
to accommodate VNFs and the virtual links.

– A virtual link should be routed on a single path in
the network or placed inside a single server in the
network.

Flexible SFC orchestration bares some similarity with the
well studied Virtual Network Embedding (VNE) problem [26].
However, a fundamental difference between flexible SFC
orchestration and VNE is that the set of virtual links to be
embedded is given as an input to VNE. Whereas, in case of
flexible SFC orchestration this set is not known and is part of
the solution instead.

V. OPT-Khaleesi: ILP FORMULATION

In this section, we first showcase our solution approach that
transforms an SFC to exploit flexibility, followed by OPT-
Khaleesi, our ILP model that optimally solves the flexible SFC
orchestration problem.

A. SFC Transformation

In order to fully exploit the flexibility in a given chain, the
model must become aware of every re-order compatible pair of
VNFs in this chain. To give the model a complete knowledge
of this flexibility, we augment the chain with directed virtual
links. The ensemble of the original chain and the augmented
directed virtual links represent all possible chains that can be
traced. The model then selects the optimal subset of |F |-1
virtual links that routes through every VNF in the chain with
minimum cost. Given an SFC and a re-order compatibility
matrix R, we augment the set E into E′ as follows:
• if Ru,v = 1 and (u → v) ∈ E, links (u → v.next) and

(v → u) are created and added to E′.
• if Ru,v = 1 and (u → v) /∈ E, if Ru,j = 1 ∀ u.next ≤
j ≤ v.prev, links (u → v.next) and (v → u) are created
and added to E′.

• if Ru,v = 1 and (u → v) /∈ E, if Rj,v = 1 ∀ u.next ≤
j ≤ v.prev, links (u → v) and (v → u) are created and
added to E′.

Fig. 2(c) shows the set E′ generated for the SFC presented
in Fig. 2(a) given the re-order compatibility matrix in Fig. 2(b).
Generating the set E′ alone is not sufficient; this is because
not every subset Ē ⊂ E′ renders a valid chain. Concretely,
consider again the chain presented in Fig. 2(c), and recall that
VNFs 0 and 1 are not re-order compatible. Here, while chain
{3→0→1→2} is valid, chain {1→2→3→0} is not. Note that
both chains are made of a combination of virtual links in
E′. Subsequently, we need to ensure that any selected chain
structure Ē ⊂ E′ does not violate any semantics. To do so,
we introduce Ω, a binary matrix, that indicates whether VNF
f can precede function f ′.

Ωf,f ′ =

{
1, if (f, f ′) ∈ E ∨ (Rf,f ′ = 1 ∧ if (f, f ′) ∈ E′),
0, otherwise

Theorem 1. Any chain that adheres to Ω is semantically valid.

Proof. Let Ē ⊂ E′ be semantically invalid. This means that
Ē contains a pair of VNFs (f ,f ′) where f cannot precede f ′.
If f cannot precede f ′, it means that f and f ′ are not re-order
compatible; thus Rf,f ′ = 0 and by definition Ωf,f ′ = (Rf,f ′∧
if (f, f ′) ∈ E′) = 0. This follows that any chain that adheres
to Ω is semantically valid.

B. Decision Variables

A VNF is placed on a node in the SN, which is represented
by the following decision variable:

θfn =

{
1 if VNF f ∈ F is placed on node n ∈ N,
0 otherwise.

The following determines the selection of a virtual link e ∈
E′ for inclusion in the final SFC:

ze =

{
1 if virtual link e ∈ E′ is selected,
0 otherwise.

We use the binary variables xen and yen to indicate placement
of the origin and destination of a virtual link e ∈ E′ on a

67

i e

(a) Service Function Chain

0 0 1 1

0 0 1 1

1 1 0 1

1 1 1 0

(b) Re-order Compatibility Matrix

i e

(c) Augmented Set E′

Fig. 2. Semantically Correct Chains

substrate node n ∈ N . Routing of a virtual link e ∈ E′ is
determined by the following variable:

we
i,j =

{
1 if e ∈ E′ routed on substrate link (i, j) ∈ L,
0 otherwise.

Finally, we use the following variable to derive the ordering
between VNFs in the resultant SFC:

δf,f ′ =

{
1 if VNF f precedes VNF f ′ in the resultant SFC,
0 otherwise.

C. Constraints

1) VNF Placement Constraints: Constraint (2) ensures that
each VNF is placed on at most a single substrate node.
Placement of the origin and destination of each virtual link
is ensured by constraints (3) and (4), respectively. Finally, we
ensure by (5) that either both the source and destination of a
virtual link are placed, or neither.

∀f ∈ F :
∑
n∈N

θfn = 1 (2)

∀e ∈ E′, n ∈ N : xen ≤
∑

f∈F :o(e)=f

θfn (3)

∀e ∈ E′, n ∈ N : yen ≤
∑

f∈F :t(e)=f

θfn (4)

∀e ∈ E′ :
∑
n∈N

xen −
∑
n∈N

yen = 0 (5)

2) SFC Selection Constraints: The first and last VNF in the
resultant SFC is determined by (6) and (7), respectively. Then,
(8) ensures that a virtual link is routed iff both of its endpoints
are placed. Constraints (9) and (10) ensure that every VNF in
the resultant SFC is traversed exactly once. We ensure that
exactly |F | − 1 virtual links are placed by (11). Finally, (12)
is used to break loops between virtual links.

∀ē ∈ E′ : {o(ē) = no},∀f ∈ F :
∑
n∈N

yēn ≤ 1−
∑

e∈E′:{e 6=ē},
{t(e)=f}

ze

(6)

∀ē ∈ E′ : {t(ē) = nt},∀f ∈ F :
∑
n∈N

xēn ≤ 1−
∑

e∈E′:{e 6=ē},
{o(e)=f}

ze

(7)

∀e ∈ E′ : ze ≤
1

2
(
∑
n∈N

xen +
∑
n∈N

yen) (8)

∀f ∈ F :
∑

e∈E′:(o(e)=f)

∑
n∈N

xen ≤ 1 (9)

∀f ∈ F :
∑

e∈E′:(t(e)=f)

∑
n∈N

yen ≤ 1 (10)

∑
e∈E′

ze = |F | − 1 (11)

∀e ∈ E′, e′ ∈ E′ : {o(e) = t(e′) ∧ t(e) = o(e′)} : ze + ze′ ≤ 1
(12)

3) Substrate Capacity Constraints: (13), (14), and (15)
represent the server capacity, internal switching capacity, and
substrate link capacity constraints, respectively.

∀n ∈ N :
∑
f∈F

θfn · df ≤ cn (13)

∀f ∈ F :
∑
e∈E′

(xen · yen) · de ≤ bn (14)

∀(i, j) ∈ L :
∑
e∈E′

∑
(i,j)∈L

we
i,j · de ≤ bi,j (15)

4) SFC Routing Constraints: Constraint (16) represents the
flow conservation for mapping the virtual links. We use (17) to
determine the ordering of VNFs in the resultant SFC. Finally,
(18) ensures that the order of VNFs preserves the SFC’s
semantics.

∀i ∈ N, e ∈ E′ :
∑

j:(i,j∈L)

we
i,j −

∑
j:(j,i)∈L

we
j,i = xei − yei

(16)
∀f ∈ F,∀f ′ ∈ F,∀f ′′ ∈ F : δf,f” ≥ (δf,f ′ · δf ′,f”) + ze:{o(e)=f,

t(e)=f”}
(17)

∀f ∈ F,∀f ′ ∈ F : δf,f ′ ≤ Ωf,f ′

(18)

Note that (14) and (17) contain product of two integer
variables, which renders the model non-linear. However, the
product of two integer variables can be linearized as follows:
For Constraint (14), we introduce a new variable gen ∈ {0, 1}

68

such that:

gen ≤ xen (19)
gen ≤ yen (20)

gen ≥ xen + yen − 1 (21)

Similarly, we linearize Constraint (17) by introducing a new
variable qf,f ′,f ′′ ∈ {0, 1} such that

qf,f ′,f ′′ ≤ δf,f ′ (22)
qf,f ′,f ′′ ≤ δf ′,f ′′ (23)

qf,f ′,f ′′ ≥ δf,f ′ + δf ′,f ′′ − 1 (24)

D. Objective Function

Our objective is to embed the SFC while minimizing the
incurred cost in terms of bandwidth consumption.

minimize
∑
e∈E′

∑
(i,j)∈L

we
i,j

E. Hardness of the Problem

Theorem 2. OPT-Khaleesi is NP-Complete.

Proof. Given a graph Gs=(N ,L), where cn = 1 ∀ n ∈ N and
bl = 1 ∀ l ∈ L. We transform Gs into G′s=(N ′,L′) by adding
an auxiliary node of capacity 0 between every pair (i,j) ∈
L. G′s thus represents an SN where some nodes are servers
and the rest are network nodes. Now assume that we have a
chaotic SFC request of size N with 1 unit demand for each
VNF in the SFC and df = 1. A chaotic SFC refers to an SFC
where all pair of VNFs are re-order compatible. Solving the
Hamiltonian path problem in Gs corresponds to finding a path
that spans every node in N . This is exactly solving the flexible
service chaining problem in G′s since the Hamiltonian path
will span N compute nodes in Gs (the size of the chain).
Conversely, solving the flexible service chaining in G′s would
mean that we have found a chain that spans N compute
nodes. This chain in G′s corresponds to a Hamiltonian path
in Gs. Since computing Hamiltonian path is NP-Complete,
therefore a special case of our problem (i.e., placement of a
chaotic chain of size N) is also NP-Complete. Therefore, by
restriction, OPT-Khaleesi is NP-complete.

VI. FAST-Khaleesi: HEURISTIC SOLUTION

To overcome the computational complexity of OPT-
Khaleesi, we propose FAST-Khaleesi, a heuristic that performs
flexible chaining, VNF placement, and routing with the objec-
tive to minimize bandwidth footprint. FAST-Khaleesi consists
of 4 Steps, and is designed to select the chain that encourages
more virtual links to be routed internally, which in turn reduces
the number of inter-server switching.
• Step 1: Generate all SFCs First, given the set E′,

we trace all possible chains that do not violate any
semantics (i.e., respect Ω) by using backtracking. We
denote this set as S. Generating all possible chains for a
SFC where all VNFs are re-order compatible may yield
an exponential number of combinations O(|F |!) in the

Algorithm 1: FAST-Khaleesi Algorithm
Input: Gs = (N ,L), Gv = (F , E, no, nt), E′

Output: NF Placement and Chain Routing Solution m
1 function FAST-Khaleesi
2 Step 1: Generate all Valid Chains S
3 Step 2: Find all candidate servers in N
4 N̄ = {}
5 forall n ∈ N do
6 if (cn < min∀f∈F df) then
7 continue
8 N̄ = N̄ ∪ {n}
9 rn = |shortestPath(n, n0)|+|shortestPath(n, nt)|

10 SortDescendingOrder(N̄ , cr)
11 M = {}; /*Initialize an empty solution set*/
12 forall s = (F, Ē) ∈ S do
13 Step 3: VNF Placement
14 m̄ = {} /*Initialize an empty solution*/
15 V = F
16 while (|V | > 0) do
17 F̄ = FindMinOpCost∀v∈V (s,N̄)
18 m̄.nmap = m̄.nmap ∪ (F̄ ,n)
19 V = V - F̄
20 Ē = Ē - GetInternallySwitchedLinks(F̄)
21 Step 4: Virtual Link Routing
22 forall (e ∈ Ē) do
23 m̄.emap = m̄.emap ∪ Dijkstra(e)
24 M = M ∪ {m̄}
25 m = FindLowestCostSol(M)
26 return m

worst case. However, in practice, the size of SFC does
not exceed 6 in a DC [27]. Moreover, not all pairs of
VNFs are typically reorder compatible with each other.
Therefore, in practice the actual number of valid chains
is far less than the worst case.

• Step 2: Find Candidate Servers Step 2 consists of
finding a list of candidate servers. A candidate server is a
server with sufficient CPU resources to accommodate any
VNF. Once the list of candidate servers is obtained, we
compute the shortest path between each candidate server
n ∈ N̄ and the ingress no and egress nt nodes of the
chain, respectively. We denote these distances as xo and
xt, respectively. Subsequently, we compute the ratio rn
= cn

xo+xe
for every node n ∈ N̄ . By sorting the servers

in decreasing order of ratio r, we prioritize the servers
with highest capacity and proximity to the chain’s ingress
and egress nodes. This will also potentially reduce the
bandwidth footprint, as the VNFs will be placed close
to the origin and sink of the chain at hand. The time
complexity of Step 2 is O (2 · N̄ · (L + N logN) +
N̄ logN̄) ≤ O(N2logN) by dropping lower-order terms.

• Step 3: VNF Placement The VNF placement is per-
formed for every chain as follows: First, for every can-
didate server n ∈ N̄ and for every VNF f ∈ F , we

69

compute an opportunity cost of placing f along with a
subset of VNFs F̄ on n. The subset F̄ ∪ f with the lowest
opportunity cost is chosen and mapped on node n. Here,
opportunity cost refers to the number of virtual links
that require inter-server switching as result of placing
F̄ ∪ f on n. This cost is reduced by maximizing the
number of virtual links with both end points placed on
the same server. Hence, to minimize the opportunity cost
for every VNF f , we traverse the chain s starting at f , and
every time we find a pair of adjacent VNFs that can be
packed in n without violating its capacity we add them
to F̄ . This iteration is repeated until the placement of
all VNFs is settled. At every iteration, the set of virtual
links that require inter-server routing is updated. The time
complexity of Step 3 is O(|S| · |N̄ | · |F |2).

• Step 4: Inter-Server Routing Finally, for every place-
ment solution generated in Step 3, Dijkstra’s shortest path
algorithm is performed to route the set of virtual links
whose end points are distributed in different servers. The
time complexity of Step 4 is O(|S| · (|L| + |N |log|N |)).

Once Steps 3 and 4 are performed for every SFC, the algorithm
terminates, and the mapping solution with the lowest total
bandwidth consumption is returned. If no feasible mapping
solution can be found for any chain, the SFC is rejected.

VII. PERFORMANCE EVALUATION

We evaluate our proposed solutions in the following sce-
narios: (i) evaluating the benefits of flexible VNF ordering
in SFCs (Section VII-C), and (ii) performance comparison
between FAST-Khaleesi and OPT-Khaleesi (Section VII-D).
Before presenting the results, we describe our simulation setup
in Section VII-A and the evaluation metrics in Section VII-B.

A. Simulation Setup

1) Testbed: We implemented OPT-Khaleesi and FAST-
Khaleesi using IBM ILOG CPLEX 12.5 Java libraries and
Java, respectively. Our testbed consists of machines with
hyper-threaded Intel 8×10-core Xeon E7-8870 CPU and 1TB
of memory. We developed an in-house discrete event simulator
to simulate the arrival and departure of SFCs on an SN.

2) Topology: We used the following two real topologies,
representing two different scenarios and scales for our eval-
uation: (i) Univ-DC: a university data center topology with
23 nodes and 42 links from [28]; and (ii) AS3967: a mod-
erate size ISP topology with 79 nodes and 147 links from
Rocketfuel dataset [29]. (i) represents a data center network,
which typically has high server density compared to an ISP’s
backbone network such as (ii). To represent this diversity in
server density we augmented (i) and (ii) with 144 and 64
servers, respectively, each with 8 CPU cores.

3) Traffic Data: For Univ-DC topology, we used real traffic
traces from the same data center [28] to generate SFC request
between pairs of edge switches. For AS3967, no real traffic
traces are available, hence, we resorted to generating synthetic
traffic. We used FNSS tool [30] and generated time varying
traffic by following the distribution presented in [31].

 1.02

 1.05

 1.08

 1.11

4 5 6 7 8 9 10Ra
tio

 o
f R

ev
en

ue
 p

er
 U

ni
t C

os
t

Mean Arrival Rate

AS3967 Univ-DC

(a) Orchestration of Flexible vs Rigid SFCs

 1.02
 1.05
 1.08
 1.11
 1.14

4 5 6 7 8 9 10Ra
tio

 o
f R

ev
en

ue
 p

er
 U

ni
t C

os
t

Mean Arrival Rate

AS3967 Univ-DC

(b) Impact of considering flexible VNF ordering in existing
SFC orchestration algorithm [2]

Fig. 3. Benefits of Flexible VNF ordering in SFC

4) Middlebox Data: We selected a set of six VNFs from
the ones listed in Table II and computed the reorder compat-
ibility matrix accordingly. We randomly chained subsets of
the selected VNFs to generate SFCs with lengths between 3
and 6. Middlebox CPU requirements were obtained from the
research literature and available vendor data sheets [2], [32].
SFC arrival and departure was generated following a Poisson
distribution with mean arrival rate varied between 4 - 10 SFCs
per 100 time unit. Mean life time of these SFCs were set to
1000 time units. The simulation was run for a total of 10000
time units and included 400 - 960 SFC requests. Note that the
dataset and parameters chosen for evaluation are in accordance
with relevant research literature [3], [26].

B. Evaluation Metrics

1) Acceptance Ratio: The ratio of number of admitted SFC
requests to the total number of SFC requests.

2) Embedding Path Length: Embedding path length is the
sum of lengths of all the paths used for routing all inter-NF
links in an SFC.

3) Revenue per unit cost: Revenue is computed as a func-
tion that is proportional to an SFCs total resource requirement.
Revenue earned per unit cost is calculated by dividing revenue
from an SFC by the SFC’s embedding cost.

C. Benefits of Flexibility in SFCs

We demonstrate the benefits of flexible VNF ordering in
SFCs by evaluating the following two scenarios. First, we
compare results of optimally orchestrating flexible SFCs with
that of orchestrating non-flexible or rigid SFCs. In the second
scenario, we empirically evaluate how much benefit we can
get by feeding all possible SFCs stemming from a flexible
SFC to an existing orchestration algorithm from the literature.

70

The goal is to evaluate how much benefit we can get even
without explicitly considering flexible VNF ordering in an
existing SFC orchestration algorithm. For that purpose, we
use the dynamic programming algorithm from [2].

For the first scenario, we implemented an ILP similar
to [2] for comparison. From the results, we did not observe
much of a difference between the two approaches in terms
of acceptance ratio for different arrival rates. However, the
number of accepted SFCs does not say much about the types
of SFCs that were accepted. Therefore, we further analyzed
the solutions and computed the revenue earned per unit cost
for different arrival rates and present the result in Fig. 3(a).
More specifically, we present the ratio of revenue earned per
unit cost for flexible and rigid cases. The flexible case always
yielded more revenue per unit embedding cost to an extent of
11% compared to the rigid cases.

For the second scenario, we take a black box approach.
Instead of modifying the dynamic programming algorithm
from [2], we executed the algorithm for all valid SFCs that
can be traced from an SFC request. We keep the result with
the lowest cost for each SFC request. We compare the results
from this setting with that from executing [2] on non-flexible
SFCs. The results are presented in Fig. 3(b). We observe that
even without explicitly considering and exploiting flexibility
in SFCs, there is about 10% improvement in revenue earned
per unit cost on average for [2].

The takeaway from this study is that flexibility in SFCs can
yield more revenue per unit cost even for an SFC orchestration
algorithm not designed to handle flexible SFCs. An intuition
behind such result is that the flexibility in an SFC leads to
reordering of some of the VNFs to accept some more resource
demanding ones compared to the non-flexible case.

D. FAST-Khaleesi vs. OPT-Khaleesi

1) Acceptance Ratio: We present the cumulative accep-
tance ratio of OPT-Khaleesi and FAST-Khaleesi for both SN
topologies in Fig. 4 with 5th and 95th percentile error bars.
We consider the first 1000 time units of simulation as the
warm up period and discard results from that period. For
a compute resource constraint environment as in AS3967,
the performance gap between the heuristic and the optimal
is larger than Univ-DC topology. Nonetheless, we found the
heuristic to accept no greater than 20% less SFC requests on
average compared to the optimal solution.

2) Mean Embedding Path Length: Our cost function is pro-
portional to the embedding path length for an SFC. Therefore,
we compare the mean embedding path length across all SFC
requests to gain an estimate as to how much far off is the
heuristic from the optimal solution. The results for both of the
topologies are presented in Fig. 5. For the data center topology
where network diameter is relatively smaller compared to the
ISP topology, the heuristic’s mean embedding path was within
20% of that of the optimal solution. However, on a network
with larger diameter such as the ISP topology we used, this
stretch increased up to ≈2× the optimal solution.

 0.6
 0.7
 0.8
 0.9

 1

4 5 6 7 8 9 10

Ac
ce

pt
an

ce
 R

at
io

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(a) Univ-DC Topology

 0.3
 0.4
 0.5
 0.6
 0.7

4 5 6 7 8 9 10

Ac
ce

pt
an

ce
 R

at
io

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(b) AS3967 Topology
Fig. 4. Acceptance Ratio vs. Load

 4

 8

 12

 16

4 5 6 7 8 9 10M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(a) Univ-DC Topology

 0
 10
 20
 30
 40
 50

4 5 6 7 8 9 10M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(b) AS3967 Topology
Fig. 5. Comparison of Mean Embedding Path Length

We also show the Cumulative Distribution Function (CDF)
of embedding path length of one fixed arrival rate in Fig. 6.
The purpose is to show the breakdown of the length distri-
bution and try to understand the long errorbars in Fig. 5. As
we can see, the heuristic demonstrates a long tailed CDF. This
long tail is due to the heuristic’s shortcoming of finding a good
solution when the network is very close to saturation.

3) Execution Time: Execution time for OPT-Khaleesi and
FAST-Khaleesi for embedding a single SFC request is pre-
sented in Table III. Note that execution time for Univ-DC
is higher than that of AS3967. This is because, majority of
the execution time in both of the solutions is spent to find

71

 0

 0.5

 1

 5 10 15 20 25

C
D

F

Embedding Path Length

OPT-Khaleesi FAST-Khaleesi

(a) Univ-DC Topology

 0

 0.5

 1

 0 15 30 45 60 75

C
D

F

Embedding Path Length

OPT-Khaleesi FAST-Khaleesi

(b) AS3967 Topology

Fig. 6. Mean Embedding Path Length vs. Load

TABLE III
AVERAGE EXECUTION TIME PER SFC REQUEST

Topology OPT-Khaleesi FAST-Khaleesi
Univ-DC 4538ms 61ms
AS3967 1920ms 43ms

suitable placement of VNFs on the servers. Recall that the data
center topology has higher number of servers, hence, higher
execution time despite being smaller than AS3967.

VIII. DISCUSSION

In light of the above, we clearly can see potential advantages
of flexible structures over the rigid ones. However, the degree
of flexibility that might be available in a network not only
depends on the types of VNFs deployed, but also on the op-
erator’s policies and customer requirements. There are certain
NFs, which by policy might not be flexible at all. For instance,
a network’s policy or a customer’s requirement may govern
that all incoming and outgoing traffic must traverse through
a firewall. In such cases, even if the VNF is reorder compat-
ible with others, it cannot be considered for such flexibility.
However, there are indeed some NFs that are deployed for
performance enhancement purposes such as a WAN Optimizer,
Video Transcoder, Traffic Shaper etc., that may have less strict
requirement on their order. Our solution can also work with
such operator policies. In such cases, where we have additional
constraints imposed by policies, setting appropriate entries in
R before running the optimizations should be sufficient.

IX. CONCLUSION

In this paper, we have taken a first step towards studying
the impact of flexibility in SFCs and also how such flexibility
can be leveraged for resource allocation. We present the
first quantifiable results showing the potential benefits of
flexible SFCs over rigid ones. Our results show that indeed
there is improvement in revenue per unit cost, however, the
significance of this improvement can be better explained when
it is translated into actual monetary values. To the best of our
knowledge, we are the first to propose an ILP-based optimal
solution to the problem. We also propose a heuristic that
performs within 2× of the optimal solution on average while
executing orders of magnitude faster.

Flexibility in SFC can be leveraged in other scenarios as
well. For instance, in the event of substrate node or link failure,
flexibility can be leveraged for restoring failed SFCs while

minimizing backup footprint. Another interesting direction is
to investigate how flexibility in SFC can be applied for re-
optimizing resource allocation to alleviate bottlenecks.

REFERENCES

[1] “Network Functions Virtualisation - Introductory White Paper,” Oct
2012. [Online]. Available: https://portal.etsi.org/nfv/nfv white paper.pdf

[2] F. Bari et al., “Orchestrating virtualized network functions,” IEEE Trans.
on Net. and Service Management, vol. 13, no. 4, pp. 725–739, 2016.

[3] J. G. Herrera et al., “Resource allocation in nfv: A comprehensive
survey,” IEEE Trans. on Net. and Service Management, vol. 13, no. 3,
pp. 518–532, 2016.

[4] S. Mehraghdam et al., “Specifying and placing chains of virtual network
functions,” in Proc. of IEEE CloudNet, 2014, pp. 7–13.

[5] ——, “Placement of services with flexible structures specified by a yang
data model,” in Proc. of IEEE NetSoft, 2016.

[6] S. Dräxler et al., “Specification, composition, and placement of network
services with flexible structures,” International Journal of Network
Management, vol. 27, no. 2, 2017.

[7] Y. Zhang et al., “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proc. of ACM SOSR, 2017, pp. 143–
149.

[8] C. Sun et al., “Nfp: Enabling network function parallelism in nfv,” in
Proc. of ACM SIGCOMM, 2017, pp. 43–56.

[9] S. Ayoubi et al., “A cut-and-solve based approach for the vnf assignment
problem,” IEEE Trans. on Cloud Computing, 2017.

[10] H. Moens et al., “Vnf-p: A model for efficient placement of virtualized
network functions,” in Proc. of CNSM, 2014, pp. 418–423.

[11] B. Addis et al., “Virtual network functions placement and routing
optimization,” in IEEE CloudNet, 2015, pp. 171–177.

[12] M. C. Luizelli et al., “Piecing together the nfv provisioning puzzle:
Efficient placement and chaining of virtual network functions,” in Proc.
of IFIP/IEEE IM, 2015, pp. 98–106.

[13] R. Cohen et al., “Near optimal placement of virtual network functions,”
in Proc. of IEEE INFOCOM, 2015, pp. 1346–1354.

[14] W. Ma et al., “Traffic aware placement of interdependent nfv middle-
boxes,” in Proc. of IEEE INFOCOM, 2017, pp. 1–9.

[15] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proc. of ACM HotSDN,
2013, pp. 127–132.

[16] D. Joseph et al., “Modeling middleboxes,” IEEE network, vol. 22, no. 5,
2008.

[17] A. Panda et al., “Verifying reachability in networks with mutable
datapaths.” in Proc. of USENIX NSDI, 2017, pp. 699–718.

[18] S. K. Fayaz et al., “Buzz: Testing context-dependent policies in stateful
networks.” in Proc. of USENIX NSDI, 2016, pp. 275–289.

[19] P. Kazemian et al., “Header space analysis: Static checking for net-
works.” in Proc. of USENIX NSDI, 2012, pp. 113–126.

[20] W. Wu et al., “Automatic synthesis of nf models by program analysis,”
in Proc. of ACM HotSDN, 2016, pp. 29–35.

[21] ——, “Network function modeling and its applications,” IEEE Internet
Computing, vol. 21, no. 4, pp. 82–86, 2017.

[22] J. Sherry et al., “Making middleboxes someone else’s problem: network
processing as a cloud service,” ACM SIGCOMM Computer Comm. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[23] S. W. Brim et al., “Middleboxes: Taxonomy and issues,” 2002.
[24] N. Freed, “Behavior of and requirements for internet firewalls,” 2000.
[25] J. Martins et al., “Clickos and the art of network function virtualization,”

in Proc. USENIX NSDI, 2014, pp. 459–473.
[26] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Comm.

Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.
[27] S. Kumar et al., “Service function chaining use cases in data centers,”

IETF SFC WG, 2015.
[28] T. Benson et al., “Network traffic characteristics of data centers in the

wild,” in Proc. of ACM IMC, 2010, pp. 267–280.
[29] N. Spring et al., “Measuring isp topologies with rocketfuel,” ACM

SIGCOMM Computer Comm. Rev., vol. 32, no. 4, pp. 133–145, 2002.
[30] L. Saino et al., “A toolchain for simplifying network simulation setup,”

in Proc. of SIMUTools, 2013, pp. 82–91.
[31] A. Nucci et al., “The problem of synthetically generating ip traffic

matrices: initial recommendations,” ACM SIGCOMM Computer Comm.
Rev., vol. 35, no. 3, pp. 19–32, 2005.

[32] “Wanos wan optimizer admin guide - hardware requirements.” [On-
line]. Available: http://wanos.co/docs/docs/wanos-admin-guide/getting-
started/hardware-requirements/

72

Factors Affecting Performance of Web Flows in

Cellular Networks

Ermias Andargie Walelgne∗, Setälä Kim∗‡, Vaibhav Bajpai†, Stefan Neumeier†, Jukka Manner∗ and Jörg Ott†

∗Aalto University, Finland, ‡ Elisa Oy, Finland

(ermias.walelgne | kim.setala | jukka.manner)@aalto.fi
†Technische Universität München, Germany

(bajpaiv | neumeier | ott)@in.tum.de

Abstract—Studies show that more than 95% of the traffic
generated by smartphones typically consists of short-lived TCP
flows towards websites. The content of such websites often
is distributed across multiple servers which requires clients
to resolve multiple DNS names and establish multiple TCP
connections to fetch the webpage in its entirety. Studies have
shown that network latency in a mobile network (attributed to
DNS lookup and TCP connect times) contributes heavily to poor
experience when browsing such websites. However, there is little
understanding of the factors that contribute to high DNS lookup
and TCP connect times. In this paper, we take this further by
measuring the Domain Name System (DNS) lookup time and the
TCP connect time to popular websites from ∼25K subscribers
of a cellular network operator in Finland. Using a month-long
dataset (Oct 2016) of these measurements, we show that LTE
offers considerably faster DNS lookup time compared to legacy
cellular networks (such as HSPA+ and UMTS). We also show
that the model of the device and the proximity of the DNS server
to the subscribers impacts the DNS lookup time. Furthermore,
the TCP connect time is also affected by the radio technology.
We observe that LTE offers a significantly low latency profile
such that the TCP connect time to popular websites is reduced
by ∼80% compared to legacy cellular networks. The presence of
ISP caches also considerably improves TCP connect times. Using
a ping test, we also observe that legacy radio technologies (such
as HSPA+ and UMTS) suffer from higher packet loss than LTE.

I. INTRODUCTION

The trend of users using mobile handheld devices to access

the Internet shows a steady increase over the last years. If

a user is on the move, these devices commonly use the

cellular network to access the Internet. Huang et al. [1]

show that the majority of network traffic (more than 95%),

generated by smartphones typically consists of short-lived TCP

flows towards websites. The content of such websites is often

distributed across multiple servers, which requires mobile

users to resolve multiple DNS names and establish multiple

TCP connections to fetch the webpage in its entirety. Internet

Service Provider (ISP)s such as T-Mobile [2] have shown that

mobile users experience poor web-browsing usually due to

high DNS lookup and TCP connect times. Similarly content

providers such as Google report [3] that high network latency

in a mobile network is contributed by multiple factors such as

high DNS lookup, TCP connection and HTTP request times.

These latency overheads usually incur before any actual data

exchange happens. However, there have been few studies [4],

Map of Finland

Fig. 1: The geographical distribution of ∼25K subscribers

in Finland that participated in this measurement activity.

[5] that quantify the factors that are responsible for higher

DNS lookup and TCP connect times. This is largely because

of lack of datasets with rich metadata information (such as the

accessed radio technology during the measurement, the device

model, et al.) that can help to identify those factors for mobile

users in a cellular network. Using a month-long (Oct 2016)

dataset (see § III) collected by an ISP from subscribers of a

cellular network, we profile the performance of ∼25K clients

distributed across Finland (see Fig. 1) to understand the factors

affecting performance in cellular networks. We focus on the

performance of short web flows (such as DNS lookup and TCP

connect times towards popular websites) that are driven more

by latency than by network throughput. We also analyze the

packet loss and RTT using more than 2M ping measurements

towards www.google.fi. The performance over the home

wireless network is not considered in this work. Towards this

end, we provide three main contributions −

− We observe ∼2% DNS failures due to BADVERS orISBN 978-3-903176-08-9 © 2018 IFIP

74

when multiple interfaces claim to provide a default route to

the Internet, and the ’best interface’ 1 changes, the current

session is terminated and a new session starts.

B. Measurement Tests

1) DNS Lookup Time: This test measures the time

it takes to look up a Fully Qualified Domain Name

(FQDN) from a DNS server and resolve it into an

IPv4 address (see § VIII for limitations). The test allows

one to specify a set of DNS servers and target DNS

names. The DNS servers can either be statically config-

ured or automatically assigned by the DHCP server. In

our work, we measure the DNS lookup time of four pop-

ular websites: www.google.fi, www.youtube.com,

www.facebook.com and www.elisa.net, as they are

commonly known (see § VIII for limitations). Bajpai et al. [12]

have shown that www.google.* websites are served by the

same CDN and therefore exhibit similar latency behavior. As

such, we use www.google.fi for our measurement study.

The test records the resolved DNS name and the IPv4

address of the DNS server. The IPv4 address of the client

(majority of which are NATed and consequently receive an

IP endpoint from the private [13] address space), the DNS

lookup time (in milliseconds), device model type, the radio

technology used during the test and the DNS response code

indicating the success (or failure) of the test. A timeout of

30 seconds is used in situations where the DNS server is not

reachable or the packet is lost. In such a situation, the client

does not retry for a failed or timed-out request.

2) TCP Connect Time: This test measures the time it

takes to establish a TCP connection (over IPv4) to a target

website (over port 80) from the client device (see § VIII for

limitations). The test starts when the client sends a SYN packet

to a destination identified by a FQDN. It then subtracts this

time value from the time of receiving a SYN+ACK packet from

the server. This time difference does not include the DNS

resolution time.

The test records the starting time of the test, FQDN of

the destination host, destination port number, resolved IPv4

address of the destination host, TCP connect time, clients’

device model type, the radio technology used during the

test, and the success (or failure) of the TCP connection

establishment.

3) RTT and Packet Loss: This test uses ping to mea-

sure the RTT and packet loss towards www.google.fi

(see § VIII for limitations) using ICMP echo request packets.

Each ping test sends an average of five to nine ICMP echo

requests from clients to the target. The payload for each ICMP

echo request is configured to be 16 bytes in size.

The test records the DNS name and the resolved IPv4

address of the target, the IPv4 address of the client (majority

of which are NATed and consequently receive an IP endpoint

from the private [13] address space), total elapsed time of the

test, the number of ping tests, payload size of the ICMP echo

1The interface with the lowest value of the metric attribute

TABLE I: DNS, TCP and ping measurements by website.

Website DNS (#) TCP (#) ping (#)

www.facebook.com 3,471,440 4,572,298 -
www.google.fi 6,981,348 4,855,516 2,180,700
www.youtube.com 1,628,991 4,075,477 -
www.elisa.net 1,821,334 5,335,350 -

request packet, the minimum, maximum and average RTT, the

number of packets sent and received in the test, the response

code indicating the success (or failure) of the execution, device

model and the radio technology type used during the test.

C. Dataset

The measurements are collected from ∼25K subscribers of

a cellular network provider based in Finland, geographically

distributed as shown in Fig. 1. The dataset consists of ∼14M

samples of DNS lookup time, ∼19M samples of TCP connect

time and ∼2M samples of ping measurements collected in

October 2016. Table I provides details of the samples collected

towards each target website.

IV. FAILURES

A. DNS Lookup

DNS based redirection techniques are used by content

providers (such as Akamai [14]) to determine the location

of the end-host and to redirect the contents to the closest

content replica [4]. DNS errors may happen for various reasons

including poor configuration errors [15], heavy load on the

DNS server, and poor network link quality between server and

clients. Such errors, if not managed well, could cause drastic

damages as it happened in [16], where missing a terminating

’.’ to the DNS records of .se zone shutdowns a whole

bunch of websites and news outlets in Sweden.

We use the DNS response code to determine the number

of successful DNS responses and failures. About 86% of the

DNS failures (which is about 2% from the total DNS lookup

test) are BADSIG or BADVERS [17] (Bad OPT Version or

TSIG Signature fails), indicating that a responder does not

implement the version level of the request [18]. The second

most frequent DNS failure code observed is YXRRSet [19]

which means that the RR Set exists when it should not.

Some other DNS failures such as BADTIME [20] (out of

time windows) and BADMODE [21] (Bad TKEY Mode) also

rarely happen. One reason for DNS failures to happen is a

poorly configured DNS resolver. We noticed that out of all

DNS failures that are observed, about 67% of the DNS lookup

queries were sent towards the AS790 (Elisa) DNS resolver.

We observe that DNS lookup over LTE experiences about

1.9% of DNS failures, while over UMTS, HSPA and HSPA+

experience 3.4%, 3.9% and 2.7% DNS failures, respectively.

Table II shows DNS failures by website. As it can be seen,

these failure are almost evenly distributed over the differ-

ent websites. There is a 2% DNS lookup failure variation

between the www.youtube.com and www.google.fi

75

76

TABLE III: DNS & TCP Measurements by radio technology.

Radio Technology DNS (%) TCP (%)

LTE 68.94 69.59
HSPA+ 10.59 10.23
HSPA 2.41 2.41
UMTS 14.51 14.72
Others 3.55 3.05

Fig. 6: DNS response times by radio technology: LTE

exhibits significantly lower latency.

factors impacting DNS lookup and TCP connect times.

V. RADIO TECHNOLOGY

In today’s cellular network environment, there is quite

a range of radio technologies with different levels of per-

formance. These radio technologies including LTE, HSPA+,

HSPA and UMTS have a various range of bandwidth per-

formance. Most of the today’s mobile devices are equipped

with all of these radio technologies. We analyze how DNS

lookup and TCP connect time varies across different radio

technologies.

DNS Lookup Time: Fig. 6 shows that there is a clear

DNS lookup time difference between the radio technologies.

There is a fast DNS resolution time in DNS lookup for

recent network technologies such as LTE and HSPA+ and

a considerably long resolution time for anterior technologies

such as HSPA and UMTS.

The LTE network technology consistently shows the best

DNS resolution performance on all of the four tested web-

sites. The median difference between LTE and UMTS for

resolving www.google.fi is 370 ms. Fig. 6 also shows

the poor performance of earlier radio technologies such as

EDGE, that takes more than half of a second (624 ms) to

resolve the IP address of www.google.fi. The percentaged

difference of DNS response time between LTE and other radio

technologies varies among the different domain names. Fig. 6

shows that 50% of the requests send to www.elisa.net

are resolved in less than 500 ms, irrespective of the radio

technology type. Except using the LTE network, only 25%

to 30% of the DNS queries send to www.facebook.com

(a) www.youtube.com (b) www.google.fi

Fig. 7: TCP connect time towards www.youtube.com

and www.google.fi by radio technology. The distri-

bution exhibits similar pattern for www.elisa.net and

www.facebook.com, too.

and www.youtube.com are resolved in less than 500 ms.

In other words more than 70% of DNS lookup queries send to

www.facebook.com and www.youtube.com took more

than 500 ms to get back the resolved IP address.

The probability of resolving www.google.fi below 100

ms using LTE and HSPA+ radio technology is 65% and

58%, respectively, which is a difference of 7%. Whereas, the

probability of resolving www.youtube.com below 100 ms

using LTE and HSPA+ radio technology is 36% and 23%,

respectively, which is a difference of 13%. For most of the

3G and 4G technologies, about 50% of the time, the DNS

resolution of www.google.fi takes more than 500 ms.

TCP Connect Time: We study the performance variation

among radio technologies by comparing the latency to reach

a give website address through TCP. Fig. 7 shows TCP con-

nect times of www.youtube.com and www.google.fi

using different radio technologies. Similar to the DNS lookup

latency, LTE outperforms all other radio technologies. For

example, about 92% of the TCP connect time tests using

LTE have less than 100 ms latency. Whereas only about

28% of the 3G based TCP connect time tests are below 100

ms. The median TCP connect time of www.youtube.com

under LTE and Legacy technology is 50 ms and 251 ms,

respectively. Thus, LTE reduces the TCP connect latency by

80%. The measurement distribution of TCP connect time and

DNS lookup test by radio technology is shown in Table III.

Given that we know the difference between LTE and legacy

radio technologies, going forward, we only look at factors

affecting performance on the LTE network.

A. LTE Subscription Plan

We use few randomly selected sample clients’ data sub-

scription plan as a reference to study the impact of data

subscription plan for DNS lookup and TCP connect time

latency. The clients’ data plan is classified into 2 packages

based on the downlink and uplink speed limits. These are

4G and 4G-super for the upper-downlink limit of 25 and

80 Mbits/s, respectively. Note, we only consider LTE in this

section.

77

Fig. 8: DNS response times by subscription plan.

Fig. 9: TCP connect time by subscription plan.

DNS Lookup time: Fig. 8 depicts the DNS response time

per users’ data subscription plan for each radio technology.

The graph shows that the clients’ data subscription plan does

not actually contribute to the DNS lookup time performance.

TCP Connect Time: As depicted in Fig. 9, the data sub-

scription type has a very small impact on the TCP connection

establishment time.

VI. DEVICE MODELS

We analyzed the impact of different device model types and

year of release for both TCP connect time and DNS lookup

time performance.

DNS Lookup Time: Fig. 10 shows the DNS response time

of the top 30 device models, ordered by device models’ release

year. All the devices are capable of using both, 3G and LTE

radio technologies. The selected devices were using the LTE

network during the DNS test session. The model names are

substituted with the index number to ensure anonymity. The

y-axis reflects the DNS lookup time value of at least 10K

individual tests for each device that subscribed to a single

network operator. We can observe that there is a significant

difference in DNS resolution time among device models. For

instance, observing the median value of devices released in

the year 2015, it appears that the device model #17 has the

highest DNS resolution time, whereas the device model #22

has a relatively short DNS lookup time for resolving the

domain name www.facebook.com. The standard deviation

(not shown in the plot) of the DNS lookup time across the

30 devices is also highly variable, ranging from 622.45 to

3891.36 ms. The ANOVA [23] F-test for DNS response time

is also significant (P-value of 0.0001), asserting that the DNS

resolution time is indeed affected by device model type.

To further explore this, we conduct a manual inspection

to some of the devices by minimizing the variance such as

(a) www.google.fi

(b) www.facebook.com

Fig. 10: DNS response time of www.google.fi (above)

and www.facebook.com (below) across device models as

measured over LTE. Order by device models’ release year.

by fixing the subscribers location and time. From the manual

inspection, we observe that few device models consistently

show a poor resolution time performance in both LTE and

3G radio technologies. We also observe that devices which

have larger internal memory and storage capacity are relatively

faster conducting a DNS lookup.

TCP Connect Time: The impact of various device model

types for TCP connect time latency is very small, espe-

cially when it is compared to the DNS lookup time. As

shown in Fig. 11, except few devices the median latency

among device types when tested towards www.google.fi

and www.facebook.com is less than 100 ms. The device

model’s release year has also no direct impact on the TCP

connection establishment time variation.

VII. WEBSITES

DNS Lookup Time: Fig. 12 shows that the DNS lookup

time significantly varies among different websites, using the

same radio technology (LTE) that has been accessed during

the DNS test. The DNS lookup times of www.youtube.com

and www.facebook.com are significantly slower than the

ones of www.google.fi and www.elisa.net. One

cause is that the A entries for www.google.fi and

www.elisa.net (ISP’s website) are more likely to be

cached by DNS resolvers than www.youtube.com and

www.facebook.com.

TCP Connect Time: The TCP connection time is one

important measure for websites download time and user sat-

isfaction. Prior work [24] has shown that about 17% of the

78

�✁✂ ✄☎✆✝✞✟✠✡☛☞✌✍ ✎✏✑✒✓✔

✕✖✗

✘✙

✚

✛

✜

✢

✣✤✥✦✧★✩✪✫✬✭✮✯

✰

✱✲✳✴✵✶✷
✸✹
✺

✻

✼✽✾ ✿
❀ ❁❂ ❃
❄ ❅❆❇ ❈❉❊

❋ ●

❍■❏❑▲▼◆❖
P

◗❘❙❚❯❱❲❳❨❩❬❭❪

❫ ❴

❵ ❛ ❜ ❝ ❞ ❡❢❣❤✐❥ ❦❧♠♥♦♣q rst✉ ✈
✇ ① ② ③ ④

⑤

⑥⑦ ⑧⑨

⑩ ❶ ❷ ❸

❹❺

❻ ❼❽

❾❿ ➀➁ ➂➃

➄ ➅➆➇➈➉➊➋➌➍➎➏➐

➑➒ ➓➔

→ ➣ ↔ ↕ ➙ ➛ ➜ ➝➞➟➠➡➢➤➥➦➧➨➩➫➭➯➲➳➵➸➺➻➼

➽➾➚➪➶➹
➘➴ ➷➬ ➮➱ ✃❐ ❒❮

❰ÏÐÑÒÓÔÕÖ×

ØÙ

ÚÛÜÝ
Þßà

áâ

ãä

å

æçèéêëìí îïðñò óôõö÷øùúûü

ýþ
ÿ

�✁

✂✄☎✆✝✞✟
✠✡☛

☞✌

✍✎
✏✑✒✓✔
✕✖

✗✘

✙✚✛

✜✢
✣
✤

✥

✦✧

★✩✪
✫✬✭
✮

✯✰

(a) www.google.fi

✱ ✲✳ ✴ ✵ ✶✷✸ ✹ ✺✻✼✽✾ ✿ ❀❁ ❂ ❃ ❄ ❅❆ ❇ ❈❉ ❊ ❋ ●❍ ■ ❏ ❑ ▲▼
◆

❖ P◗❘ ❙ ❚❯ ❱❲ ❳ ❨❩
❬

❭ ❪❫ ❴ ❵ ❛❜ ❝❞ ❡ ❢ ❣❤✐ ❥❦ ❧♠♥ ♦♣ qr st✉✈✇①②③ ④⑤⑥⑦⑧⑨
⑩ ❶❷❸❹ ❺ ❻❼❽❾❿➀➁
➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ ➊

➋ ➌➍ ➎➏ ➐ ➑➒➓➔→➣ ↔↕➙➛➜➝➞ ➟➠➡➢ ➤➥ ➦ ➧ ➨➩ ➫ ➭➯ ➲ ➳ ➵ ➸➺➻➼ ➽ ➾➚ ➪ ➶ ➹➘ ➴➷ ➬ ➮➱ ✃ ❐ ❒❮❰ Ï ÐÑÒ ÓÔ Õ Ö ×ØÙ Ú ÛÜ

Ý
Þ

ßà áâ ãä åæ çè éê

ëìíîïð
ñ òóôõö÷ øùúû

üý þÿ

� ✁ ✂ ✄
☎
✆✝✞✟✠✡☛☞✌✍✎✏✑✒✓ ✔✕✖✗✘ ✙✚✛✜✢ ✣

✤ ✥✦ ✧★✩ ✪✫✬ ✭✮ ✯ ✰✱✲
✳

✴✵✶✷✸
✹✺✻

✼✽ ✾✿ ❀❁ ❂❃ ❄❅ ❆❇ ❈❉ ❊❋●❍■❏❑▲ ▼◆❖P◗ ❘❙❚❯❱❲❳❨❩❬

❭ ❪❫ ❴❵ ❛❜ ❝❞ ❡ ❢ ❣
❤ ✐ ❥ ❦ ❧♠ ♥♦ ♣ q rs t✉ ✈✇ ① ② ③ ④⑤ ⑥⑦ ⑧⑨ ⑩❶ ❷ ❸

❹❺❻❼❽ ❾
❿

➀➁ ➂➃ ➄➅ ➆➇ ➈➉

(b) www.facebook.com

Fig. 11: TCP connect time for www.google.fi (above)

and www.facebook.com (below) across device models

as measured over LTE.: Order by device models’ release

year.

Fig. 12: DNS response time towards websites using LTE;

tested towards different DNS resolvers. Note that the

variation almost stays the same if we fix it to a single

DNS resolver.

users are impatient to wait if the response time of a given

website is greater than 5 seconds. Thus, we analyze the TCP

connectivity time for different websites.

The time elapsed between sending the SYN packet to open

the TCP socket and receiving the SYN+ACK response to

selected website addresses is shown in Fig. 13. We observe

that the majority of TCP connection latencies using LTE

range from 20 to 200 ms, irrespective of the website’s ad-

dress. For instance, about 97% of the TCP connections to

www.facebook.com are completed in less than 200 ms.

We can see that 90% of the time, www.facebook.com

and www.youtube.com can be reached in less than 100

ms from a client’s device. Whereas, for www.google.fi

and www.elisa.net, only 80% and 76% of the TCP

Fig. 13: TCP connect time towards websites under LTE.

➊➋➌➍➎➏➐➑➒➓➔→➣

↔↕➙➛➜➝➞➟ ➠➡➢➤➥➦

➧➨➩➫➭➯➲ ➳➵➸➺➻➼

➽➾➚➪➶➹➘➴ ➷➬➮➱✃❐

❒❮❰ÏÐÑÒÓÔ ÕÖ×ØÙÚÛ

ÜÝÞßàáâãäåæçè

éêëìíîïðñ òóôõ

Fig. 14: DNS response time by resolver IP address using

LTE.

connection test are below 100 ms, respectively.

A. Destination Autonomous System Number (ASN)

DNS Lookup Time: Previous studies show that cellular

DNS servers can yield faster DNS lookup time than public

DNS resolvers [5]. In light of this, we compare the capa-

bility of different DNS servers to resolve a domain name

to an IP address. Fig. 14 shows the DNS lookup time of

different resolvers per website address. Each of these DNS

resolvers IP has more than 10K measurements. We can see

that some cellular network DNS servers have a faster DNS

lookup time for www.google.fi than Google DNS servers.

We also notice that there is a significant variation between

DNS resolvers belonging to the same ISP. For instance, two

DNS resolvers inside AS790, "EUNET. FI" of two different

IP entries 195.74.0.47 & 195.197.54.100, have 133 ms and

51 ms (median) to resolve wwww.google.fi using the

LTE network. This variation might happen due to the closer

proximity of the DNS resolver to the ISP network [25].

TCP Connect Time: For a better network traffic man-

agement and performance optimization, network operators

may deploy proxy servers between the client and the target

destination server [26]. We observe that a proxy or a cache

server between the client and the true destination host server

may acknowledge the TCP socket request first [27], [28]. This

has the advantage of decreasing TCP connection time in the

79

(a) www.google.fi

(b) www.youtube.com

(c) www.facebook.com

Fig. 15: TCP connect time towards www.google.fi,

www.youtube.com and www.facebook.com by desti-

nation ASN from LTE networks.

order of milliseconds (as shown in section VII-A). We use

the RIPE [29] service to map the resolved IP address of the

websites to an ASN value.

Fig. 15 (a) shows that the latency for a TCP connection

to reach the website www.google.fi varies based on the

ASN number for the same radio technology (LTE). We can

see that subscribers served by the ISP network manage to

reach the www.google.fi website faster than the request

sent to Google-owned web-servers. One possible reason of the

low TCP connection time for those hosted by ISP would be

that web proxies are used to improve browsing performance

response [30]. This means, if a TCP connection request is sent

to the actual server, the proxy, which is installed between the

client and the true destination server, may acknowledge the

socket request before passing it to the destination server.

Fig. 15 (b) shows that TCP connect time latency towards

www.youtube.com varies by the ASN value using the

same radio technology (LTE). Clients served by the ISP

network have managed to reach the www.youtube.com

website in short time. This indicates that pushing the content

close to the subscriber could potentially reduce the end-to-

0.00

0.25

0.50

0.75

1.00

−100−80 −60 −40 −20 0 20 40 60 80 100

TCP connect time (ms)

∆= [�✁✂✄☎✆✝✞✟✠✡☛ − ☞✌✍✎✏✑✒✓✔✕✖✗✘✙✚]

LTE network

Fig. 16: TCP connect time towards www.google.fi

showing the latency difference between ISP cache - Elisa

(AS719) and CDN - Google (AS15169) using LTE. Delta is

the TCP connect time difference between Elisa and Google

when the same user is getting a reply from the two network

within a one hour time window.

end latency by more than 20% compared to the requests

sent to YouTube-owned web-servers; this is equal to [31],

which points that caching improves the fetch time of small

files. Fig. 15 (c) shows all TCP connection requests sent to

www.facebook.com were served by a single ASN. Since

www.facebook.com does not hit any caches in the ISP

network, TCP connect time towards www.facebook.com

is substantially slower than towards www.youtube.com and

www.google.fi. This is shown in Fig. 15.

∆t(ct) = isp(ct) − cdn(ct) (1)

We use Eq. 1 to calculate the TCP connect time difference

between an ISP cache and CDN. For this, we created a pair of

CDN and ISP per user within a one-hour time frame. First, we

grouped the dataset by the user, ASN and one-hour window.

If there is more than one measurement by a given user in

a combination, we take the mean value. Then, we keep the

ones that have pairs (in this case Google and Elisa). Fig.

16 shows the distribution of difference in TCP connect times

between two destinations, where values on the negative scale

indicate that ISP cache is faster. We observe that about 70% of

TCP connect time towards www.google.fi achieve lower

latency when they hit ISP cache.

VIII. LIMITATIONS

The measurements only consist of clients based in Fin-

land using IPv4. The only measured services are those that

run on port 80. The websites chosen are the most com-

monly used websites (except www.elisa.net) following

the Alexa [32] website ranking. The ping measurements are

conducted only towards www.google.fi. As such, it is

not known whether and how the observations would differ

from a different client base per country and towards different

websites or a different services on the Internet. However, these

three websites (www.facebook.com, www.google.fi

and www.youtube.com) have a high probability of re-

flecting the majority of the mobile web-user-experience as

they generate a considerable size of network traffic in mobile

networks [10].

80

IX. CONCLUSION

We presented an analysis on factors that affect DNS lookup

time and TCP connect time towards popular websites in

cellular networks. We showed that DNS lookup time signifi-

cantly varies for different websites, even when the same radio

technology is accessed during the measurement. We showed

that caches closer to the ISP could significantly improve

TCP connect time. Also, the proximity of DNS server to

the subscriber has a higher impact on DNS lookup time

performance. We also observed that LTE offers considerably

low latency compared to legacy radio technologies. We show

that packet loss can be underestimated in situations where

a ping test sends less than 5 ICMP packets per instance.

Thus, we recommend that a packet loss analysis based on the

ping test should consider increasing the number of packets

per ping test instance for better results.

ACKNOWLEDGEMENTS

This work is partially funded by the FP7 Marie Curie Initial

Training Network (ITN) METRICS project (grant agreement

No. 607728).

REFERENCES

[1] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,
S. Sen, and O. Spatscheck, “An In-depth Study of LTE: Effect
of Network Protocol and Application Behavior on Performance,”
ser. ACM SIGCOMM, 2013, pp. 363–374. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486006

[2] J. Hui and K. Lau, “T-Mobile QoE Lab: Making Mobile Browsing Faster
and Open Research Problems,” ser. ACM MobiCom, 2013, pp. 239–242.
[Online]. Available: http://doi.acm.org/10.1145/2500423.2504585

[3] I. Grigorik. (2013) Performance of Wireless Networks. [Online].
Available: https://hpbn.co

[4] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber, and Z. M. Mao, “Cellular
Data Network Infrastructure Characterization and Implication on Mobile
Content Placement,” ser. ACM SIGMETRICS, 2011, pp. 317–328.
[Online]. Available: http://doi.acm.org/10.1145/1993744.1993777

[5] J. P. Rula and F. E. Bustamante, “Behind the Curtain: The
Importance of Replica Selection in Next Generation Cellular Networks,”
ser. SIGCOMM, 2014, pp. 135–136. [Online]. Available: http:
//doi.acm.org/10.1145/2619239.2631465

[6] P. Rodriguez, S. Mukherjee, and S. Ramgarajan, “Session Level
Techniques for Improving Web Browsing Performance on Wireless
Links,” ser. WWW, 2004, pp. 121–130. [Online]. Available: http:
//doi.acm.org/10.1145/988672.988690

[7] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling Bufferbloat in
3G/4G Networks,” ser. IMC, 2012, pp. 329–342. [Online]. Available:
http://doi.acm.org/10.1145/2398776.2398810

[8] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and
M. Welsh, “Mobile Network Performance from User Devices: A
Longitudinal, Multidimensional Analysis,” ser. PAM, 2014, pp. 12–22.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-04918-2_2

[9] B. Nguyen, A. Banerjee, V. Gopalakrishnan, S. Kasera, S. Lee,
A. Shaikh, and J. Van der Merwe, “Towards Understanding TCP
Performance on LTE/EPC Mobile Networks,” ser. AllThingsCellular,
2014. [Online]. Available: http://doi.acm.org/10.1145/2627585.2627594

[10] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, C. Ziemlicki,
and Z. Smoreda, “Not All Apps Are Created Equal: Analysis of
Spatiotemporal Heterogeneity in Nationwide Mobile Service Usage,”
2017. [Online]. Available: URI:http://eprints.networks.imdea.org/id/
eprint/1710

[11] (2017) Mobiili OmaElisa. [Online]. Available: https://verkkoasiointi.
elisa.fi/

[12] V. Bajpai and J. Schönwälder, “IPv4 versus IPv6 - who connects
faster?” ser. IFIP, 2015, pp. 1–9. [Online]. Available: https://doi.org/10.
1109/IFIPNetworking.2015.7145323

[13] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear, “Address Allocation for Private Internets,” RFC 1918
(Best Current Practice), RFC Editor, Fremont, CA, USA, pp.
1–9, Feb. 1996, updated by RFC 6761. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc1918.txt

[14] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-performance Internet Applications,” SIGOPS Oper.

Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1842733.1842736

[15] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang, “Impact
of Configuration Errors on DNS Robustness,” ser. SIGCOMM, 2004.
[Online]. Available: http://doi.acm.org/10.1145/1015467.1015503

[16] P. McNamara. (2009, October) Missing dot drops Sweden off
the Internet. [Online]. Available: http://www.networkworld.com/article/
2251220/lan-wan/missing-dot-drops-sweden-off-the-internet.html

[17] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” RFC 2671
(Proposed Standard), RFC Editor, 1999, obsoleted by RFC 6891.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2671.txt

[18] ——, “Extension Mechanisms for DNS (EDNS0),” pp. 1–7, 1999.
[Online]. Available: https://doi.org/10.17487/RFC2671

[19] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic
Updates in the Domain Name System (DNS UPDATE),” RFC
2136 (Proposed Standard), pp. 1–26, 1997. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2136.txt

[20] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington, “Secret
Key Transaction Authentication for DNS (TSIG),” RFC 2845 (Proposed
Standard), RFC Editor, 2000, updated by RFCs 3645, 4635, 6895.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2845.txt

[21] D. Eastlake 3rd, “Secret Key Establishment for DNS (TKEY RR),”
RFC 2930 (Proposed Standard), RFC Editor, 2000, updated by RFC
6895. [Online]. Available: https://www.rfc-editor.org/rfc/rfc2930.txt

[22] J. Postel, “TRANSMISSION CONTROL PROTOCOL,” Internet
Requests for Comments, RFC Editor, RFC 793, September 1981.
[Online]. Available: https://tools.ietf.org/html/rfc793

[23] J. J. Faraway, “Practical regression and ANOVA using R.” 2002.
[Online]. Available: https://cran.r-project.org/doc/contrib/Faraway-PRA.
pdf

[24] Gomez. (2010) When seconds count. [Online]. Available: htp://ftp.
software.ibm.com/software/au/downloads/GomezWebSpeedSurvey.pdf

[25] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Comparing
DNS Resolvers in the Wild,” ser. ACM IMC, 2010, pp. 15–21.
[Online]. Available: http://doi.acm.org/10.1145/1879141.1879144

[26] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr:
Illuminating the Edge Network,” ser. ACM SIGCOMM, 2010, pp. 246–
259. [Online]. Available: http://doi.acm.org/10.1145/1879141.1879173

[27] M.-C. Roşu and D. Roşu, “An Evaluation of TCP Splice Benefits in
Web Proxy Servers,” ser. WWW, 2002, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/511446.511449

[28] A. Pathak, A. Wang, C. Huang, A. G. Greenberg, Y. C. Hu, R. Kern,
J. Li, and K. W. Ross, “Measuring and Evaluating TCP Splitting
for Cloud Services,” ser. PAM, 2010, pp. 41–50. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12334-4_5

[29] RIPE. (2016) RIPE Stat API. [Online]. Available: https://stat.ripe.net/
[30] P. Rodriguez and V. Fridman, “Performance of PEPs in Cellular

Wireless Networks,” ser. Web Content Caching and Distribution.
Springer, 2004, pp. 19–38. [Online]. Available: https://link.springer.
com/chapter/10.1007/1-4020-2258-1_2

[31] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. R. Choffnes, and
R. Govindan, “Investigating transparent web proxies in cellular
networks,” ser. PAM, 2015, pp. 262–276. [Online]. Available:
https://doi.org/10.1007/978-3-319-15509-8_20

[32] (2017) Alexa: The top 500 sites on the web. [Online]. Available:
https://www.alexa.com/topsites

81

Measurement and Analysis of
the Reviews in Airbnb

Qian Zhou1,2, Yang Chen1,2, Chuanhao Ma1,2, Fei Li1,2, Yu Xiao3, Xin Wang1,2, Xiaoming Fu4
1School of Computer Science, Fudan University, China

2Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education, China
3Department of Communications and Networking, Aalto University, Finland

4Institute of Computer Science, University of Goettingen, Germany
Email: {chenyang, xinw}@fudan.edu.cn, yu.xiao@aalto.fi, fu@cs.uni-goettingen.de

Abstract—Airbnb, a recently emerged online lodging service
that allows house and apartment dwellers to lease out their
premises to short-term renters like tourists, is reconstructing
the value chain of the traditional hotel industry. It works as
a platform that connects hosts and travelers and facilities their
interaction and exchange. Studying this service could shed light
on understanding the emerging sharing economy from a user-
centric perspective. In this work, we collect the profiles of 43.8
million Airbnb users, and analyze the reviews they published
online. We model the interactions between Airbnb users using a
review graph, and study their mobility patterns by investigating
their reviews. To the best of our knowledge, our work is the first
measurement study of massive Airbnb users on a global scale,
and it provides insights of their activities in both cyberspace and
the physical world.

I. INTRODUCTION

Firstly launched in 2008, Airbnb becomes a popular online
service for listing and renting short-term lodging in residential
properties around the world today. In January 2018, Airbnb
has more than 3 million listings in 65,000 cities and 191
countries1. Besides online booking, Airbnb also facilitates the
social interaction between tens of millions of users. For exam-
ple, users can communicate using a private messaging service,
and can share their lodging experience through posting reviews
for other users publicly. Understanding the user behavior is
essential for improving user experience. However, so far there
lacks a comprehensive study of Airbnb user behavior.

Each Airbnb user has a personal profile, including de-
mographic information like home country as well as user
reviews. In this paper, we adopt a data-driven approach to
analyze Airbnb user behavior. We crawled the profile pages
of almost all – if not all – Airbnb users (as of Nov. 8,
2015), and collected their demographic information and all
the published reviews. Based on the massive amount of data
we have collected, we analyze the Airbnb user behavior from
the following perspectives.

First, we conduct a demographic analysis of Airbnb users
based on several key fields of user profiles, including home
country, verification status and their roles in apartment leasing.

1https://www.airbnb.com/about/about-us?locale=en

We find that Airbnb is getting globally recognized, although
most users are still from North America and Europe.

Second, we focus on the visible interactions between hosts
and guests, which are revealed by public reviews. We model
the interactions with a global review graph G, and describe
them with a number of classic graph metrics. By examining the
evolution of the review graph from 2008 to 2015, we discover
that more and more users have been added to a giant weakly
connected component which covers at least 98% users in G.

Last but not least, we dive into the mobility patterns of
Airbnb users. After studying the users’ movements from both
spatial and temporal aspects, we figure out the time and
location preferences in users’ traveling. Also, based on our
results of sentiment analysis, a majority of users are satisfied
with their lodging experiences.

II. DATA COLLECTION AND PREPROCESSING

A. Data Collection

In our study, we aim to obtain a complete view of Airbnb
user behavior. Therefore, instead of using such a subset of
users for study, we have crawled all 43.8 million Airbnb users’
personal profiles including all the published reviews. Due to
the strict per IP address rate limit, it becomes challenging to
crawl all the user data in a short time. We address this issue
as follows. Firstly, each Airbnb user has a unique numeric
UID. The UID is assigned sequentially, i.e., a user registered
earlier will get a smaller UID. For each user, we can access her
profile page via the URL https://www.airbnb.com/users/show/
UID. When we registered a new account on Sep. 25, 2015, we
got the up-to-date maximum UID, i.e., 45063045. Secondly,
we divided the ID range [1, 45063045] evenly into 185 chunks,
and launched 185 virtual instances on the Microsoft Azure
platform to crawl the personal pages simultaneously. Each of
these instances has an unique IP address. The crawling process
was run from Sep. 25, 2015 to Nov. 8, 2015. Except few
unused IDs, we have obtained 43.8 million users’ profiles and
all the published reviews. Note that we respect the privacy of
Airbnb users. Only publicly accessible data are crawled.

B. Data Preprocessing

We derive the interactions between Airbnb users from the
published reviews, and model the interactions with a socialISBN 978-3-903176-08-9 c© 2018 IFIP

graph. We call the social graph “review graph”. The reviews
can be classified into two categories, including the reviews
from guests and the ones from hosts. According to [8], for
more than 70% of online bookings through Airbnb, the users
have published reviews for the visits. Therefore, it is feasible
to profile the Airbnb user behavior such as mobility patterns
and social interactions based on the analysis of user reviews.

We denote the review graph by G = (V,E). Each node
in the node set V represents an Airbnb user. Two nodes are
connected with a directed edge, if one of the users has hosted
the other one and at least one of them has posted reviews. For
example, if user A has stayed in user B’s apartment, A might
post a review on B’s profile page from the guest’s perspective.
Meanwhile, B might post a review from a host’s perspective.
If either A or B has posted a review online, there will be a
directed edge (vA, vB). All the edges form the edge set E.
When building the review graph, we exclude the users who
have never posted or received any review. The resulting review
graph includes 19,341,495 nodes and 17,553,551 edges.

As we are interested in the yearly temporal evolution of
the review graph, we need to know when each node and edge
was created. Because the registration time (year and month)
of each Airbnb user is published on the user’s profile page,
the creation time of each node can be obtained directly from
there. The creation time of an edge depends on when the
reviews are published. If a user has visited another one for
several times and has posted reviews for more than one visit,
we set the creation time of the edge as the year when the
first review was published. We derive the year information
from reviews following three steps. (1) We obtain the year
information directly from the reviews when possible. There
are two types of reviews, one from the guest and the other
from the host. On each Airbnb user’s profile page we can
find the published time information (year and month) of the
latest 7 reviews of each type. The reviews published earlier
are listed in a reverse chronological order, but their published
time information are hidden. Among all the users who have
posted or received at least one review, only 3.32% of them
have received more than 7 reviews from guests, and 1.74%
of them have received more than 7 reviews from hosts. Still,
30.67% of reviews do not have the time information. For
these reviews, we infer their published time in the following
two steps. (2) If the host and the guest have made “mutual
reviews”, which means they have written reviews for each
other, we can assume a short time interval between the reviews
since Airbnb only allows a user to write a review for a trip
within 14 days after checkout. To validate this assumption, we
examine all the mutual reviews with timestamps. The results
show that 97.8% of them were published in the same month,
while 99.3% of them were published in the same year. Given
a pair of mutual reviews, if one of them has a timestamp, it
is very likely that the other one was published in the same
year. With this feature, we are able to estimate the published
year of 22.77% of all the reviews. (3) As all the reviews are
listed in a reverse chronological order, we utilize this feature
to estimate the range of the published year of reviews. For

example, three reviews were published in order. If both the
earliest and the latest ones were estimated to be published in
year 2009, the middle one must be published in 2009 as well.
With this feature, we manage to estimate the exact published
year of 6.03% of edges. For the last 1.87% edges, we assign
each of them a randomly generated year within the estimated
time range.

Besides the author and published year of reviews, we also
look into the content of each review. We conduct sentiment
analysis of all the reviews written in English, which covers
92.66% of all the published reviews. We use a natural language
processing (NLP) library called NLTK [1] to extract users’
sentiment information from reviews. Based on the output
of NLTK, we follow the VADER algorithm to calculate a
sentiment score for each review [12]. VADER is designed
for sentiment analysis of social media content. The sentiment
score for each review ranges from -1 to 1. A score of 1 means
the review is strongly positive, -1 means the review is very
negative, and 0 indicates the review is neutral. Among all the
reviews written in English, 97.13% of them are positive, 1.98%
of them are neutral, and only 0.89% of them are negative.
In other words, nearly all the reviews written in English are
positive about the lodging experience.

III. DATA ANALYSIS

This work aims at providing insights on the Airbnb user
behavior based on the analysis of personal profiles including
published reviews. We analyze the crawled user data from the
following three aspects. Firstly, we performance a comprehen-
sive demographic analysis in § III-A to reveal the composition
of Airbnb users. Secondly, we model the social interactions
between users with a review graph, and analyze the static and
dynamic characteristics of the review graph in § III-B. Thirdly,
we investigate the mobility patterns of Airbnb users in § III-C.

A. Demographic Analysis

1) Statistics: The personal profile of a typical Airbnb user
includes several information fields, such as location, verified
ID, and “About Me”. In addition, a user can request to become
a verified user, in order to get a “V” badge displayed on
her profile page. A small number of hosts satisfying certain
requirements can also receive the “superhost” badge, which
will also be shown on the user’s profile page.

User Location Referring to the “location” indicated on the
personal profile, we identify the home country of 86.20% of
registered Airbnb users. As shown in Fig. 1(a), 34.29% of
users come from the United States. In total, nearly 60% of
users come from one of the 5 countries, including the United
States, France, United Kingdom, Germany, and Canada. We
can see that so far Airbnb is still more popular in North
America and Europe than other areas in the world.

Except the reason that Airbnb is a US-based company, there
may be other reasons for such user composition. In this work,
we pick the top 8 countries with most Airbnb users, and try to
discover the correlation between the number of Airbnb users
and the social and economic factors like GDP, GDP per capita

83

34.29%

 7.68%

 5.81%
 4.86%

 4.05%

 3.99%

 3.73%

 3.22%

 2.41%

 2.36%

27.61%

US

FR

UK

DE

CA

IT

AU

ES

BR

CN

OTS

(a) Home Country Distribution

% of Registered Users
0 10 20 30 40 50 60

T
y
p
e

Email Address

Phone Number

Facebook

Offline ID

Google

LinkedIn

Weibo

Online ID

(b) Percentage of Different Types

of Reviews
10

0
10

1
10

2
10

3
10

4

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
 F

u
n
c
ti
o
n

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(c) Number of Reviews

Fig. 1: Analysis of User Profiles and Reviews

and population. In Table I, the figures of GDP and GDP per
capita were retrieved from the website of the International
Monetary Fund (IMF)2, while the population information was
obtained from the Department of Economic and Social Affairs
of the United Nations3.

We model each column of Table I as a vector, and de-
note the vectors by vuser num, vGDP , vGDP per capita, and
vpopulation, respectively. After that, we calculate the Pearson
correlation coefficients between vuser num and each of the
other three vectors. The resulted correlation coefficients are
denoted as rGDP , rGDP per capita, and rpopulation, respec-
tively. The value of the correlation coefficient reflects the
impact of the corresponding vector on the number of registered
Airbnb users in each country. Note that a Pearson correlation
coefficient is between -1 and 1. 1 refers to total positive
linear correlation, 0 indicates no linear correlation, and -1
refers to total negative linear correlation. Concerning only
the top 8 countries with most Airbnb users, rGDP is 0.9927,
rGDP per capita is 0.6124, and rpopulation is 0.9873. If we
extend the scope to include all the Airbnb users around the
world, the values of rGDP , rGDP per capita and rpopulation
are 0.8654, 0.2950, and 0.2049, respectively. Obviously, the
number of registered users in a certain country is positively
relevant to this country’s GDP, whereas it is less relevant to
the GDP per capita and the population.

Verified IDs As a method of improving the trust between
users, Airbnb encourages users to submit their online and of-
fline IDs for verification. After a user adds her ID information
to her personal profile, Airbnb is responsible for verifying
that the user does own the ID in question. From the values
of the “Verified ID” field, we can find out which types of
IDs have been verified. According to the personal profiles we
have collected, most users have chosen to verify their “E-
mail address”, “Phone Number”, and “Facebook Account”.
As shown in Fig. 1(b), these three types cover 52.82%,
35.64% and 26.29% of all the verified IDs, respectively. These
are followed by the government-issued offline IDs, such as
Passport and Driver License, which takes 16.65%. A user can
request to become a “verified user”. Upon request, Airbnb
will verify the following items, including an online ID, a

2http://www.imf.org/
3https://esa.un.org/unpd/wpp/

government-issued offline ID, a profile photo, a phone number,
and an email address. Only 19.43% of all users are verified.

Reviews Airbnb users can write reviews for their hosts or
guests. Fig. 1(c) demonstrates the distribution of the number
of published reviews per user. It fits nicely with the power law
model, i.e., P (k) ∝ k−α [5]. To evaluate how well the model
fits the distribution, we adopt the coefficient of determination,
i.e., the R2 value. The value of R2 ranges from 0 to 1. The
larger the value is, the better the fitting is. When α is set to
2.4468, the value of R2 is 0.9557, indicating a nice fit with
the distribution of the number of per-user reviews.

Among all the users who have posted at least one review,
only 3.53% of them have played both guest and host roles,
and 90.76% of them only act as guests. Compared with the
5.71% of users who have written reviews as hosts, the number
of guests is much bigger, which means that most of people use
Airbnb for searching and booking accommodation instead of
leasing out their apartments.

Superhost An Airbnb usr can become a “superhost” and
get a superhost badge on her profile page, if she satisfies
certain requirements, including hosting at least 10 groups of
guests, receiving a “5-star” for at least 80% of the reviews
posted by her guests, and completing each of the confirmed
reservations. According to our study, there are only 68,883
superhosts, which means about 0.16% of Airbnb users are
classified as superhosts.

About Me Besides the above-mentioned fields, there is an
“About Me” field in each user’s profile. It allows a user to add
more information about herself. Optionally, users could add
their “School”, “Work” and “Language” information. Among
all users, 28.66% have provided the “School” information,
10.16% have added the “Work” information, and 9.36% have
said something about their “Language”.

2) Temporal Evolution of Airbnb Demographic: According
to the registration time of each Airbnb user, we can review the
growth of Airbnb in terms of the number of registered users
in the past 8 years. As illustrated in Fig. 2(a), both the number
of registered users and the amount of published reviews have
been growing steadily. The figures grow much faster during
summers, showing that people are more active in traveling in
summer.

We further look into the geographical distribution of Airbnb
users and measure the diversity of home countries. Here we

84

TABLE I: Number of Registered Users v.s. GDP / GDP per Capita / Population

Country Number of registered users GDP (millions of USD) GDP per capita (USD) Population
United States 12,979,691 18,561,930 56,084 324,119,000

France 2,910,159 2,488,280 37,653 64,668,000
United Kingdom 2,195,446 2,649,890 43,902 65,111,000

Germany 1,834,505 3,494,900 40,952 80,682,700
Canada 1,528,011 1,532,340 43,413 36,286,200

Italy 1,507,997 1,852,500 29,867 59,801,000
Australia 1,407,956 1,256,640 51,181 24,309,000

Spain 1,215,428 1,252,160 25,843 46,065,000

20
08

/6

20
09

/1

20
10

/1

20
11

/1

20
12

/1

20
13

/1

20
14

/1

20
15

/1

20
15

/9

#
 o

f
N

e
w

ly
 R

e
g
is

te
re

d
 U

s
e
rs

×10
6

0

1

2

3

#
 o

f
N

e
w

ly
 P

u
b
lis

h
e
d
 R

e
v
ie

w
s

×10
6

0

1

2

3

Registered
Reviews

(a) Number of Registered Users and Published Re-
views

Year
2008 2009 2010 2011 2012 2013 2014 2015

E
n
tr

o
p
y

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Home Country
Destination Country

(b) Home Country Entropy

Year
2008 2009 2010 2011 2012 2013 2014 2015

%
 o

f
T

o
p
 3

 C
o
u
n
tr

ie
s

40

50

60

70

80

90

100

Home Country
Destination Country

(c) Percentage of Top 3 Home/Destination Countries

Year
2008 2009 2010 2011 2012 2013 2014 2015

%
 o

f
R

e
g
is

te
re

d
 U

s
e
rs

0

10

20

30

40

50

60

70

80

90

100

Guest Only
Host Only
Both

(d) Distribution of Hosts/Guests/Both

Year
2008 2009 2010 2011 2012 2013 2014 2015

N
u
m

b
e
r

o
f
R

e
g
is

te
re

d
 U

s
e
rs

×10
4

0

0.5

1

1.5

2

2.5

(e) Number of Superhosts

Year

2008 2009 2010 2011 2012 2013 2014 2015

%
 o

f
V

e
ri
fi
e
d
 U

s
e
rs

0

5

10

15

20

25

(f) Percentage of Verified Users

Fig. 2: Demographic Analysis (Temporal)

introduce a metric called “home country entropy” and denote
it by Ehome. Ehome can be calculated using the formula
Ehome = −

∑k
i=1 pilog2pi, where pi refers to the fraction of

users coming from the i − th country. The value of Ehome
increases with the diversity of home countries. Similarly,
we calculate the “destination country entropy” (Edest). The
information of “destination country” can be extracted from the
reviews made for each trip. According to Fig. 2(b), Airbnb has
become more and more globally recognized, in terms of both
users’ home countries and destination countries.

To verify the results of the home/destination country en-
tropy, we check the distribution of the most popular home
countries and destinations. Fig. 2(c) shows how many percent-
age of trips are made by the users from the top 3 most popular
home countries and how many percentage of trips are made to
the top 3 most popular destinations. We can see that in the first
3 years the percentages are larger than 60%. The curves started
to drop in 2011, and got stabilized around 50%. These results
are consistent with the values of the home/destination country
entropy. In short, Airbnb is growing not only the number of
registered users, but also its geographic diversity.

Regarding the number of hosts and guests, as shown in
Fig. 2(d), the proportion of pure guests among all Airbnb

users has grown from 63.11% to 90.76%. Meanwhile, the
proportion of pure hosts keeps decreasing, while more and
more users would play both the roles of hosts and guests.
Compared with the growing number of travelers, the number
of listed properties is growing relatively slow. If we look at
the number of superhosts, users have joined the “superhost”
group from time to time. Fig. 2(e) shows how many users
registered in a certain year have become superhosts by end
of 2015. Compared with hosts registered before 2015, fewer
hosts registered after 2015 have become superhosts. This is
partly due to the strict requirements of becoming superhosts,
for example, superhosts must have hosted at least 10 trips.

Although the number of Airbnb users is growing steadily,
the proportion of verified users has not grown. According to
Fig. 2(f), among all the Airbnb users, around 20% of them
are verified users. This number is smaller for those registered
in 2014 and 2015. We believe more of them will apply for
verification in the future.

B. Social Interaction Analysis

We utilize the review graph generated from the collected
personal profiles for analyzing the social interactions between
Airbnb users. We will first measure the complete review graph
using the graph metrics listed below, and then analyze the

85

temporal evolution of the review graph and the characteristics
of verified users.

• Indegree and outdegree: Indegree refers to the number
of incoming edges a node has. The indegree of a node
(user) is equal to the number of visitors the user has hosted.
Outdegree refers to the number of outgoing edges a node
has. The outdegree of a node (user) indicates the number of
users she has visited.

• PageRank: PageRank is a metric that measures and ranks
the importance of nodes in a graph [17]. It has been used by
Google to rank the websites. We use this metric to discover
“important users” in the graph.

• Strongly connected component (SCC): An SCC is a sub-
graph where there is a path between any two nodes, while
no additional node or edge can be added to this subgraph
without breaking the nature of “strongly connected”.

• Weakly connected component (WCC): A WCC is a
subgraph where there is a path between any two nodes when
all edges are viewed as undirected. In addition, no additional
node or edge can be added to this subgraph without breaking
the nature of “weakly connected”.

• Communities: A social network often exhibits a community
structure. A community is formed by a number of nodes
which are densely connected internally.

1) Review Graph: Static Analysis: Indegree and Outdegree
The Cumulative Distribution Function (CDF) of indegree and
outdegree among all the nodes is illustrated in Fig. 3(a) and
Fig. 3(b). For comparison, we also visualize the CDF of
indegree and outdegree among verified users and superhosts.
The indegree and outdegree of the nodes corresponding to
verified users and superhosts are relatively high, compared
with other nodes. According to [16], the median indegree and
outdegree of Twitter social graph are 16 and 39, respectively.
Obviously, the numbers are much smaller in case of Airbnb,
which means the review graph of Airbnb is rather sparse.

PageRank We use PageRank to measure the importance of
each node in the review graph. We choose 1000 nodes with
the largest PageRank values and compare their characteristics
with those of the entire Airbnb population. Among these 1000
nodes, 31.1% of them are pure hosts, while 68.9% of them play
both roles. None of these 1000 nodes is purely a guest. We can
see that hosting more is a critical indicator for becoming an
important node in the review graph. In addition, the median
indegree and outdegree of these 1000 nodes are 732 and 3,
respectively. Both figures are much higher than those of the
entire review graph.

Regarding the verification status, 100%, 89%, and 79.3%
of the top 10, 100, 1000 nodes with highest PageRank values
are verified users. Although verified users only cover 19.43%
of the nodes in the entire G, verified users are more likely
with higher PageRank values. Also, we are aware that about
14.48% of the top 1000 nodes are multi-user accounts, for
example, the user name is “Alice and Bob” or “Carol &
Tom”. In contrast, only 0.282% of Airbnb accounts are multi-
user accounts. Therefore, a viable portion of most important

TABLE II: Percentage of Users in Top 3 Countries per
Community

Community Countries (% of Users)
C1 US (66.54%) CA (7.18%) UK (3.26%)
C2 US (76.76%) CA (3.09%) UK (2.65%)
C3 FR (31.95%) US (10.41%) ES (8.21%)
C4 US (16.55%) IT (14.92%) FR (14.01%)
C5 AU (28.76%) US (12.54%) CN (5.56%)
C6 FR (22.78%) ES (13.33%) US (10.76%)
C7 DE (16.80%) US (12.80%) FR (10.61%)
C8 UK (36.81%) US (13.16%) FR (8.53%)
C9 US (54.41%) FR (5.59%) DE (4.83%)
C10 US (15.72%) DE (13.98%) FR (9.80%)

Airbnb accounts are operated by multiple people, for example,
a couple or a family.

SCC and WCC We are interested in the connectivity among
users in G. The sizes of the five largest SCCs are 63497, 13,
5, 4, 3, respectively. The largest SCC only covers 0.33% of
all nodes, and the second largest SCC has only 13 nodes.
This means very few nodes are strongly connected with each
other. Differently, the sizes of the top five largest WCCs are
10969215, 15, 15, 15, and 14, respectively. We can see that
the largest WCC covers 98.28% of nodes in G. Different from
the small sizes of the SCCs, there is one giant WCC covering
the major portion of all Airbnb users. In other words, most of
the Airbnb users are weakly connected.

Communities The concept of community structure is widely
used to study complex networks. If the network has a “com-
munity structure”, the nodes can be split into different commu-
nities. Nodes from the same community are densely connected
with each other, while nodes from different communities are
sparsely connected. To study the communities in the Airbnb
network, we adopt the widely used Louvain algorithm [2].
This algorithm is initially designed for undirected graphs.
Following the practices in [11], we convert the review graph
into an undirected graph by simply considering each edge
as undirected. Louvain algorithm can assign each node of
the network to one and only one community. It optimizes
a metric known as “modularity”. The value of modularity
is between -1 and 1. Normally, if this value is larger than
0.4 [7], we can conclude that the network has a significant
community structure. For G, the corresponding modularity
value is 0.66, which means that the Airbnb network has a
viable community structure. Also, our results show that there
are 81308 communities among all nodes in G. Fig. 3(c)
shows that sizes of the largest 30 communities. Among all
communities, top 10 of them have covered 44.19% of nodes in
G, and top 30 of them have covered 56.99% of nodes in G. In
particular, the country composition of the top 10 communities
are shown in Table II. We find that each of these communities
has only one or very few dominant countries.

2) Temporal Evolution of the Review Graph: We are not
only interested in the up-to-date structure of the review graph,
but also how this graph has been constructed gradually. In
this subsection, we study the temporal evolution of the review
graph, taking the creation time of each node and edge into

86

Indegree
0 20 40 60 80 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All
Superhosts
Verified

(a) Indegree

Outdegree
0 5 10 15 20

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All
Superhosts
Verified

(b) Outdegree

Community
0 5 10 15 20 25 30

#
 o

f
N

o
d
e
s

×10
5

0

2

4

6

8

10

12

(c) Community Size Distribution

Fig. 3: Static Analysis of the Review Graph

Year
2008 2009 2010 2011 2012 2013 2014 2015

In
d

e
g

re
e

0

10

20

30

40

50

60

70

All
Superhosts
Verified

(a) Indegree

Year
2008 2009 2010 2011 2012 2013 2014 2015

O
u

td
e

g
re

e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

All
Superhosts
Verified

(b) Outdegree

Year
2008 2009 2010 2011 2012 2013 2014 2015

#
 o

f
C

o
m

m
u
n
it
ie

s

×10
4

0

1

2

3

4

5

6

7

8

9

(c) # of Communities

Year
2008 2009 2010 2011 2012 2013 2014 2015

%
 o

f
C

o
m

m
u
n
it
ie

s

0

10

20

30

40

50

60

70

80

90

100

Top1%
Top5%
Top10%
Top30%

(d) Top Communities

Year
2008 2009 2010 2011 2012 2013 2014 2015

%
 o

f
L
S

C
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) LSCC

Year
2008 2009 2010 2011 2012 2013 2014 2015

%
 o

f
L
W

C
C

0

10

20

30

40

50

60

70

80

90

100

(f) LWCC

Fig. 4: Dynamic Analysis of the Review Graph

account. According to Fig. 4(a) and Fig. 4(b), the average
indegree and outdegree of nodes in G grow steadily, as the
platform is developing rapidly. In 2008, the 80th percentile
values of the indegree and outdegree are 2 and 1, respectively.
In 2015, these two values become 21 and 2. Consequently,
the review graph becomes denser and denser. More and more
people are linked with each other through Airbnb. In Fig. 4(c),
we can see the number of communities also grows year by
year. Meanwhile, as shown in Fig. 4(d), the fractions of nodes
within the top 1%, 5%, 10% and 30% are becoming larger
and larger. We also pay attention to the fraction of the largest
strongly connected component (LSCC) and the largest weakly
connected component (LWCC) among all nodes in G. For the
LSCC (Fig. 4(e)), we can see it decreases for the first few
years, and grows since 2011. However, the percentage of the
LSCC is very small (less than 0.4%) all the time. Differently,
we can see the percentage of LWCC (Fig. 4(f)) increases year
to year. In 2008 about 10% users belong to the LWCC. This
number increases yearly. Finally, in 2015, more than 90% users
are involved in the LWCC. We believe that now most of the
users are weakly connected.

C. Mobility of Airbnb Users

1) Spatial-Temporal Analysis: Understanding the spatial-
temporal characteristics is important for an online lodging
service. Thanks to the near real-time nature of review pub-
lishing, we can infer the users’ mobility patterns by referring
to published reviews.

We first explore the distribution of the time gap between two
successive reviews published by the same user in Fig. 5(a), on
a monthly base. We can see that when the time gap becomes
larger, the number of corresponding successive review pairs
become fewer. However, if the gap value can be divided by 12
months, there is a viable “peak”. It shows that some travelers
undertake their travels on a yearly base.

We further study the case with a time gap of one year,
and categorize these review pairs according to the published
month of the first review of them in Fig. 5(b). The x-axis
denotes the published month, and the y-axis shows the number
of successive review pairs with a time gap of one year. We can
see most of the yearly travels take place in July and August.
In Fig. 5(c), we can see the average time gap of successive
review pairs of the users coming from the top 10 countries.

87

TABLE III: Fraction Distribution of “Home - Destination” County Pairs

XXXXXXXHome
Dest. US FR UK DE CA IT AU ES BR CN

∑
j
Hij

US 0.3958* 0.0221* 0.0170 0.0082 0.0187 0.0236* 0.0044 0.0134 0.0029 0.0013 0.5073
FR 0.0161 0.0268* 0.0083 0.0041 0.0030 0.0127 0.0013 0.0097 0.0009 0.0002 0.0831
UK 0.0205* 0.0130 0.0445* 0.0056 0.0024 0.0109 0.0036 0.0099 0.0009 0.0003 0.1116
DE 0.0173 0.0078 0.0066 0.0167 0.0021 0.0091 0.0021 0.0077 0.0007 0.0002 0.0703
CA 0.0230* 0.0050 0.0036 0.0016 0.0293* 0.0050 0.0011 0.0032 0.0004 0.0002 0.0725
IT 0.0047 0.0042 0.0033 0.0021 0.0003 0.0087 0.0004 0.0031 0.0002 0.0001 0.0271
AU 0.0160 0.0072 0.0070 0.0026 0.0019 0.0072 0.0343* 0.0035 0.0005 0.0002 0.0805
ES 0.0039 0.0031 0.0028 0.0017 0.0003 0.0026 0.0002 0.0062 0.0002 0.0001 0.0210
BR 0.0037 0.0015 0.0009 0.0006 0.0005 0.0011 0.0001 0.0006 0.0030 0.0000 0.0121
CN 0.0048 0.0014 0.0012 0.0006 0.0004 0.0013 0.0009 0.0005 0.0000 0.0032 0.0144∑
i
Hij 0.5059 0.0921 0.0951 0.0437 0.0591 0.0823 0.0485 0.0578 0.0096 0.0058 1.0000

Months of Gap
0 12 24 36 48

#
 o

f
R

e
v
ie

w
s

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(a) Distribution of the Time Gap

Month
1 2 3 4 5 6 7 8 9 10 11 12

#
 o

f
S

u
c
c
e
s
s
iv

e
 R

e
v
ie

w
 P

a
ir
s

0

200

400

600

800

1000

1200

(b) Gap: 12 Months

Country
US FR UK DE CA IT AU ES BR CN

G
a
p

0

0.5

1

1.5

2

2.5

3

3.5

(c) Avg. Time Gaps of Different Countries

Fig. 5: Distribution of the Time Gap Between Two Successive Reviews

Country
US FR UK DE CA IT AU ES BR CN

#
 o

f
D

e
s
ti
n

a
ti
o

n
 C

o
u

n
tr

ie
s

0

0.5

1

1.5

(a) Avg. Number of Visited Countries

Country
US FR UK DE CA IT AU ES BR CN

E
n
tr

o
p
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Entropy

Country
US FR UK DE CA IT AU ES BR CN

S
e
n
ti
m

e
n
t
S

c
o
re

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76
As Destination Country
As Home Country

(c) Sentiment Analysis

Fig. 6: Global Mobility of Users From Different Countries

We find that users from China has the smallest average time
gap, while the users from the United States has the largest
average time gap.

For each review, we can extract the home country of the
publisher. Meanwhile, we know the country that she visits,
which is known as the “destination country”. Therefore, each
review has a corresponding “home-destination country pair”.
In Table III, we use a matrix H to quantify the fraction
distribution of home-destination country pairs. For simplicity,
we only consider the users coming from the top 10 countries.
We select elements with a value more than 0.02 and mark
them with “*”. In this matrix, we can see that most of the
users have paid more visits to their home countries. In terms
of the number of reviews, the three most popular destination
countries are United States, United Kingdom and France.

In Fig. 6, we can see the global mobility of users from
top 10 countries. We use two metrics, i.e., the number of
visited countries, and the destination country entropy. The first
metric can simply count the number of destination countries a

user have visited. From Fig. 6(a), we can see that users from
Australia and United Kingdom have visited more countries.
From Fig. 6(b), we show the diversity of visited countries
by calculating the entropy of destination countries. Similarly,
we can see a higher diversity of destination countries for
users coming from Australia and United Kingdom. We also
calculate the average sentiment score of each home country
and destination country, and show the results of the top
10 countries in Fig. 6(c). We find that there is very little
difference among these countries. In average, users from the
United States are slightly happier. Meanwhile, as a destination,
Australia can make more people happy.

To understand where the users go from a temporal aspect,
we also conduct country-level analysis from a destination
country’s perspective. We can see the evolution of the visitor
population over time, and we have examined the top 30
countries according to the user population. Due to the page
limit, we pick six representative countries for our study. On
one hand, we select the United States, France, and United

88

2
0
0
8
-0

6

2
0
0
9
-0

1

2
0
1
0
-0

1

2
0
1
1
-0

1

2
0
1
2
-0

1

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
5
-0

1

2
0
1
5
-0

8

%
 o

f
R

e
v
ie

w
s

0

10

20

30

40

50

60

70

80

90

100

(a) United States

2
0
0
8
-0

6

2
0
0
9
-0

1

2
0
1
0
-0

1

2
0
1
1
-0

1

2
0
1
2
-0

1

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
5
-0

1

2
0
1
5
-0

8

%
 o

f
R

e
v
ie

w
s

0

2

4

6

8

10

12

(b) France

2
0
0
8
-0

6

2
0
0
9
-0

1

2
0
1
0
-0

1

2
0
1
1
-0

1

2
0
1
2
-0

1

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
5
-0

1

2
0
1
5
-0

8

%
 o

f
R

e
v
ie

w
s

0

1

2

3

4

5

6

7

8

9

(c) United Kingdom

2
0
0
8
-0

6

2
0
0
9
-0

1

2
0
1
0
-0

1

2
0
1
1
-0

1

2
0
1
2
-0

1

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
5
-0

1

2
0
1
5
-0

8

%
 o

f
R

e
v
ie

w
s

0

0.5

1

1.5

2

2.5

3

3.5

4

(d) South Africa

2
0
0
8
-0

6

2
0
0
9
-0

1

2
0
1
0
-0

1

2
0
1
1
-0

1

2
0
1
2
-0

1

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
5
-0

1

2
0
1
5
-0

8
%

 o
f
R

e
v
ie

w
s

0

1

2

3

4

5

6

7

8

9

10

(e) Australia

2
0
0
8
-0

6

2
0
0
9
-0

1

2
0
1
0
-0

1

2
0
1
1
-0

1

2
0
1
2
-0

1

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
5
-0

1

2
0
1
5
-0

8

%
 o

f
R

e
v
ie

w
s

0

0.5

1

1.5

2

2.5

(f) New Zealand

Fig. 7: Temporal Behavior of Different Destination Countries

Kingdom, as they have the largest user population. Since these
three countries are in the Northern Hemisphere, we select
three countries in the Southern Hemisphere, i.e., South Africa,
Australia and New Zealand. The results are shown in Fig. 7.
For each country, we show the user popularity from a temporal
view. The x-axis denotes the time information, and the y-axis
represents the percentage of reviews a destination country has
received in a certain month. We can see all the six countries
have shown a seasonal periodicity. One significant difference
between countries in the two hemisphere is the peak period of
a year. In the countries of the Southern Hemisphere, there is
always a peak in January and a valley in July. Differently, we
observe an almost opposite trend for countries of the Northern
Hemisphere. As we mentioned earlier, Airbnb is widely spread
around the world; accordingly we can see the share of the
reviews of United States-based apartments is going down.
Another interesting finding is about South Africa, there is a
significant and unusual peak in June and July of 2010. We
believe that this is because the FIFA World Cup 2010, which
has attracted numerous soccer fans from around the world.

2) Prediction: In this subsection, we investigate the pre-
dictability of user movements. In particular, we are interested
in whether a user will travel aboard. In our study, we focus on
users who have conducted at least one trip in 2015. Moreover,
we exclude the users who have completed less than 7 trips
on Airbnb, since they do not have enough historical data for
the prediction. Among the rest of users, we group them into
two categories, i.e., users whose latest trip is an international
trip, and users whose latest trip is a domestic trip. We call the
first group users “international users”, and the second group of
users “domestic users”. We randomly pick 24,000 international
users and 24,000 domestic users to form a training dataset.

We select a number of key features to distinguish between

these two types of users. These features belong to four
categories: (1) the ratio between international and domestic
trips; (2) the time interval between each two successive trips;
(3) the number of trips within a certain time interval; (4) the
demographic information. Given a training set and the selected
features, we apply different supervised machine learning al-
gorithms to predict whether a user is an international user.
The algorithms we test include XGBoost [4], C4.5 decision
tree [19], Random Forest [3], Naive Bayes [14] and supporting
vector machine (SVM) [10]. We use 10-fold cross-validation
to test the classification accuracy of these algorithms. Three
classic metrics are introduced, i.e., precision, recall, and F1-
score. Precision means the fraction of identified international
users who have really traveled abroad for their latest trips.
Recall indicates the fraction of international users who have
been accurately detected. F1-score represents the harmonic
mean of precision and recall. According to Table IV, the
XGBoost algorithm outperforms other algorithms and the
overall F1-score is as high as 0.766. Therefore, the selected
features could accurately distinguish international users from
domestic users. To evaluate the importance of each feature,
we use χ2 (Chi square) statistic to measure each feature’s
discriminative power [21]. The results are shown in Table V.

IV. RELATED WORK

Analysis of online service users always starts with the
collection of user data. A straightforward way is to obtain
all the data directly from the back-end servers. For example,
Zhao et al. [22] have explored the evolution of the Renren
network using the data obtained from the back-end. However,
very few online service providers have opened their data for
public research. Furthermore, many of them have applied
mechanisms such as per-IP address rate limit to prevent large-
scale data crawling. As in [6], we apply a distributed data

89

TABLE IV: Prediction of “International Users”

Algorithm Parameter Precision Recall F1-Score
XGBoost learning rate=0.09, max depth = 6, gamma = 0.2, seed = 2 0.792 0.741 0.766

Random Forest 247 trees,depth=0 0.774 0.737 0.755
C4.5(J48) Instance/leaf M=1,Confidence factor C=0.006 0.779 0.735 0.756
BayesNet 4 children,4 parents 0.782 0.726 0.753

TABLE V: χ2 statistic

Rank Feature χ2

1 Fraction of International Trips 15227.842064
2 Fraction of International Trips in 2015 12138.063148
3 Number of International Trips 11985.024126
4 Whether the 2nd Latest Trip is International 10841.01484
5 Home Country’s GDP 9103.609107

crawling approach to collect all the personal profiles of Airbnb
users, which allows us to conduct a comprehensive analysis.

Quattrone et al. [18] have crawled the Airbnb data of the city
of London, and have studied the problem of regulating Airbnb.
Their work investigated Airbnb from a socio-economic angle,
and conducted a series of temporal-spatial analysis of Airbnb
properties and demands in London. Ma et al. [15] focused on
the Airbnb hosts, and studied how hosts describe themselves
in their profile pages. Their study was based on 67,465 hosts
coming from 12 cities in the United States. Differently, our
work focuses on the interactions between users, and have
extended the scope to the entire set of Airbnb users.

Conventionally, a “social graph” models a number of users
and the “friendship” connections among them. The connection
between users does not necessarily reflect the real interactions
between them. To solve this issue, Wilson et al. [20] proposed
to describe the interactions with an “interaction graph”, and
demonstrated through a data-driven study that the interaction
graph can describe the user activities more efficiency than the
social graph relying on social links only. Jiang et al. further
studied latent interactions in the Renren social network [13]
based on the profile visit histories. Their study also demon-
strated that latent interactions are more meaningful than social
links. Similarly, we construct our review graph based on user
interactions. Our review graph models the user mobility and
interactions on a global scale.

V. CONCLUSIONS

In this paper, we conduct a comprehensive user behavior
analysis of Airbnb, a leading online lodging service. Our
study covers different aspects, including the user composition,
the interactions between users, and the cross-country mobility
patterns of the users. To the best of our knowledge, our study
presents the first comprehensive and evolutionary analysis of
Airbnb users on a global scale. In the future, we plan to
analyze the Airbnb users’ online behavior and offline activities
as an integrated whole. Also, we aim to detect the spam
accounts using deep learning technologies [9].

ACKNOWLEDGEMENT

This work is sponsored by National Natural Science Foun-
dation of China (No. 61602122, No. 71731004), Natural

Science Foundation of Shanghai (No. 16ZR1402200), Shang-
hai Pujiang Program (No. 16PJ1400700), EU FP7 IRSES
MobileCloud project (No. 612212) and Lindemann Foundation
(No. 12-2016). Yang Chen is the corresponding author.

REFERENCES

[1] S. Bird. NLTK: The Natural Language Toolkit. In Proc. of COL-
ING/ACL, 2006.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
Unfolding of Communities in Large Networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[4] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System.

In Proc. of ACM KDD, 2016.
[5] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-Law Distribu-

tions in Empirical Data. SIAM Review, 51(4):661–703, 2009.
[6] C. Ding, Y. Chen, and X. Fu. Crowd Crawling: Towards Collaborative

Data Collection for Large-scale Online Social Networks. In Proc. of
ACM COSN, 2013.

[7] S. Fortunato and M. Barthlemy. Resolution limit in community de-
tection. Proceedings of the National Academy of Sciences, 104:36–41,
2007.

[8] A. Fradkin, E. Grewal, D. Holtz, and M. Pearson. Bias and Reciprocity
in Online Reviews: Evidence From Field Experiments on Airbnb. In
Proc. of ACM EC, 2015.

[9] Q. Gong, Y. Chen, X. He, Z. Zhuang, T. Wang, H. Huang, X. Wang,
and X. Fu. DeepScan: Exploiting Deep Learning for Malicious Account
Detection in Location-Based Social Networks. IEEE Communications
Magazine, 2018.

[10] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Sup-
port vector machines. IEEE Intelligent Systems and their Applications,
13(4):18–28, 1998.

[11] D. Hric, R. K. Darst, and S. Fortunato. Community detection in
networks: Structural communities versus ground truth. Phys. Rev. E,
90:062805, Dec 2014.

[12] C. J. Hutto and E. Gilbert. VADER: A parsimonious rule-based model
for sentiment analysis of social media text. In Proc. of AAAI ICWSM,
2014.

[13] J. Jiang, C. Wilson, and et al. Understanding Latent Interactions in
Online Social Networks. In Proc. of ACM IMC, 2010.

[14] G. H. John and P. Langley. Estimating continuous distributions in
bayesian classifiers. In Proc. of UAI, 1995.

[15] X. Ma, J. Hancock, K. L. Mingjie, and M. Naaman. Self-disclosure and
Perceived Trustworthiness of Airbnb Host Profiles. In Proc. of ACM
CSCW, 2017.

[16] S. A. Myers, A. Sharma, P. Gupta, and J. Lin. Information Network or
Social Network?: The Structure of the Twitter Follow Graph. In Proc.
of WWW ’14 Companion, 2014.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-
66, November 1999.

[18] G. Quattrone, D. Proserpio, and et al. Who Benefits from the “Sharing”
Economy of Airbnb? In Proc. of WWW, 2016.

[19] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[20] C. Wilson, B. Boe, and et al. User Interactions in Social Networks and
Their Implications. In Proc. of ACM EuroSys, 2009.

[21] Y. Yang and J. O. Pedersen. A comparative study on feature selection
in text categorization. In Proc. of ICML, 1997.

[22] X. Zhao, A. Sala, C. Wilson, X. Wang, S. Gaito, H. Zheng, and B. Y.
Zhao. Multi-scale Dynamics in a Massive Online Social Network. In
Proc. of ACM IMC, 2012.

90

Wrinkles in Time: Detecting Internet-wide Events
via NTP

Meenakshi Syamkumar∗, Sathiya Kumaran Mani∗, Ramakrishnan Durairajan†, Paul Barford∗‡ and Joel Sommers§
∗University of Wisconsin-Madison, †University of Oregon, ‡comScore, Inc, §Colgate University

Abstract—Understanding the nature and characteristics of
Internet events such as route changes and outages can serve
as the starting point for improvements in network configura-
tions, management and monitoring practices. However, the scale,
diversity, and dynamics of network infrastructure makes event
detection and analysis challenging. In this paper, we describe a
new approach to Internet event measurement, identification and
analysis that provides a broad and detailed perspective without
the need for new or dedicated infrastructure or additional
network traffic. Our approach is based on analyzing data that
is readily available from Network Time Protocol (NTP) servers.
NTP is one of the few on-by-default services on clients, thus NTP
servers have a broad perspective on Internet behavior. We develop
a tool for analyzing NTP traces called Tezzeract, which applies
Robust Principal Components Analysis to detect Internet events.
We demonstrate Tezzeract’s efficacy by conducting controlled
experiments and by applying it to data collected over a period
of 3 months from 19 NTP servers. We also compare and
contrast Tezzeract’s perspective with reported outages and events
identified through active probing. We find that while there is
commonality across methods, NTP-based monitoring provides a
unique perspective that complements prior methods.

I. INTRODUCTION

Unexpected events in the Internet can impact users in a
variety of ways. On one end of the spectrum are small-scale
events such as localized route changes that occur for any
number of reasons and that cause only a brief increase in
latency for users. At the other end of the spectrum are large-
scale events such as outages (e.g., the Baltimore Howard Street
Tunnel fire [1]) that can cause wide-spread service disruptions
and impact many users for many days.

Understanding the characteristics of unexpected events such
as their prevalence and impact is important for planning,
configuration and management of networks. It can illuminate
weaknesses and vulnerabilities in network design and imple-
mentation. It can also clarify how measurement, monitoring
and diagnostic capabilities might be deployed more effectively
and efficiently. Furthermore, real-time event detection offers
the opportunity to identify the scope and details of events and
restore service in a timely fashion.

There are a number of challenges in developing the ca-
pability to identify and understand network events. First is
the problem of gathering measurements that can provide a
sufficient reach and detail in an efficient and timely fashion.
Second is the problem of detecting and localizing the scope of
events within a potentially vast amount of measurement data in
an accurate and reliable fashion. Third is the problem of event
diagnosis that can lead to effective and efficient remediation.
Prior methods for Internet event detection (e.g., [2]–[5]) typi-
cally rely on data from a dedicated measurement infrastructure,

and can suffer from noise that is inherent in data collected in
the Internet.

In this paper, we address the problem of Internet event
detection. We define an "Internet event" as a sudden change
in conditions that manifests as a change in packet latency
experienced by a cluster of clients. The goal of our work
is to develop a method for Internet event detection that
can provide both a broad and detailed perspective without
the need for deployment of new or dedicated measurement
infrastructure. Several prior studies have utilized existing wide-
area infrastructure for path failure monitoring and latency
change detection (e.g., [6], [7]). We adopt a similar approach,
however real-time monitoring is beyond the scope of our
current work.

Our method for Internet event detection utilizes a new
source of data: measurements from Network Time Protocol
(NTP) servers. NTP is one of the few on-by-default services
on clients and it is ubiquitously deployed, thus NTP data can
provide a broad perspective on Internet state. The efficacy
of extracting latency measurements from NTP data and the
diverse coverage of clients provided by NTP servers was
demonstrated in [8]. Our study utilizes an expanded technique
to extract one way delays (OWDs) between NTP clients and
servers [9].

We develop a technique for detecting Internet events from
OWDs extracted from NTP data. Intuitively, a jump in OWDs
between a cluster of clients and a server is an indication
of an event. Our technique is based on applying Robust
Principal Component Analysis (RPCA) [10] to OWDs for
client aggregates (defined by network prefixes) ex post facto.
Events are identified when specified thresholds are exceeded
as explained in §III. This approach enables the scope, duration
and other details of events to be identified. RPCA is attractive
for our application since it is more resilient to noisy data than
standard PCA [11].

Our RPCA-based event detection technique is realized in
a tool we call Tezzeract. We conduct a sensitivity analysis to
establish a configuration for Tezzeract that will provide con-
sistent and reliable results. Next, we demonstrate Tezzeract’s
ability to detect events through a set of controlled experiments,
by injecting randomized events into NTP traces. Following
that, we report on the results of events identified in ~1B NTP
transactions collected over a period of 3 months from 19 NTP
servers in the US. We find that the average number of events
detected per day varies by NTP server and the size of its client
population. We also find that the number of events detected per
day varies based on whether client-to-server (c2s) or server-to-

ISBN 978-3-903176-08-9 © 2018 IFIP

client (s2c) OWDs are considered. Finally, we examine events
that are detected by multiple servers, and find that as many as
10 out of the 19 traces may show an event simultaneously.

We compare and contrast the events identified by Tezzer-
act with two other data sources including (i) the ongoing
Internet-wide Census and Survey project at ISI [12] and (ii)
public reports of actual outage events. The comparisons are not
intended to "validate” our method since no ground truth for
Internet-wide events is available (an exception being reported
events). Rather they are meant to demonstrate the utility of our
method and how it compares and contrasts with other detection
methods. In the case of the comparison with ISI’s active probe
data, we find that Tezzeract is more conservative, reporting
many fewer events per day. This can be attributed to the liberal
definition of event used in [12], which is simply missing ping
measurements. However, Tezzeract does detect up to 67% of
the events identified in the ISI data. Finally, comparison with
a reported outage shows that Tezzeract effectively identifies
the event and the underlying OWDs used to drive the analysis
provide a useful perspective on the event’s impact.

In summary, this paper makes the following contributions.
(1) We introduce the use of NTP traces for Internet event
detection, which enable broad and detailed analysis without
the need for dedicated measurement infrastructure; (2) We
describe a new method for Internet event detection based on
applying RPCA to latency measurements from client clus-
ters, which is implemented in a tool called Tezzeract; (3)
We demonstrate the efficacy of NTP traces and our method
by reporting on controlled laboratory experiments, applying
Tezzeract to a large NTP data corpus, and comparing and
contrasting with events detected by other methods.

We find that while there is commonality across methods,
NTP-based monitoring provides a perspective that is unique,
accurate and complements prior methods.

II. DATASETS

A. NTP data

The NTP is both a protocol and a global hierarchy of
reference servers. At the top of the server hierarchy, referred
to as stratum 0, are high-precision time sources such as GPS-
based and atomic clocks. These servers act as highly accurate
references for servers in the next level of the hierarchy, stratum
1, which are also known as primary servers. Secondary,
stratum 2 servers synchronize from stratum 1 servers and so
forth down to stratum 15, which is the lowest level of the
hierarchy. For redundancy, servers may also peer with others
at the same level.

NTP clients compute a precise time estimate by
synchronizing with one or more than one servers. Hosts
running a commodity operating system are typically
configured to synchronize with a default NTP server(s)
(e.g., time.windows.com, time.apple.com,
0.pool.ntp.org), but can be configured to use a
specific NTP server or set of servers. NTP hosts or clients
typically connect to reference clocks that are stratum 2 or
higher. Lists of stratum 1 and stratum 2 servers are maintained

by ntp.org. Synchronization from these servers typically
requires permission from the server administrators.

We assembled the dataset used in our study from NTP
servers that are listed as part of pool.ntp.org. We started
by reaching out to several NTP operators and explained our
research goals; several operators responded positively. Out of
the many who responded, we carefully selected eight NTP
operators who maintain 19 different servers and obtained
datasets in the form of full packet (libpcap) traces.

An intrinsic component of NTP (and in turn in the traffic
captured at the servers) is the presence of timestamps in
packets that are exchanged between NTP clients and servers.
In particular, four timestamps are included in the NTP pack-
ets that are exchanged as part of the NTP synchronization
procedure (known as polling): t0, the time at which a clock
synchronization request is sent; t1, the time at which the
request is received at the NTP server; t2, the time at which
the response is sent by the server; and finally t3, the time at
which the response is received by the client. We use these four
timestamps to calculate the client-to-server (c2s) and server-
to-client (s2c) one-way delays (OWDs). The NTP protocol
running on clients determine the polling interval (in seconds),
which is the period between NTP packets sent to a server.

Unfortunately, the captured packets have no explicit infor-
mation about the level of synchronization of client(s) with
NTP server(s). As a result, we must identify and remove
packet exchanges between clients and servers in which the
clients are observed not to be in synchronization (otherwise
OWD estimates would be inaccurate). We utilize a filtering
method described in [9] that employs NTP-specific heuristics
on extracted OWD values, polling intervals and NTP packet
fields, and divides clients into various precision tiers based
on inferred synchronization quality. We use the OWDs from
only the highest precision tier i.e., clients that exhibit tight
synchronization with NTP servers.

TABLE I
Summary of NTP traces used in this study.

Server Server Total Total Client
ID Organization Measurements Unique Prefixes

Clients [Fraction]
AG1 Independent 36,309,416 171,326 19,633 [7.6e-04]
CI1 ISP 1,483,460 549 158 [5.4e-06]
CI2 ISP 780,580 342 145 [3.5e-06]
CI3 ISP 1,305,499 357 173 [3.2e-06]
CI4 ISP 665,732 240 96 [3.5e-06]
EN1 ISP 727,873 260 140 [3.8e-06]
EN2 ISP 813,531 229 106 [3.5e-06]
JW1 Commercial 2,394,120 3,318 1,377 [4.5e-05]
JW2 Commercial 2,914,157 3,874 1,567 [3.8e-05]

MW1 University 1,441,746 10,232 33 [2.8e-05]
MW2 University 40,129,376 49,179 18,369 [1.1e-03]
MW3 University 8,514,328 2,844 463 [2.2e-05]
MW4 University 24,864,872 45,717 17,547 [6.3e-05]
MI1 Commercial 847,884,900 641,378 42,820 [5.1e-04]
PP1 Independent 800,791 6,928 2,321 [1.9e-04]
SU1 ISP 65,733,781 1,029,575 57,942 [1.3e-03]
UI1 University 26,921,525 18,951 519 [1.22e-05]
UI2 University 51,722,823 22,462 1012 [2.12e-05]
UI3 University 46,321,161 22,351 674 [2.57e-05]

Table I summarizes the key characteristics of the NTP data
which forms the basis of our study. The NTP servers are

92

located in 9 different cities, and include a combination of (1)
2 different Internet service providers in Chicago (IL), Edison
(NJ), and Salt Lake City (UT) resulting in 7 NTP servers, (2) 3
commercial NTP servers in Jackson (WI) and Monticello (IA),
(3) 7 university campus NTP servers in Madison (WI) and
Urbana-Champaign (IL), and (4) 2 independent/community
NTP servers in Atlanta (GA) and Philadelphia (PA). In the
table, we observe a wide variation in the number of measure-
ments gathered from each server, as well as a wide range
of number of unique clients. Note that all measurements
and clients in our study are from IPv4-based networks. In
the table, we also include the number of IPv4 prefixes that
contain the client population, as well as the fraction of total
routable prefixes. The prefix data used to compute the right-
most column in the table comes from CAIDA [13].
B. Address prefix data

Our technique for Internet event detection depends on
grouping clients into IP address prefix clusters. The address
prefix data that we use is collected as part of CAIDA’s prefix-
to-AS (Autonomous System) mapping from the RouteViews
project [13]. We also use the the IP-to-AS mapping data from
Team Cymru [14] to enrich our perspective on widely used
prefixes.
C. Datasets for comparative analysis

We use datasets from a number of other efforts to provide
perspective on network events that we identify using Tezzeract.
As noted above, validation is challenging due to the lack
of reliable ground truth information. Thus, we draw on two
sources in an attempt to understand and contextualize the
events detected through our framework. Our goal is to use
these comparisons in a targeted fashion to highlight how NTP-
based event detection can provide an important and useful and
complementary perspective on network events. Specifically,
we use (i) Internet outage data from ISI’s census and survey
project [12], [15], and (ii) events reported on the outages
mailing list [16]. These datasets were all collected contempora-
neously with our NTP data and offer a broad perspective about
the events that we identify in the NTP logs. Specifically, ISI’s
census and survey offer a network operation and configuration
perspective, whereas events reported on the outages mailing
list offer a (limited) operator perspective.

III. METHODOLOGY

To identity the events in NTP logs, we developed a frame-
work and implemenation called Tezzeract which has two main
objectives. The first objective is to identify all events in NTP
logs, where an event is defined as a significant change in OWD
that affects multiple clients within an IP prefix. Most events
such as outages and route changes will manifest in a large
increase in OWDs, while other events such as peering updates
could manifest in a decrease in OWDs. The second objective
is to provide details on characteristics of events in terms of
duration, number of clients that experience an event on a per
server basis and across servers. To achieve these objectives,
Tezzeract consists of two algorithms: TezzeractClusterGener-
ator and TezzeractEventDetector, which we describe below.

A. Cluster generator

Tezzeract begins by ingesting OWD data from tightly syn-
chronized clients1 to generate clusters of NTP clients in a
matrix. A cluster is simply the largest IP prefix aggregate in
which we observe a given NTP client. The TezzeractCluster-
Generator algorithm takes three inputs: (a) NTP logs from
tightly synchronized clients, (b) IP prefix-to -AS mapping from
CAIDA [13], and (c) IP address-to-AS mapping from Team
Cymru [14].

The algorithm starts by extracting the IP addresses of clients
from NTP logs and creates prefix tries using IP prefix/address-
to-AS mapping datasets. Next, for every client C that syn-
chronizes time with an NTP server S, the longest matching
prefix among the CAIDA and Team Cymru data sources is
determined. If a prefix is not already seen, a new cluster is
created with the prefix as key and the set of clients for the new
cluster is initialized with C. Otherwise, C is added to the set
of clients of an existing prefix cluster. The clustering process
accomplishes two goals: (1) it creates client groupings which
naturally relate to Internet routing and management activity,
which we hypothesize are commonly related to observed
outages and performance disruptions, and (2) it reduces the
number of dimensions of the matrix on which event detection
is applied (see §III-B), thus reducing computational demands.

B. Event identifier

The TezzeractEventDetector algorithm generates a matrix of
OWD values for every observed prefix cluster. Specifically, for
every prefix cluster P , an OWD matrix of dimension t x n is
generated, where t is the time bin used to group every client
in a row and n is the number of clients in a prefix cluster.
From the NTP logs, the polling intervals are extracted and t
is determined using the median of minimum polling intervals,
which determines the frequency of NTP packet exchanges
for individual clients. Subsequently, the start and end epochs
are generated from timestamps. Using the epochs, the time
dimension of the matrix is determined and an empty matrix is
generated.

Next, the algorithm populates the t x n matrix using the
OWDs extracted from the NTP packets. Note that our descrip-
tion focuses on a single matrix for brevity. There are actually
two matrices constructed (and processed in later steps): one for
client-to-server (c2s) OWDs and one for server-to-client (s2c)
OWDs. For each client C, the corresponding OWD vectors and
epoch timestamps are extracted. These timestamps are used to
determine the value stored at a particular index in the matrix
for a client. If a client has multiple OWDs in a particular
time bin, we take the maximum value. In our algorithm, if
a particular client has no value for a given time bin due to
missing NTP packets, we leave that entry as “NA”. We remove
all those prefixes with n less than 2 as well as all rows with
complete NA values, resulting in a t′ x n matrix, where t′ ≤ t.

1NTP clients that have tight synchronization with their servers by accurately
accounting for and correcting the clock drift. We utilize the technique
described in [9] to identify such clients.

93

The core of our event detection method is based on identify-
ing outliers in the t′ x n matrix. We do this by applying Robust
Principal Component Analysis (RPCA) [17] with Mahalanobis
distance-based thresholding [18]. RPCA is robust to missing
data, which is a key aspect of our matrix [19]. This approach
allows us to identify events and to characterize them in terms
of time duration and number of clients on every individual
OWD matrix. We begin by establishing centers of the OWD
vectors from the matrix that are projected on an ellipse.
Subsequently, the principal components are derived as the
eigenvectors of the robust covariance matrix of the projected
data points.

RPCA Calibration. Informed by the prior work on the
sensitivity of PCA for detecting network anomalies [20],
we use cautions in selecting configuration parameters. In
particular, the following three parameters are important:

• Number of principal components (topk) that are used
for the new projection to reduce dimensions. If we use
all n principal components derived from a t′ x n matrix,
then we are able to account for maximal variance in the
data. In this study, we consider the algorithm’s sensitivity
to choosing the topk principal components.

• Scoring distance threshold, which is also known as
the Mahalanobis distance. Similar to prior efforts in this
space, we set the outlier detection threshold based on
ROBPCA [18], which provides the statistical reasoning for
choosing threshold values.

• Orthogonal distance threshold, a distance metric that is
needed only if we choose fewer than n principal compo-
nents. For k principal components (k < n), the value of
the threshold is established using ROBPCA [18].

Given n principal components, each of which contributes
to some percentage of variance in the NTP data, we select
the topk components with non-negligible variance. In our
analysis, we considered different variance threshold values
for determining how to select the topk principal components.
Specifically, we first select NTP logs from two random days
and compute the variance contributed by every principal
component for all the clusters across all the servers. Next, we
iteratively determine thresholds by ignoring principal compo-
nents that produce lower variance than the current threshold.
The threshold values iterated are 0.5, 1, 2, 5, 10 and 20 (and
all thresholds are percentages).

Figure 1 shows the variance threshold along with changes
in the number of events detected (bottom) and prefix clusters
affected (top) for the MW3 NTP server.2 From this plot for the
MW3 server, we consider a threshold between 5 and 10% to
represent a reasonable tradeoff between being too sensitive and
treating too many OWD fluctuations as significant events on
the one hand, and ignoring what are likely to be important
performance disruptions on the other hand. Based on this
analysis, we set the topk variance threshold to be 5% in all the

2Other NTP servers exhibited similar variance thresholds and are not shown
here due to space constraints.

42

44

46

48

Nu
m
be

r o
f p

re
fix

es c2s
s2c

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Variance threshold

600

800

1000

1200

1400

Nu
m
be

r o
f e

ve
nt
s c2s

s2c

Fig. 1. Sensitivity analysis of topk parameter for MW3 server.

analyses presented in this paper. Finally, the score estimates for
determining events are calculated using Mahalanobis distance
and Orthogonal distance in the projected space. The outliers
are identified by applying thresholds on the scores using the
thresholding technique similar to ROBPCA [18].

RPCA Implementation. To implement the RPCA compo-
nent in the event detector, we use the PcaNA R package [21]
which consists of many RPCA implementations including
Projection Pursuit (PP) [22], Elliptical PCA (EPCA) [10],
PCAGRID [23], ROBPCA [18] and Robust Covariance Es-
timator (RCE) [17]; both ROBPCA and RCE use Minimum
Covariance Determinant (MCD). In particular, we use the RCE
with MCD as our RPCA for two reasons. First, prior efforts
have shown the threshold effectiveness of MCD in ROBPCA
on datasets with missing values [24], which is also an issue
with our data. Second, in a limited comparison experiment, we
evaluated each of the RPCA implementations using a subset of
data with validated events and compared the scores. We found
that the scores from other methods were either inconsistent
or failed to identify the events of interest in comparison
with RCE. Furthermore, for the same data, we found that
the runtime performance of RCE (0.74s) is over ∼3x faster
than the other RPCA methods: EPCA (2.26s), PP (2.83s) and
PCAGrid (3.09s). The result is an efficient implementation of
Tezzeract, where run time on the largest NTP log for one day
was 683.79 seconds.

IV. RESULTS

A. Synthetic event tests

To illustrate the efficacy of Tezzeract’s event detection
capability in a controlled and repeatable fashion, we conduct
a series of tests by injecting synthetic events into NTP traces.
Our test data is based on an NTP log from a single server
(AG1) for a single day (November 15, 2015). We run Tezzer-
act on the base trace and mark all events detected so they can
be removed from further test results. We then modify entries
in the trace to simulate events. We consider two factors for
injecting an event. First, the duration of the event, and second,
the percentage of the clients within a prefix cluster that observe
the event (i.e., through expanded OWDs).

Our canonical "event" takes place in a single /24 prefix
cluster (256 clients) where at least 20% of the constituent
clients exchanged NTP packets with the server. We randomly

94

increase OWDs on 75% of the observed clients by a factor of 4
to 5 over a period of 7 minutes. Our first test injects an "event"
into a /24 prefix cluster in the test trace every 25-minutes.
Figure 2-(top) illustrates the OWDs for the synthetic events.
Figure 2-(bottom) shows the RPCA scores from Tezzeract,
along with the scoring distance threshold. Tezzeract method-
ology easily identifies all of these injected events, without any
false negatives or positives.

Next, we inject a set of random events controlling both
the duration and the percentage of clients that experience the
event, p. The duration of these events was between 5 minutes
to 22 hours. p is varied from 25 to 100%. Similar to the
canonical event, we modify existing packets by increasing
OWDs and add no new exchanges to the trace. To determine
the increase in delay, we consider the inter-packet spacing
along with polling intervals to identify the maximum possible
delay. Table II shows the results of applying Tezzeract to
the modified trace. While no false positives were generated,
as the value of p decreases, the number of false negatives
climbs—up to 17.9% when only 25% of the clients in the
prefix experience the event. Closer examination revealed that
all of these events had a duration of less than 20 minutes and
thus were not detected simply due to lack of data. We ran
many additional experiments with different values for event
durations and percentage of clients affected, and the results
were consistent with what we report here—no false positives
and low false negatives.

TABLE II
Summary of injected events.

Percentage of Total number Total number
clients in of events of events Tezzeract
the prefix injected detected

100 1,000 1,000
75 1,000 983
50 1,000 962
25 1,000 821

0

2

4

0 2
5

5
0

7
5

1
0
0

Time Bins

O
W

D
 (

s)

0

10

20

30

40

0 2
5

5
0

7
5

1
0
0

Time Bins

S
co

re
s

Fig. 2. OWDs (top) and RPCA scores (bottom) for 7-minute synthetic
events with 25-minute inter-event spacing on /24 cluster

B. Characteristics of events in NTP trace data
We apply Tezzeract to the full set of NTP trace data

described in §II.

Individual Servers. Table III shows the summary of the
average number of events identified by Tezzeract per day.
The number of corresponding prefixes (prefix clusters) that
are affected is also shown. The results show that the average
number of events identified by Tezzeract varies between NTP
servers: from 57k events over 6.7k prefixes (MI1) to 77 events
for 8 prefixes (MW1). Comparing the number of prefixes with
events (in Table III) with the total number of prefixes reported
in Table I, we observe high event occurrences for university-
related servers (∼98% for UI3). The results also show that the
number of prefixes affected as seen from the ISP servers are
fewer than the university servers. We hypothesize the lower
number of events observed at the ISP-based NTP servers is
due to the narrower reach of client prefixes. Many of these
events are likely to be due to daily route changes, which are
known to cause temporary increases in packet latencies [25].

TABLE III
Summary of events detected by Tezzeract.

Server c2s s2c
ID Avg. #events #prefixes Avg. #events #prefixes

per day affected per day affected
AG1 4,246 2,342 3,701 2,241
CI1 243 35 216 37
CI2 117 19 118 18
CI3 158 21 129 20
CI4 137 22 146 21
EN1 125 22 128 21
EN2 84 23 92 22
JW1 480 118 701 117
JW2 611 132 944 126

MW1 77 8 75 8
MW2 4,975 1,321 4,868 1,182
MW3 624 80 706 79
MW4 3,586 914 3,276 793
MI1 58,434 6,874 57,396 6,792
PP1 357 151 206 141
SU1 2,520 5,620 1,928 4,954
UI1 2,949 496 2,872 446
UI2 8,570 863 8,128 804
UI3 6,819 664 6,118 627

Figure 3 depicts the number of events and prefixes affected
as seen from the PP1 NTP server. The figure shows that the
number of events observed for the c2s path of PP1 NTP
server is as high as 890; whereas it is 400 events for the
s2c path. This highlights well the known issue of Internet
routing asymmetries [26] and can serve as evidence for further
diagnosis of the events. Interestingly, we observe a drop
in the number of events and affected prefixes for the PP1
commercial NTP server over December 25 and 26, 2015. This
"Christmas holiday effect” is consistent across all commercial
NTP servers, but not consistently observed through ISP- and
university-based NTP servers. We also find that the number
of events detected per day varies based on whether c2s or
s2c OWDs are considered once again highlighting the issue
of routing asymmetries.

To complement Table III, Figure 4 shows box-and-whiskers
plot of event durations for c2s events. Note that we do not
show all outliers in this plot to avoid visual clutter. The figure
shows that the interquartile ranges for the ISP-based NTP
server (i.e., SU1) are very tight. On the contrary, even though
the interquartile ranges for certain servers (e.g., MI1 and
CI1) are comparable with other NTP servers, their maximum
observed event duration exceeds 6000s (∼1.5 hours). The

95

20

30

40

50

60

Nu
m
be

r o
f p

re
fix

es c2s
s2c

12
-1
0-
20

15
12

-1
1-
20

15
12

-1
2-
20

15
12

-1
3-
20

15
12

-1
4-
20

15
12

-1
5-
20

15

12
-1
7-
20

15
12

-1
8-
20

15
12

-1
9-
20

15
12

-2
0-
20

15
12

-2
1-
20

15
12

-2
2-
20

15
12

-2
3-
20

15
12

-2
4-
20

15
12

-2
5-
20

15
12

-2
6-
20

15
12

-2
7-
20

15
12

-2
8-
20

15
12

-2
9-
20

15
12

-3
0-
20

15
12

-3
1-
20

15
01

-0
1-
20

16
01

-0
2-
20

16
01

-0
3-
20

16
01

-0
4-
20

16
01

-0
5-
20

16
01

-0
6-
20

16
01

-0
7-
20

16

0

200

400

600

800

Nu
m
be

r o
f e

ve
nt
s c2s

s2c

Fig. 3. Number of events and affected prefixes for PP1

SU
1

UI
2

UI
3

PP
1

M
W
4

UI
1

JW
1

M
W
3

CI
2

EN
1

JW
2

CI
4

M
W
1

CI
3

AG
1

M
W
2

EN
2

CI
1

M
I1

Server ID

0

1000

2000

3000

4000

5000

6000

Ev
en
t d

ur
at
io
n
(s
)

Mean Median

Fig. 4. Box-and-whiskers plots showing event duration characteristics of
c2s events for NTP servers.

figure also shows that the 75th percentile of event duration for
a majority of the NTP servers that we consider is ∼2000s (∼33
minutes). Finally, despite the median of event durations for a
majority of servers being very low (i.e., generally less than 15
minutes), we observe that the maximum event durations are
fairly high. One explanation for high event duration values
is clients with long NTP polling intervals (e.g., 1024s), thus
these values are not necessarily reflective of event duration. s2c
paths also exhibited similar characteristics. Enhancing event
duration estimates is a topic of future work.

Across Servers. Next, we count the unique number of
prefixes and events seen across the NTP servers. Figure 5
shows the number of non-overlapping events (y axis) as
observed from at least n NTP servers (x axis). All the reported
counts are time-aligned i.e., both events and prefixes are
simultaneously identified by Tezzeract at one or more NTP
servers. We observe over 11.3k and 10.8k unique prefixes from
different NTP servers in c2s and s2c directions, respectively.
From these prefixes, events from ∼25%, ∼5% and ∼3%
of the prefixes are seen across at 2, 3, or 4 NTP servers,
respectively. Figure 5 indicates events observed by as many as
10 NTP servers for certain prefixes (e.g., 108.192.0.0/16
belonging to AT&T, Inc.).

Overall, these results demonstrate how NTP can offer a
unique Internet-wide perspective. In particular, Figure 5 shows
how prefixes could be simultaneously monitored from multiple

servers. Moreover, when events are observed from multiple
servers for any given prefix at the same time, they can provide
a natural self-consistency check and aid in diagnosis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of servers

0

1000

2000

3000

4000

R
a
w
 c
o
u
n
t
o
f
e
v
e
n
ts
 (
in
 1
0
0
0
s)

4
2
9
7
6
6
7

7
3
6
4
7
7

1
2
3
0
2
8

2
2
2
0
5

4
0
9
5

6
8
6

8
5

8 3 2 0 0 0 0 0 0 0 0 0

4
1
6
8
5
8
6

7
0
6
1
7
6

1
2
5
2
0
9

2
4
2
5
7

4
9
7
8

1
0
1
5

1
4
8

2
2

4 0 0 0 0 0 0 0 0 0 0

c2s
s2c

Fig. 5. Number of events seen across multiple servers.

C. Consistency checking with active probe-based data

Next, we compare and contrast the events identified by
Tezzeract versus those identified by the ongoing Internet-wide
Census and Survey project at ISI [12]. The ISI Census and
Survey project is an example of what we consider a core-to-
edge active probing system. Tezzeract, on the other hand, has a
specific goal of identifying events based on passive observation
of NTP traffic and which provides both core-to-edge and edge-
to-core perspectives. Given the differences between the two
methods and given the paucity of ground truth information to
validate the identified events, the comparison of the number of
events and affected prefixes identified by Tezzeract vs. census
and survey should be interpreted as a way to strengthen and
learn from each other. That is, Tezzeract can be used to provide
a better perspective on edge-to-core events as the majority
of clients behind network address translators are oblivious to
active probing efforts.

Our comparison algorithm for the ISI census and survey
data takes two inputs: (1) the ISI-identified events (i.e., those
recorded in /24 prefixes through active probing) and (2) the
events identified using Tezzeract. Note that both inputs also
contain the timeline of event occurrences. Given these inputs,
the algorithm populates a trie with Tezzeract-identified event
prefixes and their corresponding timelines (i.e., event start and
end times) since the events identified by Tezzeract contain
prefixes larger than /24. Next, for each ISI event reported, we
check whether the prefix associated with the ISI event is in
the trie (or is contained within a prefix in the trie). If a match
is found, the algorithm finds the best matching NTP event
corresponding to an ISI event by comparing the start time of
each NTP event with the ISI event. At the end of this process,
we obtain a one-to-one NTP and ISI event match list.

Given the match list with two start and end times, say <I1,
I2> from ISI and <N1, N2> from Tezzeract, the algorithm
assigns the events into one of 11 categories based on the
conditions given in Table IV. For categories 1 to 9, we have

96

some form of overlap between Tezzeract- and ISI-identified
events, whereas for categories 10 and 11, there are no overlaps.
For categories 10 and 11, we use a pre- and post-match
window of 1 hour.

TABLE IV
Categories used for comparing Tezzeract- vs. ISI-identified events.

Category Condition
1 I1 = N1 and I2 = N2
2 I1 = N1 and I2 < N2
3 I1 = N1 and I2 > N2
4 I1 < N1 and I2 = N2
5 I1 < N1 and I2 > N2
6 I1 < N1 and I2 < N2
7 I1 > N1 and I2 = N2
8 I1 > N1 and I2 > N2
9 I1 > N1 and I2 < N2

10 I1 > N2
11 I2 < N1

TABLE V
Summary of Tezzeract events comparison with ISI events.

Server OWD Total # of ISI Total Total
ID direction event matches exact /24 C1 to C9 C10 and C11

with Tezzeract matches

AG1 c2s 68,895 123 48,198 20,697
s2c 62,460 113 45,228 17,232

CI1 c2s 3,408 2 2,785 623
s2c 2,773 1 2,317 456

CI2 c2s 1,569 0 1,185 384
s2c 1,460 6 1,104 356

CI3 c2s 3,513 0 2,958 555
s2c 2,409 1 2,088 321

CI4 c2s 2,132 6 1,645 487
s2c 2,306 6 1,890 416

EN1 c2s 1,188 8 980 208
s2c 1,198 8 994 204

EN2 c2s 807 5 619 188
s2c 1,077 6 874 203

JW1 c2s 6,988 13 6,185 803
s2c 8,555 16 7,487 1,068

JW2 c2s 6,657 0 5,533 1,124
s2c 9,736 0 7,826 1,910

MW1 c2s 1,065 0 756 309
s2c 1,053 0 725 328

MW2 c2s 79,330 290 55,548 23,782
s2c 73,749 322 52,020 21,729

MW3 c2s 8,715 63 6,278 2,437
s2c 10,537 69 7,406 3,131

MW4 c2s 55,406 118 38,038 17,368
s2c 47,793 131 33,854 13,939

MI1 c2s 959,455 2,667 786,951 172,504
s2c 951,396 2,589 784,808 166,588

PP1 c2s 3,628 3 2,733 895
s2c 2,875 4 2,307 568

SU1 c2s 17,717 71 7,606 10,111
s2c 14,194 47 6,346 7,848

UI1 c2s 32,477 142 23,133 9,344
s2c 30,849 143 22,362 8,487

UI2 c2s 76,328 261 49,487 26,841
s2c 72,151 279 48,181 23,970

UI3 c2s 59,919 151 39,339 20,580
s2c 54,913 143 36,638 18,275

Table V shows the comparison of Tezzeract-identified events
(for both c2s and s2c directions) versus events identified by
census and survey. The table highlights the number of ISI
events which we were able to match with Tezzeract events,
the number of exact /24 matches (cases where Tezzeract’s
prefix cluster is a /24, thereby enabling a direct one-on-one
comparison with the ISI outage event), and the number of
events under various categories. From this table, we see that
as much as ∼67% of the events identified by Tezzeract from
the CI2 NTP server match with those identified by census
and survey. We further observe that on average, over 66%

of the Tezzeract-identified events overlap in terms of event
timelines across all the servers (in C1 to C9 category); the
remaining (∼33%) of Tezzeract-identified events occur within
a match window of one hour, either before or after, those
identified by ISI (see C10 and C11). Next, we see that there
are more /24 exact matches between the Tezzeract and ISI for
commercial- and university-based NTP servers in comparison
with the ISP counterparts. This may simply reflect the fact
that NTP clients that contact the ISP servers typically come
from larger routing prefix aggregates. Lastly, we observe that
Tezzeract finds ∼63% new events, on average, across all the
NTP servers considered in this study. This is likely due to the
reach of NTP clients vs. the probing cycle of the ISI servers.

The unique events that were identified by Tezzeract con-
sisted of both network prefixes covered as part of the ISI sur-
vey, as well as prefixes which were not reachable via standard
active probing methods. The median duration of these events
is approximately 20 minutes, which is similar to the overall
median duration. Tezzeract was able to identify many long du-
ration events, observed by multiple clients within the affected
prefix clusters. The top two longest duration events observed
lasted for approximately 2 and half hours and affected the fol-
lowing prefixes: 204.93.0.0/19 which belongs to AS 698
(University of Illinois) and 54.186.0.0/15 which belongs
to AS 16509 (Amazon.com, Inc.). These events were observed
by 53 and 74 unique clients belonging to the corresponding
prefix clusters. These events are likely to be outages similar
to those discussed below.
D. Consistency checking with other sources

Finally, we compare events identified by Tezzeract with
public reports. In particular, we rely on the Outages mailing
list [16] to further enhance the confidence in the events
identified by Tezzeract. To illustrate with an example, we
consider the outage event [27] discussed by Level3’s (now
CenturyLink) administrators in the Outages mailing list as
ground truth. On December 15, 2015 an outage event occurred
because of a router addition that impacted multiple users and
businesses between Chicago, IL and Atlanta, GA.

To evaluate whether the events identified by Tezzeract co-
incide with this known outage, we first selected all the events
identified on December 15, 2015, resulting in 148,322 events.
Similar to our comparison with ISI event data, we use four
timestamps: (1) two from each event (start and end) identified
by Tezzeract, and (2) start and end timestamps derived from
the Outages mailing list [27], which are December 15, 2015
18:18 GMT and December 15, 2015 19:20 GMT. Next, we
find the time-alignment category under which the Tezzeract-
identified events fall with respect to [27] (see Table IV). If the
events fall under C1 to C9, we note those events; otherwise,
we ignore those events. For the events noted, we extract the
list of client IP addresses and their corresponding geographic
coordinates using MaxMind’s IP Geolocation service [28].
Subsequently, we match the geographic locations from [16]
and the ones obtained above.

From the 148k events initially identified, the process out-
lined above results in 1,104 events overlap with the ground

97

0

1

2

3

4

5

0 20 40 60 80

Time Bins

O
W

D
 (

s
)

0

20

40

60

80

0 20 40 60 80

Time Bins

S
c
o
re

s

Fig. 6. Level3 outage event identified by Tezzeract affecting AS 32748.

truth [27] in terms of event timelines, prefixes and geographic
locations. Figure 6 shows the OWD spikes (top) and scores
for clients (bottom) in one of the prefixes affected. The
OWD spikes represented in Figure 6-(top) contain 43 unique
clients from the prefix 208.117.0.0/18 which belongs
to AS 32748 (Steadfast.net), a peer of Level3. The results
depicted in this plot highlight the effectiveness of Tezzeract in
identifying Internet outages. In particular, we observe that the
effect on NTP-derived OWDs is extreme for clients within
each of these ASes, underscoring the severity of the event.
Tezzeract can also offer an alternate perspective to BGP-based
event detection tools [29]3.

V. RELATED WORK

Prior research on network outages has considered various
perspectives including rerouting or routing anomalies caused
by failures in core and transit networks, connectivity outages
and performance impairments for customers in the network
edge, and service outages.

Core and transit network outages. Core network fail-
ures and performance anomalies have been examined using
both passively collected data sources and active measurement.
Analysis of inter-domain (BGP) and intra-domain (e.g., IS-IS,
OSPF, etc.) routing updates have formed the basis of many of
the studies based on passive data collection, e.g., [30]–[32].
In a related vein, Banerjee et al. used the outages mailing
list [16] as the basis for evaluating core network failures [33].
Yet another source of passive data for detecting and analyzing
wide-area faults has been through analysis of background
radiation traffic [34]. Active measurement techniques have also
been widely used to detect routing loops and other anomalies
and path failures [35]. Tomographic techniques have also been
developed to actively probe a network in order to detect faults
and localize them to particular links or subpaths [36].

Outages at the network edge. Active measurement has
been the dominant technique for detecting failures at the edge
of the network. Periodic pings combined with analysis of BGP

3These results are not shown here due to space constraints.

updates were used to trigger traceroutes to verify and monitor
edge network outages in Hubble [37]. The study and ongoing
data collection by Quan et al. employ low-rate pings to the
entire IPv4 address space, and detect outages and disruption
events through a Bayesian formulation [4]. In our study, we use
a subset of these data for comparison and validation. In their
study, Padmanabhan et al. study the response time to pings
across the IPv4 Internet and find that 5% of responses from
5% of addresses take at least 5 seconds to arrive [38]. This
finding has important implications for the design of any active
measurement-based system that uses the lack of responses
to identify outages. Our event detection strategy is based on
passively collected NTP data.

PCA-based analysis of network data. Identifying events
of interest from streams of Internet data using PCA has been
of interest to the measurement community for many years.
This includes applying PCA to detect BGP anomalies [39],
network traffic anomaly detection and diagnosis [2], [40],
network monitoring and anomaly detection [41], and network
diagnosis [42]. Issues with PCA-based methods are pointed
out by [43], [44]. Similarly, sensitivity of PCA to calibration
and its corresponding implications to anomaly detection are
discussed by Ringberg et al. [20]. Our event detection ap-
proach applies Robust PCA, instead of PCA, on NTP traces
and demonstrates a new, unique perspective for Internet-level
event detection without additional infrastructure.

VI. SUMMARY AND FUTURE WORK

Understanding the scope and nature of unexpected network
events is important for effective management and operation
of communication networks. In this paper, we address the
problem of Internet event detection by developing a novel
framework and implementation called Tezzeract. Our frame-
work uses one way delays (OWDs) extracted from Network
Time Protocol (NTP) packet exchanges and therefore does not
require any new infrastructure to be deployed, or any addi-
tional network traffic and offers the opportunity for a broad
perspective on events. Our algorithm for identifying events is
based on Robust PCA, which is resilient to noisy data that
is typical in the Internet measurements including NTP data.
Our implementation of Tezzeract produces a characterization
of events including the number of NTP clients affected, event
duration, and prefix(es) affected.

We assess Tezzeract in a series of controlled experiments
based on injecting synthetic events in an NTP trace. We find
that Tezzeract is highly accurate in reporting with a false
negative rate related to measurement reach. We then apply
Tezzeract to a large NTP data set collected from 19 servers
in the US. We find that the average number of events per
day varies widely across the set of servers, as do the event
durations. We observe that the median event duration for
most servers is approximately 20 minutes or less, but that
the distribution is skewed, with quite a few very long events
(e.g., more than 1 hour). We also find that a considerable
number of events are observed at more than 1 NTP server, e.g.,
25% of events are observed at 2 servers, and that we observe

98

some events at 10 of the 19 servers indicating significant
impact across clients. We compare the events detected through
Tezzeract with event data collected through the ongoing ISI
census and survey project and find that between 21–67% of
events that are detected by Tezzeract are also identified by
the ISI system, but that Tezzeract also identifies new events.
We also evaluate events detected by Tezzeract in relation to a
reported outage. We observe that the event is identified through
different sets of NTP clients on different prefixes, and but that
the different client populations are impacted in similar ways.

In ongoing work, we are examining additional ways to
corroborate and gain perspective on the events detected by
Tezzeract, and are exploring ways to automate this process.
We are also examining events recognized by decreases in
OWDs, which is a simple extension of Tezzeract. Finally,
we are also examining the possibility of performing real-time
event detection and analysis.

ACKNOWLEDGMENTS

We thank the NTP operators for providing the datasets. This
work is supported by NSF grants CNS-1703592, DHS BAA
11-01, AFRL FA8750-12-2-0328. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of NSF, DHS,
AFRL or the U.S. Government.

REFERENCES

[1] “Effects of Catastrophic Events on Transportation System Management
and Operations: Howard Street Tunnel Fire Baltimore City, Maryland,”
https://ntl.bts.gov/lib/jpodocs/repts_te/13754.html.

[2] A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using Traffic
Feature Distributions,” ACM SIGCOMM, 2005.

[3] P. Barford, N. Duffield, A. Ron, and J. Sommers, “Network performance
anomaly detection and localization,” in IEEE INFOCOM, 2009.

[4] L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular: Understanding
Internet reliability through adaptive probing,” in ACM SIGCOMM Com-
puter Communication Review, 2013.

[5] B. Eriksson, R. Durairajan, and P. Barford, “Riskroute: A framework
for mitigating network outage threats,” in ACM CoNEXT, 2013.

[6] M. Zhang, C. Zhang, V. S. Pai, L. L. Peterson, and R. Y. Wang,
“Planetseer: Internet path failure monitoring and characterization in
wide-area services.” in OSDI, 2004.

[7] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and S. Srinivasan,
“Latlong: Diagnosing wide-area latency changes for cdns,” IEEE Trans-
actions on Network and Service Management, 2012.

[8] R. Durairajan and S. Mani and J. Sommers and P. Barford, “Time’s
Forgotten: Using NTP to Understand Internet Latency,” in ACM HotNets,
2015.

[9] R. Durairajan, S. K. Mani, P. Barford, R. Nowak, and J. Sommers,
“TimeWeaver: Opportunistic One Way Delay Measurement via NTP,”
https://arxiv.org/abs/1801.02123, 2018.

[10] N. Locantore, J. Marron, D. Simpson, N. Tripoli, J. Zhang, K. Cohen,
G. Boente, R. Fraiman, B. Brumback, C. Croux et al., “Robust Principal
Component Analysis for Functional Data,” Test, 1999.

[11] M. Hubert, P. Rousseeuw, and T. Verdonck, “Robust pca for skewed data
and its outlier map,” Computational Statistics & Data Analysis, 2009.

[12] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett,
and J. Bannister, “Census and Survey of the Visible Internet (extended),”
ISI-TR-2008-649, 2008.

[13] “CAIDA Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4
and IPv6.” https://www.caida.org/data/routing/routeviews-prefix2as.xml.

[14] “Team CYMRU’s IP to ASN mapping.” http://www.team-cymru.org/
IP-ASN-mapping.html.

[15] “USC/LANDER Project. Internet Outage Dataset, PREDICT ID:
USC-LANDER/internet_outage_adaptive_a22all-20151001 and USC-
LANDER/internet_outage_adaptive_a23all-20161001,” http://www.isi.
edu/ant/lander.

[16] “Outages Mailing List.” https://puck.nether.net/mailman/listinfo/outages.
[17] C. Croux and G. Haesbroeck, “Principal Component Analysis based on

Robust Estimators of the Covariance or Correlation matrix: Influence
Functions and Efficiencies,” Biometrika, 2000.

[18] M. Hubert and P. J. Rousseeuw and K. Vanden Branden, “ROBPCA: A
New Approach to Robust Principal Component Analysis,” Technomet-
rics, 2005.

[19] S. Serneels and T. Verdonck, “Principal Component Analysis for Data
Containing Outliers and Missing Elements,” Computational Statistics
and Data Analysis, 2008.

[20] H. Ringberg and A. Soule and J. Rexford and C. Diot, “Sensitivity of
PCA for Traffic Anomaly Detection,” SIGMETRICS, 2007.

[21] “R package: Classical Or Robust Principal Components For In-
complete Data.” https://www.rdocumentation.org/packages/rrcovNA/
versions/0.4-8/topics/PcaNA.

[22] C. Croux and A. Ruiz-Gazen, “High Breakdown Estimators for Principal
Components: The Projection-Pursuit Approach Revisited,” Journal of
Multivariate Analysis, 2005.

[23] C. Croux, P. Filzmoser, and M. R. Oliveira, “Algorithms for Projection–
Pursuit Robust Principal Component Analysis,” Chemometrics and In-
telligent Laboratory Systems, 2007.

[24] C. Pascoal, M. R. De Oliveira, R. Valadas, P. Filzmoser, P. Salvador,
and A. Pacheco, “Robust feature selection and robust pca for internet
traffic anomaly detection,” in IEEE INFOCOM, 2012.

[25] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, “Understanding
network delay changes caused by routing events,” in ACM SIGMETRICS
Performance Evaluation Review. ACM, 2007.

[26] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M. Mao, “A
Measurement Study of Internet Delay Asymmetry,” in PAM, 2008.

[27] “[outages] Level3 Chicago?” https://puck.nether.net/pipermail/outages/
2015-December/008572.html.

[28] “MaxMind IP Geolocation Service.” https://www.maxmind.com/.
[29] M. Syamkumar, R. Durairajan, and P. Barford, “Bigfoot: A Geo-

based Visualization Methodology for Detecting BGP Threats,” in IEEE
Symposium on Visualization for Cyber Security, 2016.

[30] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
IEEE/ACM Transactions on Networking, 1998.

[31] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of Internet
stability and backbone failures,” in International Symposium on Fault-
Tolerant Computing, 1999.

[32] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM Transactions on Networking, 2008.

[33] R. Banerjee, A. Razaghpanah, L. Chiang, A. Mishra, V. Sekar, Y. Choi,
and P. Gill, “Internet outages, the eyewitness accounts: Analysis of the
outages mailing list,” in PAM, 2015.

[34] K. Benson, A. Dainotti, K. C. Claffy, and E. Aben, “Gaining insight into
AS-level outages through analysis of Internet background radiation,” in
IEEE INFOCOM workshops, 2013.

[35] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM
transactions on Networking, 1997.

[36] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot, “Netdiagnoser:
Troubleshooting network unreachabilities using end-to-end probes and
routing data,” in ACM CoNEXT conference, 2007.

[37] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy,
D. Wetherall, and T. E. Anderson, “Studying Black Holes in the Internet
with Hubble,” in NSDI, 2008.

[38] R. Padmanabhan, P. Owen, A. Schulman, and N. Spring, “Timeouts:
Beware surprisingly high delay,” in ACM IMC, 2015.

[39] K. Xu and J. Chandrashekar and Z.L. Zhang, “A First Step toward
Understanding Inter-domain Routing Dynamics,” in ACM SIGCOMM
workshop on Mining network data, 2005.

[40] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-wide
Traffic Anomalies,” in ACM SIGCOMM, 2004.

[41] J. Camacho, A. Pérez-Villegas, P. García-Teodoro, and G. Maciá-
Fernández, “PCA-based Multivariate Statistical Network Monitoring for
Anomaly Detection,” Computers & Security, 2016.

[42] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and G. Ian-
naccone, “MIND: A Distributed Multi-Dimensional Indexing System for
Network Diagnosis,” in IEEE INFOCOM, 2006.

[43] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem,” Neural computation, 1998.

[44] M.E. Tipping and C.M. Bishop, “Mixtures of Probabilistic Principal
Component Analyzers,” Neural computation, 1999.

99

State Acquisition in Computer Networks
Ruairí de Fréin

School of Electrical and Electronic Engineering
Dublin Institute of Technology, Ireland

Abstract—We establish that State Acquisition should be per-
formed in networks at a rate which is consistent with the
rate-of-change of the element or service being observed. We
demonstrate that many existing monitoring and service-level
prediction tools do not acquire network state in an appropriate
manner. To address this challenge: (1) we define the rate-of-
change of different applications; (2) we use methods for analysis
of unevenly spaced time series, specifically, time series arising
from video and voice applications, to estimate the rate-of-change
of these services; and finally, (3) we demonstrate how to acquire
network state accurately for a number of real-world traces
using Greedy Acquisition. The accuracy of State Acquisition is
improved when it is performed at a rate which is consistent with
its rate-of-change. An improvement in representation accuracy of
one order of magnitude is achieved for voice and video streaming
applications; this improvement does not incur any additional
bandwidth or storage cost.

Index Terms—State Acquisition; Network monitoring; Spectral
analysis; Period detection.

I. INTRODUCTION

MANY network management tools use Linux tools for
State Acquisition to acquire inputs for higher-level

functions such as network monitoring algorithms [1], service
level prediction algorithms [2], [3] and resource allocation
routines [4]. Some examples of these acquisition tools include
the System Activity Report (SAR) [5], Nagios [6] and top
[7] (in association with tools such as netstat and dropwatch).
Monitoring tools that use these acquisition methods promise
to deliver notifications to the user if the aggregate of some
metric is above a threshold across an entire infrastructure
or on a per machine basis [6]. With respect to a cluster
of machines, aggregates in terms of the average, maximum,
minimum or sum are computed [1] as a function of time
and/or across machines or instances [8]. These types of
notifications are given for a number of different metrics, for
example, revenue or data center temperature. Statistics are
then absorbed by tools such as StatsD [9] and representative
charts are generated every 10s for example (using tools such
as Graphite). This paper considers the validity of current State
Acquisition approaches, which acquire the data for higher-
level functions such as monitoring, learning, graphing and
problem diagnosis. In particular, we examine methods for
acquiring and aggregating network metrics in voice and video
applications [10].

To fix ideas, State Acquisition is defined as a function that
measures the state of a network or service and converts this

state into a numeric value; its role is different to monitoring,
which is a means for making the acquired state available to the
network manager. Fig. 1 demonstrates a generic acquisition-
monitoring set-up, which is representative of many scenarios.
An acquisition function observes an element’s state every
Ta seconds; a monitoring agent submits a report to the
network manager every Tm seconds based on the acquisition
agent’s observations. In many applications, the acquisition and
monitoring functions use the same time-step, Ta = Tm; the
acquisition agent and monitoring agent are one and the same.

The design of network monitoring algorithms (such as [1])
does not focus on the role of metric acquisition. Linux comes
with widely used metric acquisition routines. The assumption
is that existing tools can be relied upon to acquire metrics;
the role of the monitoring protocol is to determine when
to aggregate the metrics and to deliver them to the network
manager. The confidence the monitoring and learning commu-
nities have in these acquisition routines is unwarranted – these
routines may not be sufficiently accurate for modern network
monitoring and learning protocols [11]. The performance of
a monitoring function depends on the quality of the data that
it consumes. The increase in dynamicity and heterogeneity
of modern networks [12], which makes networks harder to
manage, exacerbates this problem.

The problem with off-the-shelf metric acquisition routines
is that many of them are periodic with a default resolution of
1 second, for example SAR [5]. Consequently, many network
monitoring routines monitor the network with this temporal
precision limitation [13]. This was one of the reasons (scalabil-
ity issues contributed also) why SoundCloud developers devel-
oped their own monitoring solution, Prometheus [8]. Similar
in spirit to our approach, Prometheus stores all data that is pe-
riodically pulled from SoundCloud’s [14] instrumented micro-
services architecture as time series, where time-stamps have
a millisecond resolution and values are 64-bit floats. In order
to save disk space, Nagios XI stores performance data in a
Round Robin Database, which consists of performance metrics
periodically averaged over 1, 5, 30 and 360 minute time-steps.
We examine if these periodic acquisition approaches yield
sufficient accuracy.

In the case of event-based monitoring and learning routines
using SAR [5], there may be a lag of up to 1 second between
the occurrence of an event and the time a monitoring report
is sent in response to it [3]. The descriptor, “event-based”, is
inappropriate. The authors of [2] and [3] use SAR to acquire
kernel metrics from a video server once per second in order
to perform client service level prediction, dealing with load-ISBN 978-3-903176-08-9 c© 2018 IFIP

Fig. 1. The role of state acquisition in the monitoring ecosystem: metrics
are pushed every Ta seconds to a periodic monitoring gateway, with period
Tm , from instrumented systems delivering either long or short lived jobs.
Periodically acquired observations are stored locally, rules are applied to
them to generate new time series; alerts are triggered; they contribute to
monitoring or querying dashboards; or they are supplied to learning APIs.
The performance of these higher-order functions depends on quality of the
acquired data.

effects in particular in [15]. For a video and voice resource al-
location application the authors of [4] acquired measurements
of resource parameters (CPU, RAM, latency and call drops)
every 15s from a Clearwater cloud ISM test-bed, using SNMP
and Cacti [16] to determine how physical resources could be
dynamically allocated to virtualized network functions. More
generally, RTCP [17] is commonly used to provide out-of-band
statistics for RTP sessions by periodically reporting on packet
counts, packet loss, packet delay variation, and round-trip de-
lay time to participants in a streaming multimedia session [18].
The recommended minimum RTCP report interval per station
is 5 seconds. Nagios’ Remote Plugin Executor periodically
polls the agent on the remote system for disk usage and
system-load statistics. Now that we have established the central
role periodic acquisition and monitoring plays in networks, we
examine the efficacy of periodic State Acquisition.

We query the acquisition resolution required to monitor the
quality of service received by the client in a video and in a
voice session. Minimizing network bandwidth usage plays a
role in determining the acquisition periods of Ta = 1, 5 and 15
seconds used in the approaches above. Consuming bandwidth
with monitoring reports is undesirable; however, reporting the
system state inaccurately is perhaps even more undesirable
than not reporting at all. We examine this trade-off between
accuracy and bandwidth usage, but also consider whether
crucial characteristics of each trace have been preserved by
State Acquisition at different points of this trade-off.

This paper is organized as follows. In Section II, we provide
a framework for describing state acquisition methods. In
Section III, we consider periodic acquisition and the effects
of performing faster acquisition empirically and motivate
Greedy Acquisition. In Section IV, we discuss rate of change
estimation. In Section V, we describe a Greedy Acquisition
algorithm which performs acquisition in a manner which is
consistent with the rate of change of the observed process.
In Section VI, we perform a numerical evaluation of current
acquisition methods, and the Greedy Acquisition method.

II. STATE ACQUISITION: UNEVENLY SPACED SAMPLES

The time series observed in networks are unevenly spaced.
They consist of a sequence of observation time and value pairs
(tn, xn) with strictly increasing observation times. When audio

or video frames (that are streamed from a SoundCloud or
Youtube server) are observed at a client machine, the time-
stamps of frame arrivals and the frame-sizes, (tn, xn), can
be useful for service outage detection. Fig. 2 illustrates a
frame-arrival time-series at a client machine when a podcast is
streamed. When the network is sufficiently well provisioned,
this process has a periodic component. The server periodically
sends the client a segment of data, which the client then plays-
out to the user at the sampling rate of the original recording
[19]. Important statistics such as jitter and packet loss rates
may be computed from this time-series [18]; however, net-
work anomaly diagnosis may be performed, or service-level
prediction [3], if these time-series are gathered from multiple
network elements at one monitoring/learning gateway [10].
This motivates the question: do the acquisition methods that
currently operate at clients allow us to determine (1) the rate
of change of the observed process and (2) the period of this
process illustrated in Fig. 2? Knowledge of these parameters is
crucial for building a learning function that can predict future
network behaviour (cf. [3]).

We define a framework for analyzing unevenly spaced time
series to answer this question. For N ≥ 1, the space of strictly
increasing time sequences of length N is denoted: TN = {(t1 <
t2 < . . . < tN) : tn ∈ R, 1 ≤ n ≤ N }. More generally, the
space of strictly increasing time sequences is denoted, T =
∪∞
N=1TN . The observation values, x, in computer networks

are real-valued, RN . Bringing these ideas together, the space
of real-valued, unevenly spaced time series of length N , is
TN = TN × R

N . Finally, the space of real-valued unevenly
spaced time series is T = ∪∞

N=1TN . We often need to quantify
the number of observations in some sequence x, e.g. N =
|x |. The sequence of observation times is denoted, T (x) =
(t1, . . . , tN), and the sequence of observation values of x is
V (x) = (x1, . . . , xN).

Time series acquisition methods (used by [5],[6] and [7])
are used to summarize the performance of network entities,
so that at times t = nTa, performance can be quantified. Here
n is an integer that denotes the acquisition time index. There
are a number of different acquisition methods. The extracted
metrics are passed to a monitoring protocol. Many methods
do not yield data which is of sufficient quality. In this paper
we address the problem of how to extract a suitable metric
from unevenly spaced system events. In short, if we observe
some process at times T (x), we investigate what value we
should use to represent this process at time t < T (x), which
is typically not an observation time.

Observation methods: Firstly, we take the previous obser-
vation as our estimate. Secondly, we take the next observation
as our estimate; and thirdly, we interpolate between the two.
For a time series x ∈ T and a point in time t ∈ R, typically
not an observation time, the most recent observation time is

p(t) =:

max(s : s < t, s ∈ T (x)), if t ≥ min(T (x))
min(T (x)), otherwise.

(1)

101

The next available observation time is

n(t) =:

min(s : s ≥ t, s ∈ T (x), if t ≤ max(T (x)),
+∞, otherwise.

(2)

For x ∈ T and t ∈ R, x(p(t)) is the previous observation
value of x at time t, x(n(t)) is the next observation value of
x at t, and xl (t) = (1 − ω(t))x(p(t)) + ω(t)x(n(t)) where

ω(t) =

t−p(t)
n(t)−p(t) , if 0 < n(t) − p(t) < ∞
0, otherwise,

(3)

is the linearly interpolated value of x at time t. These acquisi-
tion schemes are called last-observation, next-observation and
linear interpolation, respectively. We adopt the convention that
x(t) = x(n(t)) = xl (t) when t ∈ T (x). The interpolated signal
xl (t) is a continuous piece-wise-linear function.

Local-in-time statistics: It is convenient to consider short-
time observations of these time series in order to generate
local-in-time statistics of network behaviour. The time series
generated in networks over a closed interval, which starts at
time s and ends at time t, [s, t], where s < t is

x{s, t} = ((tn, xn) : s ≤ tn < t, 1 ≤ n ≤ N). (4)

One acquisition approach (cf. [1]) is to apply the max
operator to the values in a closed interval [s, t] and to slide
this interval, by some step-size, over the entire signal. The
maximum signal value in the closed interval [s, t] is denoted

as (t) = max V (x{s, t}) (5)

The minimum value in this interval

ms (t) = min V (x{s, t}) (6)

The average value in a closed interval is commonly used to
summarize system performance [5],[6] and [7].

µs (t) =
1

|X {s, t}|

p(t)∑
n=n(s)

xn (7)

The maximum, minimum and average statistics are reported
by [20]. Other higher-order statistics are computed in a similar
manner, and may be of use to network monitoring applications.
The time duration between consecutive observations of x is
useful for determining the rate of change of the time series

∆t(x) = ((tn+1, tn+1 − tn) : 1 ≤ n ≤ N − 1). (8)

III. ACQUIRE FASTER: PERIODIC ACQUISITION

How representative are x(p(t)), xl (t) and µx (t) of the data
they summarize? The acquisition methods used in [1], [2], [3]
and [4], are periodic, and use one of the approaches above, at
a rate of 1Hz or greater to quantify network behaviour. Given
the increased dynamicity and complexity of modern networks
this warrants further inspection. Is a periodic approach good
enough? Is an acquisition rate of 1Hz appropriate? To de-
termine the rate of change of unevenly spaced signals, we
examine their spectral content by computing a Power Spectral
Density (PSD) estimate of x.

The Lomb-Scargle method [21] generates a PSD estimate
of unevenly spaced time series, P : xn ∈ R 7→ x̂(ω) ∈ R+,
without the need to invent otherwise non-existent, evenly
spaced data. The underpinning assumption is that the signals
are periodic. The approximate periodicity of unevenly spaced
time series assumption is realistic when we consider the rate
of arrival of audio or video frames during a streaming session
(Fig. 2).

To reduce notation we subtract the mean from the signal x,
and then determine the normalized spectral content of x ∈ T

x̂(ω) = P(x){ω} =
1

2σ2 ×

[∑
n xn cos(ω(tn − τ))

]2∑
n cos2(ω(tn − τ))

+

[∑
n xn sin(ω(tn − τ))

]2∑
n sin2(ω(tn − τ))

(9)

at the frequencies ω, where σ2 = 1
N−1

∑N
n=1(xn − µ)2. The

following time offset is used to guarantee the time in-variance
of the computed spectrum

tan(2ωτ) =
∑N

n=1 sin(2ωtn)∑N
n=1 cos(2ωtn)

. (10)

We assume that network-generated time-series are base-
band or low-pass signals. Empirical evidence in Section VI
supports this assumption. To fix ideas, we stream a podcast
from SoundCloud [14]. The average received bit-rate of the
podcast is 104, 991kbps. We capture an unevenly spaced
time series which consists of the time-stamps and sizes (in
bits) of each frame, (tn, xn) respectively, in the stream using
TCPDUMP [22]. We filter out the time-stamp and frame sizes
and plot this unevenly spaced time series in Fig. 2. This trace
has a periodic component – every approximately 10 seconds,
a number of 12kbits frames are delivered.

In Fig. 3 we plot the PSD estimate of this unevenly spaced
time series. The component with the highest PSD is ≈ .7Hz.
By inspection of Fig. 2, we determine that the fundamental
frequency of this trace is < 1Hz. The upper envelope of the
PSD falls to 0dB/Hz at ≈ 100Hz. There are other higher-
frequency components in Fig. 2. Consequently, in Fig. 3 we
illustrate where the PSD of the trace has fallen by 50dB from
its peak value – this occurs at ≈ 108 Hz – to demonstrate a
range of frequencies of interest to monitoring applications.

Do current time series acquisition approaches preserve this
important information about the rate of change and the period
of frame delivery? To answer this question, we acquire state
values every Ta = 1s, at times t ∈ N and examine the
PSD of the resulting traces. The time period Ta = 1s is
representative of the period used in [1], [2], [3] and [4]. The
set of non-negative integers is N. The underlying process we
want to acquire an accurate representation for, is acquired
by taking (1) the last sample closest to some sampling time,
x(p(t)) | t ∈ N; (2) the average value over the last sampling
period, µt−1(t) | t ∈ N \ 0, where t is in the set of
positive integers; and finally, (3) the linear interpolated value
xl (t) | t ∈ N. We use a stem to denote the position and height

102

Fig. 2. Unevenly spaced time series observed when streaming audio to a
client. The time and value pairs illustrated consist of frame arrival time-stamps
and frame sizes. Every ≈ 10s a number of frames of size ≈ 12kbits are
received. This time-series has a clear periodic component.

Fig. 3. PSD of unevenly spaced time-series observed when receiving a
streamed podcast from SoundCloud. The 50dB bandwidth is 108Hz. The
upper envelope of the PSD falls to 0dB at 100Hz.

Fig. 4. Using periodic acquisition (time-step of 1 second), we illustrate
the effect of using the last sample, average value and interpolated values
at acquisition times t ∈ N.

of each state acquisition value in Fig. 4; each trace should be
compared with the original time series in Fig. 2.
Analysis: The PSD allows us to estimate the rate of change of
the network/service – a parameter which is of crucial interest
to service providers. For example, unusually high rates of
change may indicate anomalies; periodic components may
indicate that the network is healthy. The acquisition methods
in Fig. 4 do not allow the network manager to estimate the

Fig. 5. PSD of current acquisition approaches: x(p(t)), µt−1 (t) and xl (t).
Important information such as the rate of change of the underlying time
series and the period is lost. The flat PSDs illustrated demonstrate that higher
frequency information has been lost.

maximum rate of change of the network. The information in
the frequency band 0 < f < 108Hz is lost by the acquisition
methods used in Fig. 4. One reason for this is that they create
an estimate for data that does not exist.

(1) Information about the period of the trace is lost.
This is a serious shortcoming. For example an artifact of
x(p(t)) is that its period is approximately 20 seconds and
not approximately 10 seconds. Period calculations for each
trace will be inaccurate as the times of frame arrivals in the
original trace are never in the set of times t ∈ N. For example
the 12kb frame arrival times occur just after 40, 50, 60, . . .
seconds. The large frame arrivals occur just before 50, 70, . . .
seconds in x(p(t)). In the average acquisition trace µt−1(t),
the pulse amplitudes (frame sizes) vary in height, which makes
period detection hard. Finally the interpolated acquisition trace
xl (t) exhibits pulse amplitudes which vary each time they
appear with a period of 20 seconds. Estimates of the period
tell us when to expect the next burst of podcast data. The
ability to detect if this burst of data has arrived, or has arrived
late, is lost. This is because the exact times when bursts of
data arrive have been lost. Secondly, the sizes of the burst
have been lost; this is due to averaging or interpolation, or
because the previous observation was not part of the periodic
train of frames. The effect of using the last, average or
interpolated value over the previous second causes the period
information to be obscured. Averaging unevenly spaced time
series introduces ambiguity.

(2) Higher frequency information in the range up to
108Hz and above is lost in Fig 5. The acquisition techniques,
x(p(t)), µt−1(t) and xl (t) low-pass filter the original unevenly
spaced time-series. We posit that high-frequency variations
in this trace may help us detect sub-optimal network per-
formance. Choosing a low-pass filter in the acquisition step,
without reference to the rate of change of the time series, may

103

Fig. 6. High-rate periodic acquisition: Acquisition at 200 Hz does not
significantly improve the ability to estimate the period and rate of change
of the original data from the acquired time-series.

remove crucial monitoring and problem diagnosis information.
Remark: the amplitude and location in time of the acquired
stems (in Fig. 4) depend on the relative position of each
of the events in x relative to the acquisition times t ∈ N.
Shifting the acquisition times relative to the events in x, can
greatly increase or decrease the efficacy of acquisition and
monitoring. We have shown that for an arbitrary periodic
acquisition starting time that periodic acquisition is harmful
for higher-order functions such as monitoring and learning.

Higher acquisition rate: The periodic acquisition methods
above, with a period of 1Hz, remove crucially important infor-
mation about the fundamental frequency and the rate of change
of frame delivery in Fig 2. Loss of this information will reduce
the effectiveness of higher-order functions such as monitoring
and learning that consume the acquired performance data. The
PSD of the original unevenly spaced time-series experiences a
drop of 50dB at approximately 100Hz in Fig. 3. We consider
the effect of acquiring this time series using a significantly
higher acquisition rate of 200Hz to determine if this facilitates
the capture of crucial parameters such as the period and rate
of change of the underlying trace. In effect we are assuming
that the Nyquist rate of this unevenly spaced time series is
≈ 200Hz.

Increasing the rate of State Acquisition by a factor of
200 increases the bandwidth of the monitoring protocol that
consumes these metrics. Fig. 6 demonstrates that increasing
the acquisition rate 200-fold does not improve our ability to
estimate the period and rate of change of the time series. The
acquisition methods x(p(t)), µs (t) and xl (t) suffer to similar
problems as before; but they now consume more bandwidth
and storage.

IV. RATE OF CHANGE ESTIMATION

In this section we determine the appropriate way to acquire
periodic performance traces from audio and video streams by
estimating the rate of change, c, of the trace. Even if the

resulting rate of acquisition is unfeasibly high, knowledge
of this parameter can facilitate better design decisions. For
example, we can low-pass filter the signal and use this filtered
time series in learning algorithms for example, cognizant of
the fact that we cannot make predictions outside of a certain
range of frequencies. We appeal to classical evenly spaced
sampling theory for guidance with the challenge of rate of
change estimation for unevenly spaced time series.
The problem with unevenly spaced time series: The
periodic time-series we observe for video and audio stream
applications, x, consist of a sum of weighted and delayed Dirac
pulses, δ(t), e.g.

N∑
n=1

x(tn)δ(t − tn). (11)

When these pulses form an infinitely long sequence of evenly
spaced pulses, spaced T seconds apart, and the pulses have
identical heights, this is called a Dirac comb [23]. It is a known
result in Signal Processing that the Fourier transform of a
Dirac comb with period Ts produces another Dirac comb in
the frequency domain with period 1

T Hz. As these Dirac pulses
are spaced by 1

T Hz in the frequency domain, to avoid aliasing,
we must ensure that the spectral content of the signal we wish
to acquire is confined to a region of c = 1

2T Hz, which is
the maximum permissible rate-of-change of this evenly spaced
time series.

Unlike the uniform case, the Fourier transform of the
unevenly spaced time series in Eqn. 11 will generally not
be a Dirac Comb, that is, a sequence of uniformly spaced
delta functions; the symmetry in the Dirac comb is broken
by uneven spacing of the pulses, which leads to information
rich transform we observe in Fig. 3. This is because in the
Fourier domain, the locations and heights of the Dirac delta
functions are related to the intervals between the time domain
observations. Randomizing the observation times, randomizes
the locations and heights of the Fourier domain peaks and
heights.

To leverage the results of classical sampling [23] to estimate
c for an unevenly spaced time series, we express a unevenly
spaced time series as a evenly spaced time series. To this end,
we determine the Dirac comb which has Dirac deltas that align
exactly with each of the pulses in the unevenly spaced time
series. In other words, we need to determine the largest Ta

such that each tn ∈ T (x) can be written as tn = α + nTa, for
integers n and an arbitrary time offset α.

Definition (1) Accurate acquisition: To accurately acquire an
unevenly spaced time series the acquisition period Ta should
satisfy the condition

∆t(x) mod Ta = 0, ∀tn ∈ TN (12)

Definition (2) Rate-of-Change: The rate of change of the
unevenly spaced time series x is c = 1

2Ta if Ta satisfies the
condition

∆t(x) mod Ta = 0, ∀tn ∈ TN (13)

104

Fig. 7. The time durations between consecutive frame arrivals ∆t (x) are
plotted (stem height) on the LHS versus experiment time (x-axis). These
durations are sorted from smallest to largest on the RHS. Very few of the
consecutive arrival times exhibit a large delay.

Finding the value of Ta that ensures that acquisition is being
performed at a sufficiently high rate, leads to acquisitions
rates which are impractical for real-world applications. If
observation times are recorded to d decimal places, the largest
rate of change is determined by machine precision.

To make progress, we use a rough upper bound on Ta,
which consists of examining the minimum separation between
consecutive frame arrivals:

min∆t(x). (14)

As the traces we will consider are generally base-band signals,
we desire a value of Ta which captures most of the spectral
energy of the trace x.
Analysis: The smallest difference between two time-stamps,
min∆t(x) in Fig. 2 is 10−7 seconds. This would necessitate ac-
quiring the signal at an unfeasibly high rate, > 107 Hz, which
is impractical most networking applications. We propose a
Greedy Acquisition solution to solve this problem and examine
a trade-off between the accuracy of the acquired time-series,
the bandwidth of different versions of the acquired time-series.

V. GREEDY ACQUISITION

A Greedy Acquisition algorithm for unevenly spaced time-
series is presented that acquires observations at a rate which is
consistent with the rate of change of the original time series,
c.

Fig. 7 demonstrates the number of time intervals between
consecutive values in x (the audio trace) that are greater than
1 second (on the RHS). In summary, only 1.5% of these
time intervals are greater than 1s; the majority of the time
spacings between events are much smaller. A useful rule of
thumb for periodic acquisition is that if we increase the time
between acquisitions in the acquisition routine, we decrease
the range of frequencies that we can observe in the trace
[23]. It is challenging to perform accurate acquisition using
a periodic acquisition scheme because the time-step must be
sufficiently small to capture a range of rates of change. Using
a fixed, periodic acquisition rate which is of the order of
1Hz (in [5] and [7]) or even one kilohertz (in [6]) will not
yield an accurate representation of the performance of x. For
example, for the audio streaming trace in Fig. 2, an acquisition
rate of 1Hz is significantly too low an acquisition rate for

98.5% of the frame arrivals in this time-series. Averaging
these values over a one-second interval, removes all frequency
components above ≈ 1Hz, which make subsequent functions
such as problem diagnosis difficult. Similarly in the case of
fixed periodic acquisition rate of 1kHz (which is the time-step
used by Prometheus [8]) this rate is too low for 94.25% of
the frame arrivals in Fig. 2.

From inspection of Fig. 7 it is clear that locally in time, the
value of min∆t(x) may be much higher than it would for the
entire time series. This means that an acquisition performed at
a rate that is consistent with the local rate of change of the time
series, could be expected to significantly reduce the bandwidth
required to accurately represent the underlying event steam
x, over a periodic acquisition scheme with the same level
of fidelity. We investigate an adaptive acquisition protocol,
where the value of Ta changes with time, and posit that it
should give a more accurate time series representation, using
less bandwidth than before.

A greedy approximation for the time series x is generated
by summing a finite number of functions gi taken from a
dictionary of such functions D. For example, the function g1
consists of a sum of Diracs which are weighted by the largest
value of the time series x, e.g. m1 = max(V (x)), which gives
the function

g1 = m1
∑
k

δ(t − t1(k)) (15)

where t1 is the set of times where x = m1 and there are k
elements in this set.

The next function in the dictionary D is g2. It consists of a
sum of Diracs which are weighted by the second largest value
of the time series x, m2 = max(V (x) \ m1). In words, we
remove all of the instances of the maximum value of x from
x and then find the next largest value, m2. We then construct
the function g2 which has Dirac pulses of height m2 every
time x = m2,

g2 = m2
∑
k

δ(t − t2(k)). (16)

Similar to the previous case, t2 is the set of times where x =
m2; there are k elements in this set. Continuing this process,
we construct the entire dictionary D = {gi }.

A j-th order approximation of x, which is denoted yj , is
obtained by summing up the first j elements of the dictionary

yj :=
j∑

i=1
gi . (17)

The accuracy of the jth order approximation is computed using
the Frobenius norm,

ε j =

√∫
(x − yj)2dt, (18)

where yj (tn) = 0 if we have not acquired a value at time t = tn
for the jth approximation.

The set of values m1,m2, . . . are the values of the frame
sizes sorted from largest to smallest. Because these frames
are generated as part of well-defined protocols, which have

105

Data: input: real-time process for acquisition from x and
β.

Result: acquired time series (tn, yn).
initialization: sorted list of frame sizes mi from historical

data;
while still receiving stream do

read current value;
if x > β then

acquire time tn = t;
acquire the value yn = xn;

else
do not acquire value or time;

end
end

Algorithm 1: Online Greedy Acquisition Algorithm

Fig. 8. Frame arrival process statistic acquisition for the SoundCloud trace
using Greedy Acquisition: The error in the acquisition time-series decreases
as the number of acquisitions per second increases. We examine the first
through to the sixtieth order approximation of x. The error achieved when 25
measurements are acquired on average per second is impressively low, given
that we are computing the Frobenius norm of frame sizes of up to 12kbits.

predetermined frame sizes for an array of scenarios, the
number of different values of mi that we can expect is finite,
and generally, quite small. It is possible to determine the set
{mi }i a-priori for any given service.

An online real-time version of the Greedy Acquisition
algorithm presented above, is presented in Alg. 1. It consists
of determining whether or not the current frame arrival has
a frame size which is larger than a user defined threshold,
β. The value of β determines the accuracy of the achieved
approximation. If an incoming frame size is larger than β, the
frame size and time are recorded as part of the unevenly spaced
acquired time series (tn, yn). Greedy approximation has the
following properties. (1) the accuracy of the approximation
increases monotonically as β decreases, because each increase
in the order of the approximation j, reduces the error in

Fig. 9. Comparison of the acquisition accuracy bandwidth trade-off achieved
using tradition periodic acquisition methods (last observation, average and
interpolation) and using Greedy Acquisition. The greedy approach is signifi-
cantly better.

the approximation of x. (2) The bandwidth requirement of
greedy approximation increases as j increases, but it increases
efficiently, in line with the rate-of-change of x. (3) Because the
original frame arrival times are used, the periodic component
of the time series is generally captured by (tn, yn); moreover,
the rate-of-change of the time-series (tn, yn) is generally
consistent with that of (tn, xn), in comparison with a periodic
acquisition algorithm, which chooses the acquisition period in
an arbitrary way, and is thus, not always suited to the process
being observed.

VI. NUMERICAL EVALUATION

We examine the accuracy of different acquisition methods
using a simple video and audio use-case. We focus on audio
and video because according to Cisco, by 2021, 82% of all
consumer Internet traffic will be IP video traffic [24]. The
ability to acquire measurements from the traces clients receive
will be crucial. Higher quality acquisition data will improve
next-generation monitoring protocols.

Our hypothesis is that Greedy Acquisition yields more
accurate estimates of the observed process than traditional pe-
riodic monitoring approaches. Moreover, we posit that Greedy
Acquisition uses less bandwidth and storage, and that the
acquired time-series preserve important statistical features of
the observed trace, such as its period. In our comparison we
implement acquisition functions which estimate x(p(t)), µs (t)
and xl (t). The reason that we do not use off-the-shelf tools
such as SAR [5] is that they have a minimum acquisition
rate of 1Hz (in the case of SAR), a rate which we would
like to significantly increase, in order to fully evaluate the
potential of periodic acquisition. We consider a frame arrival
process because TCPDUMP [22] provides easy access to high

106

resolution time-stamps for a widely available unevenly spaced
time series, which is representative of what we might observe
at many other intermediate points in the network.

Experimental set-up: In the first scenario a client streams
a podcast from an online audio distribution platform, a Sound-
Cloud instance [14]. In 2014 SoundCloud boasted 75 million
unique monthly listeners, which demonstrates the popularity
of the service, and motivates the need to be able to accurately
acquire measurements from the audio traces. In the second
scenario a client streams a video from a video server of an
Irish public service broadcaster [25].

During our evaluation of both scenarios, the client requested
the service and then TCPDUMP [22] was used to capture
a description of the contents of the frames received on the
client’s network interface. Once the media session had ter-
minated, we converted the captured .pcap file to text format
using tshark, and we greped the resulting text file for the frame
arrival times, tn, and frame sizes xn, forming the unevenly
spaced time series (tn, xn). Frame arrival times were captured
in terms of hours, minutes, seconds, and fractions of a second
since midnight. We recorded the size of received frames using
the “bytes on wire” field, in bits. We stored frame arrival
times using double-precision according to IEEE Standard 754
for double precision, which bounded the precision of rate-of-
change estimates. The frame sizes were integer-valued. For
the SoundCloud session, the maximum frame received was
11792 bits, and 60 different frame sizes were observed during
this session, which gave us 60 different potential acquisition
accuracies. In all cases we streamed data for ≈ 15 minutes.

Discussion: Fig. 8 illustrates the error (Eqn. 18) versus
bandwidth trade-off achieved for a SoundCloud session by
varying β in the online Greedy Acquisition algorithm. As
the value of β is decreased, the accuracy of the greedy
representation improves. This accuracy comes at the cost of
25 acquisitions per second on average.

This result is significant, particularly when it is compared
with the periodic, last-observation, averaging and interpolation
schemes currently used (x(p(t)), µs (t) and xl (t)). Fig. 9
illustrates the accuracy of x(p(t)), µs (t) and xl (t) as a function
of the bandwidth consumed by these acquisition approaches.
The bandwidth is increased by increasing the resolution of the
acquisition time-step. For the periodic acquisition methods,
the trend is for the error to decrease as the rate of acquisition
increases. We increase the rate of acquisition from 1Hz up to
250Hz in steps of 1Hz.

In this trace the times of the arrivals of the largest frame
sizes tend to determine the periodic component of the time
series. Preserving the exact times of events is important. The
ability to so, is determined by the rate of acquisition. The
Greedy Acquisition algorithm acquires a trace at a rate which
is consistent with the rate of change of time series. For
the 1st approximation y1, the minimum time-step between
consecutive frame arrivals min∆t(y1) does not change as we
increase the order of the approximation. The 1st approximation
y1, and all subsequent approximations have the possibility of
capturing the fastest changes in the observed trace, depending

Fig. 10. PSD of frame arrival time series for video streaming session. This
trace has a periodic component at 5.4Hz, which implies that acquiring this
trace at 1Hz is insufficient.

on their importance (frame size).
The traditional periodic approaches have time steps in the

range 1/ps where p = 1 . . . 250Hz in these experiments. These
periodic approaches cannot observe the fastest changes in the
observed process, or at the maximum rate of change of the
process. In conclusion, periodic acquisition approaches yield
an error which is 5 times worse than the error of Greedy
Acquisition, using 5 times the bandwidth to do so. Finally,
important statistics of the observed traces are typically not
preserved by periodic approaches.

In the case of the video streaming session, we illustrate the
PSD of the time-series in order to provide initial estimates
for the period and the rate-of-change of x. This trace has a
periodic component at 5.4Hz, which implies that acquiring
this trace using a periodic acquisition method at 1Hz is insuf-
ficiently accurate. Note that even the recommended reporting
rate of RTCP (5Hz) is not sufficiently large to capture the
period of this trace. In addition, the PSD of this trace exhibits
significant power up to 100Hz. Similar to the audio streaming
scenario, increasing the acquisition rate of periodic acquisition
algorithms does not significantly improve the accuracy of the
acquired time series.

With regard to the rate of change of this trace, 0.16% of
consecutive frame arrivals have an inter-arrival time of greater
than 1s, and 1.3% have an inter-arrival time of greater than
10−3s. The minimum inter-arrival time is less than 10−7s.
Given the definition of the rate of change of unevenly spaced
times series, periodic acquisition at 1Hz is insufficient.

These statistics underline the difficulty of choosing a time-
step for periodic acquisition that would yield sufficiently high
accuracy. We evaluate Greedy Acquisition, to see if acquiring
measurements at a rate which is consistent with the rate of
change of the trace, is accurate. Fig. 11 demonstrates that
accurate acquisition is achieved by taking 300 acquisitions per
second using Greedy Acquisition. The average acquisition rate
for video that achieves the same accuracy as audio acquisition
is approximately ×10 the acquisition rate for audio. Once
again Greedy Acquisition out-performs each of the periodic
acquisition approaches – by an order of magnitude drop in
the error of the representation – when 300 acquisitions are
made per second.

Recommendations: Many current periodic acquisition ap-

107

Fig. 11. Frame arrival process statistic acquisition for video trace using
Greedy Acquisition: The error in the acquisition time series decreases as
the number of acquisitions per second increases. The error achieved when
300 measurements are acquired on average per second is impressively low.
The periodic acquisition methods x(p(t)), µ−1 (t) and xl (t) are illustrated for
completeness.

proaches acquire time-series without knowledge of the under-
lying rate of change of the time series under observation.
We have argued that knowledge of the rate of change of
the process under observation, should drive the process of
deciding when to acquire measurements of this process. Many
networking time-series exhibit properties such as periodicity.
These properties should be preserved by acquisition routines.
One point of note from this work is that the times of events
T (x) are as important as the values recorded for these events
V (x). Periodic acquisition routines such as Nagios, record
values with greater precision than times, due the default time
resolution of 10−3s. A second point of note is that the wide
array of off-the-shelf acquisition routines means that little
research is being done in the area. The received wisdom is that
metric acquisition routines exist, and thus, there is little point
in re-inventing them. Finally, we have provided evidence that
Greedy Acquisition gives improved acquisition performance.

VII. CONCLUSIONS

In this paper we showed that acquiring a system or service’s
state at a rate which was consistent with the rate of change
of the system (or service) provided a high-quality record of
the state of the system. Research on capturing system state has
lagged behind the growth of networks and the applications that
use these networks as a substrate. Today, many monitoring and
learning solutions rely on standard periodic State Acquisition
solutions, which acquire the system state at a frequency of
1Hz. These solutions do not capture important characteristics
of the signals they acquire, for example, periodicity and rate of
change. For periodic traces, the ability to estimate the period
from an acquired representation of the trace is fundamental.
We demonstrated that the rate of change of many applications
is much greater than 1 Hz, and then, we demonstrated that

present-day acquisition techniques do not capture information
which is crucially important for problem diagnosis. Our exper-
iments with real-world voice and video traces demonstrate that
high quality State Acquisition is possible if the time-stamps
and magnitudes of events are recorded at the rate of change
of the application.

REFERENCES

[1] D. Jurca and R. Stadler, “H-GAP: estimating histograms of local
variables with accuracy objectives for distributed real-time monitoring,”
IEEE Trans. Net. and Serv. Man., vol. 7, no. 2, pp. 83–95, Jun. 2010.

[2] R. Yanggratoke, J. Ahmed, J. Ardelius, C. Flinta, A. Johnsson, D. Gill-
blad, and R. Stadler, “Predicting real-time service-level metrics from
device statistics,” IFIP/IEEE Int. Sym. Int. Net. Man., pp. 1–8, 2015.

[3] R. de Fréin, “Source separation approach to video quality prediction in
computer networks,” IEEE Comm Ltr, vol. 20, no. 7, pp. 1333–1336,
Jul. 2016.

[4] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource require-
ments,” IEEE Trans Net. Serv. Man., vol. 14, no. 1, pp. 106–120, 2017.

[5] S. Godard, “SAR,” http://linux.die.net/man/1/sar.
[6] E. Galstad. (1999) Nagios. [Online]. Available: https://www.nagios.com/
[7] R. Binns. top. [Online]. Available: https://linux.die.net/man/1/top
[8] J. Volz and B. Rabenstein. (2018) Sound

Cloud Developers: Backstage Blog. [Online]. Avail-
able: https://developers.soundcloud.com/blog/prometheus-monitoring-
at-soundcloud

[9] ETSY. StatsD. [Online]. Available: https://github.com/etsy/statsd
[10] R. de Fréin, C. Olariu, Y. Song, R. Brennan, P. McDonagh, A. Hava,

C. Thorpe, J. Murphy, L. Murphy, and P. French, “Integration of QoS
Metrics, Rules and Semantic Uplift for Advanced IPTV Monitoring,” J.
Net. Sys. Man., vol. 23, no. 3, pp. 673–708, Jul 2015.

[11] R. de Fréin, “The data-centre whisperer: Relative attribute usage esti-
mation for cloud servers,” in 24th EUSIPCO, Aug. 2016, pp. 687–691.

[12] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-
art and research challenges,” J. of Int. Serv. and Apps, vol. 1, no. 1, pp.
7–18, May 2010.

[13] D. Josephsen, Building a Monitoring Infrastructure with Nagios. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2007.

[14] A. Ljung and E. Wahlforss. (2008) SoundCloud. [Online]. Available:
https://soundcloud.com/

[15] R. de Fréin, “Effect of system load on video service metrics,” in IEEE
Irish Sig. Sys. Conf. (ISSC), 2015, pp. 1–6.

[16] “The Cacti Group Inc.” [Noline], 2016, accessed on Dec. 28, 2016.
[Online]. Available: http://www.cacti.net/

[17] V. Jacobson, R. Frederick, S. Casner, and H. Schulzrinne, “RTP: A
transport protocol for real-time applications,” IETF RFC3550, 2003.
[Online]. Available: https://tools.ietf.org/html/rfc3550

[18] A. Begen, T. Akgul, and M. Baugher, “Watching video over the web:
Part 1: Streaming protocols,” IEEE Int. Comp., vol. 15, no. 2, pp. 54–63,
Mar. 2011.

[19] ——, “Watching video over the web: Part 2: Applications, standard-
ization, and open issues,” IEEE Int. Comp., vol. 15, no. 3, pp. 59–63,
2011.

[20] “Datadog,” Online documentation, accessed on Dec. 28, 2016. [Online].
Available: https://www.datadoghq.com/

[21] N. R. Lomb, “Least-squares frequency analysis of unequally spaced
data,” Astrophy. and Space Sc., vol. 39, no. 2, pp. 447–462, Feb. 1976.

[22] V. Jacobson, C. Leres, and S. McCanne. tcpdump. [Online]. Available:
http://www.tcpdump.org/

[23] M. Vetterli, J. Kovacevic, and V. K. Goyal, Foundations of Signal
Processing. Cambridge: Cambridge Univ. Press, 2014.

[24] “Cisco Visual Networking Index: Forecast and
Methodology, 2016-2021.” [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html

[25] (1996) TG4: TG Ceathair. [Online]. Available:
http://www.tg4.ie/en/player/home/

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland (SFI) under the Grant Number
15/SIRG/3459.

108

Towards a Deeper Understanding of
TCP BBR Congestion Control

Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien Geyer, and Georg Carle
Chair of Network Architectures and Services, Technical University of Munich

{scholzd|jaeger|schwaigh|raumer|fgeyer|carle}@net.in.tum.de

Abstract—In 2016, Google published the bottleneck bandwidth
and round-trip time (BBR) congestion control algorithm. Unlike
established loss- or delay-based algorithms like CUBIC or Vegas,
BBR claims to operate without creating packet loss or filling
buffers. Because of these prospects and promising initial perfor-
mance results, BBR has gained wide-spread attention. As such
it has been subject to behavior and performance analysis, which
confirmed the results, but also revealed critical flaws.

Because BBR is still work in progress, measurement re-
sults have limited validity for the future. In this paper we
present our publicly available framework for reproducible TCP
measurements based on network emulation. In a case study,
we analyze the TCP BBR algorithm, reproduce and confirm
weaknesses of the current BBR implementation, and provide
further insights. We also contribute an analysis of BBR’s inter-
flow synchronization behavior, showing that it reaches fairness
equilibrium for long lived flows.

Index Terms—TCP, Congestion Control, BBR, Reproducible
Measurements

I. INTRODUCTION

TCP BBR is a congestion-based congestion control algo-
rithm developed by Google and published in late 2016 [1].
In contrast to traditional algorithms like CUBIC [2] that rely
on loss as indicator for congestion, BBR periodically estimates
the available bandwidth and minimal round-trip time (RTT). In
theory, it can operate at Kleinrock’s optimal operating point [3]
of maximum delivery rate with minimal congestion. This
prevents the creation of queues, keeping the delay minimal.

Service providers can deploy BBR rapidly on the sender
side, as there is no need for client support or intermediate
network devices [1]. Google already deployed BBR in its
own production platforms like the B4 wide-area network and
YouTube to develop and evaluate BBR [1] and provided quick
integration of BBR with the Linux kernel (available since
version 4.9). This spiked huge interest about benefits, draw-
backs and interaction of BBR with alternatives like CUBIC.
The research community has started to formalize and analyze
the behavior of BBR in more detail. While the initial results
published by Google have been reproducible, demonstrating
that BBR significantly improved the bandwidth and median
RTT in their use cases, weaknesses like RTT or inter-protocol
unfairness have been discovered since (e.g. [4, 5, 6]). As a
consequence, BBR is actively improved [5]. Proposed changes
usually aim to mitigate specific issues, however they need to
be carefully studied for unintended side effects.

We introduce a framework for automated and reproducible
measurements of TCP congestion avoidance algorithms. It
produces repeatable experiments and is available as open
source at [7]. The use of emulation using Mininet allows the
framework to be independent of hardware, enabling other re-
search groups to easily adapt it to run their own measurements
or replicate ours.

We demonstrate the capabilities of our framework by in-
specting and analyzing the behavior of BBR in different
scenarios. While the throughput used for our measurements
is orders of magnitude lower compared to testbeds utilizing
hardware, we verify the applicability of our results by repro-
ducing measurements of related work. Beyond reproduction,
we deepen the analysis of BBR regarding inter-flow unfairness
and inter-protocol fairness when competing with TCP CUBIC
flows. Lastly, we use measurements to analyze the inter-flow
synchronization behavior of BBR flows.

This paper is structured as follows: Section II presents
background to TCP congestion control. In Section III, we
describe our framework for reproducible TCP measurements.
We performed various case studies with the analysis of BBR.
The results are used to validate our framework by reproducing
and extending measurements from related work in Section IV.
Our BBR inter-flow synchronization analysis is discussed in
Section V. Related work is presented in Section VI before we
conclude with Section VII.

II. TCP CONGESTION CONTROL

Congestion control is required to achieve high network
utilization for multiple flows, claiming a fair share, while
preventing overloading the network with more packets than
can be handled. Buffers are added to counteract packet drops
caused by short lived traffic peaks, increasing network utiliza-
tion. When buffers remain non-empty (“static buffers”), they
add delay to every packet passing through the buffer, coined
bufferbloat. Static buffers originate mainly from two factors,
as shown by Gettys and Nichols [8]: poor queue management
and failure of TCP congestion control. Algorithms like TCP
NewReno [9] or TCP CUBIC [2] use packet loss as indication
of congestion. However loss only occurs when the buffers
are close to full at the bottleneck (depending on the queue
management used). The congestion is only detected when
the bottleneck is already overloaded, leading to large delays
hurting interactive applications.ISBN 978-3-903176-08-9 c©2018 IFIP

loss-based
operating
point

Kleinrock’s optimal
operating point

BDP BDP+BtlneckBufSize

RTprop

R
T

T

BtlBw

Amount Inflight

D
el

iv
er

y
R

a
te

Figure 1: Effect of increasing inflight data on the RTT and
delivery rate. Based on [1].

Various TCP congestion control algorithms were developed
to improve on loss-based congestion control. Examples include
TCP Vegas [10], adapting delay as indicator, or TIMELY [11]
based on precise RTT measurements. However, these are
suppressed when competing with loss-based algorithms. Hock
et al. present TCP LoLa [12], primarily focusing on low
latency. Hybrid algorithms using both loss and delay as con-
gestion indication were proposed such as TCP Compound [13].
Alizadeh et al. proposed Data Center TCP (DCTCP) [14],
which requires support for Explicit Congestion Notification
(ECN) in network switches.

A. TCP Optimal Operation Point

Any network throughput is limited by the segment with the
lowest available bandwidth on the path. It is called bottleneck,
as it limits the total throughput of the connection. Thus for
modeling congestion control, a complex network path can be
modeled by a single link. The delay of that link is set to
the sum of all propagation delays in each direction and the
bandwidth is set to the bottleneck’s (BtlBw). This preserves
the round trip propagation delay (RTprop). The bandwidth-
delay product (BDP) as BtlBw ·RTprop describes the amount
of data that can be inflight (non-acknowledged) to fully utilize
the network path and is coined Kleinrock’s optimal point of
operation [3].

Figure 1 visualizes the effects of an increase in inflight
data on the connection’s bandwidth and RTT. If less data
than the BDP is inflight, there is no congestion and the
RTT equals RTprop (application bound). The delivery rate
corresponds directly to the sending rate, but hits the maximum
when the inflight data reaches the BDP at Kleinrock’s point.
Increasing the inflight further causes packets to arrive faster at
the bottleneck than they can be forwarded. This fills a queue,
causing added delay which increases linearly with the amount
inflight (recognized by delay-based algorithms). The queue
is full when the amount inflight hits BDP + BtlneckBufSize.
After this point, the bottleneck buffer starts to discard packets
(recognized by loss-based algorithms), capping the RTT. This
shows that both delay and loss-based algorithms operate
beyond Kleinrock’s optimal operating point.

B. Bottleneck Bandwidth and Round-trip Propagation Time

The following describes basics of BBR that are important
for our evaluation. Our deliberations are based on the version
presented by Cardwell et al. [1] and we refer to their work for
a detailed description of the congestion control algorithm or
[4] for a formal analysis.

1) Overview: The main objective of BBR is to ensure that
the bottleneck remains saturated but not congested, result-
ing in maximum throughput with minimal delay. Therefore,
BBR estimates bandwidth as maximum observed delivery rate
BtlBw and propagation delay RTprop as minimum observed
RTT over certain intervals. Both values cannot be measured
simultaneously, as probing for more bandwidth increases the
delay through the creation of a queue at the bottleneck and
vice-versa. Consequently, they are measured separately.

To control the amount of data sent, BBR uses pacing gain.
This parameter, most of the time set to one, is multiplied with
BtlBw to represent the actual sending rate.

2) Phases: The BBR algorithm has four different
phases [15]: Startup, Drain, Probe Bandwidth, and Probe RTT.

The first phase adapts the exponential Startup behavior
from CUBIC by doubling the sending rate with each round-
trip. Once the measured bandwidth does not increase further,
BBR assumes to have reached the bottleneck bandwidth.
Since this observation is delayed by one RTT, a queue was
already created at the bottleneck. BBR tries to Drain it by
temporarily reducing the pacing gain. Afterwards, BBR enters
the Probe Bandwidth phase in which it probes for more
available bandwidth. This is performed in eight cycles, each
lasting RTprop: First, pacing gain is set to 1.25, probing for
more bandwidth, followed by 0.75 to drain created queues. For
the remaining six cycles BBR sets the pacing gain to 1. BBR
continuously samples the bandwidth and uses the maximum
as BtlBw estimator, whereby values are valid for the timespan
of ten RTprop. After not measuring a new RTprop value for
ten seconds, BBR stops probing for bandwidth and enters the
Probe RTT phase. During this phase the bandwidth is reduced
to four packets to drain any possible queue and get a real
estimation of the RTT. This phase is kept for 200 ms plus one
RTT. If a new minimum value is measured, RTprop is updated
and valid for ten seconds.

III. TCP MEASUREMENT FRAMEWORK

The development of our framework followed four require-
ments. Flexibility of the framework should allow to analyze
aspects of TCP congestion control, focusing on but not limited
to BBR. The Portability of our framework shall not be
restricted to a specific hardware setup. Reproducibility of
results obtained via the framework must be ensured. Given
a configuration of an experiment, the experiment itself shall
be repeatable. All important configuration parameters and the
results should be gathered to allow replicability and repro-
ducibility by others. The complete measurement process shall
be simplified through Automation. Via configuration files and
experiment description, including post processing of data and

110

ReceiverSender

Bottleneck Link

Different
RTTs

TBF

tcpdump

Figure 2: Mininet setup with sending and receiving hosts and
bottleneck link.

generation of plots, the experiment should be executed without
further user interaction.

A. Emulation Environment

Our framework uses emulation based on Linux network
namespaces with Mininet. Linux network namespaces provide
lightweight network emulation, including processes, to run
hundreds of nodes on a single PC [16]. A drawback is that
the whole system is limited by the hardware resources of a
single computer. Thus we use low bandwidths of 10 Mbit/s
for the different links in the studied topology. By showing
in Section IV that our measurements yield similar results as
related work performing measurements beyond 10 Gbit/s, we
argue that the difference in throughput does not affect the
validity of the results.

B. Setup

Topology: As a TCP connection can be reduced to the
bottleneck link (cf. Section II-A), our setup uses a dumbbell
topology depicted in Figure 2. For each TCP flow a new host-
pair, sender and receiver, is added for simplified collection of
per-flow data. Both sides are connected via three switches.
The middle switch acts as the bottleneck by performing traffic
policing on its interface. The two additional switches allow
capturing the traffic before and after the policing. Traffic from
the receivers to the senders is not subject to rate limiting since
we only send data from the senders and the returning acknowl-
edgment stream does not exceed the bottleneck bandwidth,
assuming symmetric bottleneck bandwidth.

Delay Emulation: We use NetEm to add flow specific delay
at the links between the switch and the respective receivers to
allow configurable RTTs. This approach introduces problems
for higher data rates like 10 Gbit/s where side effects (e.g.
jitter) occur [4], but works well for the data rates we use.

Rate Limit & Buffer Size: We use Linux’s Token-Bucket
Filter (TBF) for rate limiting and setting the buffer size. TBFs
also allow a configurable amount of tokens to accumulate
when they are not needed and the configured rate can be
exceeded until they are spent. We set this token bucket size to
only hold a single packet, because exceeding the bottleneck
bandwidth even for a short time interferes with BBRs ability
to estimate the bottleneck bandwidth correctly [1].

C. Workflow

Each experiment is controlled using a configuration file de-
scribing the flows. For each flow, the desired TCP congestion

control algorithm, start time in relation to previous flow, RTT,
and runtime have to be specified. The runtime of an experiment
consists of a negligible period to set up Mininet, as well as the
actual experiment defined by the length of the running flows.
The framework automatically extracts data and computes the
implemented metrics.

D. Metric Collection

For each TCP flow we gather the sending rate, throughput,
current RTT, and the internal BBR values. We also sample
the buffer backlog of the TBF every 40 ms. As a result of
one experiment, a report containing 14 graphs visualizing
the metrics over time is automatically generated. A sample
experiment report, including its configuration file, can be
found with our source code publication [7].

We capture the headers up to the TCP layer of all packets
before and after the bottleneck using tcpdump. The raw data
is processed to generate the metrics listed below. Existing tools
like Wireshark (including the command line tool tshark) and
tcptrace did not meet all our requirements for flexibility.
Instead we wrote our own analysis program in Python.

Sending Rate & Throughput: We compute the per flow
and total aggregated sending rate as the average bit-rate based
on the IP packet size in 200 ms intervals, using the capture
before the bottleneck. The throughput is computed equal to the
sending rate, but is based on the capture after the bottleneck
to observe the effect of the traffic policing.

Fairness: We follow the recommendation of RFC 5166 [17]
and use Jain’s Index [18] as fairness coefficient based on
the sending rate to indicate how fair the bandwidth is shared
between all flows. For n flows, each of them allocating xi ≥ 0
of a resource,

F = 1/n · [Σn
i=1xi]

2/Σn
i=1x

2
i

is 1 if all flows receive the same bandwidth and 1/n if one
flow uses the entire bandwidth while the other flows receive
nothing. The index allows quantifying the fairness in different
network setups independent of the number of flows or the
bottleneck bandwidth. Graphs displaying the fairness index in
the remaining part of this paper are restricted to the interval
[1/n, 1] unless mentioned otherwise.

Round-trip Time: RTT values are aggregated in intervals
of 200 ms and averaged to provide better stability. Samples of
retransmitted packets are ignored.

Retransmissions: We count retransmissions of TCP seg-
ments in the packet capture before the bottleneck. We use
these as an indicator for packet loss in our evaluation.

Inflight Data: Refers to the number of bytes sent but not yet
acknowledged. We obtain this value by computing the differ-
ence of the maximum observed sequence and acknowledgment
numbers in the capture before the bottleneck. This metric is
only useful when there are no retransmissions.

BBR Internal Values: BBR keeps track of the estimated
bottleneck bandwidth and RTT as well as the pacing and
window gain factors. We extract these values every 20 ms
using the ss tool from the iproute2 tools collection.

111

2 BtlBw 3 RTprop

0
5

10
15
20

R
a
te

[M
b
it

/
s] Sending Rate BtlBw

0
50

100

R
T

T
[m

s]

RTT RTprop

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

Time [s]

In
fl
ig

h
t

[M
b
it

] Inflight BDP

Figure 3: Single BBR flow (40 ms, 10 Mbit/s bottleneck) under
changing network conditions. Values sampled every 40 ms.

E. Limitations

Due to resource restriction on a single host emulated net-
work, we are limited to bandwidths in the 10 Mbit/s range.
However, our methodology provides sufficient accuracy com-
pared to measurements utilizing real hardware. This is because
both approaches use the same network stack, i.e., the same
implementation of the BBR algorithm.

The CPU and RAM capacities of the test system limit the
number of emulated hosts and therefore flows. We encountered
problems when spawning more than 30 hosts simultaneously
using a host equipped with an Intel Core i5-2520M CPU
@ 2.50 GHz and 8 GB RAM.

IV. REPRODUCTION & EXTENSION OF RELATED WORK

We validate the accuracy of our framework by using it
to reproduce the results of related work that were based on
measurements with hardware devices. The results show that
the behavior of TCP BBR at bandwidths in the Mbit/s range
is comparable to the behavior at higher ranges of Gbit/s. In the
following, we present our reproduced results with a mention
of the respective related work.

We focus on the results of two research groups. Cardwell
et al., the original authors of BBR, have described their current
research efforts towards BBR 2.0 [1, 5]. Goals are reduced loss
rate in shallow buffers, reduced queuing delay and improved
fairness among others. Hock et al. evaluated BBR in an
experimental setup with 10 Gbit/s links and software-based
switches [4]. They reproduced intended behavior of BBR with
single flows, but also showed cases with multiple flows where
BBR causes large buffer utilization.

For all following figures the raw data, post-processed data
and source code to generate the figures can be found with
our source code publication [7]. Unless representing a single
flow, measurements were repeated five times and standard
deviations are shown where applicable.

A. Single Flow

Figure 3 shows how a single BBR flow reacts to changes
of the bottleneck bandwidth in a network. Thereby, the first
55 seconds are our reproduction of [1, Fig. 3]. For equal
network conditions, no significant differences are visible. The
sending rate, measured RTT and inflight data closely follow

40 45 50 55 60 65 70 75 80
0

1

2

3

Time [s]

S
en

d
in
g
R
a
te

[M
b
it
/
s]

40ms RTT 80ms RTT Fair Share

Figure 4: RTT unfairness for multiple flows with two groups
of RTTs

the doubling in BtlBw. After the bandwidth reduction, a queue
is generated, as indicated by the increased RTT estimation, and
drained in the following five seconds.

Instead of an additional bandwidth reduction, we tripled
RTprop at the 56 s mark. The results are surprising at first.
Similar to a decrease in BtlBw, BBR cannot adapt to an
increase in RTprop immediately, since the minimum filter
retains an old, lower value for another 10 s. When RTprop
grows, the acknowledgments for the packets take longer to
arrive, which increases the inflight data until the congestion
window is reached. To adapt, BBR limits its sending rate,
resulting in lower samples for BtlBw. As soon as the BtlBw
estimate expires, the congestion window is reduced according
to the new, lower BDP. This happens repeatedly until the old
minimum value for RTprop is invalidated (at approx. 62 s).
Now, BBR learns about the new value and increases the
sending rate again to match BtlBw with exponential growth.

While this behavior is not ideal and can cause problems, the
repercussions are not severe for two reasons. First, even though
the sending rate drops, the inflight data does not decrease
compared to before the RTT increase. Second, it is unlikely
that such a drastic change in RTT happens in the Internet in
the first place.

The RTT reduction at 76 s is adapted instantly because of
the RTT minimum filter.

Figure 3 also validates that our framework can sample
events detailed enough (4t = 40 ms), as both Probe Band-
width (small spikes) and Probe RTT phases (large spikes every
10 s) are displayed accurately. However, in general we use
4t = 200 ms for less overhead.

B. RTT Unfairness

The RTT unfairness of BBR is visualized in [6, Fig. 1].
Two flows share a bottleneck of 100 Mbit/s, one flow having
a larger RTT than the other (10 ms and 50 ms). The flow with
shorter RTT starts three seconds before the other. We set the
bandwidth to 10 Mbit/s and adapted all other parameters. Our
reproduced results (not shown) only differ slightly: The larger
flow receives about 10 % less of the bandwidth.

As shown in Figure 4, the behavior can also be observed
when increasing the number of flows. Flows with equal RTT
converge to a fair share within their group, however, groups
with higher RTT claim a bigger share overall.

C. Bottleneck Overestimation for Multiple Flows

BBR overestimates the bottleneck when competing with
other flows, operating at the inflight data cap [4]. The analysis

112

9.5

10

10.5

11
B

a
n

d
w

id
th

[M
b

it
/
s]

∑
BtlBwEst. BtlBw

0

1

2

b
a
ck

lo
g

[M
b

it
]

Buffer Backlog 1.5 BDP

5 10 15 20 25 30 35 40 45 50
0

100

200

300

Time [s]

R
T

T
[m

s]

RTT of Flow 1 2.5 RTprop

Figure 5: BDP overestimation for five flows with a 100 ms
RTprop and 10 Mbit/s bottleneck (5 BDP buffer)

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

RTT [ms]

P
ro
b
e R

T

D
u
ra
ti
on

[m
s] Overlap Single Flow

200 + RTT 200 + 2.5 RTT

Figure 6: Overlapping Probe RTT phase duration of 5 flows

of Hock et al. predicts 2 BDP ≤ ∑
i inflighti < 2.5 BDP.

Our experiments using a large enough buffer size of 5 BDP
reproduce the results of this formal analysis as shown in
Figure 5. For five simultaneously started BBR flows, the sum
of the BBR estimations of BtlBw exceeds the real BtlBw after
each Probe RTT phase, increasing the estimation towards the
inflight cap. The backlog of the bottleneck buffer is kept at
1.5 BDP resulting in a total of 2.5 BDP.

1) Insufficient Draining of Queues During Probe RTT: To
measure the correct RTprop value, all flows need to simulta-
neously drain the queue in Probe RTT. Figure 6, displaying
the duration of the Probe RTT phase for five flows and the
overlap thereof, shows that this is not the case. For RTTs
below 40 ms the overlap is only half of the duration of the
Probe RTT phase (200 ms + RTT). This is because all flows
enter Probe RTT at slightly different times even though the
flows are synchronized. As a consequence, the queue is not
drained enough and BBR overestimates the bottleneck.

For high RTTs the overlap exceeds the theoretic maximum
of 200 ms + RTT. Indeed, the duration of the Probe RTT phase
for each individual flow equals 200 ms + 2.5 RTT. This is
because when the previous RTprop value expires, triggering
the Probe RTT phase, BBR chooses the newest measured
RTT as RTprop [15]. As this value, however, is based on a
measurement outside of the Probe RTT phase, it is influenced
by the 2.5 BDP overestimation. As a consequence, the Probe
RTT phase is longer, reducing the performance of BBR.

2) Retransmissions for Shallow Buffers: BBR is susceptible
to shallow buffers as it overestimates the bottleneck, not
recognizing that the network is strongly congested, since
packet loss is not interpreted as congestion. Cardwell et al.
have shown that BBR’s goodput will suffer if the buffer cannot

10−1 100 101
10−2

10−1

100

101

2
B
D
P 2
.5

B
D
P

Buffersize in multiples of BDP [log]

R
et

ra
n

sm
is

si
o
n

R
at

e
[l

og
(%

)] BBR<20 s BBR≥20 s

CUBIC≥20 s

Figure 7: Retransmissions per second for 5 simultaneously
started flows with different bottleneck buffer sizes

0 10 20 30 40 50 60
0

2

4

6

8

Time [s]

B
an

d
w
id
th

[M
b
it
/s
]

0

50

100

150

200 R
T
p
rop

[m
s]

CUBIC
BBR
BtlBw
RTprop

Figure 8: Competing BBR and CUBIC flow

hold the additional 1.5 BDP [5].
We reproduced this effect by analyzing the relation be-

tween bottleneck buffer size and caused retransmissions for
both BBR and CUBIC (cf. Figure 7). Five TCP flows are
started simultaneous and share a 10 Mbit/s, 50 ms bottleneck
(BDP = 500 kbit). We compute the retransmission rate for
different buffer sizes at the bottleneck for BBR and CUBIC
individually. BBR<20 s shows the first 20 s of the test includ-
ing only startup and synchronization phases. BBR≥20 s and
CUBIC≥20 s represent steady-state operation after 20 s.

For shallow buffers up to 2 BDP retransmission for BBR
exceeds the amount for CUBIC by a factor of 10. This is
a consequence of the buffer overestimation, in contrast to
CUBIC’s adaption of the congestion window for loss events.
Between 2 BDP and 2.5 BDP loss only occurs during the
startup and synchronization phases (before 20 s) for BBR. This
is because of the initial aggressive bandwidth claiming. For
even larger buffers BBR is not susceptible to loss.

CUBIC, as loss-based algorithm, produces loss with all
buffer sizes during congestion avoidance phase. However, for
small buffer sizes it is a factor of 10 below BBR. Only
when exceeding 10 BDP = 5 Mbit a rise in retransmissions is
visible for CUBIC. This is because of taildrop, increasing the
repercussions of a single loss event. However, buffers with this
large capacity are not realistic in the Internet [8] and therefore
only pose a theoretic problem.

D. Inter-protocol Behavior With CUBIC

In the best case, a competing BBR and CUBIC flow reach
an oscillating steady-state [5]. This is caused by the RTprop
estimation of BBR as shown in Figure 8. CUBIC’s aggressive
probing for bandwidth causes the queues to fill up, resulting
in BBR to measure a higher delay, increasing its BDP. In turn,
this causes packet loss, resulting in reduced data inflight for
CUBIC. Once the queue is drained, CUBIC starts to probe
again, while BBR measures the correct RTprop value. This
oscillation results in F being constantly low, however, both

113

0.5

0.75

1
F t

p

10−1 100 101
0

25

50

75

Buffersize in multiples of BDP [log]

B
a
n
d
w
id
th

A
v
g
.

[%
]

BBR

CUBIC

(a) Increasing buffer with 50 ms RTT

0.5

0.75

1

F t
p

101 102 103
0

25

50

75

RTT [log ms]

B
a
n
d
w
id
th

A
v
g
.
[%

] BBR CUBIC

(b) Increasing RTT with 2.3 BDP buffer

50 100 150 200
0

25

50

75

100

RTT [ms]

B
an

d
w
id
th

A
v
g
.
[%

]

BBR5

CUBIC5

BBR2.5

CUBIC2.5

BBR1

CUBIC1

(c) One flow 50 ms RTT for 1, 2.5 and 5 BDP
buffer

Figure 9: One CUBIC vs. one BBR flow for changing network conditions

1 2 3 4 5 6 7 8 9 10
0

50

100

Number of CUBIC Flows

T
o
ta

l
S
h

a
re

o
f

C
U

B
IC

F
lo

w
s

[%
]

BBR flows: 1 2 3 5 10

Figure 10: Bandwidth share of different number of CUBIC
and BBR flows competing. Dashed lines show fair share.

flows reach an equal average throughput. For the following
analysis related to the inter-protocol behavior we use Ftp as
fairness index based on the average throughput.

The size of the bottleneck buffer is crucial for the fairness
between competing BBR and CUBIC flows [1, 4]. Figure 9a
shows our reproduction of this result, displaying the band-
width share and fairness for one BBR and one CUBIC flow
for different bottleneck buffer sizes. Up to 1.5 BDP buffer
size, BBR causes constant packet loss as explained in the
previous section. CUBIC interprets this as congestion signal
and reduces its sending rate. Up to 3 BDP both flows reach
a fair share, while for further increasing buffer sizes CUBIC
steadily claims more. The reason is that CUBIC fills up the
ever growing buffers. For BBR this results in ever growing
Probe RTT phases, i.e., reduced sending rate. The length of
and the gap between Probe Bandwidth phases increases too,
reducing BBR’s ability to adapt. However, these buffer sizes
pose only a theoretical problem (cf. Section IV-C2).

While showing the same overall behavior, RTT changes
have a smaller influence on the fairness if applied to both
flows as shown in Figure 9b. For all tested RTTs the fairness
remained above 80 %. However, when fixating one flow at
50 ms RTT and varying the RTT of the other flow, unfairness
emerges (Figure 9c). For small RTTs or shallow buffers BBR
suppresses CUBIC for the already discussed reasons. In the
other cases, the bandwidth share remains independent of the
RTT. Only when having large buffers, CUBIC gains increasing
shares with increasing RTT. Our conclusion is that the fairness
between CUBIC and BBR largely depends on the botteneck
buffer size, while the RTT only has a small impact.

Lastly, we evaluate how the number of flows competing
with each other influences the throughput share per conges-
tion avoidance algorithm. Figure 10 shows that CUBIC is
suppressed independent of the number of flows in a scenario
with 50 ms RTT and 2.5 BDP bottleneck buffer. A single BBR

0.2

0.6

1

F

50 55 60 65 70 75 80 85 90 95 100 105 110
0

2

4

6

T
jo
in

T
F

9
5

Time [s]

S
en

d
in
g
R
a
te

[M
b
it
/
s]

Existing Flows

New Flow

Figure 11: BBR inter-flow synchronization behavior

flow claims more bandwidth than its fair share already when
competing against two CUBIC flows. In fact, independent of
the number of BBR and CUBIC flows, BBR flows are always
able to claim at least 35 % of the total bandwidth.

V. INTER-FLOW SYNCHRONIZATION

Different BBR flows synchronize themselves to avoid faulty
estimations, e.g., when one flow probes for bandwidth causing
a queue to form at the bottleneck, while another probes
for RTT. In contrast to loss-based algorithms, this does not
correlate with congestion, as the flows are impervious to loss.

A. Theory & Questions

Cardwell et al. demonstrate in [1, Fig. 6] how different
BBR flows synchronize whenever a large flow enters the
Probe RTT phase. We visualize the process in Figure 11 with
one new flow joining four already synchronized flows. The
new flow immediately overestimates the bottleneck link and
claims a too large share of the bandwidth. 10 s later it enters
Probe RTT. The flow with bigger share drains a large portion
of packets from the queue, which results in all other flows
measuring a better RTprop estimate. Consequently, the flows
are synchronized as the RTprop samples of all flows expire at
the same time, causing them to enter Probe RTT together at
the 81 s mark. Considering the fairness, it takes approximately
35 s after the new flow joined until equilibrium is reached.

To maximize performance, BBR should only spend 2% of
time in Probe RTT [1, 15]. Therefore, new flows have trouble
to measure the correct RTprop as active flows likely probe for
more bandwidth and create queues. It causes the new flow to
overestimate the BDP, inducing queuing delay or packet loss.

This raises two questions regarding the synchronization
behavior of BBR flows: Is there an optimal and worst moment
regarding the time until equilibrium is reached for a single
flow to join a bottleneck containing already synchronized
BBR flows? And secondly we want to determine if constantly

114

0.2

0.8
0.9
1

F a
v
g

−6 −4 −2 0 2 4 6 8 10 12
0
10
20
30

Flow joining in relation to Probe RTT phase [s]

T
F

9
5
[s
]

(a) Join during different times of the Probe RTT cycle. Red area marks
Probe RTT phases.

0

200

400

R
T
p
ro
p
[m

s]

Startup Drain Probe RTT

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

200

400

Time in relation to Probe RTT phase [s]

Sync. flows New flow

(b) Correlation between Startup/Drain and Probe RTT for joining 2 s
and 1.7 s before next Probe RTT phase

Figure 12: Single BBR flow joining synchronized BBR flows

adding new flows can result in extended or accumulated
unfairness.

B. Synchronization Metrics

To quantify the impact of a new flow joining we use
two metrics based on Jain’s fairness index F . For better
comparison we define Tjoin as the point in time when the
flow of interest, i.e. the last flow, has joined the network (cf.
Figure 11). As first metric, we define TF95 as the point after
Tjoin for which F remains stable above 0.95, i.e. no longer
than 2 s below this threshold. Second, we compute the average
fairness Favg in the interval [Tjoin, Tjoin + 30 s].

In the following we analyze the behavior of flows with equal
RTTs. We assume that all effects described in the following
will scale similarly as described in Section IV-B with RTT
unfairness between flows.

C. Single Flow Synchronization Behavior

To analyze the basic synchronization behavior, we use the
scenario of one new BBR flow joining a network with four
other BBR flows already synchronized and converged to a fair
share. Figure 12a shows our experimental evaluation when
joining a new flow in relation to the Probe RTT phase of the
synchronized flows.

As expected, a periodic behavior is revealed, with the best
case for a new flow to join being during the Probe RTT phase.
It synchronizes immediately as the queues are drained and the
new flow can measure the optimal RTT, leading to low TF95

and high Favg. The worst case is if the flow joins directly
after the other flows left the Probe RTT phase. At this point,
the queue is building again as the flows keep 2 BDP inflight,
resulting in the new flow severely overestimating the BDP. It
remains in this state until the old flows enter Probe RTT again
(up to 10 s later), draining the queue and synchronizing with
the new flow. This behavior of aggressively taking bandwidth
from existing flows can be harmful when many short living
BBR flows join, leading to starvation of long-living flows.

In general, it lasts 20 s until TF95 is reached, but the later
the new flow joins during the cycle, the higher varies TF95 (10
to 30 s). The local optimum when joining 2 s before the Probe
RTT phase with TF95 = 10 s is because the existing flows
enter the Probe RTT phase while the new flow drains after the
Startup as shown in Figure 12b. Consequently, all flows drain

0.2
0.6
0.8
1

F a
v
g

0 5 10 15 20
0

20

40

Interval length [s]

T
F

9
5
[s
]

Figure 13: Different join intervals for subsequent flows

the queue and measure a new optimal RTprop, synchronizing
immediately, yet overestimating the bottleneck because the
queue created during Startup is not entirely drained yet. In
contrast, the worse case directly afterwards (1.7 s before next
Probe RTT) with TF95 = 22 s is caused by the existing flows
entering Probe RTT, draining the queue, while the new flow is
in Startup. This causes the new flow to drastically overestimate
the bottleneck until leaving Startup, suppressing other flows.

Considering the prevalence of short-lived flows in the
Internet [19, 2], this high TF95 value poses a significant
disadvantage of TCP BBR. Initially, flows during this time
suppress other flows through unfair bandwidth claims, which
is only solved when reaching a fair share.

D. Accumulating Effects

To evaluate if negative effects of multiple flows joining
can accumulate, i.e. whether the duration of unfairness can
be prolonged, we change the scenario to have a new flow join
every x seconds up to a total of five BBR flows (cf. Figure 13).

Optima are visible for intervals matching the duration of the
Probe RTT phase of the already active flows at approximately
10 s and 20 s. When all flows join at the same time, they all
measure a good RTprop value within the first few packets,
synchronizing them immediately. For intervals smaller than
10 s accumulating effects are visible as new flows rapidly join,
not allowing the fairness to stabilize. As for a single flow, TF95

and Favg improve with increasing interval. For flows joining
every 5 s an additional local optimum is visible as every second
flow joins during the Probe RTT phase of the other flows. For
intervals larger than one Probe RTT cycle (after flows leave
Probe RTT, approximately 10.5 s), TF95 and Favg show the
behavior for a single flow joining. This is because all prior

115

0
50
100

F
[%

]

0 10 20 30 40 50 60 70 80
0
2
4
6
8

Time [s]

S
en

d
.
R
at
e

[M
b
it
/
s]

Flow #: 1 2 3 4 5

(a) 10.1 s join interval (during Probe RTT)

0
50
100

F
[%

]

0 10 20 30 40 50 60 70 80

2
4
6
8

Time [s]

S
en

d
.
R
at
e

[M
b
it
/
s]

(b) 10.5 s join interval (immediate after Probe RTT)

Figure 14: Identified best/worst case join intervals

flows have already synchronized, resulting in them already
converging towards an equilibrium before the next flow joins.

Analyzing the effect of a new flow joining on individual
existing flows, e.g. the longest running flow, is difficult for
the lack of a good metric. We therefore select the best and
worst case join intervals displayed in Figure 14 for a visual
analysis. As the minimum value of F depends on the number
of flows (1/n), it is normalized using percentages.

Figures 14a and 14b show the effects of subsequent flows
joining during (best case) or immediately after (worst case)
the Probe RTT phase. Similar to the effects on the last flow
joining, existing flows are only influenced by the timing of the
next flow joining. Within the group of synchronized flows, they
converge to their fair share. The synchronization itself depends
on the timing and happens at most after 10 s. The resulting
unfairness is only caused by the new flow. The overall time
until bandwidth equilibrium is approximately 55 s and 70 s,
respectively. We attribute the 15 s difference to the longer
synchronization phase in the latter case (10 s) and bigger
unfairness thereof.

Throughout all our tests we encountered rare cases where
TF95 extended for up to 50 s, which are not reproducible. We
attribute this instability to the sensibility of the join timing.

Summarizing, the fair sharing of bandwidth is intertwined
with the timing of new flows joining the network. Except
during the brief Probe RTT phase, equilibrium is only reached
after 20 s and can extend up to 30 s. However, there are no
effects accumulating beyond the interval of one Probe RTT
phase. The timing only has a short term effect on the amplitude
of unfairness, not TF95 .

VI. RELATED WORK

Different definitions of and processes to reach reproducibil-
ity exist [20], e.g. as a three stage process as defined by an
ACM policy [21]. Thereby, the minimum level is repeata-
bility. It refers to recreating the results for an experiment
conducted by the same scientists with the same tools. The
term replicability is used for results that can be reproduced
by other scientists given the same experiment setting. Finally,
reproducibility defines that results can be validated in differ-
ent experiments, by different scientists and tools.

Our paper contributes to these quality aspects by repro-
ducing results of other scientists with different methods (i.e.
reproducibility). By providing our framework as open source
software, we increase the value of our results by allowing
others to replicate them (i.e. replicability).

A. Reproducible Measurements with Network Emulation

Handigol et al. [22] have shown that various network
performance studies could be reproduced using Mininet. The
Mininet authors published an editorial note [23] in 2017,
wherein they describe efforts in reproducing research. They
reproduced performance measurements of DCTCP, Multi-Path
TCP (MPTCP), the TCP Opt-ack Attack, TCP Fast Open, and
many more. Other research groups used Mininet in studies
about TCP, such as the work from Paasch et al. [24], with
a performance evaluation of MPTCP. Girardeau and Steele
use Mininet in Google Cloud VMs to perform simple BBR
measurements [25]. They use a patched kernel and, compared
to our approach, their setup and runtime for one experiment
is significantly higher with up to 50 minutes.

BBR support is announced to be available for the network
simulator ns3 [26]. The Pantheon allows researchers to test
congestion control algorithms in different network scenar-
ios [27]. The results of Internet measurements are used to
tune the parameters of emulated network paths which provides
better reproducibility.

B. TCP BBR in Other Domains

BBR deployed in domains with different requirements
yields varying results. Kuhn has shown promising results
over SATCOM links, which have latencies in the range of
500 ms [28]. They state that a “late-comer unfairness” [28]
exists. Leong et al. claim that BBR can be further improved
for mobile cellular networks [29], which is a recent research
area of Cardwell et al. [5]. Kakhki et al. integrated BBR for
QUIC, however, state that it is not yet performing well [30].

VII. CONCLUSION

We presented a framework for TCP congestion control mea-
surements focusing on flexibility, portability, reproducibility
and automation. We used Mininet to emulate different user-
configured flows. Experiments run without user interaction and
produce a report containing graphs visualizing 14 metrics. We
reproduced related work to validate the applicability of our
approach using emulation.

Furthermore, we summarized the state of the art for analysis
for TCP BBR and extend existing insights in several aspects.
In particular, we have shown that the algorithm to determine
the duration of the Probe RTT phase is flawed and that
in most cases BBR and CUBIC do not share bandwidth
in a fair manner. Our final contribution is an experimental

116

analysis of the synchronization mechanism. We identified two
primary problems. Depending on the timing of new flows
joining existing flows in relation to their Probe RTT phase,
bandwidth can be shared severely unfair. This boils down
to BBR’s general problem of overestimating the BDP. The
second problem is the time until a bandwidth equilibrium is
regained. This can last up to 30 s, which is bad for short-
lived flows, common in today’s Internet. We identified that
this is correlated with the trigger for synchronization, i.e. the
Probe RTT phase, draining the queues. Consequently, without
reducing the time between Probe RTT phases, the worst case
time until flows synchronize cannot be improved further.

Our framework as well as the raw data for all figures
presented is available online [7] for replicability of our results
and to allow further investigations by the research community.

ACKNOWLEDGMENT

This work was supported by the High-Performance Center
for Secure Networked Systems and the German BMBF project
SENDATE-PLANETS (16KIS0472).

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: Congestion-based Congestion Control,”
ACM Queue, vol. 14, no. 5, 2016.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-
speed TCP variant,” ACM SIGOPS Operating Systems Review,
vol. 42, no. 5, 2008.

[3] L. Kleinrock, “Power and Deterministic Rules of Thumb for
Probabilistic Problems in Computer Communications,” in Pro-
ceedings of the International Conference on Communications,
vol. 43, 1979.

[4] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evalua-
tion of BBR Congestion Control,” in 25th IEEE International
Conference on Network Protocols (ICNP 2017), 2017.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
V. Jacobson, I. Swett, J. Iyengar, and V. Vasiliev, “BBR
Congestion Control: IETF 100 Update: BBR in shallow
buffers,” IETF 100, 2017, Presentation Slides. [Online].
Available: https://datatracker.ietf.org/meeting/100/materials/
slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers/

[6] S. Ma, J. Jiang, W. Wang, and B. Li, “Towards RTT
Fairness of Congestion-Based Congestion Control,” CoRR, vol.
abs/1706.09115, 2017. [Online]. Available: http://arxiv.org/abs/
1706.09115

[7] Framework and Data Publication. [Online]. Available: https:
//gitlab.lrz.de/tcp-bbr

[8] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the
Internet,” Commun. ACM, vol. 55, no. 1, 2012.

[9] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion
Control,” Tech. Rep., 2009.

[10] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE Journal on
selected Areas in communications, vol. 13, no. 8, 1995.

[11] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, D. Zats et al., “TIMELY:
RTT-based Congestion Control for the Datacenter,” in ACM
SIGCOMM Computer Communication Review. ACM, 2015.

[12] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP
LoLa: Congestion Control for Low Latencies and High
Throughput,” in 2017 IEEE 42nd Conference on Local Com-
puter Networks, 2017.

[13] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound
TCP Approach for high-speed and long Distance Networks,” in
Proceedings-IEEE INFOCOM, 2006.

[14] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center
TCP (DCTCP),” in Proceedings of the 2011 ACM SIGCOMM
Conference, vol. 41, no. 4. ACM, 2011.

[15] N. Cardwell, Y. Cheng, S. Yeganeh, and V. Jacobson,
“BBR Congestion Control,” Working Draft, IETF Secretariat,
Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-00,
2017. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-cardwell-iccrg-bbr-congestion-control-00.txt

[16] B. Lantz, B. Heller, and N. McKeown, “A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks,”
in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, 2010.

[17] S. Floyd, “Metrics for the Evaluation of Congestion Control
Mechanisms,” Internet Requests for Comments, RFC Editor,
RFC 5166, 2008.

[18] R. Jain, D.-M. Chiu, and W. R. Hawe, A Quantitative Measure
of Fairness and Discrimination for Resource Allocation in
Shared Computer System. Eastern Research Laboratory, Digital
Equipment Corporation Hudson, MA, 1984, vol. 38.

[19] S. Ebrahimi-Taghizadeh, A. Helmy, and S. Gupta, “TCP vs.
TCP: a systematic study of adverse impact of short-lived TCP
flows on long-lived TCP flows,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings IEEE, vol. 2. IEEE, 2005.

[20] D. G. Feitelson, “From Repeatability to Reproducibility and
Corroboration,” SIGOPS Oper. Syst. Rev., vol. 49, no. 1, 2015.

[21] O. Bonaventure, “April 2016: Editor’s message,” in ACM SIG-
COMM CCR, 2016.

[22] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible Network Experiments Using Container-
based Emulation,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Tech-
nologies, ser. CoNEXT ’12. ACM, 2012.

[23] L. Yan and N. McKeown, “Learning Networking by Repro-
ducing Research Results,” SIGCOMM Comput. Commun. Rev.,
vol. 47, no. 2, 2017.

[24] C. Paasch, R. Khalili, and O. Bonaventure, “On the Benefits
of Applying Experimental Design to Improve Multipath TCP,”
in Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’13.
ACM, 2013.

[25] B. Girardeau and S. Steele. Reproducing
Network Research (CS 244 ’17): Congestion-based
Congestion Control With BBR. [Online]. Available:
https://reproducingnetworkresearch.wordpress.com/2017/06/05/
cs-244-17-congestion-based-congestion-control-with-bbr/

[26] C. A. Grazia, N. Patriciello, M. Klapez, and M. Casoni, “A
cross-comparison between TCP and AQM algorithms: Which
is the best couple for congestion control?” in Proceedings
of the 14th International Conference on Telecommunications
(ConTEL). IEEE, 2017.

[27] Pantheon: The Training Ground for Internet Congestion Control
Research. [Online]. Available: http://pantheon.stanford.edu

[28] N. Kuhn, “MPTCP and BBR performance over Internet
satellite paths,” IETF 100, 2017, Presentation Slides. [Online].
Available: https://datatracker.ietf.org/meeting/100/materials/
slides-100-iccrg-mptcp-and-bbr-performance-over-satcom-links/

[29] W. K. Leong, Z. Wang, and B. Leong, “TCP Congestion
Control Beyond Bandwidth-Delay Product for Mobile Cellular
Networks,” in Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies. ACM,
2017.

[30] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and
A. Mislove, “Taking a Long Look at QUIC,” in Proceedings
of the 2017 Internet Measurement Conference, 2017.

117

Cellular Controlled Delay TCP (C2TCP)
Soheil Abbasloo, Tong Li, Yang Xu, H. Jonathan Chao

New York University
Email: {ab.soheil, tl1914, yang, chao}@nyu.edu

Abstract—Cellular networks have special characteristics in-
cluding highly variable channels, fast fluctuating capacities,
deep per user buffers, self-inflicted queuing delays, radio up-
link/downlink scheduling delays, etc. These distinguishing prop-
erties make the problem of achieving low latency and high
throughput in cellular networks more challenging than in wired
networks. That’s why in this environment, TCP and its flavors,
which are generally designed for wired networks, perform poorly.

To cope with these challenges, we present C2TCP, a flexible
end-to-end solution targeting interactive applications requiring
high throughput and low delay in cellular networks. C2TCP
stands on top of loss-based TCP and brings it delay sensitivity
without requiring any network state profiling, channel prediction,
or complicated rate adjustment mechanisms. The key idea behind
C2TCP is to absorb dynamics of unpredictable cellular channels
by investigating local minimum delay of packets in a moving time
window and react to the cellular network’s capacity changes very
fast.

Through extensive trace-based evaluations using traces from
five commercial LTE and 3G networks, we have compared
performance of C2TCP with various TCP variants, and state-
of-the-art schemes including BBR, Verus, and Sprout. Results
show that on average, C2TCP outperforms these schemes and
achieves lower average and 95th percentile delay for packets.

I. INTRODUCTION

Cumulative data traffic growth in cellular networks has
increased more than 1200% over recent five-year period and
in the first quarter of 2017, total cellular internet traffic
reached to nearly 9500 PetaByte per month globally [1]. This
growing mode of internet access on the one hand has provided
opportunities for cellular network carriers with more demand
for new applications like augmented reality, virtual reality,
online gaming, real time video streaming, and real time remote
health monitoring. On the other hand it has brought new
challenges for cellular carriers due to ultra low latency and
high throughput requirements of those interactive applications.

Cellular networks differ noticeably from their wired counter
parts. They experience highly variable channels, fast fluc-
tuating capacities, self-inflicted queuing delays, stochastic
packet losses, and radio uplink/downlink scheduling delays.
These differences make the problem of achieving low latency
and high throughput in cellular networks more challenging
than in wired networks. TCP and its variants which are the
main congestion control mechanisms to control the delay and
throughput of flows are known to perform poorly in cellular
networks [2]–[6].

In this paper we present C2TCP, a Cellular Controlled delay
TCP to address mentioned challenges in cellular networks for

achieving low delay and high throughput. Our main philosophy
is that achieving good performance does not necessarily comes
from complex rate calculation algorithms or complicated
channel modelings.1 The key idea behind C2TCP’s design
is to absorb dynamics of unpredictable cellular channels by
investigating local minimum of packets’ delay in a moving
time window. Doing that, C2TCP stands on top of a loss-
based TCP such as Cubic [8] and brings it delay sensitivity.
There is no network state profiling, channel prediction, or any
complicated rate adjustments mechanisms involved.

There is always a trade-off between achieving lowest delay
and getting highest throughput. J. Jaffe in [9] has proved that
no distributed algorithm can converge to the operation point
in which both the minimum RTT and maximum throughput
are achieved. Considering that trade-off, C2TCP provides
a flexible end-to-end solution which allows applications to
choose their level of delay sensitiveness, even after the start
of their connection.

We have implemented C2TCP in Linux Kernel 4.13, on
top of Cubic, conducted extensive trace-driven evaluations
(detailed in section IV) using data collected in prior work (
[10] and [2]) from 5 different commercial cellular networks
in Boston (T-Mobile’s LTE and 3G UMTS, AT&T’s LTE,
and Verizon’s LTE and 3G 1xEV-DO) in both directions, and
compared performance of C2TCP with several TCP variants
(including Cubic [8], NewReno [11], and Vegas [12]) and dif-
ferent state-of-the-art end-to-end schemes including BBR [13],
Sprout [2], and Verus [4]. Our results show that C2TCP
outperforms these end-to-end schemes and achieves lower
average and 95th percentile delays for packets. In particular,
on average, Sprout, Verus, and BBR have 3.41×, 10.36×,
and 1.87× higher average delays and 1.44×, 27.36×, and
2.06× higher 95th percentile delays compared to C2TCP,
respectively. This great delay performance comes at little
cost in throughput. For instance compared to Verus (which
achieves the highest throughput among those 3 state-of-the-
art schemes), C2TCP’s throughput is only 0.22× less.

Also, in section IV-B, we compared our end-to-end solution,
C2TCP, with CoDel [14], an AQM scheme that requires
modification on carriers network, and show that C2TCP can
outperform CoDel too. Moreover, we examined fairness of
C2TCP, compared it with several other algorithms, and showed
that it provides good fairness properties. Finally, we investi-
gated the loss resiliency of C2TCP in case of stochastic packet

1It is already a known fact that predicting cellular channels is hard [4],
[7]ISBN 978-3-903176-08-9 2018 IFIP

losses unrelated to congestion in cellular networks. Among
algorithms that we examined only C2TCP, BBR, and Vegas
show good resiliency in high rates of packet losses.

II. MOTIVATIONS AND DESIGN DECISIONS

Flexible End-to-End Approach: One of the key distin-
guishing features of cellular networks is that cellualr carriers
generally provision deep per user queues in both uplink and
downlink directions at base station (BS). This leads to issues
such as self-inflicted queuing delay [2] and bufferbloat [6],
[15]. A traditional solution for these issues is using AQM
schemes like RED [16]; however, correct parameter tuning of
these algorithms to meet requirements of different applications
is challenging and difficult. Although newer AQM algorithms
such as CoDel [14] can solve the tuning issue, they design
queues from scratch, so deploying them in network comes
with huge CAPEX cost. In addition, in-network schemes lack
flexibility. They are based on “one-setting-for-all-applications”
concept and won’t consider that different type of applica-
tions might have different delay and throughput requirements.
Moreover, with new trends and architectures such as mobile
content delivery network (MCDN) and mobile edge computing
(MEC) [17], content is being pushed close to the end-users.
So, from the latency point of view, problem of potential large
control feedback delay of end-to-end solutions diminishes if
not disappears. Motivated by these shortcomings and new
trends, we seek a “flexible end-to-end” solution without tuning
difficulties.

Simplicity: Cellular channels often experience fast fluctua-
tions and widely variable capacity changes over both short
and long timescales [4]. This property along with several
complex lower layer state machine transitions [5], complicated
interactions between user equipment (UE) and BS [18], and
scheduling algorithms used in BS to allocate resources for
users through time which are generally unknown for end-
users make cellular channels hard to be predictable if not
unpredictable [4], [7]. These complexities and unpredictability
nature of channels motivates us to avoid using any channel
modeling/prediction and to prevent adding more complicity
to cellular networks. We believe that performance doesn’t
always come from complexity. Therefore, we seek “simple
yet powerful” approaches to tackle congestion issue in cellular
networks.

Network as a Black-Box: In cellular networks, source
of delay is vague. End-to-end delay could be due to either
self-inflicted queuing delays in BS, delays caused by BS’
scheduling decisions in both directions, or downlink/uplink
channel fluctuations. Although providing feedback from net-
work to users can guide them to detect the main source of
delay, any new design based on requiring new feedback from
network needs modifications on cellular networks. However,
this comes at the CAPEX cost for cellular carriers. Therefore,
we will look at cellular network as a “black-box” which
doesn’t provide us any information about itself directly.

Target

0 t0 t 2

RT
T

of
 P

ac
ke

ts

time
t1 t7 t6 t3 t4 t5 t8

Good Bad Good

Interval

Fig. 1. The Good and the bad conditions

III. C2TCP’S ALGORITHM

A. The Good and The Bad Conditions

Inspired by CoDel [14] and Vegas [12] designs, we define
that network is in “good-condition” when minimum RTT ob-
served in a monitoring time duration (called Interval) remains
below a Target delay. If RTT of a packet goes above the Target
and if RTTs of next packets never fall below the Target in the
next Interval, we say network is in a bad-condition. So, having
any RTT less than Target shows a good-condition at least
for the next Interval, while instantaneous RTTs bigger than
Target doesn’t necessarily show a “bad-condition”. Intuitively,
this definition comes from the fact that one of the normal
responsibilities of queues in the network is to absorb burst
of traffic, so it is normal to have some temporary increase in
RTT of packets. However, when more packets experience large
RTTs, most likely there is something wrong in the network.
Hence, history of delay should be considered as important as
the current delay.

For instance, consider Fig. 1 which shows sample RTTs of
packets through time. At t0 RTT of a packet goes beyond the
Target value and till t1 = t0+Interval no packet experiences
RTT less than Target. So, at t1 a bad-condition is detected.
This bad-condition continues till t2 when RTT goes below
Target value indicating detection of a good-condition. At t3
RTT goes above Target but since RTT becomes less than
Target at t4 (< Interval + t3), we still remain in good-
condition. Likewise we remain in good-condition for the next
time slots.

Note that the delay responses of packets in [t1, t2] and
[t6, t7] periods are identical. However, since the history of
delay is different at t1 and t6, those two periods have been
identified differently (first one is in a bad-condition, while the
second one is in a good-condition). This example shows how
we can use our simple definition to qualitatively get a sense
of history without recording history of delay.

B. Main Logic

As Algorithm 1 shows, C2TCP’s main logic will be trig-
gered each time a new acknowledgment is received at the
source. After detecting a bad-condition, the main question
is that if we had an in-network AQM algorithm able to
detect the bad-condition, what would have it done to inform
a loss-based TCP? The answer is that it would have simply
dropped the packet and caused TCP to do a harsh back-off
by setting congestion window to one. So, the key idea of

119

Algorithm 1: C2TCP’s Main Algorithm at Sender

1 Function pkts acked() // process a new received Ack

2 ... /* default loss-based TCP code block */

3 rtt←− current rtt
4 now ←− current time
5 if rtt < Target then

/* good-condition */

6 Cwnd += Target
rtt

7 first time←− true
8 num backoffs←− 1
9 else if first time then

/* waiting phase */

10 next time←− now + Interval
11 first time←− false
12 else if now > next time then

/* bad-condition */

13 next time←− now + Interval/
√
num backoffs

14 num backoffs + +
/* setting ssthresh using default TCP

function which normally recalculates it

in congestion avoidance phase */

15 ssthresh←− recalc ssthresh()
16 Cwnd←− 1

C2TCP is to emulate such an impact without requiring that
imaginary AQM scheme in the network. When bad-condition
is detected at source, C2TCP overwrites the decision of TCP
and forces congestion window to be reset to one. Each time a
bad-condition is detected, the next monitoring time interval
is decreased in proportion to 1√

n
where n is number of

consecutive back-offs since detecting the current bad-condition
using the well-known relationship of drop rate to throughput
to get a linear change in throughput [19], [20].

On the other hand, RTTs smaller than Target show room for
applications to increase their throughput at cost of increase
in their delay. Therefore, we break the good-condition into
two phases: 1- When RTTs are smaller than Target and 2-
When RTTs are larger than Target (waiting phase). In waiting
phase (lines 9-12 in Algorithm 1) , C2TCP doesn’t change the
congestion window calculated by the loss-based TCP, which
is used as base for C2TCP, and waits for transition to either
bad-condition or another first phase of the good-condition.
However, in the first phase, C2TCP increases the congestion
window additively using equation 1 (lines 5-9 in Algorithm 1).
This increase is in addition to the increase that the loss-based
TCP normally does. The choice of this additive increase is to
follow the well-known AIMD (Additive Increase Multiplica-
tive Decrease) property which ensures that C2TCP’s algorithm
still achieves fairness among connections [21]. We have ex-
amined C2TCP’s fairness in more detail in section IV-C.

Cwndnew = Cwndcurrent +
Target

rttcurrent
(1)

0

5

10

15

20

25

30

35

P
e

r
P

a
ck

e
t
D

e
la

y
(s

)

time (s)

T
h

ro
u

g
h

p
u

t (M
b
its/s)

Link Capacity

Cubic throughput
C2TCP throughput

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

Cubic Delay

C2TCP Delay

Fig. 2. Delay Response of Cubic and C2TCP

C. Why It Works

To show the improvements achieved by C2TCP and dis-
cuss the reasons, we compare the performance of C2TCP
implemented on top of Cubic with Cubic following instruc-
tions described in section IV. Fig. 2 shows 60 seconds of
varying capacity of a cellular link (Verizon LTE network in
downlink direction measured in Boston by prior work [2]) and
delay/throughput performance of C2TCP and Cubic.

1) Avoiding excessive packet sending: Due to variations
in link capacity and deep per user buffers, Cubic’s delay
performance is poor, specially when there is a sudden drop in
capacity of link after experiencing good capacity (for instance,
look at [15s − 20s] and [35s − 45s] time periods in Fig. 2).
However, C2TCP always perform very well regardless of the
fast link fluctuations. The key reason is that, C2TCP always
keeps proper amount of packets in the queues so that on the
one hand, it avoids queue buildup and increase in the packet
delay and on the other hand, it achieves high utilization of
the cellular access link when either channel quality becomes
good or BS’ scheduling algorithm allows serving packets of
the corresponding UE.

2) Absorbing dynamics of channel: In contrast with designs
like Vegas [12] which use the overall minimum RTT of a
connection during its life time, we use a moving minimum
RTT. Monitoring minimum RTT in a moving time window
allows us to absorb dynamics of cellular link’s capacity,
scheduling delays, and in general, different sources of delay in
network, without need for having knowledge about the exact
sources of those delays, which in practice, are hard to be
known at end-hosts.

3) Cellular link as the bottleneck: Based on high demand of
cellular-phone users to access different type of contents, new
trends and architectures such as MEC [17], MCDN (e.g. [22]),
etc. have been proposed and used recently to push the content
close to the end-users. So, cellular access link known as the
last-mile becomes the bottleneck even more than before. This
insight helps C2TCP’s design to concentrate on the delay
performance of the last-mile and boost it.

4) Isolation of per user queues in cellular networks:
Since C2TCP targets cellular networks, it benefits from their
characteristics. One of the important characteristics of cellular
networks is that usually different UEs get their own isolated

120

deep queues at BS and there is rare competition for accessing
queue of one UE by flows of other UEs [2], [4], [6]. Mentioned
architecture puts BS’ scheduler in charge of fairness among
UEs using different algorithms such as weighted round robin,
or proportional fairness. This fact helps C2TCP to focus more
on the delay performance and leave the problem of maintaining
fairness among UEs on the last-mile to the scheduler. In addi-
tion, it is a reasonable assumption that for cellular end-users
there is usually one critical flow using UE’s isolated queue at
BS when users are running delay sensitive applications such
as virtual reality, real time gaming, real time streaming, real
time video conferencing, etc. on their smartphones. C2TCP
benefits from this fact too. 2

5) What if C2TCP shares a queue with other flows:
Although the main delay bottleneck in cellular network is the
last-mile, there still might be concern about the congestion
before the access link (for instance, in the carrier’s network).
The good news is that in contrast with large queues used at
BS, normal switches and routers use small queues [23]. So,
using well-known AIMD property ensures that the C2TCP
will achieve fairness across connections [21] before the flow
reaches its isolated deep buffer at BS. In section IV-C, we
show good fairness property of C2TCP in the presence of
other flows in such condition.

6) Letting loss-based TCP do the calculations: Another
helpful insight behind C2TCP is that in contrast with delay-
based TCPs, C2TCP does not directly involve packets’ delay to
calculate the congestion window, but let loss-based TCP, which
is basically designed to achieve high throughput [8], [11], [24],
[25], do most of the job. So, instead of reacting directly to
every large RTT, definition of “bad-condition” helps C2TCP
detect persistent delay problems in a time window and react
only to them. Therefore, events impacting only a few packets
(such as stochastic losses unrelated to congestion) won’t
impact the algorithm that much. Good resiliency of C2TCP
to stochastic packet losses is investigated in section IV-D.

D. Does C2TCP work in other networks?

Our design rests on underlying architectures of cellular
networks including presence of deep per user buffers at BS,
exploiting an scheduler at BS which brings fairness among
various UEs at the bottleneck link (last-mile), and low end-to-
end control feedback delay (thanks to current technologies and
trends such as MEC, MCDN, M-CORD [26], etc.). Therefore,
lack of these structures will impact C2TCP’s performance. For
instance, for networks with very large intrinsic RTTs, end-
hosts absorb the network’s condition with a large delay due to
the large feedback delay. So, because of that large feedback
delay, C2TCP (and any other end-to-end approaches) couldn’t
catch fast link fluctuations and respond to them very fast.

IV. EVALUATION

In this section, we evaluate performance of C2TCP using
extensive trace-driven emulation and compare its performance

2If not, users can simply prioritize their flows locally, and send/request the
highest priority one first.

Fig. 3. Topology used for evaluations

with existing protocols under a reproducible network condition
(source code is available to the community at: https://github.
com/soheil-ab/c2tcp). As our trace-driven emulator, we use
Mahimahi [10] and use use Iperf application to generate traffic.

Cellular Traces: Evaluations are conducted using data
collected in prior work ([10] and [2]) from 5 different
commercial cellular networks in Boston (T-Mobile’s LTE and
3G UMTS, AT&T’s LTE, and Verizon’s LTE and 3G 1xEV-
DO) in both downlink and uplink directions.

Schemes Compared: We have implemented C2TCP in
Linux Kernel 4.13, on top of Cubic as the loss-based TCP,
though any other loss-based TCP variants can be simply
used as the base. We use this implementation to compare
C2TCP with the state-of-the-art end-to-end schemes including
BBR [13], Verus [4], Sprout [2], and different TCP flavors
including Cubic [8], Vegas [12], and NewReno [11]3. We
also compare C2TCP with CoDel [14] an in-network solution
which requires to be implemented in the carrier’s cellular
equipment for downlink queue and in baseband modem or
radio interface driver of phones for uplink queue. To do that,
we use Cubic at server/client sides and use CoDel scheme as
queue management scheme in the network. For C2TCP, unless
it is mentioned, we set both Target and Interval to 100ms.
We examine sensitivity of C2TCP to these two parameters in
section IV-E.

Metrics: We use 3 main performance metrics for evalua-
tions: average throughput (in short, throughput), average per
packet delay (in short, delay), and 95th percentile per packet
delay (in short, 95th percentile delay). Average throughput is
the total number of bits received at the receiver divided by the
experiment’s duration. Per packet delay is end-to-end delay
which is experienced by a packet from the time being sent
to the time being received excluding the propagation delay.
Moreover, we investigate the fairness of different schemes.
Fairness criterion shows the behaviour of different schemes
when there is(are) another normal TCP flow(s) in network. In
addition to these metrics, we compare resiliency of different
schemes to stochastic packet losses (unrelated to congestion)
which might occur in cellular networks.

Topology: We mainly use 3 entities (equipped with Linux
OS) shown in Fig. 3 for these evaluations. The first one
represents the server, the 2nd one emulates the cellular access
channel (and BS) using Mahimahi toolkit, and the 3rd one
represents the UE. The RTT is around 40ms.

3We saw a bug in LEDBAT’s implementation [27] which has been con-
firmed in our conversations with its authors, so we didn’t include the result
of its performance here

121

A. Comparison with End-to-End Schemes
Fig. 4 shows the performance of various end-to-end schemes

in our extensive trace-driven evaluations for 5 different mea-
sured networks. For each network, there are 2 graphs repre-
senting 2 data transfer directions (uplink and downlink), and
for each direction there are 2 charts, one showing the average
delay and throughput, and the other one illustrating 95th
percentile delay and throughput. Schemes achieving higher
throughput and lower delay (up and to right region of graphs)
are more desirable.

The overall results averaged across all evaluations have been
shown in Table I. C2TCP achieves the lowest average delay
and the lowest 95th percentile delay among all schemes, while
compromising throughput slightly. For instance, on average,
compared to Cubic, C2TCP decreases the average delay more
than 200×, while compared to Cubic which achieves the
highest throughput, it only compromises throughput 0.27×.

TABLE I
OVERALL RESULTS AVERAGED ACROSS ALL TRACED NETWORKS

Thr.(Mbps) Avg. Delay(ms) 95th%tile Delay(ms)
C2TCP 4.235 54.1 127.2

NewReno 5.768 7688.3 16934.5
Vegas 3.259 60.4 199.1
Cubic 5.772 11015 23630.2
Sprout 3.369 185 183.4
Verus 5.408 560.7 3481.4
BBR 4.796 101.3 262.4

Generally, results for different traces in Fig. 4 show a
common pattern. As expected, Cubic and NewReno achieve
the highest throughput among different schemes. The reason is
that since they are not sensitive to delay, they simply buildup
queues. Therefore, they will achieve higher utilization of the
cellular access link when channel experiences good quality.
Vegas and Sprout can achieve low delays but they compromise
the throughput. Verus performs better than schemes such as
Cubic and NewReno and achieves lower average and 95th
percentile delays. However, its delay performance is far from
the delay performance of Sprout, BBR, Vegas, and C2TCP for
almost all traces. Design of BBR is based on first getting good
throughput and then reaching good delays [13]. This explains
why BBR can get good throughput while its delay performance
is not good. The main idea behind Sprout is to predict the
future cellular link’s capacity and send packets to the network
cautiously to achieve low 95th percentile delay for packets.
We observed that Sprout can achieve good delay performance,
but it sacrifices throughput. C2TCP tries to achieve low per
packet delay while having high throughput. Results confirm
that C2TCP achieves the low delay across each of 10 links
while maintaining a good throughput performance.4

B. Comparison with an In-Network Scheme
Now, we compare performance of our end-to-end solution

C2TCP with CoDel, an in-network solution which is one of
4It is worth mentioning that all experiments have been repeated several

times to make sure that the results presented here are not impacted by the
random variations.

the schemes that inspired us. To do that, we add CoDel AQM
algorithm to both uplink and downlink queues in Mahimahi
and use Cubic at the end hosts. Tabe II shows the overall
results averaged across all traced networks. Using CoDel
improves the delay performance of Cubic while degrading its
throughput. It is worth mentioning that to have in-network
solutions such as CoDel, cellular carriers should install these
in-network schemes inside their base stations and in base band
modem or radio-interface drivers on cellular phones, while an
end-to-end scheme like C2TCP only requires updated software
at cellular phones, and thus is much easier to be deployed.
We show in section IV-E that by changing target parameter
of C2TCP we can get delay performances better than CoDel’s
delay performances at the cost of trading throughput.

TABLE II
OVERALL RESULTS AVERAGED ACROSS ALL TRACED NETWORKS

Thr.(Mbps) Avg. Delay(ms) 95th%tile Delay(ms)
C2TCP 4.235 54.1 127.2

CoDel+Cubic 4.001 39 94.8

C. Fairness

Here, we examine the fairness property of C2TCP. Here,
fairness property means that in the presence of other TCP
flows, how much fair the bandwidth will be shared among
the competing flows. Usually, a scheme that is too aggressive
is not a good candidate since it may starve flows of other
TCP variants. To evaluate the fairness, we send one Cubic
flow from one server to an UE. Choosing Cubic as the
reference TCP rests on the fact that Cubic is the default TCP in
Linux and Android OS which takes more than 60% of smart
phone/tablet market share [28]. Then, after 30 seconds, we
start sending another flow using the scheme under investigation
from another server to the same UE and will report the average
throughput gained by both flows through time. When there are
unlimited queues in BS, there will be no scheme which can
get a fair portion of bandwidth when the queue is already
being filled by another aggressive flow [2]. So, to have a fair
comparison, as a rule of thumb, we set queue size to the BDP
(bandwidth delay product) of the network. Here, the access
link’s bandwidth and RTT are 24Mbps and 40ms respectively.5

Fig. 5 shows the results for different schemes. The results
indicate that BBR and Verus are so aggressive and will get
nearly all the bandwidth from Cubic flow, while Vegas’ share
of link’s bandwidth cannot grow in the presence of Cubic.

The main idea of BBR is to set congestion window to
the BDP (bandwidth delay product) of the network. To do
that, it measures min RTT and delivery rate of the packets.
When queue size is at the order of BDP, BBR fully utilizes
the queue and will not reserve room for the other flows.
Therefore, in our case, cubic flow experiences extensive packet

5Sprout’s [2] main design idea is to forecast the cellular access link capacity
using a varying Poisson process, so this scheme won’t work properly when
link bandwidth is constant. Therefore, to have fair comparison, we don’t
include performance results of this scheme here.

122

0

1

2

3

4

5

6

10100100010000

T
hr

ou
gh

pu
t (

M
bp

s)

Average Delay (ms)

ATT LTE Downlink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

2

4

6

8

10

12

14

10100100010000

T
hr

ou
gh

pu
t (

M
bp

s)

Average Delay (ms)

TMobile LTE Downlink

Cubic
NReno

Vegas

Verus

Sprout

BBR
C2TCP

0
1
2
3
4
5
6
7
8
9

10

10100100010000

T
hr

ou
gh

pu
t (

M
bp

s)

Average Delay (ms)

Verizon LTE Downlink

Cubic NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

100100010000100000

T
hr

ou
gh

pu
t (

M
bp

s)

Average Delay (ms)

Verizon EVDO Downlink

Cubic

NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

0.5

1

1.5

2

2.5

10100100010000

T
hr

ou
gh

pu
t (

M
bp

s)

Average Delay (ms)

TMobile UMTS Downlink

Cubic

NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

1

2

3

4

5

6

10100100010000

95%tile Delay (ms)

ATT LTE Downlink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

0
1
2
3
4
5
6
7
8
9

10

10100100010000

95%tile Delay (ms)

Verizon LTE Downlink

Cubic
NReno

Vegas

Verus

Sprout

BBR
C2TCP

0

2

4

6

8

10

12

14

100100010000

95%tile Delay (ms)

TMobile LTE Downlink

Cubic
NReno

Vegas

Verus

Sprout

BBR
C2TCP

0

0.5

1

1.5

2

2.5

10100100010000100000

95%tile Delay (ms)

TMobile UMTS Downlink

Cubic

NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

100100010000100000

95%tile Delay (ms)

Verizon EVDO Downlink

Cubic

NReno

Vegas

Verus

Sprout

BBR
C2TCP

Be
tte
r

Be
tte
r

Be
tte
r

Be
tte
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10100100010000100000

Average Delay (ms)

ATT LTE Uplink

Cubic NReno

Vegas

Verus

Sprout

BBR
C2TCP

0

1

2

3

4

5

6

7

10100100010000

0
2
4
6
8

10
12
14
16
18
20

101001000

Average Delay (ms)

TMobile LTE Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10100100010000100000

Average Delay (ms)

Verizon EVDO Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10100100010000100000

Average Delay (ms)

TMobile UMTS Uplink

Cubic NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

1

2

3

4

5

6

7

10100100010000

0
2
4
6
8

10
12
14
16
18
20

10100100010000

95%tile Delay (ms)

TMobile LTE Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10100100010000100000

95%tile Delay (ms)

ATT LTE Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR
C2TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100100010000100000

95%tile Delay (ms)

Verizon EVDO Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10100100010000100000

95%tile Delay (ms)

TMobile UMTS Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

95%tile Delay (ms)

Verizon LTE Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR
C2TCP

Average Delay (ms)

Verizon LTE Uplink

Cubic
NReno

Vegas

Verus

Sprout

BBR

C2TCP

Fig. 4. Throughput, average delay, and 95th percentile delay of each scheme over traced cellular links (x axis is in logorithmic scale)
123

0
5

10
15
20
25
30

BW
 (M

bp
s)

0
5

10
15
20
25
30

BW
 (M

bp
s)

0
5

10
15
20
25
30

BW
 (M

bp
s)

0
5

10
15
20
25
30

0 20 40 60 80 100 120

BW
 (M

bp
s)

time (s)

Cubic
&

Cubic

Cubic
&

Vegas

Cubic
&

Verus

Cubic
&

BBR

Cubic
&

C2TCP

0
5

10
15
20
25
30

BW

Fig. 5. Share of bandwidth among Cubic, started at time 0, and other schemes,
started at 30s (schemes tested are named on right side of each graph)

0
5

10
15
20
25
30

0 20 40 60 80 100 120

B
W

 (
M

b
p

s
)

time (sec)

Fig. 6. Share of bandwidth among
NewReno, started at 0, and C2TCP

0
5

10
15
20
25
30

0 20 40 60 80 100 120

B
W

 (
M

b
p

s
)

time (s)

Fig. 7. Share of bandwidth among
two C2TCP flows

drops and won’t achieve its fair share of the bandwidth. Vegas
changes its congestion window based on the minimum and the
current RTT of the packets. Presence of cubic flow’s packets
in the queue impact both minimum RTT and current RTT
measurements of Vegas. That’s why Vegas cannot increase its
throughput and get its share of the bandwidth from cubic flow.

In both cases, either being very aggressive or having no
aggressiveness, the fairness characteristic of these schemes
is not desirable. However, as Fig. 5 illustrates, C2TCP can
share the bandwidth with Cubic flow fairly. In our evaluations,
C2TCP is implemented over Cubic. To show that C2TCP’s
fairness property is not because the competing flow in test
is Cubic, we replace Cubic flow with a NewReno flow and
do the test again. Fig. 6 shows the result indicating the same
fairness property of C2TCP.

Also, to examine the fairness criterion of the C2TCP in the
presence of another C2TCP flow, we use the previous setup
and replace the Cubic flow with a C2TCP flow. Results shown
in Fig. 7 declare that C2TCP is fair to other C2TCP flow in
the network. That being mentioned, C2TCP is friendly to other
TCP flows and can achieve good fairness property.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Loss Ratio

Vegas
Cubic
Verus
BBR

Sprout
C2TCP

Fig. 8. Resiliency of schemes to packet losses not caused by congestion

D. Loss Resiliency

Although in cellular networks, different techniques such
as HARQ [18] have been used to reduce the impact of
stocastic packet losses in access link (which are not caused
by congestion), there still could be stocastic packet losses in
practice. So, in this section, we investigate the resiliency of
different schemes to packet loss not casued by congestion. To
that end, we use one of the data traces (Downlink direction
of AT&T’s LTE) and simulate Bernoulli packet losses with
varying packet loss probabilities. Then, we normalize average
throughput of each scheme to the average throughput it sees
when there is no loss. This provides us good criterion to see
how sensitive each scheme is to the packet losses that are not
caused by congestion. Fig. 8 shows the results.

Cubic, a loss-based transport scheme, is sensitive to packet
losses and considers them as congestion signals. So, when
there are packet losses not due to the congestion, it suf-
fers unwanted slowdowns. However, in parallel with normal
mechanism of a loss-based scheme, C2TCP considers delay
of packets as the signal of congestion too. When there are
packet losses but there is no congestion (which indicates low
packet delays i.e. good-condition) C2TCP can speedup the
increment process of congestion window using equation 1
and rectify the unwanted slowdowns. Sprout and Verus both
experience decrease in performance specially in high packet
losses. However, similar to C2TCP, Vegas and BBR show very
good resiliency to packet losses. This is because they both use
minimum delay of packets as an extra input for calculating the
sending rate, though by using different mechanisms.

E. Impact of Target and Interval

In this section, we investigate the impact of the only
two parameters of C2TCP namely target and Interval on
the performance of C2TCP. We use data trace of downlink
direction of AT&T’s LTE network for the evaluations of this
section.

1) Target: Here, we set the interval to 100ms and change
the target from 50ms to 100ms. The average delay and
throughput achieved for each setting has been shown in Fig. 9.
As expected, by changing target, an application can achieve
a very good balance between throughput and delay. Based
on the requirements of different applications, they can change
target via a socket option field. For a balanced performance,
we recommend using a target value between 2× to 3× of RTT

124

15

20

25

30

35

40

45

50

55

60

40 50 60 70 80 90 100 110 120130

De
la

y
(m

s)

Target (ms)

1

1.5

2

2.5

3

3.5

4

4.5

40 50 60 70 80 90 100110120130

Th
ro

ug
hp

ut
 (M

bp
s)

Target (ms)

Fig. 9. Impact of Target Values on Throughput (Left) and Delay (Right).
(Red lines shows performance of Codel+Cubic scheme)

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

60 80 100 120 140 160 180 200 220

Th
ro

ug
hp

ut
 (M

bp
s)

Interval (ms)

40

42

44

46

48

50

52

60 80 100 120 140 160 180 200 220

De
la

y
(m

s)

Interval (ms)

Fig. 10. Impact of Interval Values on Throughput (Left) and Delay (Right)

(here, RTT = 40ms). This provides enormous flexibility to
applications when it is compared to in-network schemes such
as RED and CoDel in which a set of queue parameters are set
for all applications. Red lines in Fig. 9 show throughput and
delay performance of CoDel when it is used in combination
with Cubic for the same scenario. As Fig. 9 illustrates, C2TCP
can be tuned to outperform the performance of CoDel, an in-
network approach.

2) Interval: Now, we set the target to 100ms and change
the interval from 75ms to 200ms, and report the average
delay and throughput for each setting in Fig. 10. As expected,
increasing interval increases throughput at cost of delay and
vice versa. Generally, we find out that setting interval to a few
times of RTT is sufficient, though applications can change it
using socket options, if they need.

V. RELATED WORK

End-to-end congestion control protocols: Congestion con-
trol is always one of the hottest topics with huge studies
including numeric variants of TCP. TCP Reno [24], TCP Taho
[25], and TCP NewReno [11] were among early approaches
using loss-based structures to control the congestion window.
TCP Vegas [12] tries to do congestion control directly by using
measured RTTs. TCP Cubic [8] changes incremental function
of the general AIMD-based congestion window structure,
and Compound TCP [29] maintains two separate congestion
windows for calculating its sending rate. BBR [13] estimates
both maximum bottleneck bandwidth and minimum RTT delay
of the network and tries to work around this operation point,
though [9] has proved that no distributed algorithm can con-
verge to that operation point. Also, LEDBAT [27], BIC [30],
and TCP Nice [31] can be mentioned among other variants.
However, all these schemes are mainly designed for a wired
network, i.e. fixed link capacities in the network. In that sense,
they are not suitable for cellular networks where link capacity
changes dynamically and stochastic packet losses exist.

Among the state-of-the-art proposals targeting cellular net-
works, Sprout [2] and Verus [4] are worth being men-
tioned. Sprout introduces a stochastic forecast framework for
predicting the bandwidth of cellular link, while Verus tries
to make a delay profile of the network and then use it to
calculate congestion window based on the current network
delay. We have compared C2TCP with most of these schemes
in section IV.

AQM schemes and feedback-based algorithms: Active
queue management schemes (such as RED [16], BLUE [32],
and AVQ [33]) use the idea of dropping/marking packets
at the bottleneck links so that end-points can react to these
drops later and control their sending rates. It is already
known that automatically tuning parameters of these schemes
in network is very difficult [2], [14]. To solve that issue,
CoDel [14] proposes using sojourn time of packets in a
queue instead of queue length to drop packets and indirectly
signal the end-points. However, even this improved AQM
scheme still has an important issue inherited from its legacy
ones: these schemes all seek a “one-setting-fits-all” solution,
while different applications might have different throughput
or delay constraints. Even one application can have different
delay/throughput requirements during different periods of its
life time.

Also, there are different schemes using feedback from net-
work to do a better control over sending window. Among them,
various schemes using ECN [34] as the main feedback. Most
recent example is DCTCP [35] which changes congestion
window smoothly using ECN feedback in datacenter networks.
However, DCTCP similar to other TCP variants is mainly
designed for stable links but not highly variable cellular links.

AQM and feedback-based schemes have a common prob-
lem: they need changes in the network which is not desirable
by cellular network providers due to high CAPEX costs.
Inspired by AQM designs such as CoDel and RED, C2TCP
provides an end-to-end solution for this issue. Our approach
doesnt require any change/modification/feedback to/from net-
work

VI. DISCUSSION

1) Abusing the parameters: Misusing a layer 4 solution and
setting its parameters to get more share of the network by users
is always a concern. For instance, a user can change the initial
congestion window of loss-based schemes such as Cubic in
Linux kernel. Similarly, users can abuse the Target/Interval
parameters of C2TCP. Although providing mechanisms to
prevent these misuses is beyond the scope of this paper, we
think that setting minimum and maximum allowed values
for C2TCP’s parameters can alleviate the issue. In addition,
in TCP, sender’s congestion window will be capped to the
receiver’s advertised window (RcvWnd). Therefore, even by
setting the Target value to a very large number in C2TCP,
congestion window will be capped to RcvWnd at the end.

2) C2TCP flows with different requirements on one user:
When a cellular phone user runs a delay sensitive application
(such as real-time gaming, video conferencing, virtual reality

125

content streaming, etc.), flow of that application is the main
interested flow (highest priority one) for the user. Therefore,
through the paper, we have assumed that it’s rare to have more
flows competing with that highest priority flow for the same
user. However, in case of having multiple flows with different
requirements for the same user, we think that any transport
control solution (such as Cubic, Vegas, Sprout, C2TCP, etc.)
should be accompanied with prioritization techniques at lower
layers to get good results in practice (e.g. [36], [37]). For
instance, one simple existing solution is using the strict priority
tagging for packets of different flows (by setting differentiated
services field in the IP header) and later serve flows based on
these strict priorities in the network.

3) Setting Target in practice: In practical scenarios, instead
of setting Target value per application, we could set it per
class of applications. In other words, we could let applications
choose their application types. Then, C2TCP would set the
Target using a table including application types and their
corresponding Target values made in an offline manner.

VII. CONCLUSION

We have presented C2TCP, a congestion control protocol
designed for cellular networks to achieve low delay and high
throughput. C2TCP’s main design philosophy is that achieving
good performance does not necessarily comes from complex
rate calculation algorithms or complicated channel modelings.
C2TCP attempts to absorb dynamics of unpredictable cel-
lular channels by simply investigating local minimum delay
of packets in a moving time window. Doing that, C2TCP
stands on top of an existing loss-based TCP and provides
it with a sense of delay without using any network state
profiling, channel prediction, or complicated rate adjustments
mechanisms. We show that C2TCP outperforms well-known
TCP variants and existing state-of-the-art schemes which use
channel prediction or delay profiling of network.

REFERENCES

[1] (2017) State of the internet. [Online]. Available: https:
//www.akamai.com/fr/fr/multimedia/documents/state-of-the-internet/
q1-2017-state-of-the-internet-connectivity-report.pdf

[2] K. Winstein et al., “Stochastic forecasts achieve high throughput and
low delay over cellular networks.” in NSDI, 2013, pp. 459–471.

[3] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” in ACM SIGCOMM CCR, vol. 43, no. 4. ACM,
2013, pp. 123–134.

[4] Y. Zaki et al., “Adaptive congestion control for unpredictable cellular
networks,” in ACM SIGCOMM CCR, vol. 45, no. 4. ACM, 2015, pp.
509–522.

[5] J. Huang et al., “An in-depth study of lte: effect of network protocol
and application behavior on performance,” in ACM SIGCOMM CCR,
vol. 43, no. 4. ACM, 2013.

[6] H. Jiang et al., “Tackling bufferbloat in 3g/4g networks,” in Proceedings
of the 2012 ACM conference on Internet measurement conference.
ACM, 2012, pp. 329–342.

[7] W. L. Tan et al., “An empirical study on 3g network capacity and
performance,” in INFOCOM 2007. 26th IEEE International Conference
on Computer Communications. IEEE. IEEE, 2007, pp. 1514–1522.

[8] S. Ha et al., “Cubic: a new tcp-friendly high-speed tcp variant,” ACM
SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008.

[9] J. Jaffe, “Flow control power is nondecentralizable,” IEEE Transactions
on Communications, vol. 29, no. 9, pp. 1301–1306, 1981.

[10] R. Netravali et al., “Mahimahi: A lightweight toolkit for reproducible
web measurement,” 2014.

[11] T. Henderson et al., “The newreno modification to tcp’s fast recovery
algorithm,” Tech. Rep., 2012.

[12] L. S. Brakmo et al., TCP Vegas: New techniques for congestion detection
and avoidance. ACM, 1994, vol. 24, no. 4.

[13] N. Cardwell et al., “Bbr: Congestion-based congestion control,” Queue,
vol. 14, no. 5, p. 50, 2016.

[14] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[15] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, vol. 9, no. 11, p. 40, 2011.

[16] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking (ToN),
vol. 1, no. 4, pp. 397–413, 1993.

[17] “Mobile edge computing introductory technical white paper,”
etsi.org, Tech. Rep., 2014. [Online]. Available: https://portal.
etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge Computing -
Introductory Technical White Paper V1\%2018-09-14.pdf

[18] S. Sesia et al., LTE-the UMTS long term evolution: from theory to
practice. John Wiley & Sons, 2011.

[19] M. Mathis et al., “The macroscopic behavior of the tcp congestion
avoidance algorithm,” ACM SIGCOMM CCR, vol. 27, no. 3, pp. 67–
82, 1997.

[20] V. Jacobson et al., “Red in a different light.”
[21] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-

gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[22] (2017) Maxcdn a mobile content delivery network solution. [Online].
Available: https://www.maxcdn.com/solutions/mobile/

[23] G. Appenzeller et al., “Sizing router buffers,” SIGCOMM Comput.
Commun. Rev., vol. 34, no. 4, 2004.

[24] D. Cox and L.-R. Dependence, “a review,” Statistics: An Appraisal, HA
David and HT David (Eds.), pp. 55–74, 1984.

[25] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM
CCR, vol. 18, no. 4. ACM, 1988, pp. 314–329.

[26] (2017) M-cord: Mobile cord. [Online]. Available: opencord.org/
wp-content/uploads/2016/03/M-CORD-March-2016.pdf

[27] D. Rossi et al., “Ledbat: The new bittorrent congestion control protocol.”
in ICCCN, 2010, pp. 1–6.

[28] (2017) Mobile/tablet operating system market share. [Online]. Avail-
able: https://www.netmarketshare.com/operating-system-market-share.
aspx?qprid=8&qpcustomd=1

[29] K. Tan et al., “A compound tcp approach for high-speed and long
distance networks,” in Proceedings-IEEE INFOCOM, 2006.

[30] L. Xu et al., “Binary increase congestion control (bic) for fast long-
distance networks,” in Proceedings-IEEE INFOCOM, vol. 4. IEEE,
2004, pp. 2514–2524.

[31] A. Venkataramani et al., “Tcp nice: A mechanism for background
transfers,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 329–343, 2002.

[32] W.-c. Feng et al., “The blue active queue management algorithms,”
IEEE/ACM transactions on networking, vol. 10, no. 4, 2002.

[33] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue (avq) algorithm for active queue management,” in ACM
SIGCOMM CCR, vol. 31, no. 4. ACM, 2001, pp. 123–134.

[34] S. Floyd, “Tcp and explicit congestion notification,” ACM SIGCOMM
CCR, vol. 24, no. 5, pp. 8–23, 1994.

[35] M. Alizadeh et al., “Data center tcp (dctcp),” in ACM SIGCOMM CCR,
vol. 40, no. 4. ACM, 2010, pp. 63–74.

[36] S. Abbasloo et al., “Hyline: a simple and practical flow scheduling
for commodity datacenters,” in IFIP Networking Conference (IFIP
Networking) and Workshops, 2018. IEEE, 2018.

[37] C.-Y. Hong et al., “Finishing flows quickly with preemptive scheduling,”
in ACM SIGCOMM CCR. ACM, 2012, pp. 127–138.

126

ISBN 978-3-903176-08-9 c© 2018 IFIP

The Virtue of Gentleness: Improving Connection
Response Times with SYN Priority Active Queue

Management

Tristan Braud∗, Martin Heusse¶, and Andrzej Duda¶

{braudt@ust.hk, martin.heusse@imag.fr, andrzej.duda@imag.fr}
∗Department of Computer Science and Engineering, Hong Kong University of Science and Technology.

¶Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France.

Abstract—We have analyzed network traces of TCP connec-
tions and observed that there are many more losses during
the handshake than for the remainder of the data exchange.
Although recently developed AQM schemes can efficiently reduce
latency related to bufferbloat, only more complex solutions relying
on Fair Queueing (FQ) can improve the long delays resulting
from the loss of a packet during the establishment of a TCP
connection. In this paper, we propose SPA (SYN Priority Active
queue management), a new low-complexity queue management
scheme that combines the benefits and simplicity of the most
recent AQM schemes while achieving performance comparable
to more complex combinations of Fair Queueing and AQM. Our
evaluation shows that the SPA performance is close to FQ CoDel
for only a fraction of the complexity and resource usage.

I. INTRODUCTION

Shortening the response time and reducing overall latency
of TCP transfers is paramount to improve the responsiveness
of information access over the network. In this paper, we
focus on the connection establishment phase, which is often
the limiting factor of the transfer response time, because at
the beginning, connections do not have an estimate of the
round trip time (RTT) between the client and the server, so
they use a long default retransmission timeout (RTO). The
reception of SYN/ACK immediately updates RTO so that
all other segments can be quickly resent, even without Fast
Retransmit. Thus, the client can only recover from the loss
of the initial SYN segment or the corresponding SYN/ACK
after a long period several orders of magnitude larger than
the recovery time of subsequent data segments. This effect is
particularly detrimental to short connections. For larger ones,
the impact of a SYN loss becomes less significant, especially
in the case of non-interactive traffic. Despite the importance of
the connection establishment phase, speeding it up has received
less attention than ensuring the good performance of the bulk
data exchange [1]. Over the past years, many proposals aimed
at maximizing link utilization and achieving low delays, the
most well-known being CoDel [2] and FQ CoDel, its Fair
Queueing counterpart [3]. However, the most recent packet
scheduling schemes [2], [4] present the drawback of either
increasing SYN drops, or relying on Fair Queueing, which
results in higher CPU and memory usage.

To evaluate the impact of SYN or SYN/ACK losses on
the transfer response time, we have analyzed a set of publicly
available real world traffic traces. The analysis shows that SYN

and SYN/ACKs are generally lost much more often than other
TCP segments, which is another reason to consider them in a
particular way. We would expect that the SYN retransmission
rate is twice that of regular data segments, because it happens
after a SYN loss and also after a SYN/ACK loss. In fact,
we observe an even much higher SYN retransmission rate:
several times the retransmission rate of all segments, which
exacerbates the performance problem for short connections.
SYN/ACK losses has a detrimental impact on performance:
their retransmissions cause a two-fold increase of the retrans-
mission delays experienced by connections. Based on these
observations, we propose SPA (SYN Priority Active queue
management), a queueing scheme with two packet queues
both managed by CoDel (Controlled Delay Management) [2]:
a higher priority queue handles SYN and FIN packets, and
a lower priority one manages data segments. SPA is thus
a pair of queues with independent AQM mechanisms. It
is much less complex than any fair queueing scheme and
results in short connection setup times and smooth low latency
data transmission. Similarly to CoDel and FQ CoDel, this
scheme is designed to be deployed at the “last mile” of the
network, typically in home routers, where resources (CPU and
bandwidth) tend to be scarce, and reactivity is key.

The contribution of this work is threefold: first, we analyze
network traces to get insight into the behavior of the TCP
establishment phase and observe a significantly higher SYN
retransmission rate compared to other types of segments. Sec-
ond, we model the effect of SYN retransmissions on transfers
of a limited size to show that SYN losses account for a large
part of the response time. Finally, we evaluate SPA through
measurements on a testbed and compare its performance with
recent and well-established scheduling mechanisms. We show
that under normal traffic conditions, SPA performs similarly
to FQ CoDel, for a fraction of complexity. We also shed light
on a case for which FQ Codel collapses due to its own design.

II. RELATED WORK

The delay introduced by the connection establishment
phase is often overlooked in the literature even in recent
papers [5], [6]. Some authors observed that the loss probability
of SYN segments and regular ones may differ [7], although
without exploring the impact of this difference. Ciullo et al.
[8] observed the distribution of the connection completion
time and realized that more than 70% of dropped packets

are recovered after RTO. They also proposed two schemes to
overcome long recovery delays due to the loss of the last data
segment in a flow. Anelli et al. [1] made a case for protecting
SYN segments to improve connection response times. They
introduced REDFavor, a RED mechanism with a specific
processing of SYN segments. Another idea proposed in the
literature is to resend aggressively SYNs to avoid the impact
of the long timeout on lost SYN segments [9]–[11]. Although
functional, this last solution requires the user to modify the
operating system or use additional software, while adding some
traffic in an already congested link. Similarly, solutions such
as WonderShaper [12] or DD-WRT [13] also take the approach
of giving a higher priority to all control messages. However,
they rely on FIFO queues that requires prior configuration to
achieve low latency. This approach cannot be efficiently used
in delay or bandwidth-varying environments.

Recently, researchers have started to discuss the bufferbloat
effect, the problem of long delays due to excessive buffer
sizes in access networks [14]. A workgroup on bufferbloat
began in 2011 [15] and some analyses of the problem started
to appear [16]–[19]. Two main proposals for solving the
problem include CoDel [20] and PIE (Proportional Integral
controller Enhanced) [4], [21]. CoDel measures the packet
sojourn time in the queue and drop packets at the queue head
to keep the delay from exceeding a reasonable value for any
significant period of time. It requires per packet timestamps,
but it does not need any configuration parameter except for the
default threshold delay. FQ (Fair Queueing) CoDel [3] extends
CoDel with the principles of Stochastic Fair Queueing [22]
to manage per flow queues and mitigate the adverse effects
of purely random packet drop. PIE [21] controls the average
queueing latency so it stays at a reference value. It combines
the benefits of both RED and CoDel: PIE randomly drops a
packet at the beginning of the congestion detected based on
the queueing latency like CoDel. PIE can ensure low latency
and achieve high link utilization under various congestion
conditions. Schwardmann et al. evaluated by simulation the
robustness of CoDel, PIE, and ARED for various static and
dynamic scenarios [23] in a simple set-up with one link and a
variable number of bulk TCP flows. ARED (Adaptive RED) is
an active queue management scheme that attempts to stabilize
the average queue size around some preset target queue size
[24]. PIE achieved lower delays than CoDel and ARED for
low capacity links, but for higher capacity links, CoDel and
ARED resulted in lower delays. In dynamic scenarios, CoDel
results in a lower maximum delay than the other schemes.
Khademi et al. evaluated CoDel, PIE, and ARED [25], but in
an experimental setup using Linux implementations in a wired
testbed for bulk TCP transfers. The authors also observed that
the CoDel “dropping-mode” interval needs to be set lower than
the default value, while we note in this paper (see Section
VI-B), the noticeable influence of the target delay that it uses in
the case of the FQ CoDel variant. These results contradict the
claim that CoDel is a parameterless AQM. Otherwise, ARED
performed the best in the Khademi et al. study except when
the number of flows on the bottleneck link was very small.

III. ANALYSIS OF REAL WORLD TRACES

To evaluate the impact of SYN or SYN/ACK losses, we
have analyzed a set of publicly available traffic traces: five

0
10
20
30
40
50

Link utilization (%)

0

2

4

6 Packet rtx probability (%)
... of which, SYN and SYN/ACK

0
5

10
15
20
25 Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

Tra
ce

#1

dire
ct.

 A
Tra

ce
#1

dire
ct.

 B
Tra

ce
#2

dire
ct.

 A
Tra

ce
#2

dire
ct.

 B
0

1000
2000
3000
4000
5000

Avg Rtx Delay (ms)
Avg Rtx Delay for cx with SYN, SYN/ACK loss (ms)
Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

Fig. 1. Analysis of the CAIDA traces in both directions ordered by ascending
order of link utilization in direction A. SYN losses represent a large part of
all losses and SYN segments have a significantly higher loss probability than
data segments leading to a significant impact on retransmission delays.

sets of traces from the CAIDA data set1 recorded on two
different days at an Equinix datacenter in Chicago connected
to a 10 Gigabit Ethernet backbone link of a Tier 1 ISP. As
the traces from CAIDA are split according to the direction,
we analyze them in one direction at a time. We consider two
days with differing traffic load patterns: for the trace taken
on March 20th, 2014 the link utilization in direction A is
markedly lower than on September 18th, 2014. For readability
purposes, we will further refer to the traces as Trace “Real” and
Trace “Short” respectively. All measurements except the link
utilization concern connections with at least one SYN, which
represents from 180,000 to 650,000 connections per trace. We
have filtered out the connections with retransmission delays
greater than 45s to remove inconsistent data from the analysis
(the value of 45s corresponds to the total delay after loosing
3 SYNs at the start of a connection due to the exponential
backoff 2). Due to the number of samples, the 95% confidence
interval could not be represented for loss probabilities and is
barely visible for retransmission times.

Figure 1 shows two striking phenomena:

1) SYN and SYN/ACK retransmissions account for a
large part of the retransmissions (2nd plot)

2) the probability of SYN or SYN/ACK retransmissions
is exceptionally high—between 10% and 20% (3rd

plot). The connections with SYN or SYN/ACK re-
transmission suffer from an average retransmission
delay almost twice that of other connections (4th plot).

Note that the initial RTO is set to 3 seconds by default on
Windows, FreeBSD, and Linux (prior to 2011; it is now 1 s).
10% to 20% of all connections are affected whereas the packet
loss rate remains limited at 1% to 3.5%.

1The CAIDA UCSD Anonymized Internet Traces 2014
20/03/2014 12:59:11, 13:03:00, 13:06:00 and 18/09/2014 13:07:00, 13:19:00
http://www.caida.org/data/passive/passive 2014 dataset.xml

2as stated in the FreeBSD source code ”the odds are that the user has given
up attempting to connect by then.” [26].

128

TABLE I. ANALYSIS OF MAWI TRACES

Dir A Dir B
Packet rtx prob. 1.65% 2.73%
. . . of which, SYN, SYN/ACK represent 29.8% 79.5%
SYN and SYN/ACK rtx prob. 13.1% 29.9%
Average rtx delay (ms) 5276.96 2114.93
Average rtx delay for connections
with SYN or SYN/ACK loss (ms) 6324.93 2390.63
Average rtx delay for connections
without SYN or SYN/ACK loss (ms) 4707.11 1011.93

The higher retransmission rate of SYNs compared to other
segments is expected as a SYN/ACK drop in the reverse
direction always causes a timeout, whereas cumulative ACKs
make the established connections relatively immune to losses
on the return path [27]. So, as long as SYN and SYN/ACK
segments are as likely as other packets to be dropped, the
retransmission rate doubles. Since the queues in many routers
are managed as packet FIFOs, small SYN packets are just as
likely to be dropped as the larger ones. On the contrary, a
byte-based FIFO would favor small packets that can generally
still fit in the queue when larger packets are dropped. In our
trace analyses, we do not see any situation in which small
packets would be retransmitted less than larger ones, which
means that most routers use packet FIFOs. (If some routers
use byte FIFO, it is beneficial to small flows as shown below.)
However, the fact that retransmissions occur for losses in
both directions only explains a small fraction of the observed
difference. Another explanation of the discrepancy between
SYN and regular segment losses could be TCP congestion
control algorithms. They are designed so that connections loose
a limited number of segments per congestion episode (1 for
the congestion avoidance phase). After a loss, TCP divides the
congestion window by 2 to reduce the transmission rate and
delay the next occurrence of congestion. Subsequent packets
are thus less likely to experience another loss. In contrast, SYN
packets arrive at random and their potential retransmission is
so distant in time that the conditions are uncorrelated, which
could lead to more losses than regular packets. Again, more
investigations are required to explain this difference.

To confirm the findings, we have also analyzed traces
collected by the MAWI Working Group of the Wide project
on the sample point F (1Gb/s transit link between WIDE
and an upstream ISP). Again, we filter out connections with
retransmission delays greater than 45s (see Table I). We can
first observe that one direction presents less losses than the
other one although, according to the retransmission delays,
connections experience many timeouts. We have observed the
same phenomenon in the CAIDA traces taken on September
18, 2014 in direction A: although losses are less frequent
than in direction B, most of them end up as a timeout. The
reason may be bufferbloat in an upstream buffer that causes
higher delays, thus setting off the RTO timer. The observed
delays corroborate the results from the CAIDA traces: SYN
and SYN/ACK losses account for almost half of the losses.
SYN and SYN/ACK retransmissions cause a two-fold increase
of the retransmission delays experienced by connections.

As we analyze connection establishment, one concern is
that the presence of SYN flood attacks may bias the re-
sults. We have filtered out potential SYN floods by removing

TABLE II. MAWI TRACES, SYN FLOOD FILTERED OUT

Dir A Dir B
Packet rtx prob 1.63% 2.72%
. . . of which, SYN, SYN/ACK represent 28.8% 78.9%
SYN and SYN/ACK rtx prob 12.8% 40.6%
Average rtx delay (ms) 5312.9 2114.93
Average rtx delay for cx
with SYN or SYN/ACK loss (ms) 6469.4 2390.63
Average rtx delay for cx
without SYN or SYN/ACK loss (ms) 4710.5 1011.93

250

500

750

1000
Load (Mb/s)

2

4

6

8
Packet rtx probability (%)

SYN rtx probability (%)

19/01/2017 20/01/2017 21/01/2017

500

1000

1500

2000

Avg Rtx Delay (ms)

Avg Rtx Delay for cx with SYN, SYN/ACK loss (ms)

Avg Rtx Delay for cx without SYM, SYM/ACK loss (ms)

Fig. 2. Analysis of the bidirectional MAWI traces ordered by date for connec-
tions with a full three way handshake and a data packet. Although SYN losses
represent a lower part of total losses, they still have a higher loss probability
than data segments leading to a significant impact on retransmission delays.

connections involving IP addresses that show the signs of a
SYN flood, which is possible for bidirectional MAWI traces.
To identify them, we have first counted the connections that
effectively carry data segments for each IP address present
in the trace. We have filtered hosts that showed strong signs
of being under a SYN flood attack (or could have been
dysfunctional), when they experienced 1000 times more con-
nections without data than with data (with a minimum of
1000 connections without data). We have removed 69 out of
587,262 IP addresses present in the trace, which results in
removing over 30% of connections mainly in direction B. Table
II presents the corrected data. In direction A, we have removed
only a few connections and the results are mostly unchanged.
Removing a large part of connections in the reverse direction
dramatically increases the SYN retransmission probability up
to 40%, while the delays and the retransmission probabilities
are not significantly affected. Indeed, in the case of a SYN
flood, we expect to see a large amount of unique SYNs,
without any further segment or retransmission, as the attacker
does not have any interest in establishing a real connection.
As the MAWI traces are bidirectional, we can now focus on
the analysis of connections that manage to pass the three-way
handshake and transmitted at least one data segment. Figure 2
presents the results. Fully established connections present
more contrasted results. Indeed, the SYN loss probability is
now only twice as big as the packet loss probability, which

129

corroborates the hypothesis we have made earlier, stating that
we should observe a SYN loss probability twice the packet
loss probability as the loss of a SYN/ACK packet will trigger a
SYN retransmission from the other side. Although we observe
less SYN losses, their impact on the average retransmission
time is much higher: between 10% and 40% of the average
retransmission time is due to connections with at least a SYN
loss. Such connections also present average retransmission
times 4 to 14 times higher than connections without a SYN
loss. Our findings from both data sets are in line with the
results by Damjanovic et al. in the LBNL/ICSI Enterprise
Tracing Project [9] that showed an overall 10% of SYN
retransmissions for all connections in a LAN and 2% of SYN
retransmissions for successful connections. Still, we observe
much higher loss rates (10–20% overall SYN loss and 5–8%
for successful connections). This difference could be explained
by the fact that the CAIDA and MAWI traces come from a
transit link where it is more likely to include 3/4G, WLANs,
or even satellite traffic with variable delays and random losses,
or simply more congestion along the way. Such conditions are
more prone to generate losses, create timeouts, and in general,
create more fluctuations in the analyzed values.

IV. MODEL OF THE TCP RESPONSE TIME UNDER SYN
LOSSES

To evaluate how SYN losses impact short TCP transfers,
we propose to estimate the transfer duration based on the well-
known model proposed by Mathis et al. [28] and Padhye et al.
[29], extended to take into account SYN retransmissions.

We first consider the congestion avoidance phase of a
TCP connection with constant RTT and subject to packet
loss probability pl. The congestion window oscillations are
equivalent to cyclic oscillations between W̄max

2 and W̄max so
the average expected window is:

W̄avg = 3/4× W̄max

and the expected throughput in pkt/s is the following:

X̄ =
3

4
× W̄max

RTT
≈ 1

RTT

√
3

2 pl
,

using Mathis’ estimate for W̄max. We model the slow start
phase by considering an initial congestion window of one
segment going up to W̄max. We approximate the number nss of
RTT taken by the slow start phase as 2nss−1 = W̄max, so that

nss =
log(W̄max)

log(2)
+ 1.

Now, we need to estimate the time spent in recovery of
losses that may happen during the connection. For one loss per
congestion event that happens with probability pl and recovery
time Rt, a connection of size S MSS spends time trecovery =
S × Rt × pl in recovery, knowing that optimistically, Rt ≈
RTT . If the probability of a SYN loss is pSl, the time spent
in the connection establishment phase is:

tsyn = RTT + RTO0

∞∑
k=1

(pSl)
k = RTT +

(
1

1− pSl
− 1

)
RTO0,

(1)

Response time
No SYN Loss(s)
SYN Loss, RTO 1s (s)
SYN Loss, RTO 3s (s)

Impact of SYN loss
with RTO 1s (%)
with RTO 3s (%)

101 102 103 104

Connection size (pkt)

100

101

102

103

Re
sp

on
se

 ti
m

e
(s

)

0

50

100

150

200

Re
la

tiv
e

im
pa

ct
 o

f a
 S

YN
 lo

ss
 o

n
co

m
pl

et
io

n
tim

e
(%

)

Fig. 3. Response time of connections with and without SYN loss

where RTO0 is initial retransmission timeout. We can approx-
imate pSl with ≈ 2pl or obtain it from measurements.

For a connection of size S, the total response time is:

ttot = tsyn + tslow start + tcongestion avoidance + trecovery + tfin, (2)

where tslow start = nss × RTT, tcongestion avoidance = S−(2nss−1)
X̄

and tfin = RTT.

Figure 3 represents the estimated response time of connec-
tions with and without SYN loss with RTO of 1 s or 3 s, for
the connection size between 25 and 10000 segments in the
conditions of Trace “Real” (Figure 1). A SYN loss is a major
problem for short connections as it increases the response time
by up to 200%. The impact becomes negligible (i.e., < 10% of
the response time) for connections larger than 1000 segments
for RTO of 1 s and 2000 segments for RTO of 3 s. Short
connections, which are generally already penalized compared
to long connections, dramatically suffer from this phenomenon.

V. SPA – SYN PRIORITY AQM SCHEME

CoDel [2], an almost parameterless, delay-based queueing
management scheme, is a recent solution to bufferbloat. How-
ever, as other AQMs designed to tackle excessive queueing
delays, CoDel assumes that all losses are good to the network,
as long as they contribute to keeping the delay low. Yet, many
losses will always result in timeouts, especially head drops—
when the initial TCP RTO is still up to make matters worse—
and tail drops can also result in long timeouts if the connection
presents some delay fluctuations. FQ CoDel [3] solves this
problem by giving a higher priority to the first packets, but
at the cost of a higher complexity and memory footprint: for
instance, the default Linux implementation uses 1024 separate
queues. Our approach is to strike a compromise: we manage
only two packet queues by CoDel—a higher priority queue
for SYN and FIN packets and a lower priority one for regular
packets, and do not keep track of connection states. The
pseudocode below defines the scheme more formally:

SPA (SYN Priority AQM) Scheme
s y n f i n q u e u e = CoDel ()
p a c k e t q u e u e = CoDel ()
def enqueue (p) :

130

i f p . f l a g .SYN== s e t or p . f l a g . FIN== s e t :
s y n f i n q u e u e . enqueue (p)

e l s e :
p a c k e t q u e u e . enqueue (p)

def dequeue (p) :
i f s y n f i n q u e u e . i s e m p t y () :

p a c k e t q u e u e . dequeue (p)
e l s e :

s y n f i n q u e u e . dequeue (p)

Three types of losses may lead to a timeout: SYN, FIN, and
tail losses. While it is difficult to detect tail losses at the router
level, it is much easier to isolate SYN and FIN in a separate
queue and avoid timeouts. The queue for SYN and FIN has
priority over the second one for data packets and both queues
are managed by CoDel. In this way, we significantly increase
the overall performance by preventing most of timeouts, while
keeping complexity much lower than FQ CoDel. We can easily
implement SPA based on an existing CoDel implementation in
coordination with regular system tools. For our experiments,
we have set up SPA with a priority queue serving two CoDel
subqueues using tc [30] and iptables for packet filtering.
As mentioned before, another possibility to avoid SYN and
SYN/ACK losses is to dimension the buffer in bytes rather than
in packets. Although effective and relatively straightforward to
implement, this solution still presents one major drawback: it
requires to know in advance the link capacity, whereas in many
cases, it is unknown and fast varying, as for WiFi or cellular
networks. Excessive queueing space—bufferbloat—results in
high latency in the network or conversely, an insufficient buffer
may result in low link utilization. By design, the proposed SPA
scheme does not suffer from such limitations.

As the SPA scheme favors SYN packets over data packets,
it may raise some security concerns. We do not want an
attacker exploit our solution to favor her/his connections or
to accelerate SYN DoS attacks. Regarding the first issue, a
basic attack would be to set the SYN or FIN flag on every
data packet. Admitting that the receiver does not discard such
packets, checking the packet length is enough to prevent abuse.
SYN DoS attacks raise a more complex issue. Indeed, as SPA
favors SYN packets, a router could be used as a relay to
accelerate the transit of SYN packets at the bottleneck and
amplify a SYN flood attack. However, similarly to CoDel and
FQ CoDel, SPA is intended to be deployed at the bottleneck,
usually at the last mile of the network, where an attacker may
already have full control of the link. For instance, deploying
SPA in home routers is harmless. Most Fair Queueing solutions
are also vulnerable to this type of exploit, as they prioritize
packets from new connections, since they constantly try to
equalize the service received by all connections, and the new
one initially shows a deficit. A batch of SYN packets with
various source addresses and ports would typically be favored
over data packets from existing connections. We show this
phenomenon in Section VI-B, where FQ CoDel gets swarmed
by a large number of new connections, resulting in abnormal
behavior, whereas SPA proves to be more resilient.

VI. TESTBED EXPERIMENTS AND
PERFORMANCE COMPARISONS

We have run a series of experiments on a testbed network
composed of three computers (cf. Figure 4). One of them
acts as a router interconnecting two others, while the two

400Kb/s

Freebsd
+modcc

Freebsd
+modcc

2.4Mb/s

100 Mb/s
(Ethernet)

Debian GNU/Linux + tc

uplink buffer:
10 packets

downlink buffer:
60 packets

Upload - TCP data

Upload - TCP ACKs

Download - TCP data

Download - TCP ACKs

Fig. 4. Testbed network for experiments. The central computer emulates the
bottleneck link in both directions and implements the considered policies. The
traffic is in the downlink direction with or without a long lasting upload TCP
data transfer.

ends are used as a client and a server. This simple topology
allows observing the behavior of various queueing policies at
the bottleneck. The hosts run FreeBSD 9.3 that allows us to
test the latest variants of TCP without switching operating
systems. The router runs Debian GNU/Linux (wheezy) with
a slightly modified 3.18 kernel as described below. On top of
this operating system, we run the tc tool to emulate links and
various queueing management policies. We have set the kernel
context switching frequency to 1kHz to emulate the bottleneck
link smoothly for the bit rates up to 10Mb/s. We use the
ipmt suite [31] to generate connections as follows: connection
arrival times follow a Poisson process with parameter λ and
connection sizes follow a Zipf distribution with parameter µ.
We have run experiments with and without reverse traffic.

TABLE III. EXPERIMENT PARAMETERS

Uplink
Capacity Cu 0.4Mb/s 2Mb/s
Delay Du 52ms
Scheduling Qu Packet FIFO

Downlink
Capacity Cd 2.4Mb/s 10Mb/s
Delay Dd 42ms
Scheduling Qd Packet FIFO - Byte FIFO

RED - ARED - REDFavor
CoDel - FQ CoDel – PIE

SFQ
SYN Prio - SYN/FIN Prio - SPA

Connection Generation Parameters
Traffic Type “Real” “Short” “10M”
1/λ (s) 0.12 0.017 0.032
µ 1.7 2 1.7

We run experiments under three different traffic conditions
shown in Table III. As SPA targets the last mile section of
a network, we consider the case of typical ADSL link as it
is still far more deployed than fibers [32]. We use a 42 ms
round trip delay, which corresponds to the ADSL interleaving
delay (typically 24 ms) plus an intra-continental propagation
time [33]. The slightly higher uplink delay helps to avoid
perfect synchronization between the upload and download
feedback loops. The traffic conditions correspond to a high link
utilization of 90%. By varying the λ and µ parameters as well
as the connection size, we obtain various traffic conditions:

Traffic Type “Real” corresponds to realistic assumptions with
connection sizes distributed according to a heavy tailed Zipf
distribution: 1/λ = 0.12s, µ = 1.7, which leads to an average

131

size of 21 segments per connection, a median of 2 packets and
80% of connections spanning 6 segments or less. This load is
applied with and without reverse traffic.

Traffic Type “Short” represents extreme conditions to push
the tested schemes to the limits. We generate a connection
every 1/λ = 0.017s, connections have the average size of
3 segments (µ = 2), a median size of 1 segment, and the
maximum size of 100 segments (80% are 4 segments or less)

Traffic Type “10M”. With this type, we analyze the behavior
of the tested schemes for a link with the increased capacity
to 10Mb/s with 95% load composed of connections arriving
on the average every 0.032 second, with an average size of 26
segments and a median of 2 segments (80% under 7 segments).

We test the following scheduling schemes at downlink
queue Qd: regular FIFO (limited either in packets – Packet
FIFO or in bytes – Byte FIFO), AQM (RED, ARED [24]),
delay controlled mechanisms (CoDel and PIE [4]), Fair Queue-
ing (FQ CoDel and SFQ – Stochastic Fair Queueing [22]).
We compare these queueing schemes to priority queues with
a higher priority given to SYN or SYN/FIN (SYN Prio,
SYN/FIN Prio, RedFavor [1], and SPA). The uplink queue
remains unchanged for all experiments (Packet FIFO). We use
the default threshold delay of 5 ms for CoDel, FQ CoDel,
and SPA. As we have discovered that in some cases, this
parameter needs to be tweaked for CoDel and FQ CoDel, we
also try the value of 20 ms. We did not include solutions at
the edge like setting the SYN retransmission timeout to a more
aggressive value [9]–[11], because they may only improve the
retransmission time, but they cannot lower the SYN loss rate.

A. Results for Traffic Type “Real”

Figure 5 presents the results for Traffic Type “Real”.
Similarly to Figure 1, due to the number of connections (8326),
we are only able to display 95% confidence intervals for the
retransmission and response times. The two most prominent
outcomes are: (1) all schemes provide better response times
than Packet FIFO and (2) only a few schemes clearly stand out:
FQ CoDel, SFQ, RedFavor, and SPA. For short connections,
FQ CoDel 20ms and SPA are the best ones. SFQ attains
the best result for longer connections with REDFavor and
SPA also having short response times. We observe remarkable
differences of RTT between delay-based solutions and regular
queueing schemes: CoDel and PIE halve the RTT compared
to FIFO or RED, while FQ CoDel and SPA achieve the
lowest RTTs. We also see that about one fourth of the average
retransmission delay is contributed by connection SYN losses:
looking at the traces, a small fraction of connections experience
a 3 second delay before even being able to send a single
packet. Byte FIFO gets shorter retransmission delays (20%)
than Packet FIFO, reaching the same performance as RED
with almost no SYN loss and a lower RTT than Packet FIFO.
Byte FIFO even outperforms RED, ARED, CoDel, and
PIE in terms of response times! SFQ shows unusually high
retransmission delays. Indeed, even if there are almost no
SYN losses, most losses result in one and often multiple
timeouts. In essence, the Fair Queueing algorithm leads to
the starvation of long flows: as the queue experiences high
load with many short connections, the longer ones are not
serviced and eventually timeout. Yet, Fair Queueing policies

0
50

100
150
200
250
300

RTT (ms)

0

5

10

15 Packet rtx probability (%)

... of which, SYN and SYN/ACK

0

5

10

15
Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

0

500

1000

1500

2000

2500 Avg Rtx Delay (ms)

Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

PF
IFO

BFIF
O

RED
ARED

CoD
el

5m
s

CoD
el

20m
s PIE

FQ
 C

oD
el

5m
s

FQ
 C

oD
el

20m
s

SFQ

SYN
 P

rio

SYN
/F

IN
 P

rio

REDFa
vo

r

SPA
 5

m
s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Response time at median size (s)

Response time at 80% size (s)

FIFO AQM FQ SYN Isolation

Fig. 5. Average RTT, loss percentage, retransmission delays and response
times for various queueing schemes under Traffic Type “Real”. FQ CoDel,
SFQ, RedFavor, and SPA achieve the shortest response time.

SFQ
FQ CoDel 5ms
SPA

PIE
CoDel 5ms

RedFavor

Packet FIFO
Byte FIFO

1 2 6
Connection size (MSS)

0.2

0.5

1.0

R
e
sp

o
n
se

 t
im

e
 (

s)

Fig. 6. Response times of connections for various queueing schemes under
Traffic Type “Real”. SPA and Fair Queueing schemes result in significantly
lower response times compared to other AQM and FIFO.

display some of the best response times for short connections.
Considering the isolation of SYN and/or FIN in a separate
FIFO (SYN and SYN/FIN Prio, REDFavor), we do not ob-
serve a real improvement in RTT and retransmission times
compared to basic FIFO. Nevertheless, there are fewer SYN
retransmission, which improves the response times especially
for short connections. Finally, SPA results in the shortest
retransmission delay, while keeping one of the lowest average
RTT and response times. FQ CoDel achieves a similar though
slightly worse performance if left with default parameters.

Figure 6 presents the connection response times for a selec-
tion of the considered policies. There is a manifest separation
between two groups: in the first one, PIE and CoDel exhibit
similar performance, while Byte FIFO shows a noticeable im-
provement compared to Packet FIFO (connections complete

132

0
50

100
150
200
250
300

RTT (ms)

0

5

10

15 Packet rtx probability (%)

... of which, SYN and SYN/ACK

0

5

10

15
Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

0

500

1000

1500

2000

2500 Avg Rtx Delay (ms)

Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

PF
IFO

BFIF
O

RED
ARED

CoD
el

5m
s

CoD
el

20m
s PIE

FQ
 C

oD
el

5m
s

FQ
 C

oD
el

20m
s

SFQ

SYN
 P

rio

SYN
/F

IN
 P

rio

REDFa
vo

r

SPA
 5

m
s

0.0
0.5
1.0
1.5
2.0
2.5
3.0 Response time at median size (s)

Response time at 80% size (s)

FIFO AQM FQ SYN Isolation

Fig. 7. Average RTT, loss percentage, retransmission delays, and response
times under Traffic Type “Real” with one long reverse connection. SYN re-
transmissions rate, retransmission delays, and response times raise drastically.
FQ CoDel and SPA achieve the shortest response times for short connections,
while SFQ and SPA are the best for longer connections.

40% faster). In the second group, SPA, SFQ, and FQ CoDel
present lower response times with an improvement between
100% and 300% for the shortest connections. In the case of
delay based solutions like CoDel or PIE, this plot confirms that
the philosophy of “loss is good” is detrimental when control
segments such as SYN are not considered in a specific way:
the schemes lead to high data segment retransmission rates,
which is actually good for reducing congestion and delays, but
also to high levels of SYN retransmissions. Consequently, the
schemes experience longer retransmission delays and longer
delays, even if they still manage to improve the performance
over Packet FIFO. REDFavor performs better than other AQM
schemes: with this simple modification, response times are
halved compared to Packet FIFO, which is a quite noticeable
enhancement compared to other AQM mechanisms. Finally,
our solution performs better than FQ CoDel and SFQ for
short connections. For connections with more than 3 segments,
the difference between the regular and modified FQ CoDel
becomes less significant and connections under SPA complete
in 30% less time than with FQ CoDel. SFQ continues to obtain
good response times similar to those obtained with SPA, but
with inacceptable retransmission times for larger connections,
as we can see in Figure 5.

We complement the first experiment that dealt with uni-
directional traffic by adding one long reverse connection. The
idea is to approach “near real” traffic conditions as encountered
for instance behind an ADSL link with a user uploading files
to a Cloud service provider. The results appear in Figures 7
and 8. The first expected result is an increase of SYN losses
in the presence of reverse traffic. Indeed, SYN/ACKs can be

SFQ
FQ CoDel 5ms
SPA

PIE
CoDel 5ms

RedFavor

Packet FIFO
Byte FIFO

1 2 6
Connection size (MSS)

0.5

1.0

1.5

2.0

2.5

R
e
sp

o
n
se

 t
im

e
 (

s)

Fig. 8. Response times of connections for various queueing schemes under
Traffic Type “Real” with one long reverse connection. Important gap between
AQM and Fair Queueing schemes, but more differences inside each group.

lost on the return path, while the presence of ACKs in the
download queue virtually reduces the queue size and leads to
an overall increase of losses [34]. We observe 25% more losses
on average and twice as many SYN losses. Consequently, SYN
retransmissions account for a larger part of the retransmission
delay: connections without a SYN loss experience retransmis-
sion delays 25% lower than average. Similarly, response times
are much longer. We see that for short connections, FQ CoDel
and SPA achieve the shortest response times, while SFQ and
SPA are the best for the longer connections. SPA has once
again similar performance to FQ CoDel, both in terms of
RTT and retransmissions times, with response times halved
compared to most of the AQM mechanisms.

Concerning response times (cf. Figure 8), we observe the
same phenomenon: even if connections take much more time
to complete compared to the situation without reverse traffic,
we can still differentiate between two groups: FQ CoDel,
SFQ, and SPA obtain much better results than other queueing
schemes. In the AQM group, the differences are small except
for SPA that performs similarly to the other Fair Queueing
schemes. The values for larger connections suffer from the
bias introduced by heavy tail distributions: many very long
connections do not terminate during the measurement session
and those that finish benefit from shorter response times. This
bias explains lower response times for connections of 6 MSS.

B. Traffic Type “Short”

In the next experiment involving Traffic Type “Short”,
extreme conditions (majority of very small connections) push
the tested schemes to the limits with more frequent SYN
losses. Figure 9 shows that FQ CoDel, SPA, SFQ, and
SYN/FIN Priority achieve the shortest response times for
short connections, while SFQ and SYN/FIN Priority are the
best for the longer connections. RTT is significantly lower
than in the previous experiment. This is due to the size of the
transfers: with an average of 3 segments and an initial cwnd of
4 packets, most of the connections only last for the first burst of
the slow start phase. Moreover, we have a proportion of 3 small
segments (SYN, ACK, and FIN) for 3 data segments in the
queue, virtually decreasing the queue size. Byte FIFO achieves
shorter response times than AQM schemes, due to the fact that
it causes almost no SYN retransmissions. The explanation of

133

0
50

100
150
200
250
300

RTT (ms)

0

5

10

15 Packet rtx probability (%)

... of which, SYN and SYN/ACK

0

5

10

15
Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

0

500

1000

1500

2000

2500 Avg Rtx Delay (ms)

Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

PF
IFO

BFIF
O

RED
ARED

CoD
el

5m
s

CoD
el

20m
s PIE

FQ
 C

oD
el

5m
s

FQ
 C

oD
el

20m
s

SFQ

REDFa
vo

r

SYN
 P

rio

SYN
/F

IN
 P

rio

SPA
 5

m
s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Response time at median size (s)

Response time at 80% size (s)

FIFO AQM FQ SYN Isolation

Fig. 9. Average RTT, loss percentage, retransmission, and response times
under Traffic Type “Short”: heavy tailed distribution with a majority of
very small connections. More SYN losses than with Traffic Type “Real”:
larger delays (RTT and retransmission) for CoDel and PIE. FQ CoDel, SPA,
SFQ, and SYN/FIN Priority display the shortest response times for short
connections, SFQ and SYN/FIN Priority are the best for longer connections.

more SYN retransmissions for RED queues is inherent to their
implementation in Linux: the algorithm computes the average
queue length at large time intervals. When congestion appears,
established connections stop sending packets, emptying the
queue. Due to this interval, the algorithm takes some time
to detect that the queue is again below the loss threshold
and incoming packets (mostly SYN) still suffer from drops.
This effect is specific to the Linux implementation of RED. In
general, AQM mechanisms cause many SYN retransmissions
(up to 8% of connections for PIE) that directly impact response
times. The retransmission delays under SFQ stand out again
due to starvation. We also note that FQ CoDel with the
default 5ms threshold delay does not perform well. In
this critical scenario, SYN packets arrive faster than the link
speed. Some SYN packets stay longer in the queue than the
FQ CoDel base delay and get dropped. Setting the base delay
of FQ CoDel to 20 ms gives back the expected performance.
SYN isolation techniques significantly improve response times
compared to both their single queue counterpart and other
AQM schemes. SPA also exhibits a noticeable improvement
over CoDel, and performs better than a correctly configured
FQ CoDel, with low RTT and retransmission delays, and some
of the shortest retransmission times.

In this experiment, the results greatly differ from those
for Traffic Type “Real”. First of all, delay based AQM and
RED are clearly not designed for this kind of load, with
a high level of losses, and generally higher response times
than with basic Packet FIFO. Byte FIFO continues to show an
almost negligible amount of SYN retransmissions and remains

SFQ
FQ CoDel 5ms
SPA

PIE
CoDel 5ms

RedFavor

Packet FIFO
Byte FIFO

1 2 6
Connection size (MSS)

0.2

0.5

0.7

0.9

R
e
sp

o
n
se

 t
im

e
 (

s)

Fig. 10. Response times of connections under Traffic Type “10M” on a
10Mb/s link. FQ CoDel, SPA, and SFQ result in the best performance.

a good alternative to Packet FIFO despite a slightly lower
RTT obtained by the latter. SYN isolation techniques display
a significant improvement in terms of response times, with
SYN/FIN Prio and SFQ showing the best performance. Both
are closely followed by a correctly configured FQ CoDel and
SPA that also obtains lower RTT and retransmission times,
thus making them well suited for interactive traffic.

C. Traffic Type “10M”

We have run experiments on a 10 Mb/s link with the
parameters similar to Traffic Type “Real” without reverse
traffic. Figure 10 presents the results. The experiment is
close to Traffic Type “Real” and the results are similar: FQ
CoDel, SPA, and SFQ perform much better than the
other schemes. Even though it is the second worst-performing
scheme, Byte FIFO still obtains response times 30% lower than
Packet FIFO. The main difference is that PIE and CoDel now
improve performance compared to FIFO (whether packet or
byte based). Moreover, REDFavor now clearly results in better
performance than other AQM schemes, even outperforming
SFQ and FQ CoDel for longer connections.

D. Conclusion on the Experimental Results

Based on the four setups above, we first assert that Byte
FIFO is generally an interesting alternative to Packet FIFO.
However, it is far more complex to implement than many other
tested solutions and generally not available. Even though delay
based solutions tend to compensate their high levels of SYN
losses through lower RTT and faster retransmission times,
they usually do not bring much improvement to the general
response times and could perform a lot better with a more
discerning dropping policy. Finally, isolating SYN and/or FIN
in separate queues presents at least similar performance to their
single-queue equivalent: in three out of four scenarios, we have
observed a considerable improvement with respect to FIFO
and RED based solutions. However, SPA always performs
much better than CoDel and similarly to Fair Queueing
algorithms that are drastically more complex. In some cases,
it even outperforms those schemes. It does not suffer from
starvation, ensuring low RTT and retransmission times in any
circumstances. Moreover, it does not break down when facing

134

an extremely aggressive load (compared to FQ CoDel). It is,
by far, the queueing scheme presenting the best performance
to complexity tradeoff in our set of experiments.

VII. CONCLUSION

In this paper, we have evaluated the impact of SYN re-
transmissions on TCP connection response times based on real
world traces. To achieve short response times via protecting
SYN and SYN/ACK segments from losses, we have proposed
SPA, a new scheme that uses two packet queues managed by
CoDel—a higher priority queue for SYN and FIN segments,
and a lower priority one for other segments. We have run
extensive experiments on a testbed network to compare the
most important schemes for three different traffic conditions.
Our measurements show that the evaluated AQM mechanisms
result in very similar performance: they succeed at maintaining
low queueing delays although this result comes at the cost
of a significant SYN loss rate. Unsurprisingly, adding some
kind of Fair Queueing mechanisms consistently results in good
performance, although FQ CoDel may need some tweaking in
extreme traffic conditions. SFQ obtains small response times,
but most losses are recovered through timeouts. However, the
drawback of Fair Queueing mechanisms is complexity and a
larger memory footprint compared to AQM. We also point out
the fact that Byte FIFO is a simple scheme and results in very
good performance. SPA, our proposal, strikes a compromise
between simplicity and the memory footprint of a regular AQM
policy. It achieves the low delays of CoDel and performance
similar to Fair Queueing schemes. It matches high throughput
and low delays required for interactive applications that cannot
afford to wait for a 3 s timeout caused by a SYN loss.

ACKNOWLEDGMENTS

This work has been partially supported by the French
Ministry of Research project PERSYVAL-Lab under contract
ANR-11-LABX-0025-01.

REFERENCES

[1] P. Anelli, F. Harivelo, and R. Lorion, “TCP SYN Protection: An
Evaluation,” in Proc. Eleventh International Conference on Networks.
ICN’12, Feb. 2012.

[2] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, pp. 20–34, May 2012.

[3] T. Hiland-Jrgensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet,
“FlowQueue-CoDel.” IETF Internet draft, March 2014. draft-hoeiland-
joergensen-aqm-fq-codel-00.

[4] R. Pan, P. Natarajan, F. Baker, and G. White, “PIE: a Lightweight
Control Scheme to Address the Bufferbloat Problem,” Internet-Draft
draft-ietf-aqm-pie-00, October 2014.

[5] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A First Look at Traffic on Smartphone,” in Internet Measurement
Conference, (New York, NY, USA), ACM, 2010.

[6] N. Kuhn, E. Lochin, and O. Mehani, “Revisiting Old Friends: is CoDel
Really Achieving What RED Cannot?,” in Proceedings of the 2014
ACM SIGCOMM Workshop on Capacity Sharing, ACM, Aug. 2014.

[7] M. Mellia and H. Zhang, “TCP Model for Short Lived Flows,” IEEE
Communications Letters, vol. 6, pp. 85–87, Feb. 2002.

[8] D. Ciullo, M. Mellia, and M. Meo, “Two Schemes to Reduce Latency
in Short Lived TCP Flows,” IEEE Communications Letters, vol. 13,
no. 10, pp. 806–808, 2009.

[9] D. Damjanovic, P. Gschwandtner, and M. Welzl, “Why Is This Web
Page Coming Up so Slow? Investigating the Loss of SYN Packets,”
in Networking 2009 (D. Damjanovic, P. Gschwandtner, and M. Welzl,
eds.), (Berlin, Heidelberg), pp. 895–906, 2009.

[10] A. Vulimiri, O. Michel, P. B. Godfrey, and S. Shenker, “More Is Less:
Reducing Latency via Redundancy ,” in Proc. 11th ACM Workshop on
Hot Topics in Networks, (New York, New York, USA), pp. 13–18, ACM
Press, 2012.

[11] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing Web
Latency: the Virtue of Gentle Aggression,” in Proceedings of the ACM
SIGCOMM 2013 Conference, ACM Press, Aug. 2013.

[12] “The Wonder Shaper.” http://lartc.org/wondershaper/.
[13] “DD-WRT.” https://www.dd-wrt.com/site/.
[14] B. Turner, “Has AT&T Wireless Data Congestion Been Self-

Inflicted?.” http://blogs.broughturner.com/2009/10/is-att-wireless-data-
congestion-selfinflicted.html.

[15] J. Gettys, “Bufferbloat: Dark Buffers in the Internet,” IEEE Internet
Computing, vol. 15, pp. 96–96, May 2011.

[16] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling Bufferbloat in 3G/4G
Networks,” in Proceedings of the 2012 ACM Conference on Internet
Measurement Conference, IMC ’12, (New York, NY, USA), pp. 329–
342, ACM, 2012.

[17] C. Staff, “Bufferbloat: What’s Wrong with the Internet?,” Communica-
tions of the ACM, vol. 55, no. 2, pp. 40–47, 2012. A discussion with
Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys.

[18] M. Allman, “Comments on Bufferbloat,” ACM SIGCOMM Computer
Communication Review, January 2013.

[19] M. Heusse, S. A. Merritt, T. X. Brown, and A. Duda, “Two-way TCP
Connections: Old Problem, New Insight,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 2, pp. 5–15, 2011.

[20] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, pp. 20–34, 2012.

[21] R. Pan et al., “PIE: A Lightweight Control Scheme to Address the
Bufferbloat Problem,” in IEEE HPSR 2013, Taipei, Taiwan, July 8-11,
2013, pp. 148–155, 2013.

[22] P. McKenney, “Stochastic Fairness Queueing,” Proceedings of IEEE
INFOCOM, 1990.

[23] J. Schwardmann, D. Wagner, and M. Khlewind, “Evaluation of ARED,
CoDel, and PIE,” in Advances in Communication Networking, vol. 8846,
pp. 185–191, Springer, 2014.

[24] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
tech. rep., Aug. 2001.

[25] N. Khademi, D. Ros, and M. Welzl, “The New AQM Kids on the Block:
An Experimental Evaluation of CoDel and PIE,” in 2014 Proceedings
IEEE INFOCOM Workshop, Toronto, Canada, pp. 85–90, 2014.

[26] “FreeBSD SYN Cache Source.” sys/netinet/tcp syncache.c. Accessed
on: FreeBSD-9.3.

[27] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” in
Proc. INFOCOM 2003, pp. 1742–1751 vol.3, IEEE, 2000.

[28] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” SIGCOMM
Comput. Commun. Rev., vol. 27, pp. 67–82, July 1997.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and Its Empirical Validation,” SIGCOMM
Comput. Commun. Rev., vol. 28, pp. 303–314, Oct. 1998.

[30] “Linux Traffic Control.” http://tldp.org/HOWTO/Traffic-Control-
HOWTO/intro.html. Accessed: 2015-03-18.

[31] “IPMT Test Suite.” http://ipmt.forge.imag.fr.
[32] “OECD Broadband Portal.” https://www.oecd.org/internet/broadband/

oecdbroadbandportal.htm.
[33] V. Bajpai, S. J. Eravuchira, and J. Schönwälder, “Dissecting last-mile

latency characteristics,” SIGCOMM Comput. Commun. Rev., vol. 47,
pp. 25–34, Oct. 2017.

[34] T. Braud, M. Heusse, and A. Duda, “TCP over Large Buffers: When
Adding Traffic Improves Latency,” in Proc. 26th International Teletraf-
fic Congress (ITC), pp. 1–8, Sept 2014.

135

Policy-oriented AQM Steering
Roland Bless, Mario Hock, Martina Zitterbart

Karlsruhe Institute of Technology
Karlsruhe, Germany

E-Mail: firstname.lastname@kit.edu

Abstract—Detecting and handling network congestion in the
Internet has, again, become a vital area of research. The
provisioning of low latency together with high throughput is of
particular interest due to the current mix of applications running
in the Internet. Active Queue Management (AQM) mechanisms
come with the promise of reducing queuing delays. They, however,
may adversely affect throughput and network utilization and
have proven to be difficult to configure. More recent AQMs,
such as CoDel, PIE, and GSP are easier to configure but work
with a fixed target delay setpoint. Depending on the traffic the
same setpoint value can result either in unnecessary large delays
or under-utilization of the link. Policy-oriented AQM Steering
automatically adapts the target delay setpoint to the current
traffic situation, in order to fulfill a given quality-of-service
policy. Such a policy consists of a utilization goal and an upper
delay bound. This improves AQM performance with varying
traffic situations and makes the impact of deploying an AQM
predictable. A prototypical implementation of AQM Steering for
GSP showed its performance advantages compared to static AQM
variants at speeds of 10 Gbit/s and 1 Gbit/s.

I. INTRODUCTION

In the last years, the reduction of latency in the Internet
has become an increasingly important topic. Applications that
especially benefit from low latencies are world-wide web
applications due to their transactional character as well as
interactive real-time applications such as Voice-over-IP or
online games. However, in the current Internet such traffic
is mixed with longer lasting and large data volume flows
like video streams and downloads. This can cause bandwidth
bottlenecks – often located at the consumer edge. As a result
packets will queue up in buffers at these bottlenecks, causing
an increased end-to-end delay. The “bufferbloat” studies [1]
revealed that there exist several places where significantly
large buffers are present and that they tend to get filled
by TCP’s loss-based greedy congestion control strategy. The
resulting queuing delay contributes significantly to the end-
to-end delay. In extreme cases, end-to-end delay can increase
up to several seconds, resulting in poor TCP performance and
unusable delay-sensitive applications.

An outcome of the fight against bufferbloat was to revive
the use of Active Queue Management (AQM) in order to
reduce queuing delay. The use of AQM provides several
benefits, including enabling Explicit Congestion Notification
[2]. Earlier efforts to deploy AQM suffered from their difficult
configuration (i.e., several parameters needed to be set and
their impact on performance was not obvious) and often from
their negative impact on network utilization (different kinds of

traffic required a different set of parameter settings to achieve a
good performance). Newer AQMs such as CoDel [3], PIE [4],
and GSP [5] are simpler to configure and have a target setpoint
that corresponds to the permitted delay limit.

However, the problem of a static configuration remains since
the resulting performance depends on the respective traffic.
Consequently, the chosen setting can lead to sub-optimal
performance [6], e.g., either a too low link utilization or a too
high queuing delay. For example, CoDel uses a fixed target
of 5 ms by default, which may be too low in some situations:
if only a few flows traverse the bottleneck, link utilization
is also low and could be increased by permitting a higher
target delay. In other situations even lower targets are possible.
Additionally, this means that AQMs with fixed target setpoints
cannot sufficiently adapt to the current traffic situation and
achieve only sub-optimal performance.

The goal of Policy-oriented AQM Steering is to provide an
automatic adaptation, i.e., adjusting the target delay setpoint to
the current traffic situation. Therefore, the AQM mechanism
is controlled within given bounds that are set by a provider
policy: a lower bound for link utilization and an upper bound
for a queuing delay target.

AQM Steering works a on a different time-scale than AQM
auto-tuning. Moreover, it is not integrated into an AQM itself.
Instead, it operates as an additional control loop outside of the
AQM, so that it can be easily applied to different AQMs.

II. PROBLEM ANALYSIS

A. Queuing Delay and Counter-Measures

As mentioned before, queuing delay often contributes sub-
stantially to the overall latency. Thus, a reduction of queuing
delay (i.e., buffer occupancy) is one approach to lower end-
to-end latency. Buffers in routers or switches are necessary in
order to absorb short-term bursts and to keep link utilization
high. There have been numerous debates about the right size
of buffers in the past [7], [8]. In addition to absorbing short-
term bursts, buffers have another effect on TCP performance.
A large buffer allows the congestion windows (CWnds) of the
TCP flows to inflate way beyond the bandwidth delay product
(bdp) without causing packet losses. This creates a so-called
standing queue within the buffer [3]. If such an inflated CWnd
is eventually reduced after a loss, it can still be above the bdp,
thereby maintaining full link utilization. With the well-known
“1-bdp Rule of Thumb” (buffer size = 1 · bdp) this is fulfilled
in almost any circumstances. However, if many flows share a
bottleneck and synchronized losses can be avoided, a smaller

ISBN 978-3-903176-08-9 c© 2018 IFIP

CWnd inflation and, thus, a smaller standing queue would
suffice to keep the link fully utilized [7].

There are two different approaches to reduce the standing
queue, while maintaining a high throughput:

• Use of a different congestion control that avoids to create
substantial standing queues and use different backoff
strategies, e.g., TCP LoLa [9] or BBR [10], which are
currently under development.

• Use of Active Queue Management mechanisms. They try
to reduce the standing queue by applying a control loop
that early discards packets while retaining the buffer’s
capability to absorb short-term bursts. Furthermore, AQM
mechanisms can support desynchronization of packet
losses among concurrent TCP flows.

Note that using smaller tail-drop buffers is not a viable
option. They lead to lower delays, but also to lower utilization:
A small tail-drop buffer cannot compensate for short-term
bursts and leads to synchronized packet losses. Both lead to
strong backoff reactions of the TCP flows, which reduce their
congestion windows way below the necessary size of 1 · bdp.

This paper focuses on Active Queue Management and
assumes that currently used congestion controls, such as
TCP Reno, CUBIC TCP or Compound TCP are in place.

B. Room for Improvement of Current AQMs

In contrast to earlier AQM approaches [11] newer AQMs
such as CoDel, PIE, and GSP explicitly distinguish short-
term bursts from standing queues and thus have a built-in
burst tolerance in order to avoid unnecessary packet drops
that would decrease the throughput. Moreover, earlier AQM
approaches possessed several parameters that needed to be
configured. The influence of the parameter setting on the
achieved network utilization was often not obvious. Moreover,
different traffic types required different parameter settings to
achieve the best performance, i.e., they were not “self-tuning”
in this respect. This turned out to be a major obstacle for their
deployment [12].

Thus, newer AQMs had the objective of being usable across
a wider range of scenarios without the need to adapt AQM
parameters. CoDel even tries to be “parameterless for normal
operation, with no knobs for operators, users, or implementers
to adjust”, by setting the default target value to 5 ms (5% of
a 100 ms measurement interval). Nevertheless, these AQMs
still have a configurable target setpoint that corresponds to the
permitted delay limit. This target setpoint often relates to an
internal threshold that triggers packet drops.

Even though newer AQMs are better in adapting to different
traffic scenarios, they still possess their configurable but fixed
target setpoint. This creates two-sided drawbacks, depending
on the current traffic situation, which is mainly characterized
by the number of dominant flows at the bottleneck, i.e., flows
that contribute substantially to the overall in-flight data.

• Unnecessary high delay – In case the number of dominant
flows traversing the bottleneck is large enough, the AQM
can enforce its delay limit while full link utilization

can be achieved, due to good loss desynchronization.
However, the delay target may be excessively high
(cf. Fig. 1a). It could be set to a lower value without
sacrificing utilization (as in Fig. 1b).

• Under-utilization – In case the number of dominant flows
traversing the bottleneck is low (e.g., < 10) or they are
having a large RTT, the AQM cannot achieve full link
utilization (see Fig. 1c). The reason is the multiplicative
decrease backoff of the current TCP congestion controls.
With only a few dominant flows or high RTT flows at
the bottleneck, the amount of inflight data can easily fall
below the bdp. In this case, a higher delay target would
maintain a good link utilization (see Fig. 1d).

For the transfer of scientific data, for example, it is a typical
pattern that a low number of high volume flows can appear
(and disappear) as dominant flows at a bottleneck, at any
time. Usually they last for a long time, e.g., hours. Thus, the
traffic situation at the bottleneck is significantly changed and
a bottleneck (with a fixed setpoint AQM) could fall from an
unnecessary high delay to under-utilization.

The goal of Policy-oriented AQM Steering is to find the best
trade-off by automatically adjusting the target setpoint within
given performance bounds that are specified by a provider
policy: a lower bound for link utilization (ulow) and an upper
bound for a queuing delay target (targetmax).

III. DESIGN OF AQM STEERING

The basic principle of Policy-oriented AQM Steering is
to observe how well the momentarily applied target setpoint
works with the current traffic situation. If the setpoint is larger
than necessary, it can be decreased without violating the lower
bound for link utilization (ulow). If the setpoint is too small
to fulfill this bound, the setpoint has to be raised, as long as
the upper bound (targetmax) is not reached. In order to assess
the impact of the current target setpoint, the control loop of
AQM Steering works outside of the AQM control loop and on
a different timescale.

Fig. 2 shows the interplay of the different control loops
that interact with each other. The TCP congestion control
actually controls the load on the network by reacting on
congestion signals (usually packet loss or ECN markings [2]).
The AQM tries to find the right amount of congestion signals
to emit, in order to effectively control the queue. For this,
the reaction of the flows on the congestion signals has to be
constantly monitored by the AQM. An important property of
this interplay is that it takes at least one RTT for the congestion
control to react. As soon as the AQM effectively controls
the queue, AQM Steering can determine how well the target
setpoint works for the current traffic situation by getting actual
values for queuing delay and throughput. It also gets notified
of certain events such as packet drops and then determines
whether an adjustment is necessary to fulfill the given policy.

A. How can AQM Steering detect when to react?

Three different states have to be distinguished: 1) Link is
no bottleneck 2) The AQM is still adjusting to the current load

137

A
m

o
un

t o
f I

nf
lig

ht
 D

at
a

B
uf

fe
r

L
in

k

Time

(a) Target too high – unnecessary high
delay

Inflight Data

Packet Drop

Target Delay

Time

(b) Adapted target – Lower delay

A
m

ou
nt

 o
f I

n
fli

gh
t D

at
a

B
u

ffe
r

Li
nk

Time

(c) Target too low – Under-utilization

Time

Data Inflight

Packet Drop
Target Delay

(d) Adapted target – Full utilization

Fig. 1. Sketches illustrating two-sided drawbacks of AQMs with fixed target delay values

AQM

Traffic
In

Target
Setpoint

Actual Value
+ Events

AQM Steering

Policy:
<Utilization, max. Delay>

Traffic
Out

TCP Congestion Control Loop

AQM
Control
Loop

AQM Steering Loop

Receivers

Senders

Fig. 2. Interaction of AQM Steering, AQM, and TCP Congestion Control

3) The AQM effectively controls the queue.
If the queue is persistently above the target, the AQM has

not yet adapted to the traffic. In this case it is not expedient
to change the target. After the AQM control loop has found a
dropping rate that is suitable to effectively control the traffic,
the queue will be fluctuating around the target. Now, AQM
Steering can assess the impact of the current target setpoint.
If the AQM, in contrast, does not drop any packets, the link is
no bottleneck, i.e., the queue length is persistently below the
target (except for bursts that are ignored by the burst protection
of the AQM). Table I summarizes states, causes, and needs for
action of AQM Steering.

TABLE I
AQM STEERING – STATES AND NEEDS FOR ACTION

State of Queue Cause Adaptation of Target
(1) persistently
below target

no bottleneck, no AQM
action

not necessary

(2) persistently
above target

bottleneck, traffic source(s)
did not respond (yet)

not useful

(3) fluctuating
around target

bottleneck, AQM active possible

B. How does AQM Steering determine a new target setpoint?

Actually, two different strategies are required: one for
lowering and one for raising the target setpoint. The reason
is that one can use measured queue parameters to determine
how much reduction of the target is required whereas it is
impossible to calculate a required increment in case of under-
utilization. Both cases are sketched in Fig. 3 and will be

explained in the following (the congestion window increment
is sub-linear in reality due to the increasing queuing delay).

∆d

Target
setpoint

~∆d

Reno Flows

Lowered target
setpoint

Time

A
m

ou
nt

 o
f I

nf
lig

ht
 D

at
a

Li
nk

B
uf

fe
r

(a) Lowering the target setpoint

Reno Flows

A
m

ou
nt

 o
f I

nf
lig

ht
 D

at
a

Raised target setpoint

Under utilization

?

CWnd
min

CWnd
BDP

Target
setpoint

Time

Li
nk

B
uf

fe
r

(b) Raising the target setpoint

Fig. 3. Target adaptation problems

1) Lowering the Target Setpoint: If the target setpoint
is too high, as shown in Fig. 3a, a persistent minimum
standing queue can be measured that does not dissipate even
after packet drops. Thus, AQM Steering can determine the
minimal queuing delay ∆d and reduce the target setpoint by
approximately this amount. The key point behind this strategy
is that the reaction of TCP flows on a congestion signal
depends only marginally on the actual value of the target
setpoint. This means that even with the lower setpoint, the
queue will not underflow after a congestion signal. Thus, the
queuing delay is reduced without harming throughput.

However, if multiple flows are present at a bottleneck, their
CWnd i differ in size and the effect of the individual backoff
of each flow might be different. A single ∆d as sketched in the
simplified exemplary situation shown in Fig. 3a is therefore
not sufficient: ∆d will actually vary. Thus, an average ∆d of
measured minima ∆di and their variance (σn) are calculated.
The new target setpoint is calculated as follows:

targetnew = min
(
targetold −∆d+ γσn, targetold

)
,

with σn =
√

1
n−1

∑n
i=1(∆di −∆d)2. γ > 1 defines a

protective margin so that an adaptation does not occur too
often if the fluctuation is high. A smaller γ leads to a smaller
target value and thus more likely to under-utilization.

2) Raising the Target Setpoint: If the target setpoint is too
low to achieve full utilization, it is impossible to calculate
the required increment for the target setpoint, because there
is no directly usable correlation without knowledge of the
flow’s bdp, that depends on its RTT . Further dependencies
are the backoff factor β (which is different for CUBIC TCP
and TCP Reno) and the number of flows. This knowledge is

138

not typically available at the intermediate system that operates
the AQM. Therefore, an approach for a stepwise increment is
used.

In order to quickly restore a reasonable throughput when
under-utilization has been detected, the target setpoint is
restored to a reasonable default value (threshmin,up). Since
one goal of the AQMs that use a fixed setpoint is to provide
a reasonable default value, we recommend to use their default
value as threshmin,up . If the under-utilization persists, the
setpoint is multiplicatively increased (e.g., by a factor 2) until
the lower utilization bound ulow is fulfilled or the upper limit
for the setpoint targetmax is reached:

targetnew = min
(

max (targetold · 2, threshmin,up) ,

targetmax

)
The adaptation happens only if a short-term smoothed value

as well as a longer-term smoothed value of the measured data
rate is below the lower utilization bound ulow . The short-
term smoothed value is simply the mean data rate measured
since the last packet drop. This value then contributes to a
time-dependent longer-term smoothed value. Further details
are given in Sec. IV.

C. Policy Option: Under-utilization

Policy-oriented AQM Steering also allows to define an
upper bound utarget on the utilization with ulow ≤ utarget ≤
100%. The advantage of using utarget is that queuing delay
is avoided while there is still a lot of room for short-lived
flows as well as other more bursty short-lived traffic. Some
providers, for example, avoid utilizations above 50% in order
to provide enough failure protection capacity.

To achieve this goal it may be necessary to discard packets
earlier, even before any packets queue up. To achieve this,
AQM Steering can optionally switch the AQM from the
physical queue to a virtual queue. For this a virtual egress
rate ratevirtual (with ratevirtual < ratephysical) is defined. The
virtual queue tracks the notional buffer utilization that would
have built up if the egress link had a data rate of ratevirtual .
The switch to the virtual queue is performed as soon as the
target setpoint has reached the minimum value and the current
utilization u is still larger than utarget . This way, the burst
tolerance and loss desynchronization provided by an AQM
can still be used, even without any physical queue.

It has to be noted that the virtual queue is just a pas-
sively computed number, i.e., the traffic is not shaped to
the virtual egress rate, since this would induce real queuing
delay. Therefore, the link utilization can be above ratevirtual
for short periods of time. Still, the average link utilization
will be below or equal to ratevirtual . Otherwise the virtual
queue would increase indefinitely, which is prevented by the
AQM. Whether the average link utilization is actually equal
to ratevirtual depends on the traffic and the level of loss
synchronization. This means that the AQM Steering control
loop is still necessary to keep ulow ≤ u ≤ utarget . However,
on the virtual queue AQM Steering does not control the

target setpoint. Instead, it adjusts ratevirtual in the range
of utarget · ratephysical ≤ ratevirtual < ratephysical . If
ratevirtual = ratephysical is necessary to avoid u < ulow ,
the AQM is seamlessly switched back to the physical queue.
More details are provided in Sec. IV.

D. Discussion

AQM Steering cannot always achieve ulow . If the link is no
bottleneck, it will inevitably be underutilized. Also, a larger
standing queue than allowed by targetmax might be necessary
to attain ulow . Hence, targetmax can be understood as maxi-
mal delay one is willing to trade for higher throughput. Often
large tail-drop buffers are deployed to get a high throughput
at the cost of delay. When converged, the link utilization of
AQM Steering will be at least min

(
ulow , thr td(targetmax)

)
,

with thr td(. . .) being the throughput of a tail-drop buffer of
the given size would achieve with the same traffic. Due to the
burst protection and loss desynchronization provided by an
AQM, the throughput of AQM Steering can actually be larger
than thr td(targetmax).

During the convergence of the AQM Steering control loop,
throughput can be below thr td(targetmax). Therefore, AQM
Steering is tuned to quickly converge towards larger target set-
points (i.e., improving link utilization). Reducing the setpoint
(i.e., lowering delay) is performed more conservatively.

IV. IMPLEMENTATION

We chose to use the GSP AQM [13], [5] as basis for
our prototype implementation as it is simple to implement
and achieves comparable results to CoDel and PIE. GSP’s
target setpoint is the packet queuing delay in form of a
threshold. If the threshold is exceeded (the sojourn time of
the last dequeued packet was larger than threshold) on packet
arrival, it immediately discards the arriving packet. GSP then
pauses discarding for a time span (called interval) allow
the congestion control to react on the drop. The interval
is adapted according to the situation, i.e., if the congestion
control reaction was not effective enough to let the queuing
delay fall below the threshold, the interval becomes shorter,
so that GSP drops more aggressively.

Due to performance and simplicity reasons, AQM Steering
was integrated into the GSP implementation, although the
general concept allows for a more modular and separated real-
ization. The threshold adaptation of GSP with AQM Steering
(GSP-AS) is hooked-in into the threshold exceeded event, i.e.,
tsojourn > threshcurr but is carried out before a packet drop
is performed. This way, an increase of the threshold will defer
a packet drop until the increased threshold is exceeded. If the
threshold is kept unchanged or lowered, a packet is dropped
as usual.

Table II shows different variables that are also used in the
following description. Policy-oriented AQM Steering allows
to set threshmax as well as ratetarget,min as parameters.
Optionally, a third parameter ratetarget can be set if the
desired operational mode is under-utilization (see Sec. III-C).
The short-term link utilization is calculated by ratebd =

139

TABLE II
SELECTED VARIABLES

Name Default Explanation
threshmax *) configurable upper bound for the target setpoint
threshmin 0,2 ms lower bound for the target setpoint
ratebd – data rate since last packet discard
ratebd,avg – longer-term smoothed data rate
ratemax – maximum link speed, corresponds

to u = 100%
ratetarget,min *) configurable lower bound on rate, corresponds

to ulow

ratetarget *) optionally
configurable

rate that corresponds to target uti-
lization utarget

*) policy is expressed by these parameters

∑n
i=0 packet ti .size/(t − t0), where t0 is the time of last

packet discard, packet ti denotes a packet that arrived at time
ti ∈ [t0, t]. Based on these values the longer-term ratebd,avg is
calculated with the TDRM-UTEMA-CPA smoothing function
[14].

Algorithm 1 Lowering the Target Setpoint
1: procedure ATGSPINTERVALADAPTATION
2: . . .
3: trq_min ← min(tcurrent_sojourn , trq_min)
4: . . .
5: V, Vavg ← 0 . Initialize at start
6: threshcurr , trq_min ← [threshmin , threshmax]
7: procedure ATGSPPACKETDISCARD
8: if trq_min < threshcurr then
9: ∆trq_min ← threshcurr − trq_min

10: ∆trq_min_avg ←SMOOTHUTEMA(∆trq_min , now)
11: ESTIMATEVARIANCE(∆trq_min)
12: threshdown ← threshcurr − (∆trq_min_avg + γ

√
Vavg)

13: threshdown ←bthreshdown/threshdown_minc · threshdown_min

14: if threshdown > 0 and ratebd,avg > ratetarget,min then
15: threshcurr ← max(threshcurr − threshdown , threshmin)

16: trq_min ← threshcurr

17: . . .

Algorithm 1 shows the pseudocode for lowering the target
setpoint. As discussed above, the target setpoint should not
be adjusted if the queue is persistently above the target (see
Table I). Therefore, the minimum packet sojourn time trq_min

(rq indicates the real queue, vq the virtual queue) that occurs
between two packet discards is tracked and the adaptation is
only performed if trq_min < threshcurr (line 8). This can be
done when the GSP interval is adapted anyway (see line 3).

As visualized in Fig. 3, the adaptation amount is calculated
based on ∆trq_min = threshcurr − trq_min . This value is
smoothed with the UTEMA function [14] and a variance
is calculated. The threshold decrement gets rounded to an
integral multiple of threshdown_min (the minimal allowed
threshold value, e.g., 0.2 ms) to avoid too small adjustments
(see line 13). This also increases the stability for very low
thresholds in combination with smoothing of the measured
values. To improve the stability of the mechanism, the new
threshold is only applied if the longer-term measurement for
the data rate ratebd,avg is above the configured lower bound
rate ratetarget,min (line 15).

If a target utilization goal utarget is specified, the decrement
by threshdown may not be sufficient to get there. Therefore,
a step-wise multiplicative reduction is applied until the mini-
mum threshold threshmin is reached (shown in algorithm 3).
If a further reduction is required, the AQM Steering switches
to operate on the virtual queue.

Algorithm 2 shows the pseudocode for raising the target. A
precondition is that the queue has been drained empty after
a packet drop (line 3). If the link is no bottleneck, raising
the threshold will not increase the utilization. If a drop will
not cause the buffer to empty, link utilization already is at
100 %. Thus, increasing the threshold is not necessary. If line 3
is true, the short-term ratebd and the longer-term ratebd,avg
are checked against the configured minimum ratetarget,min

(ulow). If both are below this target, the threshold is raised
(line 10). Otherwise, ratebd > ratetarget,min alone would
often trigger too early, whereas ratebd,avg > ratetarget,min

alone could lead to an unnecessary raise, because of the inertia
of ratebd,avg , i.e., the necessary threshold could have been
reached already in the meantime. If the increase conditions
are met, the threshold is multiplicatively increased by a factor
α = 2. However, if the threshold is very low, the reaction
on a sudden load change could be too slow. Therefore, the
threshold is at least set to threshmin,up := 0.025interval init .
We decided to set this value similar to the default GSP
parametrization. This way, the throughput with GSP-AS will
be at least as high as with regular GSP after an under-
utilization has been detected.

Algorithm 2 Raising the Setpoint Target
1: procedure ATGSPPACKETARRIVAL
2: . . .
3: if (queue empty) and (packet was discarded) then
4: threshup ← true

5: if tsojourn > threshcurr and now > timeoutexpiry then
6: ratebd ← Data rate since last packet discard
7: if threshup = true then
8: if ratebd < ratetarget,min and ratebd,avg < ratetarget,min then
9: threshcurr ← min(max(threshcurr · α,

10: threshmin,up), threshmax)

11: threshup ← false
12: else
13: ratebd,avg ← SMOOTHTDRM(ratebd ,now)
14: GSPPACKETDISCARD
15: . . .

Algorithm 3 shows the switch to the virtual queue in
case the configured target ratetarget has not been reached
by lowering the threshold as shown in algorithm 1. However,
the threshold adaptation cannot be applied in the same way
as for the real queue, because the virtual queue does not
effectively delay packets. In order to maintain the AQM’s
property of achieving desynchronization, the virtual departure
rate ratevq is adapted instead (line 12). Since the flows conges-
tion windows will fluctuate, ratevq will be often higher than
ratetarget , but leading to an effective measured ratetarget due
to the oscillations. Therefore, ratevq ∈ [ratetarget , ratemax]. If
the average rate ratebd,avg is lower than the target ratetarget

140

then ratevq will be raised. If ratevq reaches ratemax then
the operation uses the real queue again. This is shown in
algorithm 4.

Algorithm 3 Rate adaptation and switch to virtual queue
1: boolean vqactive . Packet discard according to virtual queue
2: procedure ATGSPPACKETDISCARD
3: . . .
4: ratebd ← Data rate since last packet discard
5: ratebd,avg ← SMOOTHTDRM(ratebd ,now)
6: if ratebd,avg > ratetarget and ratetarget < ratemax then
7: if vqactive = false and ratebd > ratetarget then
8: threshcurr ← max(threshmin , threshvq , threshcurr · 0.75)
9: if threshcurr = threshvq then

10: vqactive ← true

11: if vqactive = true then
12: ratevq←max(ratetarget , ratevq+α(ratetarget − ratebd,avg))

13: . . .

Algorithm 4 Rate adaptation and change to real queue
1: boolean vqactive . Packet discard according to virtual queue
2: procedure ATGSPPACKETARRIVAL
3: . . .
4: if vqsize > threshvq and now > timeoutexpiry then
5: ratebd ← Data rate since last packet discard
6: if threshup = true then
7: if ratebd<ratetarget,min and ratebd,avg<ratetarget,min then
8: ratevq ←min(ratemax , ratevq +α(ratetarget − ratebd,avg))
9: if ratevq = ratemax then

10: vqactive ← false

11: threshup ← false
12: else
13: ratebd,avg ← SMOOTHTDRM(ratebd ,now)
14: GSPPACKETDISCARD
15: . . .

V. EVALUATION

We evaluated Policy-oriented AQM Steering at speeds of
1 Gbit/s and 10 Gbit/s. One objective was to compare the per-
formance of AQM Steering with tail-drop buffers (small and
large) and AQM approaches with fixed targets (namely CoDel
and GSP). Another objective was to evaluate the adaptivity
of AQM Steering with respect to changing traffic situations.
The following experiments were performed: Steady state with
long-lived flows, steady state with long-lived and short-lived
flows, and transition behavior for changing traffic situations.
An additional experiment (with utarget = 95%) was performed
to evaluate the virtual queue feature. Every experiment was
repeated in 10 different runs. Due to space restrictions we
present only the results of the 10 Gbit/s experiments, the results
for the 1 Gbit/s experiments are very similar.

A. Testbed

Fig. 4 shows the configuration of the testbed where the
experiments were conducted. Sender and DPDK-based switch
were dual processor servers equipped with Intel Xeon E5-
2630, the receiver was a dual processor Intel Xeon E5-2640.
All servers were equipped with 128 Gbyte RAM and Intel

X710 4-port 10 Gbit/s network cards. The Ubuntu 16.04 Linux
distribution was used as operating system, Kernel versions
4.9.0 and 4.4.0 were used. Generic Receive Offload and
Generic Segmentation Offload were active. The DPDK switch
used bursts of 32 packets and had a configured limit for the
send and receive ring buffers of 256 packets.

Sender DPDK Switch

qelem_delay

qelem_delay AQM

Receiver

10 Gbit/s

10 Gbit/s

Linux DPDK

qelem_delay

Linux

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

HP5920 Switch

Fig. 4. The Testbed in its 10 Gbit/s Configuration

The DPDK-based switch1 implemented the AQMs CoDel,
GSP as well as GSP-AS. It also allows for monitoring internal
AQM state such as packet drops and queue length. Moreover,
the module qelem_delay generates artificial delay, since
netem is not able to generate reliable behavior at such high
speeds. The RTT for all experiments was set to 50 ms. As
tools TCPlog2, CPUnetLOG3, and iperf3 were used.

B. Steady State – Long-lived Flows

This experiment shows that AQM Steering adapts to the
traffic situation and achieves higher throughput at the lowest
possible queuing delay in comparison to static AQMs or
simple tail-drop buffers. Fig. 5 shows GSP-AS in comparison
with statically configured GSP and CoDel as well as small
(2.5 ms) and large (30 ms) tail-drop (TD) buffers. Static GSP
and CoDel were used with target setpoints of 2.5 ms. The
upper delay limit threshmax was set to 30 ms, utarget was set
to 100%, and ulow to 99%. CUBIC TCP flows were used (with
their standard βCubic = 0.7) as traffic load and the number of
flows was varied as follows: 2, 3, 6, 9, 12, 18, 24, 36. For
clarity Fig. 5a shows only results for 2, 9, and 36 flows.

As expected, the throughput is lower for static AQMs and
the small tail-drop buffer if the number of flows is low (in this
setting, < 9). This shows that GSP-AS increases the delay in
order to achieve higher throughput as desired by the policy.
In contrast to the tail-drop buffer, it only increases the delay
as necessary, i.e., GSP-AS stays clearly below the allowed
30 ms, as shown in Fig. 5b. This as well as other plots show
the average of the 95%-quantile across the 10 runs, the error
bars their respective min/max values. The curve for GSP-AS
show that if the number of flows becomes higher, GSP-AS
can reduce queuing delay even further by lowering the target
setpoint. While the static variants of GSP and CoDel also
accomplish good throughput values, because of the achieved
desynchronization, they stay at their fixed targets of 2.5 ms,
whereas GSP-AS can go as low as 0.825 ms.

1https://git.scc.kit.edu/TM/DPDK_AQM_Switch (branch: AQM_Steering)
2https://git.scc.kit.edu/CPUnetLOG/TCPlog
3https://git.scc.kit.edu/CPUnetLOG/CPUnetLOG

141

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

2 9 36

Th
ro

ug
hp

ut
 [G

bi
t/s

]

Number of Flows

TD 2,5ms
CoDel

GSP
GSP-AS

TD 30ms

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

Q
ue

ui
ng

 D
el

ay
 [m

s]

Number of Flows

Queuing Delay q-95, CoDel
Queuing Delay q-95, GSP

Queuing Delay q-95, GSP-AS
Queuing Delay q-95, TD 2.5ms
Queuing Delay q-95, TD 30ms

(b) Queuing Delay

Fig. 5. Throughput and Queuing Delay for Different Numbers of Long-Lived Flows

C. Steady State – Long-lived and Short-lived Flows

This experiment shows that AQM Steering still works if
short-lived flows disturb the AQM control: static AQMs loose
throughput whereas AQM Steering achieves high throughput
at lowest possible queuing delays. Several experiments were
made where long-lived TCP flows are disturbed by short-lived
TCP transfers of 64 MByte every two seconds. The short-lived
flows are usually finished before their slow start phase ends.
Although AQMs like CoDel, PIE, and GSP have a kind of
burst protection already, short-lived transfers may still decrease
the throughput significantly. Fig. 6a shows that static AQM
variants perform much worse with a lower number of flows
(cf. Fig. 5a). Bursty traffic causes packet drops and it is likely
that long-lived flows are affected. The queue within the small
tail-drop buffer drains completely between drops as can be
seen by the very low throughput values and the practically non-
existing delay (Fig. 6b). GSP-AS is able to keep the throughput
high (even higher than TD 30 ms), at the cost of increasing
the queuing delay. With 36 flows GSP-AS is able to reduce
the delay without hurting the throughput.

D. Transition Behavior

This experiment shows how AQM Steering adapts when a
sudden change of the traffic situations happens. In contrast
to the previous experiments, the traffic situation (here the
number of flows) changes during the experiment. At first, only
two data flows are started and get to steady state when at
t = 180 s 34 additional flows are started that last for 80 s.
Fig. 7a shows how AQM Steering smoothly lowers the target
setpoint as the number of flows is higher and raises the target
setpoint relatively quickly after the remaining two flows have
raised their CWnd up beyond the bdp (that takes 18 s) after
the 34 flows have ended at second 260. Conceptually, AQM
Steering cannot compensate the time TCP requires to claim
free bandwidth after other flows have finished, therefore, the
target setpoint is not adapted in absence of any packet drops.

Fig. 7b shows results of an experiment where the situation
is repetitively changed before the adaptation of AQM Steering
has converged. Every 40 s, 34 additional flows arrive that
disappear again after 20 s. During convergence AQM Steering

favors high link utilization over a quick reduction of the queu-
ing delay. Indeed, the threshold almost reaches the same upper
values as it settled on in the previous experiment. Reduction
of the target setpoint, in contrast, is more conservative.

E. Policy Option: Under-utilization

To evaluate the virtual queue feature some experiments
were performed with utarget = 95% and ulow = 94%. The
generated traffic is the same as in Sec. V-B. Fig. 8a shows
that the achieved throughput stays within the utilization bounds
[0.94, 0.95] (see upper curve and right y-axis). Furthermore,
starting at six flows the real queue length is effectively zero (as
shown by the queue length curves of the average and the 95%
quantile), since the AQM triggers regularly packet discards
based on the virtual queue. For a lower number of flows, the
virtual queue length fluctuates more (as explained in Sec. II),
thus often overshooting into the real queue, as also indicated
by the difference of the 95% quantile and the average queue
length. Fig. 8b shows the virtual queue length and packet
discard actions from a run with 36 concurrent flows. As with
the physical queue, the virtual queue length fluctuates around
the target. Since the virtual queue is almost never empty, the
egress rate is close to ratevirtual , on average. AQM Steering
adjusts ratevirtual in order to keep ulow ≤ u ≤ utarget .

VI. RELATED WORK

The first major AQM mechanism RED faced severe deploy-
ment difficulties, due to its sensitivity to parameters, which
were hard to tune. Since then auto-tuning has become a
standard functionality of subsequent AQMs, like Adaptive
RED (ARED) [15], BLUE [16], Optimal Drop-Tail/Optimal
BLUE [17]. The latter approach tries to optimally trade-off
delay versus throughput based on utility functions. [11] gives
an exhaustive survey of existing AQMs. Newer AQMs like
CoDel [3], PIE [4], and GSP [5] try to be mostly parameter-
less, due to inherent auto-tuning and reasonable default values.
But due to their fixed delay target setpoint, the performance
still depends on the traffic characteristics and is, therefore,
hard to predict. Policy-oriented AQM Steering focuses on an
automatic adjustment of this parameter, in order give better
and more predictable performance.

142

 2

 4

 6

 8

 10

2 (64MB) 9 (64MB) 36 (64MB)

Th
ro

ug
hp

ut
 [G

bi
t/s

]

Number of Flows

TD 2.5ms
CoDel

GSP
GSP-AS

TD 30ms

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

2 9 36

Q
ue

ui
ng

 D
el

ay
 [m

s]

Number of Flows

TD 2.5ms
CoDel

GSP
GSP-AS

TD 30ms

(b) Queuing Delay

Fig. 6. Throughput and Queuing Delay for Different Numbers of Long-Lived Flows Disturbed by Short Flows (64 MByte)

0

2

4

6

8

10

12

14

16

18

180 200 220 240 260 280 300 320

Q
u
e
u
in

g
 D

e
la

y
 [

m
s]

Time [ms]

Queuing Delay
Threshold

Packet discard

(a) Slow changes

0

2

4

6

8

10

12

14

16

18

180 200 220 240 260 280 300 320

Q
u
e
u
in

g
 D

e
la

y
 [

m
s]

Time [s]

Queuing Delay
Threshold

Packet Discard

(b) Faster changes

Fig. 7. Transition Behavior

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35
 90

 91

 92

 93

 94

 95

 96

Q
ue

ui
ng

 D
el

ay
 [m

s]

Th
ro

ug
hp

ut
 [%

]

Number of Flows

Queue Length q-95
Queue Length Average

Throughput

(a) Achieved Throughput and Queuing Delays

0

100

200

300

400

500

600

700

800

200 201 202 203 204 205

Q
u
e
u
e
 L

e
n
g

th
 [

kB
y
te

]

Time [s]

Virtual Queue
Threshold

Packet Discard

(b) Length of the Virtual Queue (36 flows)

Fig. 8. Behavior for utarget = 95%, ulow = 94% and upper delay limit 2.5 ms

The work in [6] assesses the operating ranges and the
tunability of the AQMs CoDel and PIE. The authors conclude
that “manual tuning can hardly be avoided” for some use-cases
that lie outside the operating range of the default parameter set.
But even for scenarios within the operating ranges, different
trade-offs between queuing delay and throughput are possible.

These trade-offs can be tuned by altering the target setpoint.
Policy-oriented AQM Steering does exactly this but in an
automatic manner. The authors of [6] also found that adapting
the update interval λ to the actual RTTs might be useful in
some cases. Our mechanism does not tune this parameter,

since the RTTs are usually not known by routers/switches.
Furthermore, GSP (which our implementation is based upon)
does not have such a fixed update interval as CoDel and PIE.

The concept of virtual queues was first introduced as
part of [18]. Based on this concept the AQMs AVQ [19]
and HULL [20] have been developed. HULL uses so-called
phantom queues that simulate queue buildup for a virtual
egress link that runs at a fixed fraction of the actual link
(e.g., 95 %), with the goal to leave “bandwidth headroom”.
HULL is designed to be used in conjunction with DCTCP [21].
AVQ simulates a virtual tail-drop queue with a variable virtual

143

egress rate. The virtual rate is adjusted according to the length
of the physical queue, in order to achieve a certain ingress
rate (≤ 100%). Our approach also uses a virtual queue, if
an upper utilization target is set that cannot be achieved by
operating on the physical queue. It further differs from the
other approaches by using an AQM in order to achieve a good
loss desynchronization in combination with an outer control
loop that regulates the virtual egress rate.

VII. CONCLUSION

Policy-oriented AQM Steering provides an external control
loop that dynamically adjusts the target setpoint of newer
AQMs. Depending on the traffic this can lead either to
lower queuing delays or higher utilization of the bottleneck
link. Without AQM Steering, AQMs provide a trade-off be-
tween link utilization and delay that is hard to determine,
since it changes under different traffic situations. With AQM
Steering a simple to grasp policy can be set, consisting
of: 〈ulow , targetmax〉 and optionally utarget . This makes the
deployment of AQM more predictable and can even improve
the performance, e.g., if traffic patterns change over time or
are different than expected.

As shown in the evaluation, AQMs can cause a significant
drop in link utilization (down to 60 %–80 %) under certain
circumstances. Network providers could, therefore, be reluc-
tant to deploy AQMs. In these cases, higher link utilization
can be attained at the cost of permitting a larger queuing
delay. AQM Steering’s policy allows network providers to
specify how much queuing delay they are willing to trade for
high throughput. But in contrast to large tail-drop buffers (or
statically configured AQMs with high target setpoints), AQM
Steering only permits these delays when necessary. Otherwise,
the delay is reduced to the minimal value that is required
to achieve the desired throughput. In addition to that, AQM
Steering can optionally switch the AQM to a virtual queue,
which allows to specify upper utilization targets. This enables
policies that focus on zero queuing delay by enforcing spare
capacity. The evaluation has shown that the concept works well
for different traffic situations. When traffic patterns change,
AQM Steering requires some time to adapt. But due short-term
and longer-term smoothing, quickly changing traffic situations
do not destabilize the control. Investigation of AQM Steering
in more complex scenarios and with different traffic mixes is
planned as future work.

ACKNOWLEDGMENT

The authors would like to thank Moritz Kunze for his
contributions, thorough and intensive work on the topic, im-
plementation, and evaluation. This work was supported by the
bwNET100G+ project, which is funded by the Ministry of
Science, Research, and the Arts Baden-Württemberg (MWK).
The authors alone are responsible for the content of this paper.

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2063166.2071893

[2] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–63, Sep. 2001.

[3] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Queue,
vol. 10, no. 5, pp. 20:20–20:34, May 2012. [Online]. Available:
http://doi.acm.org/10.1145/2208917.2209336

[4] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A lightweight control scheme to address
the bufferbloat problem,” in High Performance Switching and Routing
(HPSR), 2013 IEEE 14th International Conference on, July 2013, pp.
148–155.

[5] W. Lautenschlaeger and A. Francini, “Global Synchronization Protection
for Bandwidth Sharing TCP Flows in High-Speed Links,” in Proceedings
of 16th International Conference on High Performance Switching and
Routing (IEEE HPSR 2015), Jul. 2015, budapest, Hungary.

[6] N. Kuhn, D. Ros, A. B. Bagayoko, C. Kulatunga, G. Fairhurst, and
N. Khademi, “Operating ranges, tunability and performance of CoDel
and PIE,” Computer Communications, vol. 103, no. Supplement C,
pp. 74–82, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0140366416302717

[7] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 281–292, Aug.
2004. [Online]. Available: http://doi.acm.org/10.1145/1030194.1015499

[8] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on
Router Buffer Sizing: Recent Results and Open Problems,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 2, pp. 34–39, Mar. 2009. [Online].
Available: http://doi.acm.org/10.1145/1517480.1517487

[9] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP LoLa:
Congestion Control for Low Latencies and High Throughput,” in 2017
IEEE 42nd Conference on Local Computer Networks (LCN), Oct 2017,
pp. 215–.218.

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, Oct. 2016.

[11] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys Tutorials, vol. 15, no. 3, pp. 1425–1476, Q3 2013.

[12] F. Baker (Ed.) and G. Fairhurst (Ed.), “IETF Recommendations Regard-
ing Active Queue Management,” RFC 7567 (Best Current Practice), RFC
Editor, Fremont, CA, USA, pp. 1–31, Jul. 2015.

[13] W. Lautenschlaeger, “Global Synchronization Protection for Packet
Queues,” Internet-Draft draft-lauten-aqm-gsp-03, May 2016, work in
progress, https://tools.ietf.org/html/draft-lauten-aqm-gsp-03.

[14] M. Menth and F. Hauser, “On Moving Averages, Histograms, and
Time-Dependent Rates for Online Measurement,” Proceedings of
the ACM/SPEC International Conference on Performance Engineering
(ICPE), Apr. 2017, preprint. [Online]. Available: https://atlas.informatik.
uni-tuebingen.de/~menth/papers/Menth17c.pdf

[15] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
AT&T Center for Internet Research at ICSI, Tech. Rep., 2001.

[16] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The BLUE
Active Queue Management Algorithms,” IEEE/ACM Transactions on
Networking, vol. 10, no. 4, pp. 513–528, Aug 2002.

[17] R. Stanojević and R. Shorten, “Trading link utilization for queueing
delays: An adaptive approach,” Computer Communications, vol. 33,
no. 9, pp. 1108–1121, 2010. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0140366410000897

[18] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, no. 12, pp. 1969–1985, 1999.

[19] S. S. Kunniyur and R. Srikant, “An Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management,” IEEE/ACM Trans.
Netw., vol. 12, no. 2, pp. 286–299, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2004.826291

[20] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 19–19.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228324

[21] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP
(DCTCP),” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp.
63–74, Aug. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1851275.1851192

144

Adaptive Robust Traffic Engineering
in Software Defined Networks

Davide Sanvito, Ilario Filippini, Antonio Capone
Politecnico di Milano

name.surname@polimi.it

Stefano Paris, Jeremie Leguay
France Research Center, Huawei Technologies Co. Ltd

name.surname@huawei.com

Abstract—One of the key advantages of Software-Defined
Networks (SDN) is the opportunity to integrate traffic engineering
modules able to optimize network configuration according to
traffic. Ideally, the network should be dynamically reconfigured
as traffic evolves, so as to achieve remarkable gains in the efficient
use of resources with respect to traditional static approaches.
Unfortunately, reconfigurations cannot be too frequent due to
a number of reasons related to route stability, forwarding
rules instantiation, individual flows dynamics, traffic monitoring
overhead, etc.

In this paper, we focus on the fundamental problem of deciding
whether, when and how to reconfigure the network during
traffic evolution. We propose a new approach to cluster relevant
points in the multi-dimensional traffic space taking into account
similarities in optimal routing and not only in traffic values.
Moreover, to provide more flexibility to the decisions on when to
apply a reconfiguration, we allow some overlap between clusters
that can guarantee a good-quality routing regardless of the
transition instant.

We compare our algorithm with state-of-the-art approaches
in realistic network scenarios. Results show that our method
significantly reduces the number of reconfigurations with a
negligible deviation of the network performance with respect to
the continuous update of the network configuration.

I. INTRODUCTION

Traffic Engineering (TE) [1] plays a crucial role for service
providers since it permits to optimize network performance,
reduce operational costs, and load balance the utilization
of network resources. However, the dynamic nature of the
traffic due to ordinary daily fluctuations and unpredictable
events stirs up the trade-off between optimality of the routing
configuration and network reconfiguration rate. The traditional
approach of service providers is to optimize the routing
considering the ”worst case” traffic condition so as to rarely
reconfigure the network. The resulting overprovisioning leads
to the underutilization of network resources.

Software-Defined Networks (SDNs) [2] provide the needed
flexibility to update more frequently TE policies. Having
a global view of the network status, SDN controllers can
integrate TE algorithms [3]–[5] to continuously optimize the
network with an online twist. As the system evolves, new con-
figurations are applied to the network equipment to optimize
network performance. However, sudden and unpredictable
system changes, like traffic variations, network failures, and
the uncontrolled rate of change, still pose a major challenge
for these methods.

The solutions that have been devised to cope with traffic
variations can be broadly classified into three main classes:
dynamic TE, static TE, and semi-static TE. While different in
the way they calculate network configurations, all techniques
require the use of Traffic Matrices (TMs) periodically collected
by a network monitoring tool. Dynamic TE, like [3], [4], [6],
[7], uses such information to predict the next system state
and compute the corresponding optimal routing configuration
using linear programming [8] or fast approximation algo-
rithms [9]. The accuracy of the prediction highly affects the
optimality of the computed solution while frequent network re-
configurations result in control plane congestion due to the low
speed of flow programming [4] in hardware. In contrast, static
TE, such as oblivious routing [10] and robust routing [11]–
[13], monitors TMs over a long period of time and computes
the TE configuration that minimizes the worst deviation with
respect to the sequence of all optimal configurations. This
class of TE policies keeps the network configuration stable,
but it inevitably suffers from low optimality during most of
the operational time.

Semi-static TE approaches such as [14], [15] combine both
static and dynamic TE to approximate the optimal sequence of
configurations with a limited set of routing solutions computed
over clusters of TMs. Clusters of TMs are formed either by
statically dividing time in different intervals or by finding simi-
larities in the traffic domain. However, the arbitrary splitting of
the time domain results in significant performance loss when
sharp traffic variations are temporally close. Similarly, using
the same routing configuration for TMs that are close in the
traffic domain (i.e., their entries have the same magnitude)
but far in the time domain can lead to frequent network
reconfigurations. More importantly, the controller needs to
decide whether and when to reconfigure. Transitory traffic
fluctuations should be ignored to avoid system oscillations and
the network should be reconfigured only when it is evolving
towards a new state.

In this paper, we study the fundamental problem faced
by SDN controllers of deciding whether, when and how to
reconfigure the network after a traffic evolution. To provide
an answer we study and address the problem of building a set
of robust routing configurations associated to clusters of TMs
that overlaps in time, traffic and routing domains. Time overlap
refers to the amount of time we are able to use a routing
configuration even for TMs that are outside the associatedISBN 978-3-903176-08-9 c©2018 IFIP

cluster with minimal efficiency degradation. Traffic overlap
denotes the similarity in the traffic space of TMs within the
same cluster, whereas routing overlap indicates how similar
routing configurations associated to two different clusters are.

Given the interplay between TM clusters and routing solu-
tions, we decouple the problem into two subproblems, namely
TM clustering and robust routing. To this aim, we propose
Clustered Robust Routing (CRR), an iterative algorithm that
achieves three objectives: 1) covering the entire TM space
so that a feasible routing configuration is available for any
traffic condition, 2) reducing the number of routing changes by
creating a small set of robust routing configurations that can be
used for a minimum duration each time one of them is applied,
and 3) maintaining a minimum time overlap between adjacent
clusters that can be exploited to decide whether to reconfigure
the network. We analyze our algorithm on a realistic network
scenario and compare its performance against state of the art
approaches of the three TE classes discussed above.

This paper is structured as follows: Section II presents the
related work. Section III describes the system model and the
assumptions we made in the formulation of our problem.
Section IV presents the algorithm to build clustered robust
configurations considering the time continuum, the traffic
space and routing similarities. Numerical results are discussed
in Section V. Finally, concluding remarks are presented in
Section VI.

II. RELATED WORK

The simplicity of controlling SDNs has brought back to light
problems like mitigating and scheduling network reconfigura-
tions [16], [17], since service providers are concerned about
possible network outages caused by failures of route updates
or sudden traffic changes. The networking research community
has developed three classes of techniques to handle traffic
change: (i) dynamic TE, which reconfigures the network each
time a new event occurs, (ii) static TE, which uses a single
precomputed configuration that minimizes the worst deviation
to the optimum, and (iii) semi-static TE, which reconfigures
the network at predefined time instants (e.g., twice per day at
noon and midnight) to further improve network performance.
Examples of dynamic TE includes methods like [3], [4],
[6], [7], where sophisticated techniques are used to compute
the best network configuration any time the traffic changes.
However, reconfiguring the network too frequently can affect
its stability, since programming hardware equipment with new
flow rules can take longer than the reconfiguration period [4],
thus causing the overflow of flow rules. Methods that reduce
this burden have been proposed by prioritizing [18] or pre-
filtering [19] network updates. Nonetheless, the computation
of each routing solution is not robust against prediction errors
on the next TM.

One of the first techniques of static TE is oblivious rout-
ing [10], [20], and its recent extension called valiant rout-
ing [21], which randomly selects paths to connect source-
destination pairs using a small subset of preselected inter-
mediate nodes. Being totally oblivious to any traffic infor-
mation, oblivious routing shows high performance loss as

the network size grows. Exploring a partial knowledge of
the traffic can reduce the performance loss. For example,
COPE [13] considers only the most likely TMs for computing
the optimal configuration and add a penalty term to avoid
large deviation for less probable TMs. The technique proposed
in [22] expands the most likely polytope by including TMs
of normal operations in the direction of a predicted anomaly.
The method proposed in [11] introduces different models for
traffic uncertainness by expressing the maximum load that can
be expected over a link in the pipe model or an upper bound
on the traffic originating from a source node and directed to
a destination node in the hose model.

Semi-static TE [14], [15], [23] provides a limited set of rout-
ing configurations with guaranteed performance loss. These
works divide the TM polytope in two subsets according to the
time dimension and compute a robust routing for each subset.
While representing a first attempt to split the TM domain in
multiple parts, these works present several limitations: (i) the
slicing direction is arbitrary, (ii) the number of created subsets
is limited, and (iii) the partition is performed either in the
traffic domain or in the time domain.

Although semi-static TE approaches have the potential to
optimize network performance using a limited set of routing
configurations, traffic, time, and routing spaces/dimensions
should be jointly considered when building clusters in order to
avoid oscillations between routing configurations when TMs
are close in the traffic space but far in the time dimension.
Furthermore, clusters should not be sharply separated, since
instantaneous routing changes are impossible even in SDNs.
This work is a first attempt to address these problems and
decide the best trade-off between reconfiguration rate and
optimality of routing.

III. SYSTEM MODEL

In this section, we present the traffic and routing system
models that we consider in the design of our CRR algorithm.

We consider a system composed of two main stages: (i) a
cluster-maintenance stage where we group TMs into clusters
and compute robust routing configurations over these clusters,
and (ii) a cluster-activation stage where we track the traffic
evolution and reconfigure the network accordingly. The target
is to minimize the Maximum Link Utilization (MLU) over
time, which is motivated in the domain of datacenter intercon-
nection and enterprise networks, where the goal is to minimize
the network congestion.

We model the network infrastructure as an undirected graph
G = (N ,L), where N represents the set of network nodes and
L models the set of links e = (i, j), connecting network nodes
i, j ∈ N . Each link e ∈ L has a limited capacity cij that
represents the maximum amount of traffic that the link can
transmit. The set of active demands, also known as Origin-
Destination (OD) flows, that need to be routed through the
network, is represented as a Traffic Matrix (TM): a |N |× |N |
matrix T = [tij] where each element tij denotes the amount
of traffic transmitted from source node i to destination node j.
Since the traffic evolves over time, we consider a dynamic TM

146

Fig. 1: Clustering of TMs. The solid black line represents the
evolution of the two OD flows in the TM. Each blue point represents
a sampled TM. Dashed ellipsoids denote the clusters of TMs, whereas
triangles identify the corresponding routing configurations.

T (τ) =
[
tτij
]
, where τ denotes the time dimension. We assume

that time is discretized and we have M samples of the TM
(i.e., τ = 1, ...,M). To simplify the notation, TM are usually
represented as a |N |2× 1 demand vector D(τ) = [dτh] where
each element dτh unequivocally corresponds to an element tτij
of the TM.

Cluster maintenance. Fig. 1 graphically illustrates the time
evolution of a TM composed by only two demands, d1 and
d2. The solid line represents the continuous evolution of
the TM, whereas solid dots corresponds to periodic samples
measured by a traffic monitoring system. As illustrated in the
figure, an offline stage splits the TM domain into N clusters,
denoted as Ci, and computes for each subset of TMs a routing
configuration Ri, which is robust against any possible traffic
variation within the cluster Ci. To avoid oscillations between
routing configurations, a cluster Ci is built with a minimum
time length L that results in a minimum utilization of the same
routing configuration Ci. Furthermore, a temporal overlap O
(the gray intersection in Fig. 1) is imposed between two
adjacent clusters Ci and Cj to guarantee the feasibility of the
corresponding robust routing configurations Ri and Rj outside
their clusters. The overlap O provides further robustness
against inaccurate cluster transition and can potentially leave
some time to the real-time SDN controller decision on whether
to reconfigure the network.

Cluster activation. The different precomputed routing con-
figurations are then activated by the SDN controller which
follows the evolution of the traffic matrix. By receiving an
estimate of actual traffic conditions (and possibly a short
term prediction) from the monitoring system, it can even
decide whether to fetch and activate a better robust routing
configuration in switches.

Clearly, the performance of this approach depends on the
size and the number of clusters. Many small clusters result in a
high reconfiguration frequency, which may harms the network
behavior itself. In contrast, too few clusters will provide a low
gain over static-TE solutions (e.g., oblivious routing). This
approach will always lead to a better performance than the

Parameter Description
N Nodes (network devices).
L Edges (network links).
cij edge capacity (in capacity units) (i, j) ∈ L.
dτh rate of OD demand d measured at time τ .
N number of robust routing configurations.
M number of traffic matrices.
L minimum holding time of a routing configuration.
O temporal overlap between two adjacent clusters.

TABLE I: Input parameters of our CRR algorithm.

single-design case, because the network is no longer forced
to always support the worst-case traffic demand. Indeed, the
correct solution will be applied when the corresponding worst-
case (among the possibly many that lie in different regions)
appears.

Furthermore, a sharp boundary between clusters that are
adjacent in the time domain requires an instantaneous reconfig-
uration of the network. For a smooth network reconfiguration
when the TM enters into a new cluster, we compute clusters
with a minimum time overlap, represented by the intersection
of two clusters in Fig. 1.

In the next section, we show how our algorithm, Clustered
Robust Routing (CRR), solves the problem of achieving a
good trade-off between routing stability and optimality by
maintaining a set of routing configurations for overlapping
clusters of similar traffic matrices.

Table I summarizes the notation used throughout the paper.

IV. CLUSTERED ROBUST ROUTING

The CRR algorithm is implemented as a module of the
network controller. It takes as input a set of TMs representative
of the period in which robust routing configurations should be
designed. These TMs can be obtained in several ways: they
can be measurements from past network conditions, or the
outcome of a TM prediction module, or even synthetically
generated. For the sake of clarity, we neglect the effect of
prediction errors in the description of the algorithm, however,
we investigate the impact of inaccurate TMs within numerical
results. The impact is indeed rather limited for realistic error
values because the clustering generates intrinsically robust
solutions. Each TM describes the expected traffic conditions
at specific time instants. Therefore, TMs can be temporally
ordered and the set of TM IDs can be used as time axis. The
result of the algorithm is a set of Routing Configurations (RCs,
denoted as Ri in Fig. 1) and the corresponding clusters of TMs
(Ci in Fig. 1). Each RC will be activated in the network as
soon as the traffic enters the corresponding cluster.

A. Requirements for CRR

The CRR algorithm, shown in Fig. 3, consists in an iterative
clustering and routing process relying on four main points:

a) Routing-based clustering: A TM clustering approach
based on the similarity among the OD demands of each
TM can be highly inefficient. Indeed, since network’s links
have limited capacity, good quality routes can substantially
differ for TMs with similar demands. Since the way traffic

147

Fig. 2: Dimensions considered for the clustering of Traffic Matrices
and computation of routing configurations. The traffic dimension is
in reality multidimensional (one dimension for each OD flow).

is balanced over the network is not captured by the unique
RC used to route the TM cluster, which is based on demand
values, it may lead to high congestion for some TMs.

Things do not improve even if TMs with similar optimum
routing are grouped together to generate a good unique cluster
RC. Indeed, as we will show in Sec.V, this does not provide
the best results. Due to scenario symmetries, different RCs
can provide the same congestion, therefore clustering on the
mere basis of RC topology can be largely suboptimal. Indeed,
since the number of desired clusters in a solution is usually
limited, this approach may waste clusters to separate TMs with
different optimum routings, which could be equivalently well
routed by another unique RC.

In order to better include the routing effects in the cluster
selection, we need to consider the ultimate effect of the
routing, that is the network congestion resulting from applying
a given RC to a given TM. Only TMs that are characterized
by a small congestion with the same RC must be grouped
together into the cluster associated to the specific RC.

b) In-cluster robust routing: Although clustering is based
on routing (i.e., it groups TMs having a similar congestion
with a specific RC), the RC design cannot be strongly cus-
tomized on a specific TM. Indeed, in practice we have to deal
with deviation from the TM input set caused by imperfect
measurements/predictions or even traffic anomalies. Therefore,
we need a robust routing solution to cope with the demand
uncertainty of the clustered TMs.

There are several approaches to robust routing in literature.
The most straightforward solution is to consider the convex
hull of all the discrete TMs and design the routing for the
worst case in this continuous set. However, this approach has a
number of drawbacks as the outcome may be strongly affected
by a particular combination of demands that can be very rare
in practice, thus producing an excessively conservative RC. In
addition, the optimization process can be quite complicated
[20], [24]. Since we assume a set of representative TM to be
available, which represent the most likely or most important
network conditions for the routing optimization process, we
prefer to rely on a discrete space and adopt a multi-TM
robust optimization approach, like those in [25]. A possible
alternative when significant anomalies come into play is the
approach presented in [13], in which the optimization process
still focuses on the set of most representative TMs, while a

bounded penalty gap is guaranteed over the remaining traffic
domain, thus also in case of anomalies. However, a complete
analysis of the anomaly management is out of the scope of
this paper.

c) Routing configuration holding time: Although SDN
provides flexible and efficient tools to dynamically change
network routes, we must pay attention not to change the
network configuration too rapidly, entailing route flapping
problems. Therefore, the CRR algorithm includes for each
activated RC a minimum holding time before reconfiguring.
If the set of considered TMs is a uniform sampling of the
expected traffic conditions, the minimum holding time is
equivalently described by a minimum number of consecutive
TMs in each cluster.

This feature brings in a new dimension in the clustering
problem by adding the time dimension together with routing
and traffic. Figure 2 illustrates graphically the design space
of our algorithm and how the other approaches locate with
respect to our proposal. Exploiting the time continuum, as well
as the traffic and routing, it allows to improve the network
performance and at the same time to reduce the number of
network reconfigurations.

d) Adjacent clusters overlap: The transition of traffic
conditions from those described by the current cluster to those
of a new cluster must be carefully addressed to maintain
a good routing quality. Although the technical route update
process has been thoroughly studied and several SDN-based
consistent update schemes are available [26], [27], a further
fundamental issue is to decide when this update should occur.
Different algorithms can be implemented to decide the best
switching point depending on the past, current and predicted
traffic behavior, considering anticipatory networking aspects
as well. However, the common aspect among them will be an
unavoidable uncertainty about the time to switch. Therefore,
considering an overlap among adjacent clusters is important,
because it guarantees a graceful transition between them. This
means that RCs of adjacent clusters will be reasonably good
with the TMs that are expected to be close to a route transition.
This helps algorithms not to be too much penalized from
suboptimal decisions.

Besides making reconfigurations robust to prediction errors,
the time overlap facilitates the network reaction to traffic
changes. SDN switches can store several RCs, the active one
and a set of RCs potentially useful in the immediate future,
according to traffic predictions. The time overlap allows to
pre-fetch next RCs before reaching the cluster boundary, and
thus, to anticipate reconfigurations (e.g., using TimeFlip [28]).

B. CRR design
In light of the above points, the problem we want to solve

is to find the best assignment of M TMs to N robust RCs
in order to find N TM clusters having a minimum length
of L TMs and an overlap O. Moreover, since TMs’ IDs
are temporally ordered, the solution also provides the best
expected cluster transition instants.

Note that the members of a cluster are required as input of
the in-cluster robust routing, which, in turn is required to drive

148

Fig. 3: High-level view of the proposed CRR algorithm.

the TM clusters formation, through the estimated congestion.
Therefore, this two aspects must be jointly addressed to obtain
an optimal solution. Unfortunately, the problem is strongly
combinatorial and a joint optimization model has revealed to
be very hard to solve. State-of-the-art integer programming
solvers, like Gurobi Solver1 or IBM CPLEX2, could not
provide a solution in reasonable times: small instances of tens
of TMs require several days to get the optimum.

The hardness of the joint problem calls for the development
of a heuristic approach to split the overall complexity in more
affordable subproblems. In this perspective, we propose the
two-step Clustered Robust Routing (CRR) algorithm repre-
sented in Fig. 3. In the first step, a Segmentation Problem
is solved: the best assignment of M TMs to N out of W
given RCs is computed, considering the minimum holding
time constraint and the overlap. In the second step, a Robust
Routing Problem is computed for each of the N clusters, in
order to create new RCs better customized for the selected
TMs. The new RCs are introduced in the set of available RCs
to the Segmentation Problem and the two steps are repeated
for a given number of iterations.

C. STEP 1 - Segmentation Problem
The Segmentation Problem takes in input a set of TMs

T = T (1), ..., T (M) and a set of RCs R = R1, ..., RW . Its
goal is to assign each TM T (i) to a RC Rj such that the overall
association cost δij is minimized and the number of used
RCs is not larger than N . The cost δij can be precomputed
and corresponds to the network Maximum Link Utilization
(MLU)3 when TM T (i) is routed through RC Rj . This creates
a set of N TM clusters and RCs to manage the routing during
the considered time period.

We model the Segmentation Problem as an ILP model based
on two sets on binary variables. Variables xij , i ∈ T , j ∈ R,

1www.gurobi.com
2www.ibm.com/software/commerce/optimization/cplex-optimizer/
3Note that we decided to used MLU as it is a commonly used metric

that directly expresses the network congestion, however the model is general
enough to consider other types of metric

(a) Segmentation
with no overlap

(b) Segmentation
with O = 1

Fig. 4: Segmentation problem, xij matrix

setting the assignment of TM T (i) to the cluster associated to
RC Rj , and variables zj , j ∈ R, indicating with the value 1
that RC j is used to form a cluster. If we visualize the matrix
corresponding to variables xij (see Fig. 4a), the solution of
the problem is a set N row-sequences of 1’s with minimum
length L. These sequences must be unique when appearing in
a column, and correspond to a set of TM clusters associated
to RCs. In order to identify the beginning of each cluster, we
rely on variables yij , i ∈ T , j ∈ R, forward differences of
variables xij . When yij = 1, we can identify the initial TM
of the cluster assigned to RC Rj : T (i + 1). The problem is
fully described by the following ILP model:

[SP] : min.
∑

i∈T ,j∈R
xijδij s. t.: (1)

yij ≥ x(i+1)|T |j − xij , ∀i ∈ T , j ∈ R (2)∑
i∈T

yij ≤ zj , ∀j ∈ R (3)∑
i∈T ,j∈R

yij ≤
∑
j∈R

zj (4)∑
j∈R

xij = 1, ∀i ∈ T (5)∑
i∈T

xij ≥ L · zj , ∀j ∈ R (6)∑
j∈R

zj ≤ N (7)

xij , yij , zj ∈ {0, 1}, ∀i ∈ T , j ∈ R (8)

The objective function (1) minimizes the sum of the associ-
ation costs. The first set of constraints (2)4 force variables
yij to be 1 whenever the forward differences of variables
xij are 1. Constraints (3) force the activation of the variable
zj , associated to RC Rj , if a non-null forward difference is
present in column j, which means cluster Cj is considered in
the solution. Constraint (4) states that the number of non-null
forward differences in the matrix must not exceed the number
of selected RCs. Therefore, together with constraints (3), this
guarantees a unique cluster for each “active” column. The set

4The notation (·)m indicates the modulo-m operator

149

of constraints (5) impose each TM T (i) to be assigned to a
unique RC, while constraints (6) force a minimum number of
TMs associated to RC Rj , which, combined with the previous
constraints imposing a unique and compact sequence of 1’s
within a column, correspond to constrain the minimum cluster
length. Finally, constraint (7) states that no more than N
clusters can be generated.

The set R is initialized by considering W RCs obtained by
the solution of the Robust Routing problem over W sequential
groups of TMs spanning the entire set T . At the end of each
algorithm iteration, the computed RCs are included in this
initial set, this providesR with more refined RCs, which could
be selected in the solution of the Segmentation Problem of the
next iteration.

In order to consider an overlap between adjacent clusters,
formulation SP must be amended to introduce the fact that
up to O TMs beyond the boundaries of the clusters could
be routed with the RC associated to the cluster. We model
this by stating that each of the O TMs in overlap (grey cells
in Fig. 4b) provides a congestion contribution δij that is the
average between the one of its associated cluster and the one
of that in overlap5. The following constraints:

wij ≥ x(i−1)|T |j − xij , ∀i ∈ T , j ∈ R (9)∑
i∈T

wij ≤ zj , ∀j ∈ R (10)∑
i∈T ,j∈R

wij ≤
∑
j∈R

zj (11)

and a new objective function must be introduced in SP:

min
∑

i∈T ,j∈R
xijδi,j +

1

2

∑
i∈T ,j∈R

yij

 ∑
(i−O<k≤i)|T |

δk,j −
∑

(i+1≤k≤i+O)|T |

δk,j

 +

1

2

∑
i∈T ,j∈R

wij

 ∑
(i≤k<i+O)|T |

δk,j −
∑

(i−O≤k<i)|T |

δk,j

(12)

Constraints (9)-(10) define variables wij as backward differ-
ences of xij . Interpreted as the end of the compact row-
sequences of 1’s in Fig. 4, wij must satisfy the same unique-
ness requirements as yij . The new objective function (12)
updates the association cost of TMs in overlap by removing
half of the cost related to the associated cluster’s RC and
adding half of the cost towards the RC of the cluster in overlap.

D. STEP 2 - Robust Routing Problem

Once TMs have been clustered around an RC in STEP 1,
STEP 2 computes a new robust RC R considering the TMs
in the cluster. This will likely provide a better customized
routing. In addition, being a robust routing, it makes CRR
intrinsically robust against noisy TM measurements.

5The model can capture other assumptions by simply changing some of the
coefficients in the formulation.

We compute R as robust RC that minimizes the MLU γmax
measured over network links, (i, j) ∈ L, when the set of TMs
in cluster Cc, denoted as Tc, is routed via R. The TMs in Tc are
characterized by the same demand set H, but different demand
values, varying according to the traffic time evolution. We
express the unique RC via flow variables fhij , which indicate
the amount of demand h flow of every TM in Tc must be
routed along the link (i, j).

The ILP formulation of the Robust Routing Problem is:

[RR] : min. γmax s. t.: (13)

∑
(i,j)∈L

fhij −
∑

(j,i)∈L

fhji =

1 if i = Oh

−1 if i = Dh

0 otherwise

∀i ∈ N , h ∈ H (14)∑
h∈H

dmh · fhij ≤ cij ,∀m ∈ Tc, (i, j) ∈ L (15)

γmax ≥
∑
h∈H d

m
h f

h
ij

cij
,∀m ∈ Tc, (i, j) ∈ L (16)

0 ≤ fhij ≤ 1, ∀h ∈ H, (i, j) ∈ L (17)

Constraints (14) are standard flow conservation constraints for
splittable routing6, with Oh and Dh, respectively, origin and
destination of the OD demand h. Constraints (15) guarantee
that the routing of each demand, with a request of dmh units of
flow in TM T (m), does not exceed the link capacity cij for
any TM. Finally, constraints (16), together with the objective
function, implement a min-max of the standard link utilization
formulation at RHS of (16) over the TMs in Tc.

V. NUMERICAL RESULTS

In order to assess the performance of the proposed algo-
rithm, we consider a daily scenario in which we compare
our CRR algorithm to different routing solutions within the
Abilene Network [29], whose traffic requests are described
by a set of TMs with granularity 5 minutes (288 TMs for
the entire day). Abilene network was one of the first high-
performance backbone networks, connecting 11 cities across
United States. Nowadays, it is one of the very few real data
sets in which network TMs and routing are public available.
We imagine a scenario in which the optimization of clusters
and RCs for the day after is run during the night, on the
basis of daily TM predictions. Unless differently indicated,
we average obtained results over a week and run the algorithm
for 10 iterations. The CRR algorithm has been implemented
in Python, using Gurobi Solver language interface.

A. Clustering approaches comparison

Fig. 5 shows the comparison of different clustering tech-
niques, for the moment we do not consider the minimum
cluster length constraint L and the overlap O. We measure

6We consider here a more general splittable routing because it can be easily
implemented on SDN switches, however the model can be easily modified to
consider unsplittable routing solutions as well.

150

Fig. 5: Performance comparison of different TM clustering and
robust routing approaches.

the performance in terms of ratio of TM-averaged network
MLU with respect to the value achievable by routing each
TM through its MLU-optimum routing, that is, by applying
dynamic TE. On the x-axis, the number of generated clusters
is shown. We tested our CRR algorithm against different
alternative approaches:

• sTE: A static TE solution where a robust routing is
computed over the entire TM set. The result is a single
daily RC and no reconfiguration is required, like in the
case of oblivious routing.

• CritMat: This approach, presented in [15], consists in
clustering TMs according to dominating cluster heads,
which are synthetic TMs including the maximum of each
demand among the TMs grouped into the cluster. The RC
associated to the cluster is the MLU-optimum routing for
the cluster head.

• K-means clustering: Most of the TM clustering ap-
proaches in literature are based on a variant of the
well-known k-means technique. We have applied four
k-means versions considering all combinations of the
following clustering domains (c) and in-cluster robust
routing approaches (r): c.i) clustering in the TM domain
(considering similarity among OD demand values) and
c.ii) clustering in the best-routing domain (considering
similarity among MLU-optimum routing for each TM);
r.i) robust routing applied as in formulation RR, r.ii)
MLU-optimum routing applied to the dominating TM of
each cluster.

We can note how the proposed CRR algorithm outperforms
all other alternatives. The curves’ trend shows that CritMat
dominating TM appears to be over-conservative, as the result-
ing congestion is even worse than that of static TE. Indeed,
the outcome RCs can address such a large set of potential
TMs that their working points are largely suboptimal when
RCs are applied to specific TMs. The k-means approaches
show very different congestion levels. The type of applied in-
cluster robust routing is the main performance driver: RR
formulation provides remarkably better results than relying

Fig. 6: Impact of different minimum cluster lengths on the CRR
performance

on a dominating TM. The impact of the clustering approach,
instead, is limited and its benefit depends on the type of robust
routing strategy subsequently applied.

Except for sTE, however, all the aforementioned clustering
approaches have no constraints on the number of reconfigura-
tions per time interval the network can be subject to. CRR has
been applied with L = 0, CritMat can be shown to produce
many RC changes. Even k-means approaches, although fixing
the number of potential clusters, thus RCs, do not limit how
many times they repeat and do not prevent reconfiguration
bursts, where several RCs change in a short time interval.
Therefore, we need to explicitly provide a minimum cluster
length guarantee to avoid route flapping problems, which, as
we will see, comes at the cost of a small congestion increase.
This guarantee results in a fixed number of transitions, each
separated by the desired length L.

B. Impact of minimum cluster length and overlap

In Fig. 6, we assess the performance of CRR algorithm
when the minimum cluster length constraint is activated with
different values of L. The x-axis shows the number N of clus-
ters in a day, while different curves represent different values
of L. Note that the values of L and N are not independent, as
N clusters are generated in one day, N cannot be larger than
the ratio 24 hours / L (in hours). Therefore curves with larger
L stops at smaller N values. We can see that the minimum
length constraint impacts on the performance of the clustering
algorithm. With realistic N values, the MLU performance ratio
increases from values about 1.02 (still referring to dynamic
TE) to values about 1.06. CRR with N = 8 and L = 36
results in keeping the same routing configuration for at least
3 consecutive hours and changing only 8 times the RC during
the next day.

Focusing on N = 8, the congestion of CRR with a
minimum length L = 1h is 6.3% higher than that in dynamic
TE, which is better than the performance of the closest
alternatives with no time constraints, 6.5%, that of the TM-
domain k-means clustering with robust routing shown in
Fig. 5. Therefore, our proposal, besides guaranteeing strong

151

Fig. 7: Impact of different degrees of overlap on the CRR perfor-
mance

bounds on the level of reconfiguration, allows to even decrease
the network congestion. The quality of the clustering approach
fully compensates the congestion increase caused by the
minimum length constraint.

In Fig. 7, we analyze the performance of the CRR algorithm
varying the degree of overlap O. The figure shows on the
x-axis the minimum length L imposed to the cluster, while
different curves are plotted for some values of O. We can see
the impact of the overlap is significant only for short clusters,
while it becomes quickly negligible when the minimum cluster
length increases. Moreover, note that each TM included in
the overlap provides an overlap extension of 5 minutes on
each side. Therefore, considering O = 1, .., 6 means applying
transition periods from 10 minutes to 1 hour, which we believe
could reasonably include the complete set of meaningful val-
ues in practice, in terms of both uncertainness on the transition
point and time required to anticipate reconfigurations.

C. Impact of prediction error

In the previous sections, we have analyzed the performance
of the CRR algorithm when the clustering and the related RCs
are computed over a set of TMs and applied to the same set.
This corresponds to assume perfect TM prediction and provide
the potential performance achievable by the algorithm. In this

TABLE II: CRR performance when prediction error is considered.
Results are expressed as percentage increase with respect to the ideal
optimum routing.

cluster.
α

0 15 30 45 60

sTE 6.52 7.02 8.19 9.25 10.52

CRR

L=72 4.07 5.13 6.93 8.94 11.09
L=60 4.04 5.23 7.24 9.44 11.19
L=48 3.76 5.06 7.12 9.61 11.79
L=36 3.17 4.55 6.74 9.04 11.33
L=24 2.84 4.50 6.85 9.35 11.93
L=12 2.06 4.29 7.04 10.08 12.28

section, we relax this assumption and analyze the impact of
prediction errors.

In order to reproduce the effect of unideal predictions, we
run the CRR algorithm over a noisy version of the daily set
of TMs to compute clusters and RCs, then apply the RCs
to the original set of TMs, which represent the real traffic
behavior. Each noisy TM version has been obtained from the
original one by adding a uniform relative error [−α, α] % to
every OD demand dmh . The results of these experiments are
shown in Table II, where the performance achievable with
different cluster lengths L and prediction errors α is reported.
Similarly to previous analyses, the performance is computed
as the percentage increase of the average network MLU with
respect to the ideal case of applying dynamic TE in perfect
prediction conditions.

We can clearly note that the performance of CRR is nega-
tively impacted by the presence of prediction error, however
the intrinsic robustness of the clustered approach limits the
performance decrease. Even with large errors, the gap with
respect to the ideal Dynamic TE is within 10-12%. The most
interesting aspect to note is the parameters setting that provides
the best performance, whose outcome is marked in bold in the
table. The results show that the larger the error, the larger
the clusters of the best solution. Indeed, when the quality
of predicted TMs worsens, considering robust RCs computed
over larger sets of TMs provides more robustness to any
variation. A bigger variety of TMs included in the cluster
used to generate a RC allows to better cope with traffic
uncertainness. Taking this to extremes, when we have very
low-quality predictions, no clustering can be helpful, because
the representative set of TMs and the actual traffic will have
little correlation. In these conditions, the Static TE approach,
which builds a single RC considering all possible TMs in a
day, is the best one can apply, as it generates the most robust
RC. On the contrary, however, few and larger clusters lead
to a bigger gap with respect to the dynamic TE, shown in
Figg. 5 and 6, as the generated RCs are more conservative
and far from being MLU-optimal for specific TMs. Therefore,
a trade-off between cluster length and prediction accuracy
exists. In case of good predictions, the size of the clusters
drives the performance, vice versa, if predictions are affected
by large errors, the impact of TM uncertainness completely
overwhelms the effect of cluster sizes.

D. Open issues

This trade-off between cluster size and prediction accuracy
opens a new technical challenge, which we cannot address in
this paper, but appears to be a promising research direction.
Thanks to the SDN paradigm, the controller can collect
quasi-realtime measurements, predict the traffic evolution, and
estimate a-posteriori the prediction error. It can act as an on-
line mechanism able to anticipate the clusters that could be
potentially visited in the near future and could provide the
desired optimality gap with respect to an ideal congestion
level. Moreover, the controller can prearrange a set of robust
RCs derived from TM clusters, which, although referring to

152

the same TM centroid, are characterized by different sizes, i.e.,
robustness levels, so that the system can easily shift through
different RCs when the prediction accuracy suddenly changes,
as in case of anomalies. Accuracy changes can be detected
by comparing link utilizations considered during the clusters’
creation and those actually measured in the real network.
Finally, clusters can be synthetically generated as well, in
order to include potentially severe failures RCs must be robust
against.

The SDN controller must play the main role in real-time
managing the set of available RCs to orchestrate the routing
of the entire SDN network over time by dispatching and
activating the best RCs in each SDN switch. The design of
the algorithm to select the type of generated RCs and the
orchestration strategy is fundamental to provide performance
optimality and full flexibility in front of traffic changes to
advanced Software Defined Networks.

VI. CONCLUSION

In this paper we investigated how robust routing approaches
can be made adaptive in the SDN context. Assuming the
availability of traffic predictions, we designed an off-line
method to split the traffic space into smaller partitions and
build routing configurations that are robust against any real-
time traffic variation within the partition.

The results showed that routing configurations based on
TM clustering can achieve a performance very close to the
optimal routing only if a good clustering domain is chosen.
Our proposal based on the estimation of the congestion caused
by the activation of a given routing outperforms the other
candidate solutions. This good performance is also confirmed
when the clustering is further constrained by technical and
practical issues on the obtained routing configurations, which
we considered in our approach.

Finally, we investigated the behavior of our solution when
the accuracy of traffic predictions varies. It showed an interest-
ing trade-off between cluster sizes and prediction errors that
opens a new research direction for the orchestration of robust
routing configurations over time in SDN.

REFERENCES

[1] N. Wang, K. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Comm. Surveys &
Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in ACM SIGCOMM CCR, vol. 43, no. 4, 2013, pp. 15–26.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined WAN,” ACM SIGCOMM CCR,
vol. 43, no. 4, pp. 3–14, 2013.

[5] M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma, “Intelligent SDN
based traffic (de)Aggregation and Measurement Paradigm (iSTAMP),”
in Proc. IEEE INFOCOM, 2014.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. ACM CoNext, 2011, p. 8.

[7] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with
estimated traffic matrices,” in Proc. ACM IMC, 2003.

[8] K. Murakami and H. S. Kim, “Optimal capacity and flow assignment for
self-healing ATM networks based on line and end-to-end restoration,”
IEEE/ACM Trans. on Networking, vol. 6, no. 2, pp. 207–221, Apr 1998.

[9] C. Albrecht, “Global routing by new approximation algorithms for
multicommodity flow,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 5, pp. 622–632, May 2001.

[10] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal oblivious
routing in polynomial time,” in ACM Symp. on Theory of Computing,
2003, pp. 383–388.

[11] V. Tabatabaee, A. Kashyap, B. Bhattacharjee, R. J. La, and M. A.
Shayman, “Robust routing with unknown traffic matrices,” in Proc. IEEE
INFOCOM, 2007, pp. 2436–2440.

[12] M. Kodialam, T. Lakshman, and S. Sengupta, “Efficient and robust
routing of highly variable traffic,” in Proc. HotNets, 2004.

[13] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: traffic engineering in dynamic networks,” in ACM SIGCOMM
CCR, vol. 36, no. 4, 2006, pp. 99–110.

[14] P. Casas, L. Fillatre, and S. Vaton, “Multi Hour Robust Routing and
Fast Load Change Detection for Traffic Engineering,” in Proc. IEEE
ICC, May 2008, pp. 5777–5782.

[15] Y. Zhang and Z. Ge, “Finding critical traffic matrices,” in Proc. IEEE
DSN, 2005.

[16] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever, “SWIFT:
Predictive Fast Reroute,” in Proc. ACM SIGCOMM, 2017.

[17] S. Brandt, K.-T. Förster, and R. Wattenhofer, “On Consistent Migration
of Flows in SDNs,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[18] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in ACM SIGCOMM CCR, vol. 44, no. 4, 2014, pp. 539–550.

[19] S. Paris, A. Destounis, L. Maggi, G. S. Paschos, and J. Leguay,
“Controlling flow reconfigurations in SDN,” in Proc. IEEE INFOCOM,
2016.

[20] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in Proc. ACM SIGCOMM, 2003.

[21] R. Zhang-Shen, “Valiant Load-Balancing: Building Networks That Can
Support All Traffic Matrices,” Algorithms for Next Generation Networks,
pp. 19–30, 2010.

[22] P. Casas, F. Larroca, and S. Vaton, “Robust routing mechanisms for
intradomain traffic engineering in dynamic networks,” in Proc. IEEE
LANOMS, 2009, pp. 1–10.

[23] W. Ben-Ameur and M. Żotkiewicz, “Robust routing and optimal par-
titioning of a traffic demand polytope,” Intl. Trans. in Operational
Research, vol. 18, no. 3, pp. 307–333, 2011.

[24] W. Ben-Ameur and H. Kerivin, “Routing of uncertain traffic demands,”
Optimization and Engineering, vol. 6, no. 3, pp. 283–313, 2005.

[25] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, and D. Towsley,
“On optimal routing with multiple traffic matrices,” in Proc. IEEE
INFOCOM, vol. 1, 2005, pp. 607–618.

[26] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in!” in Proc.
Work. on Hot Topics in Networks. ACM, 2011, p. 7.

[27] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free con-
sistent data plane update in software defined networks,” in Proc. IEEE
INFOCOM, 2016, pp. 1–9.

[28] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in IEEE IN-
FOCOM, 2015.

[29] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural Analysis of Network Traffic Flows,” ACM
SIGMETRICS PER, vol. 32, no. 1, pp. 61–72, Jun. 2004.

153

An Online Power-Aware Routing in SDN with
Congestion-Avoidance Traffic Reallocation

Adriana Fernández-Fernández∗, Cristina Cervelló-Pastor∗, Leonardo Ochoa-Aday∗, Paola Grosso†
∗Department of Network Engineering, Universitat Politècnica de Catalunya,

Esteve Terradas, 7, 08860, Castelldefels, Spain
Email: adriana.fernandez@entel.upc.edu, cristina@entel.upc.edu, leonardo.ochoa@entel.upc.edu

†System and Network Engineering group (SNE), University of Amsterdam,
Amsterdam, The Netherlands

Email: p.grosso@uva.nl

Abstract—Software-Defined Networks (SDN) can be seen as a
promising alternative to achieve the long-awaited power efficiency
in current communications systems. In these programmable
networks a power-aware mechanism could be easily implemented
leveraging the capabilities provided by control and data plane
separation. For such purpose, this paper proposes a novel solution
minimizing the number of active elements required in an SDN
with multiple controllers and in-band control traffic. In order
to provide a complete and fine-grained strategy, this proposal
comprises two crucial modules: GrIS, a green initial setup and
DyPAR, a dynamic power-aware routing. Besides being compati-
ble with SDN environments without a dedicated control network,
the proposed strategy is able to handle demanding traffic arrival
without degrading the performance of higher priority traffic.
Simulation results show that our heuristic approach allows to
obtain close-to-optimal power savings with differences under 8%.
Moreover, comparison with existing related methods using real
topologies validates the improvements achieved by our solution
in terms of power efficiency and performance degradation
avoidance. For instance, after routing all the incoming traffic, a
reduction of power consumption of up to 26.5% and an increase
of allocated demands of up to 26.7% can be reached by our
solution.

I. INTRODUCTION

Energy consumption concern in communication systems has
currently attracted a great deal of attention from research
community due to the exponential demand growth and the
ever-increasing number of connected devices [1]. According
to [2] by 2025 the global Internet will be responsible for more
than 10% of the world’s electricity consumption. Given that
in practice power consumption of network equipment is not
in proportion with their traffic load, putting unused network
elements into sleep mode (i.e. a low-power state) is an effective
and widely accepted strategy to decrease the consumption of
data networks [3].

In this context, Software-Defined Networking (SDN) is a
very well-suited architecture to perform power-aware routing
and manage the state of unused switch interfaces in a coordi-
nated and centralized way. The basic idea of SDN [4] -control

This work was supported by the Ministerio de Economı́a y Competitivi-
dad of the Spanish Government under project TEC2016-76795-C6-1-R and
AEI/FEDER, UE and through a predoctoral FPI scholarship.

ISBN 978-3-903176-08-9 c© 2018 IFIP

and data planes separation- makes network environments more
manageable. The logically centralized control plane in SDN
provides a global knowledge of the network state information.
Moreover, it is responsible for managing network tasks and
perform device programming. Meanwhile, interconnection de-
vices only follow the rules set by the controller to forward
the traffic. Therefore, the implementation of a power-aware
solution in the control plane is a valuable opportunity to solve
the power consumption problem in data networks, making it
easier than with classical hardware-dependent standards.

Despite consistent efforts to improve the network power
efficiency, power-aware techniques may lead to performance
degradations. Inspired by this reality, this paper introduces a
new power-aware strategy combining a control plane config-
uration with a dynamic routing for an SDN architecture. This
solution dynamically reduces the number of active nodes and
links required to manage changing traffic patterns. Instead
of restricting the potential of power-aware solutions to low-
loaded environments, this work proposes a more fine-grained
strategy minimizing the power consumption while avoiding
the performance degradation of higher priority traffic.

Throughout this work we consider an SDN architecture with
multiple controllers and in-band control traffic [5]. In this
operational mode, links are shared between data and control
plane traffic. Hence, the proposed power-aware routing can be
applied also in cases when implementing a dedicated control
network is not feasible either for physical or cost-related
restrictions. In backbone networks this is a more realistic
scenario since additional links dedicated to directly connect
controllers and forwarding devices, are impractical and cost-
inefficient. Specifically, the major contributions of this work
are as follows:
• An Integer Linear Problem (ILP) is formulated to opti-

mize the number of active nodes and links in SDN with
multiple controllers and in-band control traffic.

• A novel power-aware mechanism is proposed to allocate
traffic demands in real time, reducing power consumption
and performance degradation of higher priority traffic.

• Real topologies, as well as existing related proposals, are
used to validate achieved improvements.

II. RELATED WORKS

Throughout recent years the power consumption of com-
munication networks has been extensively treated and several
solutions focused on reducing the number of active elements
have been proposed. For instance, Bianzino et al. [6] aim
to find the network configuration that minimizes the network
energy consumption, modeled as the sum of the energy spent
by all nodes and links carrying traffic. To achieve this, they
formulated an optimization problem for finding minimum-
power network subsets assuming the existence of traffic level
with known daily behavior. Therefore, an accurate prediction
of incoming traffic is required.

An energy-aware routing and traffic management solution is
proposed in [7] to reduce the energy consumption, determined
as the number of active Open-Flow switches in the network.
For this, a low complexity algorithm is presented using, for
each pair of endpoints, a pre-computed set of shortest paths
to select the route that minimizes the number of switches that
become active after allocating the flow. Although this proposal
allows real-time operation routing flows sequentially, only
low-loaded nighttime traffic is considered, failing to exten-
sively examine the implications of more demanding scenarios.

The authors of [8] presented the design of an Energy Mon-
itoring and Management Application (EMMA) to minimize
energy consumption in SDN-based backhaul networks. They
formulated this problem as a non-linear optimization model
and proposed heuristic algorithms for the dynamic routing of
flows and the management of the resulting link and switch
activity. However, such algorithms were implemented in an
SDN emulation environment with out-of-band control traffic,
limiting their applicability to networks where dedicated links
between the controller and forwarding devices are deployed.

In [9] authors proposed ElasticTree, a network-wide power
manager to save energy in data centers using SDN. This solu-
tion dynamically finds the minimum set of network elements
required by changing traffic loads, while satisfying perfor-
mance and fault tolerance constraints. In this regard, three
strategies were studied, namely Formal Model, Greedy Bin-
Packing and Topology-aware Heuristic. While the first option
presents scalability issues and the second saves less power, the
best performance is obtained by the Topology-aware Heuristic.
However, this approach is specifically conceived for FatTree
networks.

Other approaches about power efficiency in software defined
data center networks are presented in [10], [11]. The authors
of [10] simultaneously optimize the power saving and the
network performance, according to a pre-defined combination
of quality requirements. In [11] different energy-aware routing
strategies, combining common routing and scheduling algo-
rithms, are evaluated and implemented as a OpenNaaS-based
prototype. However, these strategies are only applicable in data
centers and are also incompatible with environments without
dedicated control networks.

Different from the aforementioned works, the aim of this
paper is to provide a power-aware control plane configuration

Fig. 1. Power Model (redrawn from [12]).

combined with a dynamic routing strategy considering an
SDN architecture with multiple controllers and in-band control
traffic. Our approach is also able to handle more demanding
traffic patterns while reducing the performance degradation of
higher priority traffic.

III. POWER MODEL

Power consumption of networking devices is composed by
a static component (due to power consumed by chassis, fans,
line-cards, etc.) and a dynamic one, related to the rate of
traffic flowing through their port interfaces. Ideally, the static
part, also known as the idle component, which represents the
power required by an unused switch, should be null. Then, in
presence of an increasing traffic load, the power consumption
should behave proportionally and linearly grow along with the
traffic increase (line marked as Ideal in Fig. 1). However, this
model differs considerably from the real one (line marked as
Real in Fig. 1). In practice, whenever a device is active it will
consume a fixed amount of power (Pn), irrespective of load
conditions. Additionally, this baseline power is increased by
the number of active ports and the utilization of each port.

In this regard, it has been previously measured that the
amount of traffic handled by port interfaces does not have
a significant effect on device’s consumption [12]. Explicitly,
while most of the power is consumed only by turning the
device on, increasing the port utilization from zero to full load
represents less than 8% of total power consumption [9]. There-
fore, in this paper we consider that the power consumed by a
network node depends on the baseline power and the number
of active ports, both of which represent fixed contribution.

IV. PROBLEM STATEMENT

To formalize the power consumption optimization problem
in SDN, in this section we present its mathematical formu-
lation. The proposed model seeks to optimize the overall
power consumption. To that end, the incoming traffic demands
and the associated required control traffic will be routed
minimizing the number of active network elements. In general,
our model leverages preliminary works presented in [13]–[15]
supporting that forwarding devices are put into sleep mode.

Being a general formulation, multiple controllers as well
as SDN with in-band mode are supported by this proposal.

155

Given the controllers placement, our model also determines the
optimal distribution of switches between controllers in terms
of power efficiency and load balancing.

A. Network Model

In the proposed scheme the network topology can be
modeled as a graph G = (V,E,C), where V , E and C denote
the set of switches, links and controllers respectively. Note
that network nodes can only fulfill one role, i.e. controller or
routing device. Additionally, we use ci,j to denote the capacity
of a link (i, j) ∈ E. Considering F as the entire set of traffic
flowing through the network between any pair of nodes, let D
denote the subset corresponding to data plane communications.
For the control plane, we use T to denote the subset of
communications between controllers and switches, and H
to denote the subset of communications between controllers.
Each flow f ∈ F from source sf to destination tf , has
associated a throughput, denoted by df .

B. Formulation

Considering the entire set of demands fixed and known
in advance, all the optimal control and data paths in terms
of power efficiency can be computed jointly in a global
optimization process. To formulate such optimization problem,
the required variables, objective functions and constraints are
defined as follows:

TABLE I
NOTATION OF BINARY VARIABLES

Name Description
xi,j Indicates whether link i, j is active
yv Indicates whether node v is active
tfi,j Indicates whether link i, j is selected to route flow f

λv,c Indicates whether node v is associated with controller c

The objective function of our model seeks to reduce the
overall power consumption considering the number of active
nodes and links in the network. Consequently, both elements
are integrated in the following expression, where Pp and
Pn denote the power consumption of a port and a node,
respectively.

minimize 2Pp

∑
(i,j)∈E

xi,j + Pn

∑
v∈V

yv (1)

A single controller must be selected to manage each active
forwarding device in the network.∑

c∈C
λv,c = yv ∀v ∈ V (2)

Looking to avoid congested controllers, we set the max-
imum number of forwarding devices that can be associated
with each controller. In this way, active switches are evenly
distributed and the load is balanced among controllers.

∑
v∈V

λv,c ≤

∑
v∈V

yv

|C|

 ∀c ∈ C (3)

A node v ∈ V is active if there is traffic in any of its
incoming or outgoing edges, being N(v) the set of neighbors
of v.

yv ≥
1

2 |F |
∑
f∈F

(∑
u∈N(v)

tfu,v +
∑

u∈N(v)

tfv,u

)
∀v ∈ V (4)

To avoid additional traffic load through network controllers,
data plane communications (i.e. f ∈ D) cannot be routed
through these devices. Furthermore, control traffic between
controllers and switches (i.e. f ∈ T) will not pass through
any other controller that is not the source or target of the
traffic. The same must hold true for communications between
controllers (i.e. f ∈ H). In these constraints we use N(c) to
denote the set of neighbors of a controller c ∈ C and vf to
identify the forwarding device involved in the source/target
pair of traffic flow f ∈ T .

∑
n∈N(c)

tfn,c ≤

0

λvf ,c

0

∀f ∈ D,∀c ∈ C
∀f ∈ T, ∀c ∈ C
∀f ∈ H,∀c ∈ C \ {sf , tf}

(5)

The routing of data plane communications and control traffic
exchange between controllers, follows the traditional flow
conservation constraints.

∀v ∈ V,∀f ∈ D ∪H : (6)

∑
u∈N(v)

tfv,u −
∑

u∈N(v)

tfu,v =

1

−1
0

if v = sf

if v = tf

otherwise

Meanwhile, for the subset of communications between
controllers and switches f ∈ T , these constraints are modified
to assure that only active switches exchange control messages
with its controller. Similarly, the forwarding device and the
controller involved in the source/target pair of traffic flow
f ∈ T , are denoted with vf and cf , respectively.

∀v ∈ V,∀f ∈ T : (7)

∑
u∈N(v)

tfv,u −
∑

u∈N(v)

tfu,v =

yvλvf ,cf
−yvλvf ,cf
0

if v = sf

if v = tf

otherwise

Finally, a link (i, j) is active if it is used by some traffic
flow f ∈ F . Furthermore, the total traffic in each active link
must be less than its assigned capacity.∑

f∈F

tfi,jdf ≤ ci,jxi,j ∀(i, j) ∈ E (8)

Although this model allows the attainment of optimal solu-
tions for the power consumption problem in SDN, it becomes
challenging to solve on large and even medium-scale topolo-
gies. This is because the difficulty of the power-aware routing
problem is known to be NP-Hard [16], so the consumption
of resources and time complexity grow exponentially with the
network size. To overcome this issue, in the next section we
develop a heuristic algorithm.

156

V. HEURISTIC ALGORITHMS

To compute all the routes (i.e. for data and associated
control traffic) using the global optimization model presented
previously, the entire set of traffic demands need to be fixed
and known in advance. Considering this as a limitation for
current dynamic networking environments, in this section
we propose a new approach to support time-variable traffic
requirements. The key idea of this proposal is to fully take
advantage of the high control flexibility given by the dynamic
configuration capabilities and centralized network view of
SDN without needing an accurate prediction of incoming
traffic. In order to allow that nodes are put into sleep mode we
assume network topologies with forwarding devices divided
into two categories: edge nodes, which are connected to some
traffic source/target and transit nodes, which merely route
other nodes traffic.

A. Green Initial Setup (GrIS)

An initial control plane configuration, previous to the data
traffic arrival, is required in order to support the in-band mode
in SDN. This control plane setup is intended to establish
the communication paths between switches and controllers, as
well as between controllers. In this way, when new traffic flows
arrive, switches can send to the controller routing requests
through packet in messages. To do so, in this section we
propose an off-line solution denoted as Green Initial Setup
(GrIS). This component will be statically activated at specific
time instances as a planned operation.

The proposed strategy, shown in Algorithm 1, takes as
inputs the original network topology G with controller place-
ments, the subset of edge nodes S ⊆ V and the control traffic
requirements Rc. The outputs are a reduced graph with the
initially active network elements GA = (V A, EA, C), an array
keeping the controller-switch associations A and the initially
required control paths Pc.

In the first step, the algorithm reduces the number of initially
active nodes using the NET PRUNING function, shown in
Algorithm 2. This method aims to remove as many nodes as
possible, considering as candidates the set of network nodes
that will not be endpoints of incoming demands, denoted in
the pseudocode as N . For each node inside this set of transit
nodes, the function computes its betweenness centrality (Bn),
as a measure of its intermediary role in the network. In the
proposed approach, we use a simplified version of this metric
considering only the shortest paths from each controller to
every switch. In particular, after computing the shortest paths
from each controller as single source, the Bn associated with a
node n is increased for each path containing the node (lines 5-
14). Using these values, transit nodes are sorted and stored in
the list N ′. At each iteration of this list the function attempts
to increase the number of switched-off nodes. A new node is
removed only when in the resulting graph forwarding devices
remain being reachable by network controllers, i.e. at least
one path exists between every controller-switch pair in the
network.

Algorithm 1 GrIS Pseudocode
Require: G,S,Rc

1: G′ ← NET PRUNING(G,S)
2: O ← Get All Admissible Control Paths(G′, Rc)
3: S′ ← S sorted by nodes priority criteria
4: s← First node in S′

5:
∣∣V A

∣∣ , ∣∣EA
∣∣←∞

6: repeat
7: for p ∈ O[s] do
8: Initialize (V A′, EA′, P ′c, A

′, U ′)
9: for u ∈ p \ S do

10: Power Aware Path Selection(O[u])
11: Update (V A′, EA′, P ′c, A

′, U ′)
12: end for
13: for n ∈ L \ f do
14: r = Power Aware Path Selection(O[n])
15: Update (V A′, EA′, P ′c, A

′, U ′)
16: for v ∈ r \ S do
17: Power Aware Path Selection(O[v])
18: Update (V A′, EA′, P ′c, A

′, U ′)
19: end for
20: end for
21: for (c1, c2) ∈ G′ do
22: Power Aware Path Selection(O[c1, c2])
23: Update (V A′, EA′, P ′c, A

′, U ′)
24: end for
25: if

∣∣∣V A′
∣∣∣ ≤ ∣∣V A

∣∣ ∧ ∣∣∣EA′
∣∣∣ ≤ ∣∣EA

∣∣ then

26: V A, EA, Pc, A, U ← V A′, EA′, P ′c, A
′, U ′

27: end if
28: end for
29: if

∣∣V A
∣∣ =∞∨ ∣∣EA

∣∣ =∞ then
30: if s = last node in L then break
31: end if
32: s← Next node in S′

33: end if
34: until

∣∣V A
∣∣ 6=∞∧ ∣∣EA

∣∣ 6=∞
To accomplish this, a temporal graph, denoted as G′, is

created. This graph is used to check the required connectivity
between controllers and forwarding devices. After validating
that the possibility of reaching every node in the network from
any controller is not affected, the considered node is removed
from the resulting graph. This means that these nodes together
with their links are put into sleep mode in the original graph.

After pruning the network, the GrIS algorithm uses the
reduced graph G′ to find the overall set of admissible control
paths which satisfy control traffic requirements Rc (line 2 in
Algorithm 1). As previously stated, these paths do not pass
through any other controller that is not the source or target of
the traffic. Using these computed control paths, a sorted list of
ingress and egress forwarding devices is stored in S′. This list
is sorted in ascending order following two priority criteria:

1) the number of possible controllers to associate with,
2) the number of possible control paths.

157

Algorithm 2 NET PRUNING

Require: G,S
1: G′ ← G
2: N ← V − S . Transit nodes
3: H ← NULL . Removed nodes
4: B ← NULL . Array of betweenness values
5: for n ∈ N do
6: Bn = 0
7: for c ∈ C do
8: SPc ← Set of shortest paths from controller c ∈ C
9: for p ∈ SPc do

10: if n ∈ p then Bn = Bn + 1
11: end if
12: end for
13: end for
14: end for
15: N ′ ← N sorted according to increasing order of B
16: for n ∈ N ′ do
17: Remove from G′ node n
18: if nodes are still reachable by controllers in G′ then
19: Save n in H
20: else
21: G′ ← G
22: Remove from G′ nodes in H
23: end if
24: end for

Going through this list, the algorithm starts satisfying the
most critical cases and the solution can be found with fewer
iterations. The main loop of the Algorithm 1 determines for
each possible control path of the selected node s, the number
of active elements in the network after computing all control
routes. The configuration of paths with fewer active elements
is then selected in this process.

Inside this loop the algorithm first determines the paths be-
tween controllers and forwarding devices. Note that, for each
forwarding device x, O[x] contains admissible control paths
to each controller available in the network. Precisely, paths
selected in this step define one controller for each forwarding
device. Additionally, any time a path between a switch and a
controller is computed, nodes belonging to the control path but
not in S are analyzed by the algorithm. Note that these nodes
are the transit nodes that remained in the resulting graph after
pruning the network. Since they are used to route some traffic,
a control path is also established between them and some
controller. After determining all switch-controller associations,
the algorithm searches the paths between controllers.

In general, the power-aware path selected for every control
pair is the best route between them in terms of minimizing
the number of active elements in the network as long as it
has sufficient link capacity to route the traffic volume, under
the considered Maximum Link Utilization (MLU) constraint.
Additionally, during the selection of one control path between
each forwarding device and one controller, the number of
devices already attached to the controllers is considered in

order to keep a balanced load. Since the set of admissible paths
obtained from the pruned network with a reduced number of
elements is significantly smaller than in the original topology,
the solution can be found with fewer iterations.

If after analyzing all control paths of node s, the algorithm
cannot find a feasible configuration of paths to route all control
and data plane communications, the main loop repeats this
process for the next node stored in S′. This is done until the
solution is found or until all forwarding nodes are analyzed,
i.e. when the algorithm breaks without a solution. Note that
this last option occurs when, given a controllers placement,
an admissible configuration for controller-switches association
could not be found or when the network has not sufficient
capacity to meet the demand requirements under established
constraints.

B. Dynamic Power-Aware Routing (DyPAR)

When a new traffic demand arrives, a routing request is
sent from the input node to its associated controller using
the previously computed path between both devices. Based on
its global knowledge of the network topology, this controller
calculates the required data path minimizing the number of
elements that need to be activated for this connection request
and creates the flow forwarding rules. The proposed dynamic
power-aware routing, denoted as DyPAR and shown in Algo-
rithm 3, performs in essence three crucial functions:

1) Power-aware data and control path selection;
2) Performance-aware data path selection;
3) Congestion-aware traffic reallocation.
For each incoming demand d, the algorithm starts trying

to get the set of admissible data paths across the current
active topology. This is done considering that admissible data
paths do not pass through any controller in the network. If
several paths were found, the one with the highest remaining
available link capacity is selected. In this way, the number of
future requests that can potentially be accommodated over the
currently active paths is increased. Then, traffic is allocated
and links utilization are updated.

On the other hand, if no admissible data path was found to
route the incoming traffic across the currently active topology,
the original network graph is then considered by the algorithm.
Since the now determined candidate routes will imply the
use of additional network elements, the data path minimizing
the number of active network elements is selected to carry
the demand. After updating the active topology and links
utilization, a loop is used to establish the required control plane
communications for each added node along the data path. In
the same way, the algorithm first considers the currently active
topology to set the required control path with some network
controller and the entire network in case of failing the initial
attempt.

In case of incoming traffic rates exceeding the remaining
available network capacity (line 19 to 21), the algorithm con-
siders all data paths in the original network without taking into
account the capacity restrictions, but keeping that data plane
communications cannot be routed through network controllers.

158

Algorithm 3 DyPAR Pseudocode
Require: G,GA, Pc, A, U, d

1: Pd ← Get Admissible Paths(GA, d)
2: if Pd 6= Null then
3: pd ← Lest loaded path in Pd

4: Update U after routing pd
5: else
6: Pd ← Get Admissible Paths(G, d)
7: if Pd 6= Null then
8: pd ← Power Aware Path Selection(Pd)
9: Update GA, U after routing pd

10: for node n added to GA by pd do
11: Pc ← Get Admissible Paths(GA, n, C)
12: if Pc = Null then
13: Pc ← Get Admissible Paths(G,n,C)
14: end if
15: pc ← Power Aware Path Selection(Pc)
16: Update GA, U,A after routing pc
17: end for
18: else
19: Pd ← Get All Paths(G, d)
20: pd ← Performance Aware Path Selection(Pd)
21: Update U, T after routing pd
22: end if
23: BL← Link with maximum load
24: F ← Demands established through BL
25: CONGESTION AWARE REROUTING(GA, F,BL,U)
26: end if

Then, the algorithm performs a data path selection based on
reducing the performance degradation incurred. More in detail,
the algorithm selects the data path inside this group whose con-
gested links are less used by previously established demands.
The reason is that, to allow the new traffic flow, the capacity
remaining on those links, after allocating the QoS sensitive
demands and control traffic, will be fairly divided between the
involved lower-priority demands. Rates beyond this resulting
throughput will be reduced and traffic will be handled on a
”best-effort” basis. In this way, the proposed algorithm can
efficiently handle bursty traffic and accommodate rates that
exceed the remaining available capacity without affecting the
QoS sensitive traffic if the network is not heavily loaded.

Every time a new network element is added to the active
topology, the algorithm tries to alleviate the congestion level
on the network. To accomplish this, after identifying the
bottleneck link and the group of traffic flows going through
this link, a CONGESTION AWARE REROUTING is performed.
This function, described in Algorithm 4, starts creating a
temporal graph G′′ where the most loaded link is removed.
Additionally, currently established demands sharing the most
loaded link are sorted in decreasing order of rate requirements
with the aim of reducing the congestion after rerouting the
fewer number of connections. In order to avoid frequent
reallocations of a traffic flow and mitigate related negative
implications, a time threshold can be easily included to select

Algorithm 4 CONGESTION AWARE REROUTING

Require: GA, F,BL,U
1: Current MaxU ← U [BL]
2: G′′ ← GA

3: Remove BL from G′′

4: F ′ ← F sorted by decreasing order of flow rate
5: for established demand f in F ′ do
6: P ← Get Admissible Paths(G′′, f)
7: p← Congestion Avoidance Path Selection(P)
8: MaxUp ← Maximum link utilization in p
9: if p 6= None ∧MaxUp < Current MaxU then

10: Reroute f and associated control traffic
11: Update U and Current MaxU
12: end if
13: end for

only demands that have been allocated long enough over the
current path. Using the residual graph a new set of admissible
paths is obtained for each involved traffic flow. Then, the
function looks for a path with lower load values trying to
leave more resources available for future demands. A traffic
flow is reallocated only when a feasible path is found and the
MLU in the network is reduced. At the same time, the required
control paths are updated.

Since the proposed approach is conceived for dynamic
traffic environments, the set of established demands will
be constantly checked. For those connection requests whose
holding times have expired, the algorithm performs a demand
removal, which means that their assigned paths are released
and resources occupied by these routes become available
again. Consequently, network elements used only by com-
pleted traffic demands will be then put into sleep mode.

VI. PERFORMANCE EVALUATION

To assess the performance of the ILP model, we used the
linear programming solver Gurobi Optimizer [17]. Meanwhile,
heuristic algorithms were implemented using the programming
language Python. All computations were carried out on a
computer with 3.30 GHz Intel Core i7 and 16 GB RAM.

A. Simulation Scenario

1) Network Topology: We conducted our simulations using
real-world network topologies collected from SNDlib [18],
considering each router in the network as an SDN node or
as a controller placement. Specifically, in order to assess the
effectiveness of the proposed scheme we use three topologies
of different sizes. These networks are: Nobel-US (14 nodes,
21 links), Geant (22 nodes, 36 links) and Cost266 (37 nodes,
57 links). To allow the possibility of putting network nodes
into sleep mode, different scenarios were considered varying
T , which represents the percentage of forwarding devices that
will not generate or receive traffic. According to this value,
for each network topology we have selected as transit nodes
the devices with the highest degree centrality as in [6].

159

2) Controllers Placement: Being the controller placements
out of the scope of this paper we assume as preferred lo-
cations the ones minimizing the worst-case mean latencies.
More precisely, we compute the mean propagation latency
between each pair of nodes and associate each admissible
location with the maximum average value involving it. Then,
according to the number of controllers considered for each
simulation instance, we place the controllers at node locations
with smaller associated latency values. Note that a controller
placement is admissible when the assumptions established in
this proposal to avoid the routing of additional traffic load
through network controllers can be kept (i.e. the network graph
without any controller remains being strongly connected).

3) Traffic Patterns: Apart of the real static traffic matrices
obtained from the topologies database in [18], we also consider
a dynamic scenario where connection requests arrive with
exponentially distributed inter-arrival and holding times taking
different mean values from the sets [0.2, 1, 5] and [100,
150, 200], respectively. Accordingly, a traffic flow is gener-
ated between each pair of edge nodes (i.e. network devices
which do not act as controllers or transit nodes). To evaluate
the power savings and performance degradations considering
increasing loads, for each network topology we considered
every pair of edge nodes with an initial randomly assigned
data rate and computed the associated shortest paths. We
then identified the most loaded link from which we derived
a scaling factor. Lastly, the initially assigned values were
multiplied by this scaling factor to obtain the corresponding
data rates for each incoming demand (see [19]). This was done
considering different values of the over-provisioning factor (α)
to further evaluate the implications of varying traffic load. We
assume an average control traffic rate of 1.7 Mbps [20].

4) Power Values: Based on the power consumption behav-
ior of data networks explained in Section II, we characterize
the power consumption of a forwarding device using the 3:1
idle:active ratio given in [9]. This proportion, obtained from
measurements on real switches, assigns 3W of power for each
idle port of a switch and 1W extra when the port is active.
Thus, power consumption Pn of a idle forwarding device n can
be computed as 3D(n) where D(n) denotes the node degree
and Pp = 1W. Null power consumption is assumed when the
node is put into sleep mode.

B. Optimal vs. Heuristic Solutions

To assess the suitability of the proposed solution we start
evaluating the performance of the heuristic algorithms against
the optimal ILP model, using the Nobel-US and Geant topolo-
gies with traffic matrices provided in [18]. This comparison is
illustrated in Fig. 2 for different amount of controllers and per-
centage of transit nodes. Power savings are computed accord-
ing to the expression (Overall Pw−Pw X)/Overall Pw,
where Overall Pw =

∑
n∈V Pn+2Pp |E| and Pw X is the

power consumption achieved by the considered approach.
In Fig. 2 power savings of up to 35% can be reached by our

optimization model in both topologies. Moreover, the heuristic
approach allows to obtain close-to-optimal power savings with

Fig. 2. Power savings in the Nobel-US and Geant topologies as a function
of controllers amount, varying the percentage of transit nodes (T).

differences under 4% (Nobel-US) and 8% (Geant). It is also
observed in both networks that lower savings are achieved
when the percentage of transit nodes decrease from 50% to
10%. This behavior is expected given that with fewer transit
nodes a smaller number of forwarding devices can be put into
sleep mode, which yield the mayor contribution to the attained
power savings. Additionally, with fewer transit nodes a higher
number of demands are handled, thus more paths need to be
established to accommodated such traffic. On the other hand,
increasing the number of controllers implies in some cases a
reduction in the power savings.

C. Assessment of Power Saving Potential

Due to the computational complexity of the exact model
in networks similar in size or larger than Geant (see [15]
for similar running time values), in what follows we use
our heuristic algorithms. This is done taking into account
a dynamic scenario with connection requests generated fol-
lowing the procedure previously explained. Several test were
conducted and average values have been determined with a
margin error less than 5.5% in the three considered networks,
estimated by running our algorithm 10 times with different
prime number seeds on each traffic configuration instance.

In terms of average running time of the algorithms, the
off-line GrIS module requires around 39 ms (Nobel-US),
0.25 s (Geant) and 283 s (Cost266). Meanwhile, the DyPAR
algorithm takes always less than 6.4 ms (Nobel-US), 16.5 ms
(Geant) and 282.6 ms (Cost266), for all the considered traffic
patterns. These values reveal the suitability of the proposed
strategy for real-world deployments and its adequate scalabil-
ity in terms of network size and traffic load. Due to space
limitation, we may focus our attention on some specific traffic
pattern configuration, but the general conclusions derived from
performed evaluations hold for all the considered values.

In addition, in order to evaluate the benefits of our proposal
we compare the performance of the proposed algorithms with
other two existing energy-aware routing approaches presented
in related works [7] and [8], referred to here as SP and EMMA,
respectively. As we are considering an in-band SDN, required
control plane communications will be also established by these

160

two approaches. At the same time, shortest paths used by SP
and EMMA are computed holding restrictions established to
avoid additional traffic load through the network controller (i.e.
data traffic cannot be routed through this device). On the other
hand, we set the time threshold for demands reallocation (half
of connection expected duration) and the number of transit
nodes (T = 50%) as in [8] for the three algorithms used in
this comparison. Given the lack of support in SP and EMMA
for network environments with multiple controllers we only
consider the case of having one centralized network controller.
However, the derived conclusions are general and a similar
behavior is expected in case of having multiple controllers.

Fig. 3 shows the power consumption achieved by the
three algorithms considering different topological scenarios
and over-provisioning factor (α). These results correspond
with an average arrival time of 0.2 demands/s and a mean
holding time of 100 s, but similar values have been obtained
for all the considered traffic patterns. Given the initial control
plane configuration performed by the GrIS module, in the
three considered topologies the other two methods exhibit
a better behavior at the beginning of simulations. However,
after allocating few demands more power can be saved by our
approach. As it is shown, in terms of consumed power, DyPAR
outperforms SP in all cases and it is generally better (in some
cases just slightly better) than EMMA. For instance, after rout-
ing all incoming traffic, DyPAR attains power consumption
reductions of up to 26.5% and 19.4% with respect to SP and
EMMA, respectively. The reason is that SP only uses pre-
computed shortest paths to allocate the incoming traffic, while
EMMA also performs a power-aware rerouting any time the
active topology changes in order to find better paths for already
allocated flows. On the other hand, power improvements
achieved by our proposal are consequence of the combined
GrIS/DyPAR operation where a minimum network subset is
initially activated and new network elements (nodes and links)
are only added when the incoming demand cannot be allocated
on the currently active topology.

D. Performance Degradation Avoidance

These power savings are only valid if the performance of
QoS sensitive demands is not compromised. Moreover, to
avoid overloaded networks a capacity reserve is typically set.
So far, we had not considered this capacity margin, but now
we analyze how the number of allocated demands is impacted
when facing a more demanding traffic pattern and in presence
of a MLU constraint. In this evaluation we set the average
arrival time to 5 demands/s and the mean holding time to
200 s, while keeping the over-provisioning level equal to 1,
since this represents the most demanding of the considered
traffic patterns for the heuristics and the most critical from
the performance degradation perspective.

Fig. 4 shows the percentage of demands that can be allo-
cated by DyPAR, EMMA and SP in Nobel-US and Geant us-
ing different values of MLU. As it shown, DyPAR is able to re-
duce the blocking rate with respect to the other two approaches
as a result of the CONGESTION AWARE REROUTING per-

(a) Nobel-US topology.

(b) Geant topology.

(c) Cost266 topology.

Fig. 3. Power consumption in the three topologies with one controller as a
function of traffic arrival, varying the over-provisioning factor (α).

formed by this solution. In particular, while only negligible
blocking rates are attained by our approach (less than 1.2%),
up to 7 and 12 demands are blocked by SP and EMMA,
respectively. SP performs better than EMMA given that in
case of having more than one candidate route this algorithm
selects the one leaving more available link capacity.

Intuitively, the capacity to successfully allocate the incom-
ing traffic will not only be a result of the performed routing,
since it is also related to the considered topology. In network
topologies with more path redundancy a higher number of
requests can potentially be accommodated. This difference can
be noticed between Nobel-US and Geant, where an increase of
allocated demands of up to 26.7% and 15.6% can be reached,
respectively. Cost266 is not shown in Fig. 4, since a complete

161

(a) Nobel-US topology. (b) Geant topology.

Fig. 4. Number of allocated demands with one controller as a function of traffic arrival, varying the MLU.

routing was always achieved in this topology by the three
compared algorithms under the considered traffic patterns and
MLU levels.

VII. CONCLUSION

In this paper we proposed a power-aware strategy that re-
duces the number of active nodes and links used to handle the
incoming traffic suitable for SDN environments with in-band
control traffic and multiple controllers. To achieve such goal,
we first provided a link-based formulation of the optimization
problem, integrating the routing requirements for data and con-
trol traffic. For large-scale topologies a heuristic approach is
conceived combining a static control plane configuration with
a dynamic power-aware routing. Besides being compatible
with SDN environments without a dedicated control network,
this strategy is able to handle demanding traffic arrival without
degrading the performance of higher priority traffic. Through
simulations using real-world topologies, we have validated
that our heuristic approach allows to obtain close-to-optimal
power savings, with differences under 8%. Furthermore, our
proposal achieves better results in terms of power consumption
and number of allocated demands than two existing related
algorithms. For instance, after routing all incoming traffic,
a reduction of power consumption of up to 26.5% and an
increase of allocated demands of up to 26.7% can be reached
by our solution. Lastly, it is important to emphasize that to
exploit the reported benefits of our approach, fast switching-on
technologies, allowing quick responses and low reconfigura-
tion times between sleeping modes, are required for practical
implementations. In the same way, additional criteria to ensure
the capability of the network to quickly react in case of
suddenly failures should be further analyzed. Therefore, the
inclusion of restoration mechanisms in order to improve the
fault tolerance capacity of our approach will be an important
future task.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2016–
2021,” White Paper, Cisco, Sep. 2017.

[2] R. S. Tucker, “Energy Consumption in Telecommunications,” in Proc.
Optical Interconnects Conference, May 2012, pp. 1–2.

[3] M. Gupta and S. Singh, “Greening of the Internet,” in Proc. ACM
SIGCOMM, 2003, pp. 19–26.

[4] D. Kreutz, F. M. Ramos, P. Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[5] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Automatic Bootstrapping of OpenFlow Networks,” in Proc. IEEE LAN-
MAN, Apr. 2013, pp. 1–6.

[6] A. P. Bianzino, C. Chaudet, F. Larroca, D. Rossi, and J. L. Rougier,
“Energy-Aware Routing: A Reality Check,” in Proc. IEEE GLOBECOM,
Dec. 2010, pp. 1422–1427.

[7] B. Özbek, Y. Aydoğmuş, A. Ulaş, B. Gorkemli, and K. Ulusoy, “En-
ergy Aware Routing and Traffic Management for Software Defined
Networks,” in Proc. IEEE NetSoft, Jun. 2016, pp. 73–77.

[8] S. S. Tadesse, C. Casetti, C. F. Chiasserini, and G. Landi, “Energy-
Efficient Traffic Allocation in SDN-basec Backhaul Networks: Theory
and Implementation,” in Proc. IEEE CCNC, Jan. 2017, pp. 209–215.

[9] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks,” in Proc. USENIX NSDI, 2010.

[10] F. A. Moghaddam and P. Grosso, “Linear Programming Approaches for
Power Savings in Software-Defined Networks,” in Proc. IEEE NetSoft,
Jun. 2016, pp. 83–87.

[11] H. Zhu, X. Liao, C. de Laat, and P. Grosso, “Joint Flow Routing-
Scheduling for Energy Efficient Software Defined Data Center Net-
works: A Prototype of Energy-Aware Network Management Platform,”
Journal of Network and Computer Applications, vol. 63, pp. 110–124,
2016.

[12] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A Power
Benchmarking Framework for Network Devices,” in Proc. IFIP-TC,
2009, pp. 795–808.

[13] A. Fernández-Fernández, C. Cervelló-Pastor, and L. Ochoa-Aday, “A-
chieving Energy Efficiency: An Energy-Aware Approach in SDN,” in
Proc. IEEE GLOBECOM, Dec. 2016, pp. 1–7.

[14] ——, “Energy-Aware Routing in Multiple Domains Software-Defined
Networks,” ADCAIJ, vol. 5, no. 3, pp. 13–19, Nov. 2016.

[15] ——, “Energy Efficiency and Network Performance: A Reality Check
in SDN-Based 5G Systems,” Energies, vol. 10, no. 12, Dec. 2017.

[16] F. Giroire, D. Mazauric, J. Moulierac, and B. Onfroy, “Minimizing
Routing Energy Consumption: From Theoretical to Practical Results,”
in Proc. IEEE/ACM GreenCom, Dec. 2010, pp. 252–259.

[17] Gurobi Optimizer (Version 7.5). [Online]. Available: http://www.gurobi.
com/

[18] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0-
Survivable Network Design Library,” Networks, vol. 55, no. 3, pp. 276–
286, 2010.

[19] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing ISP Network
Energy Cost: Formulation and Solutions,” IEEE/ACM Trans. Netw.,
vol. 20, no. 2, pp. 463–476, 2012.

[20] J. Li, J.-H. Yoo, and J. W.-K. Hong, “Dynamic Control Plane Manage-
ment for Software-Defined Networks,” International Journal of Network
Management, vol. 26, no. 2, pp. 111–130, 2016.

162

Proactive Rerouting in Network Overlays
Reuven Cohen Yuval Dagan Gabi Nakibly

Dept. of Computer Science
Technion – Israel Institute of Technology

Haifa, Israel

Abstract—Virtual overlay network technology provides impor-
tant benefits to large data centers and to service providers. These
benefits include traffic isolation and ease of service provisioning.
When the underlying network supports traffic engineering, tun-
neling brings another important benefit: the ability to control
the exact route of all packets without handling each independent
flow. This paper addresses the problem of rerouting when the
core network supports traffic engineering. We introduce the novel
concept of proactive (time-driven) rerouting, which we distinguish
from the well-known concept of reactive (event-driven) rerouting.
One important advantage of proactive rerouting is reducing the
communication between the core network controller and the edge
network controller. Another advantage is that new flows do not
have to wait before they are admitted into a rerouted tunnel.
Unlike a reactive rerouting algorithm that knows which tunnel
has to be rerouted, a proactive rerouting algorithm does not
receive as an input the identity of a specific tunnel. Thus, its main
goal is to predict which tunnel to reroute in order to increase
the probability that future flows will be accommodated. Our
main contribution is the development of a proactive rerouting
algorithm that performs very well, sometimes even better than
the reactive algorithms.

I. INTRODUCTION

Software defined networking (SDN) and network virtualiza-
tion use tunneling as a means of communication. Tunneling
is used in the building of virtual overlay networks, which are
known to better support virtual machine (VM) provisioning, to
enable scalability and to improve automation. Virtual overlay
network technology provides benefits to large data centers, the
most important of which is traffic isolation for multi-tenancy.
Another important benefit is ease of VM provisioning, because
a VM can be migrated to a new subnet without changing its IP
address or other network-dependent attributes. However, when
the underlying network is based on a virtual circuit technology,
such as MPLS, tunneling brings yet another important benefit:
the ability to control the exact routes of the data packet, a
process also known as traffic engineering, without handling
each independent flow.

In a network overlay, also known as “overlay SDN,” a
packet is encapsulated inside another packet. The encapsulated
packet is then forwarded along the route determined by the
encapsulating header, until it reaches the end of tunnel, where
it is de-encapsulated. Many different tunneling protocols are
used today, including MPLS, VXLAN, NVGRE, STT and
NVO3. The idea is that tunnels are built along routes with

This research was partially funded by the Office of the Chief Scientist of
the Israel Ministry of Economy under the Neptune generic research project.
Neptune is the Israeli consortium for network programming.

core switches
ingress
edge

switch

egress
edge

switch

source
host

dest
host

controller
fabric

edge
controller

Fig. 1. The considered network architecture, as proposed by [2]

available bandwidth and flows are routed over these tunnels
while taking advantage of the network resources reserved for
their tunnels. The combination of SDN with MPLS has been
identified by [2] as the best way to bring SDN into the carrier
networks.

Figure 1 shows the three components of the considered
network as described in [2]: hosts, edge switches, and the
core fabric. The core and the edge are controlled by separate
controllers: the edge controller handles the interface between
the operator and the network, whereas the core controller is
responsible for building tunnels and allocating resources to
them.

The core network controller is responsible for creating new
tunnels, each of which may contain thousands of flows at
any given time. Once a tunnel is ready, the admission of new
flows into it is the responsibility of the edge controller. These
two controllers sometimes need to interact, as they do, for
example, when the edge controller wants to admit a new flow
but there is no tunnel with enough available bandwidth. The
interaction between the two controllers can be a bottleneck in
the network. We therefore seek to minimize it by requesting
that the core controller maintain the tunnels without receiving
explicit requests from the edge controller. This is the rationale
behind the proactive algorithm presented later on.

Consider a pair of nodes (s, d). Let the tunnel between them
be t(s, d). A default tunnel is usually established over the
shortest path with sufficient resources between s and d (i.e.,
the shortest path after ignoring the links without sufficient
resources), but it can be established over any other path as
well. When t(s, d) runs out of resources, the edge controller
cannot admit new flows into it. This controller communicates
with the core network controller and requests that additional
resources be allocated to this tunnel. If additional resources
cannot be allocated, the only way to admit additional flows is
either by building a new tunnel or by moving the tunnel to a
new path, a process also known as rerouting. The advantage to
rerouting of tunnels is that all the already admitted flows areISBN 978-3-903176-08-9 c© 2018 IFIP

rerouted together with the tunnel, with no additional per-flow
overhead [7].

Rerouting is preferable over creating additional tunnels for
several reasons:

1) Every tunnel requires expensive forwarding entries in the
network switches.

2) Every tunnel needs to be protected against failures [6].
3) With many tunnels between every pair of nodes, band-

width utilization decreases due to a lower multiplexing
ratio (a single 10Gb/s tunnel can be better utilized than
10 1Gb/s tunnels).

This paper addresses the problem of tunnel management and
rerouting when the core network controller can determine the
exact route over which every tunnel is established. Rerouting
schemes have been extensively studied in the context of virtual
circuit technologies, such as ATM, WDM, and MPLS. While
most works on rerouting have focused on restoration following
a link or node failure [7], [6], [19], [22], there is also extensive
work on rerouting for throughput maximization[10], [27], [16],
[25], [3], [14], [26]. The main difference between these works
and the present work is that they all assume exact knowledge
of the flows introduced into the network and of the flows
that cannot be accommodated. Thus, they are all reactive.
In contrast, the SDN core controller is not directly aware
of the flows introduced into the network. Thus, it does not
know about specific routing failure events. Such a controller
can therefore use only proactive rerouting algorithms, which
require no exact knowledge about how current flows are
routed.

An important advantage of proactive rerouting is that it re-
quires no communication between the two controllers. Another
important advantage is that new flows do not have to wait
for rerouting before they are admitted into a tunnel, because
it alleviates congestion in hot-spots before the appearance of
new flows.

Our key contribution is the distinction between reactive
(event-driven) and proactive (time-driven) reroutings. With
reactive rerouting, a tunnel may be rerouted by the core
network controller only after the edge controller fails to admit
a new flow into the network due to lack of bandwidth in the
existing (default) tunnel between the corresponding end nodes.
With proactive rerouting, the core controller is periodically
invoked in order to replace the tunnels in the network such
that the likelihood that the edge controller will fail to admit
future data flows is minimized. We present algorithms for each
model, in order to find the one that yields the best trade-
off between the number of reroutings and the core network
throughput.

The rest of the paper is organized as follows. Section III
describes an algorithm for proactive rerouting. Section IV
describes several algorithms for reactive rerouting. Section V
presents simulation results for the various algorithms. Finally,
Section VI concludes the paper.

II. RELATED WORK

This paper is largely motivated by recent works that show
the potential of combining SDN with MPLS. In [2], the
authors suggest that a network fabric should be included as
an architectural building block within SDN. They also identify

the key properties for these fabrics: separation of forwarding
and separation of control. They suggest that this separation
would require an “edge” version of OpenFlow, which is much
more general than the legacy OpenFlow, and a “core” version
of OpenFlow, which resembles a slightly expanded version of
MPLS label-based forwarding.

The benefit from using an overlay SDN is also discussed
in [12]. The authors indicate that SDN has been successfully
applied to data centers and campus networks but it has
had little impact in the fixed wireline and mobile Telecom
domain. They propose using “vertical forwarding” (tunneling)
for extending SDN so that it can tackle the challenges of the
Telecom domain. They also claim that tunneling enables flow-
based policy enforcement, mobility and security.

Tunnel rerouting has been explored mainly in the context of
virtual circuit technologies such as ATM [5], [7], MPLS [6]
and WDM [21], [18]. It is usually used either when the original
tunnel fails or does not have sufficient bandwidth for new
flows. In [20], a “fast reroute” scheme is proposed in the
context of MPLS. The main idea is to build a predefined
bypass for each switch or link along the tunnel. When a switch
learns that its upstream link or upstream neighbor on a given
tunnel has failed, this switch can immediately forward the
traffic along the pre-established bypass. The main advantage
of this scheme is its very fast reaction to failures, thereby
minimizing packet loss. However, this scheme is expensive
from a management perspective, because it requires many
bypasses for each tunnel, and from a bandwidth perspective,
because bandwidth must be reserved in advance for each
bypass.

In [6], the bandwidth cost of fast reroute was compared
to the bandwidth cost of other rerouting schemes. This paper
presents a comprehensive study of restorable throughput max-
imization in MPLS networks. One of its conclusions is that
if the goal is to maximize revenue, fast reroute (referred to
as “local recovery” in [6]) should be the recovery scheme of
choice.

In [4], the authors study four rerouting algorithms to de-
termine how the characteristics of the underlying network
topology might affect their performance. They found that when
the average node degree is small, most common practices for
route placements, such as the shortest path algorithm, yield
good performance in terms of the blocking ratio and that there
is probably little advantage to rerouting. But when the average
node degree increases, so does the number of available paths,
and rerouting tends to improve the performance.

A recent line of research deals with rerouting of connections
in elastic optical networks to alleviate bandwidth fragmenta-
tion [28], [24], [29]. Elastic optical networks allocate spectrum
based on contiguous subcarrier slots with bandwidth. In such
networks, dynamic setup and tear-down of connections can
create bandwidth fragmentation, namely, non-contiguous slots
that are not aligned along the routing paths and therefore can-
not be used by new connections. In such networks, rerouting
is needed to decrease the level of fragmentation and reduce
the blocking probability of new requests. In [28], for example,
a proactive rerouting scheme is proposed based on the state
of the network links. However, rerouting in elastic optical
networks have different constraints and objective function
compared to the SDN case we deal with. In particular, in SDN

164

there is no bandwidth fragmentation.
Our paper focuses on tunnel rerouting due to lack of band-

width over the original path. Therefore, the main theoretical
problem is to find an alternative path with sufficient bandwidth.
Sometimes rerouting a single tunnel will not suffice, and more
tunnels need to be rerouted together. In such a case, the rerout-
ing problem is computationally equivalent to the well-known
NP-hard unsplittable multicommodity flow problem [9], [8],
[11], [13], [15].

III. PROACTIVE REROUTING

In proactive rerouting, the core controller is periodically
invoked in order to reroute tunnels in a way that gives the edge
controller more flexibility in accommodating future flows. The
core network controller has no idea about future demands,
not even their statistical distribution. We present the Network
State Algorithm, which associates a “cost” with every link and
takes the sum of the costs of all links as the network cost. The
algorithm seeks to find a tunnel and a new path for this tunnel
such that the network cost after rerouting the tunnel to the new
path is minimized. The cost of every link reflects the load and
the available bandwidth on it.

Let G = (V,E) be a directed graph representing the
considered core network. There is a default tunnel t(s, d) that
should accommodate the flows from s to d. Let F be a set of
traffic flows to be admitted into the network one at a time, in
an online fashion. When a flow is introduced, its termination
time is unknown and future flows are also unknown.

A high level description of the algorithm is as follows.
Note that each link has a cost attribute and a different weight
attribute:

1) For every tunnel t(s, d)

(a) Remove the tunnel from the network.
(b) Assign a weight to every link. This weight is

used only for finding a new shortest path for t.
The weight of each link e is the cost of this link
if t is routed over e minus the cost of the link
if t is not routed over e.

(c) Run a shortest path algorithm between s and d
on the graph with the weights determined in the
previous step.

2) Choose for rerouting the tunnel whose new route imposes
a minimum total network cost.

We now explain how the cost of each link is determined. For
every link e, define

• cap(e) as the link capacity (in Mb/s, say);
• used(e) as the capacity used by tunnels that are routed

over e (also in Mb/s);
• load(e) as cap(e)/used(e).

The cost of link e depends on load(e) using the following
relationship:

c(e) =
1

θ
(exp(θ · load(e)) − 1) , (1)

where θ > 0 is a free parameter that determines how quickly
the cost increases with the load. Specifically, when θ is close
to 0, the relationship is linear, and when θ increases, the cost
growth is much faster, as depicted in Figure 2. The (-1) in Eq. 1
makes no algorithmic difference, because adding a constant to

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

co
st

(e
)

load(e)

θ = 0.01
θ = 3

θ = 10

Fig. 2. The correlation between the cost and the load as a function of θ

Function RerouteOne()
for every tunnel t ∈ T do
for every link e ∈ E do
if e can accommodate t then

c(e)+t ← the cost of e if t is rerouted to a
path that contains e
c(e)−t ← the cost of e if t is rerouted to a
path that does not contain e
wt(e) ← c(e)+t − c(e)−t

else
wt(e) ← ∞

end
end
pt ← the shortest path under the weight wt

rt ← the difference between weight of pt and the
weight of the old path of t, under the weight function
wt

end
Reroute the tunnel t∗ into pt∗ , where t∗ minimizes rt over
all tunnels t

Function RerouteMany()
for i = 1, . . . , num reroutes do

RerouteOne()
end

Fig. 3. A formal description of the Network State Algorithm (NSA)

the cost does not change the identity of the selected reroute. It
just guarantees that the cost equals zero if the link is unused.

Recall that the cost of the network is
∑

e∈E c(e). Therefore,
if θ is close to zero, the network cost equals the sum of the
loads of all links in the network, whereas if θ is very big
(θ > 1000), the cost of the network is approximately equal to
the cost of the most congested link.

Figure 3 gives a formal description of the algorithm. In this
figure, wt(e) is the weight of link e considered by the shortest
path in Step 1(c) of the informal description.

The cost function c gets a load level � ∈ [0, 1] and returns
the cost associated with this load. This can be expressed
formally as follows:

c(�) =
1

θ
(exp(θ�) − 1) .

In the following discussion we use c interchangeably as a
function that receives a link and as a function that receives
a load.

165

The derivative c′(�) indicates how costly it is to increase
the load of a link whose current load is �. Increasing the load
from � to � + b increases the cost by

c(� + b) − c(�) =

∫ �+b

x=�

c′(�)du.

A calculation shows that c′(�) = exp(θ�).
When θ is very small, the derivative is constant for any

value of �. Thus, the cost of increasing the load of a link from
� to �+b is not affected by the link’s current load �. Therefore,
the rerouting algorithm ignores the current loads on the links.

When θ is big, c′(�) is much larger for big values of � than
for small values. Thus, it is much more costly to increase the
load of an already congested link than it is to increase the load
of a non-congested link. Generally, increasing the value of θ
makes it more costly to increase the load of already congested
links than of non-congested links.

Given a tunnel t(s, d) whose bandwidth demand is
demand(t), we now analyze the weight wt(e) assigned to e
in order to find a shortest path from s to d when t is to be
rerouted. We use the notations from the formal definition of
the algorithm (Figure 3).

First, assume that θ is very small, namely, c(�) ≈ �. For a
link e, let load(e)−t be the load on e if t is rerouted to a path
that does not contain e, and load(e)+t be the load on e if we
reroute t to a path that contains e. It holds that

wt(e) = c(e)+t − c(e)−t = c(load(e)+t) − c(load(e)−t)

≈ load(e)+t − load(e)−t =
demand(t)

cap(e)
.

Thus, the shortest path for rerouting t is the path p from s to
d for which ∑

e∈p

1

cap(e)

is minimized.
Next, assume that θ is very big; thus, for most values of

�1 > l2 it holds that c(�1) >> c(�2). The weight assigned to
any link e is c(e)+t−c(e)−t ≈ c(e)+t. Thus, the shortest path
for rerouting t is the path p from s to d for which∑

e∈p

c(e)+t ≈ max
e∈p

c(e)+t = max
e∈p

c (load(e)+t)

is minimized.
The shortest path is the one that minimizes

max
e∈p

load(e)+t.

Increasing the value of θ results in choosing longer rerouting
paths, because a large number of low-load links can be added
to the path without significantly affecting the cost. A simple
example for this is given in Figure 4. In this figure, the
numbers on the links indicate their capacities. Assume that
the network has one active tunnel, from v1 to v3, whose
bandwidth demand is 1. Assume that this tunnel is currently
established over the path v1 → v3. The controller is invoked
for performing one reroute. The controller can actually leave
the tunnel on its current route or move it to v1 → v2 → v3. For
x = 3, simple mathematical analysis reveals that if θ < 2.887,
the Network State Algorithm will leave the tunnel on its

v1 2

v2

v3

xx

Fig. 4. An example of a network. The numbers indicate the capacity of each
link.

current path, and if θ > 2.887 the algorithm will move the
tunnel to the longer path v1 → v2 → v3. For x = 3.5, the θ
threshold decreases to ≈ 1.159, and for x > 4 the threshold
is 0, namely, the algorithm always chooses the long path.

IV. REACTIVE REROUTING

The purpose of this section is two-fold. First, we classify
reactive rerouting into several schemes, depending on how
much freedom is given to the controller during the rerouting
process. Second, we present efficient and simple algorithm for
each scheme. These algorithms are later used for comparing
between the performance of reactive and proactive rerouting.

When the edge controller is unable to admit a new flow f
into the network due to lack of bandwidth in the appropriate
tunnel, it contacts the core network controller and requests to
increase the bandwidth of the tunnel. If there is not enough
spare bandwidth that can be added to the tunnel, the core
network controller can invoke a rerouting algorithm. We will
study the following rerouting schemes:
Scheme-A: The flow is rejected (rerouting is not performed).
This scheme will be used as a benchmark.
Scheme-B: The default tunnel t(s, d) of the considered flow,
f , is rerouted to a new path that has sufficient bandwidth for
all the existing flows that use this tunnel as well as for the
new flow f .
Scheme-C: Any single tunnel from T can be rerouted in order
to admit the new flow f , not necessarily t(s, d).
Scheme-D: Up to N tunnels from T can be rerouted in order
to admit the new flow.

Scheme-C is a generalization of Scheme-B, because for a
given network state, every solution found by Scheme-B can
also be found by Scheme-C. However, Scheme-C may reroute
tunnels that are not related to the new flow, nor, in particular,
to the same customer. Thus, not every network operator will
prefer Scheme-C over Scheme-B. In the same way, Scheme-D
is a generalization of Scheme-C.

A. Shortest-Path Algorithms
This subsection presents efficient (polynomial time) online

algorithms for Scheme-B and Scheme-C, referred to as SP(B)
and SP(C). For a given new flow, these algorithms are optimal
in the sense that if a reroute exists, they will find it. For
Scheme-D, an efficient algorithm that accommodates the new
flow, if possible, while minimizing the number of rerouted
tunnels, is unlikely to exist because this problem is NP-hard.
This can be easily shown using a reduction to the well-known
NP-hard unsplittable multicommodity flow problem [9], [8],
[11], [13], [15]. Thus, the shortest path version for Scheme-
D, referred to as SP(D), is only heuristic.

166

In all the following algorithms, let f ′ be a new flow that
cannot be admitted into its default tunnel t′.
SP(B) Consider G(V, E) while excluding the bandwidth

used by all the tunnels except t′ (none of this bandwidth can
be used for the to-be-rerouted tunnel t′). From this graph, also
excluded are the links whose available bandwidth is less than
what is required to accommodate all the current flows of t′

and the new flow f ′. On the residual graph, if s and d are
connected, the shortest path is chosen for t′. If s and d are
not connected, f ′ is rejected because t′ cannot be rerouted by
Scheme-B.
SP(C) For each t ∈ T , where T is the set of tunnels,

consider G(V,E) while excluding the bandwidth used by all
the tunnels except t. Try to accommodate the new flow f ′

along tunnel t′. If this is possible, try to accommodate t over
the shortest path while considering only links whose residual
bandwidth is sufficiently large. If f ′ cannot be accommodated
or if t cannot be accommodated after f ′ is accommodated,
repeat the procedure with another t ∈ T . If the procedure
fails for all ts, reject f ′.
SP(D) A similar procedure to SP (C) is used. However,

if a single reroute is insufficient, the tunnel whose rerouting
maximizes the minimum available bandwidth over t′ is chosen
for rerouting. This can be stated formally as follows: for
every e ∈ E, let avail(e) be the available bandwidth in link
e. The tunnel chosen for rerouting is either t′ or any other
tunnel whose rerouting maximizes mine∈path(t′) avail(e). This
procedure is repeated until flow f ′ can be admitted into t′,
but no more than N times. If f ′ cannot be admitted after N
reroutings then no tunnel is actually rerouted. The pseudocode
of this algorithm is as follows:

Run algorithm SP(C)
for i = 1, . . . , N do
if f ′ can be admitted into t′ then

stop
end
find the tunnel t ∈ T whose rerouting maximizes the
minimum available bandwidth along t′, and reroute
it (the actual rerouting will be performed only if we
succeed in admitting f ′)

end
No rerouting is performed and flow f ′ cannot be
admitted into tunnel t′

B. A Linear Program Algorithm for Scheme-D
Since SP(D) does not guarantee an optimal solution to

Scheme-D, we present here another algorithm for this scheme.
This is an integer linear program algorithm, referred to as
LP(D), whose main purpose is to serve as a benchmark for
SP(D).

Let F ′ ⊂ F be the set of flows admitted so far into the
network. Recall that f ′ is a new flow that cannot be admitted
into its default tunnel t′. The following LP parameters are
defined:

• yte – indicates whether tunnel t is currently routed over
link e, ∀t ∈ T .

• bt – denotes the bandwidth routed on tunnel t, while bt′

already includes the demand of f ′.

The following LP variables are defined:
• y′

te – indicates whether tunnel t will be routed over link
e after the current iteration, ∀t ∈ T

• rt – indicates whether tunnel t is rerouted.
The target function is to minimize the number of rerouted

tunnels, namely, to minimize
∑

t rt, subject to several
sets of constraints. The first set of constraints ensures flow
conservation. The second set ensures that no link e carries
more than its capacity cap(e). The third set ensures that the
new path of each tunnel is identical to its old path unless
this tunnel is rerouted. The fourth set ensures that at most N
tunnels are rerouted, and the fifth set ensures that each flow
is rerouted in only one path.

(1)
∑

e=(u,v) y′

te −
∑

e=(v,u) y′

te

=

⎧⎨
⎩

−1 v = s
1 v = d
0 else

∀v ∈ V,∀t ∈ T, where s and d
are the tunnel source and destination.

(2)
∑

t bt · y
′

te ≤ cap(e) ∀e ∈ E
(3) y′

te + rt ≥ yte ∀ tunnel t ∈ T
(4)

∑
t rt ≤ N

(5)
∑

e=(v,u) y′

te = 1 ∀t ∈ T, v = s (the source of t)
(6) y′

te ∈ {0, 1} ∀e ∈ E ∀t ∈ T
rt ∈ {0, 1} ∀t ∈ T

V. SIMULATION STUDY

In Section V-A we evaluate the performance of the various
reactive algorithms and in Section V-B we compare them
to the proactive algorithm. Two criteria are relevant for this
comparison:

1) Relative added throughput, namely, how much greater
the percent of throughput that each algorithm admits into
the network compared to the case where no rerouting is
allowed (Scheme-A). Formally, if a rerouting algorithm
admits B Mb/s while only B′ Mb/s is admitted without
rerouting, then the relative added throughput for this
algorithm is (B −B′)/B. The relative added throughput
is indicated in the y-axis of all the graphs presented in
this section.

2) Management burden, defined as the total number of
rerouting events. This number is indicated in the x-axis
of all the graphs presented in this section.

Scheme-A gets no further mention because for this scheme
the value of the y-axis and the value of the x-axis are always
0, by definition.

We expect to see some cases where the increase in relative
added throughput is due to a substantial increase in the
number of rerouting events. Thus, to get a good understanding
on how each algorithm really performs with respect to the
tradeoff between throughput and number of rerouting events,
we always consider both criteria together.

A. Reactive Rerouting Simulations
We first study the performance of the reactive algorithms.

Since SP(B) and SP(C) are optimal online algorithms for their
schemes (when flows are received and considered one by

167

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

DLP

A

B

C D

SP

(a) Offered load = 0.5

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

D

LP

A

B

C
D

SP

(b) Offered load = 1

Fig. 5. The performance of the reactive algorithms SP(B), SP(C), SP(D) and LP(D) for small networks

one) while SP(D) is not necessarily optimal for its scheme,
the LP(D) algorithm for Scheme-D is also simulated as a
benchmark but, due to its computational complexity, this is
done only for small-sized networks. Later, the results for larger
networks will also be presented, but without LP(D).

Figure 5 shows the simulation results for the small scale
networks. In this figure, 5 artificially generated topologies
are considered, each with 15 nodes and 30 links. These
topologies are generated using the BRITE simulator [1], which
captures two important characteristics of network topologies:
incremental growth and preferential connectivity of a new
node to well-connected existing nodes. These characteristics
yield a power law distribution to the degrees of the nodes.
For each topology, 5 sequences of flows are generated, each
with 1,000 requests. Each request is either for initiating a
new flow or removing an existing flow. When a new flow
is introduced, the algorithm is executed and the flow is either
rejected or admitted following 0 or more rerouting events. The
flow sequences are generated using the gravity model [17].

Figure 5 shows the simulation results for two levels of
offered load: 0.5 and 1. The offered load of a network at
a given time τ is defined as the sum of the offered loads
of all the flows introduced to the network before τ (and that
were accepted or rejected) whose termination time is after
τ , divided by the total capacity of the network links. The
offered load of a flow is the bandwidth demand of the flow
multiplied by the number of links on the shortest path (while
assigning a weight of 1 to every link) between the flow’s
source and destination. The flow sequences are generated for
each simulation such that the network load remains roughly
constant, and this yields one point on our graph, after it is
averaged with additional executions using the same set of
parameters but with a different seed.

It is evident from both graphs of Figure 5 that tunnel
rerouting significantly increases the accommodated bandwidth.
As expected, the schemes that accommodate more bandwidth
impose a greater rerouting burden. In absolute numbers, more
bandwidth is accommodated in heavily loaded networks. But
the relative added throughput decreases when the load on the
network increases because, in a heavily loaded network, there
are fewer options for rerouting to gain additional throughput.

This behavior is particularly noticeable for Scheme-B, because
in this scheme only one tunnel can be rerouted.

For Scheme-D, the LP algorithm performs significantly
more reroutings compared to SP(D), with only moderate
increase in the admitted throughput. This is due to the fact
that LP(D) is completely flexible in choosing the tunnels to
reroute. In contrast, SP(D) is limited in the selection of a new
path to rerouted tunnels.

To compare the performance of the various schemes, SP(B),
SP(C) and SP(D), we define the “benefit-cost ratio” of an
algorithm as the fraction obtained by dividing the relative
added throughput by the number of reroutings, y/x. Using
this ratio, SP(C) is the best algorithm, and SP(D) is better
than LP(D).

Figure 6 depicts the results for large networks. The networks
simulated in Figure 6(a), (b) and (c) are synthetic networks
built using BRITE with 40 nodes and 80 links, 40 nodes
and 160 links, and 80 nodes and 320 links respectively. The
network simulated in Figure 6(d) is a RocketFuel inferred
topology[23] with 138 nodes and 730 links. LP(D) is not
executed due to its exponential running time. For all these
graphs, the offered load ratio is 0.5.

It is evident that the bandwidth accommodated by the
algorithms, as well as the rerouting overhead, grow with the
network size: as the network grows, there are more tunnel
rerouting options. It is interesting to note that the various
algorithms in the RocketFuel topology perform worse than
they do for the synthetic topologies, despite the RocketFuel
topology having more node links. But another property of
this topology is that it has a few nodes with very large
degree. These nodes create hotspots for which rerouting is
less effective.

The results in Figure 6 strengthen our earlier finding that
SP(C) yields a better benefit-cost ratio than SP(B) and SP(D).
In other words, it results in a better tradeoff between the
relative added throughput and the cost of rerouting.

B. Proactive Rerouting Simulations
This subsection compares the proactive approach and the

reactive approach, by comparing the results of the three SP al-
gorithms – SP(B), SP(C) and SP(D) – to those of the Network

168

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C

D

(a) |V | = 40, |E|/|V | = 2

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C
D

(b) |V | = 40, |E|/|V | = 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C

D

(c) |V | = 80, |E|/|V | = 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

A

B

C D

(d) RocketFuel Topology, |V | = 138, |E|/|V | = 5.3

Fig. 6. The performance of the reactive algorithms SP(B), SP(C) and SP(D) for large networks

State Algorithm. Consider first Figure 7. The figure shows 4
graphs, for the same networks considered in the discussion of
Figure 6. For each network type, the reactive SP algorithm
is simulated for schemes B, C and D. Also simulated is
the proactive Network State Algorithm for different execution
periods: 5, 10, 20 and 40. The execution period is the average
number of flows arriving between two consecutive invocations
of the algorithm. Unless otherwise specified, for all these
graphs the offered load is 0.25 and θ = 10.

One cannot expect the proactive algorithm to admit as many
flows as the reactive algorithms for a very simple reason:
reactive algorithms are invoked only when the admission of
a new flow fails, and the algorithm knows exactly which
flow should be admitted over which tunnel. Thus, a reactive
algorithm focuses on a specific tunnel and tries to increase the
bandwidth available for it. In contrast, the proactive algorithm
has no information about the flows that enter the network, and
it is invoked regardless of whether past flows could or could
not be accommodated.

For each graph in Figure 7, consider first the four points
that represent different execution periods for the Network State
Algorithm (NSA). From these points we learn that determining
the length of this interval is the most significant performance
parameter. For example, in Figure 7(a) we see that when NSA
is invoked every 5 time units it is able to admit into the
network 15% more bandwidth while performing 95 reroutings.

However, when it is invoked every 10 time units, it is able
to admit the same percentage of extra bandwidth, but with
an overhead of only 48 reroutings. This indicates that for
this simulation instance NSA(10) performs much better than
NSA(5). However, this is not always the case: in Figure 7(d)
NSA(5) also performs many more reroutings than NSA(10),
but it succeeds in accommodating much more bandwidth. This
suggests that on small networks it is better to invoke NSA not
very often, whereas in big networks NSA should be invoked
more frequently.

When the NSA execution period is well chosen, the perfor-
mance of NSA is surprisingly good compared to the perfor-
mance of the best reactive algorithm. For example, consider
Figure 7(d). In this figure, among all the reactive algorithms,
SP(B) has the best benefit-cost ratio: 50/390 = 0.13.
However, for NSA(5) and NSA(10) the benefit-cost ratios are
much better: 35/195 = 0.18 and 21/100 = 0.2 respectively!
In Figure 7(c), the benefit-cost ratio of the best reactive
algorithm, SP(C), is 48/220 = 0.22, whereas the ratio of the
best proactive algorithm, NSA(10), is 10/50 = 0.2. We can
conclude from this analysis that although the NSA algorithm
cannot accommodate as much extra bandwidth as the reactive
algorithms, it is competitive in terms of its benefit-cost ratio.

Figure 8 presents simulation results for the Network State
Algorithm in two different Rocketfuel topology networks. In
each network, the input traffic load is 0.25 and 0.5. The first

169

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

510

2030

proactive

A

B
C D

reactive

(a) |V | = 40, |E|/|V | = 2

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10
20

30

proactive

A

B C D

reactive

(b) |V | = 40, |E|/|V | = 4

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

2030

proactive

A

BCD
reactive

(c) |V | = 80, |E|/|V | = 4

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

20
30

proactive

A

B C Dreactive

(d) RocketFuel Topology, |V | = 138, |E|/|V | = 5.3

Fig. 7. The performance of the reactive algorithms vs. the performance of the proactive algorithm for various networks

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

20

30

Load=0.25

5
10

20
30

Load=0.5

(a) RocketFuel Topology |V | = 80, |E|/|V | = 1.8

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

R
el

at
iv

e
A

dd
ed

 T
hr

ou
gh

pu
t [

%
]

Total Number of Reroutings

5

10

20
30

Load=0.25

5

10

20

30

Load=0.5

(b) RocketFuel Topology |V | = 138, |E|/|V | = 5.3

Fig. 8. The performance of the Network State Algorithm for different offered loads

thing to note is that the offered load does not affect the number
of reroutings. But this is expected because, in contrast to
the reactive algorithms, the proactive algorithms are invoked
periodically, regardless of the input traffic load.

When the benefit-cost ratio of the various algorithms is
considered, it is evident that the performance of NSA for all
execution periods is better on light loads. This is consistent
with the results shown earlier for the reactive algorithms, and
can be attributed again to the fact that a rerouting algorithm
has more flexibility when the load is lighter. The simulation
shown in Figure 8(a) resulted in much greater performance

differences among the various algorithms as compared to the
simulation shown in Figure 8(b). This is due to the much
smaller link degree in the former, which makes effective
rerouting more difficult. Figure 8(a) also shows that increasing
the load has greater negative impact in this simulation.

Finally, Figure 9 shows the impact of θ on the simulation
results for different execution periods. Each simulation is
performed on 100 randomly created networks, using the same
BRITE generator, each with 100 nodes whose average degree
is 6. The x-axis denotes the execution period of NSA, namely,
the average number of flows arriving to the network between

170

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

5 50 500 No reroute

Fr
ac

tio
n

of
 A

dm
itt

ed
 F

lo
w

s

Execution Period

1
6

10
40

Fig. 9. The impact of θ on the performance of the Network State Algorithm

two invocations of the algorithm. The y-axis denotes the
fraction of admitted flows. For each value of execution period
there are 4 bars, denoting different θ values: 1, 6, 10 and 40.
The leftmost bar for each period is θ = 1. The y-axis denotes
the total throughput. It is evident that θ has a significant
impact on the performance. Moreover, large values of θ show
significant improvement compared to small values. This can
be explained by the fact that the initial routing of each tunnel
is performed over the shortest path while ignoring the load on
the various links. When rerouting is necessary, for high values
of θ, the maximum load is kept low, and the network has room
for new incoming flows. We can also see in this graph that
our proactive rerouting algorithm is very efficient even if
it is invoked relatively rarely: when the execution period
is 500, namely, 500 new flows are introduced between two
consecutive invocations of the algorithm, the percentage of
rejected flows is reduced by 50%, from 0.2 (with no reroute)
to only 0.1.

VI. CONCLUSIONS

This paper addressed the problem of tunnel rerouting in
network overlays when the core network supports traffic
engineering. For the first time, we introduced the concept of
proactive (time-driven) rerouting, which we distinguish from
the well-known concept of reactive (event-driven) rerouting.
The main motivation behind proactive rerouting is to reduce
the communication between the core network controller and
the edge network controller, and to expedite the admission of
new flows into the network.

We presented efficient algorithms for reactive rerouting, and
then a novel Network State Algorithm for proactive rerouting.
This algorithm associates a value with every network state,
which indicates how well current tunnels take advantage of
the available bandwidth resources. The algorithm tries to move
tunnels such that the network state is maximally improved.
Using simulations we show that although the Network State
Algorithm cannot accommodate as many flows as the reactive
algorithms, it performs surprisingly well with respect to the
tradeoff between cost and value.

REFERENCES

[1] I. M. A. Medina, A. Lakhina and J. Byers. BRITE: An approach to
universal topology generation. In Proceedings of MASCOTS, 2001.

[2] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A
retrospective on evolving SDN. In HotSDN’12, Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, 2012.

[3] M. C. Chan and Y.-J. Lin. Behaviors and effectiveness of rerouting: A
study. In Communications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 1, pages 218–223. IEEE, 2005.

[4] M. C. Chan and Y.-J. Lin. Behaviors and effectiveness of rerouting:
a study. In IEEE International Conference on Communications (ICC),
volume 1, 2005.

[5] R. Cohen. Smooth intentional rerouting and its applications in ATM
networks. In Infocom’94, June 1994.

[6] R. Cohen and G. Nakibly. Maximizing restorable throughput in MPLS
networks. IEEE/ACM Transactions on Networking, 18(2), April 2010.

[7] R. Cohen and A. Segall. Connection management in ATM networks. In
Infocom’94, June 1994.

[8] Y. Dinitz, N. Garg, and M. Goemans. On the single-source unsplittable
flow problem. Combinatorica, 19:17–41, 1999.

[9] J. A. et al. Online load balancing with applications to machine
scheduling and virtual circuit routing. Journal of the ACM, 44(3):486–
504, 1997.

[10] V. Friesen, J. J. Harms, and J. Wong. Resource management with virtual
paths in atm networks. IEEE network, 10(5):10–20, 1996.

[11] N. Garg and J. Koenemann. Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems. SIAM Journal
on Computing, 37(2), 2007.

[12] G. Hampel, M. Steiner, and T. Bu. Applying software-defined network-
ing to the telecom domain. In Infocom workshop, 2013.

[13] J. T. Havill and W. Mao. Greedy online algorithms for routing permanent
virtual circuits. Networks, 34:136–153, 1999.

[14] A. E. Helvaci, C. Cetinkaya, and M. B. Yildirim. Using rerouting to
improve aggregate based resource allocation. 2008.

[15] S. G. Kollopoulus and C. Stein. Improved approximation algorithms for
the unsplittable flow problems. In Proceedings of FOCS, pages 426–435,
1997.

[16] M. Koubàa and M. Gagnaire. Lightpath rerouting strategies in wdm all-
optical networks under scheduled and random traffic. Journal of Optical
Communications and Networking, 2(10):859–871, 2010.

[17] J. P. Kowalski and B. Warfield. Modelling traffic demand between nodes
in a telecommunications network. In in ATNAC95, 1995.

[18] M. Liu, M. Tornatore, and B. Mukherjee. Survivable traffic grooming
in elastic optical networksshared protection. Journal of lightwave
technology, 31(6):903–909, 2013.

[19] G. Mohan and C. S. R. Murthy. A time optimal wavelength rerouting
algorithm for dynamic traffic in wdm networks. J. Lightwave Technol.,
17(3), Mar 1999.

[20] P. Pan et al. Fast reroute extensions to RSVP-TE for LSP tunnels. IETF
RFC 4090, May 2005.

[21] C. Rozic and G. Sasaki. Optical protection cost of ip fast reroute on a
fully connected ip network over a wdm ring. In National Fiber Optic
Engineers Conference, page JWA3. Optical Society of America, 2011.

[22] D. A. Schupke and R. Prinz. Performance of path protection and
rerouting for WDM networks subject to dual failures. In Optical Fiber
Communication Conference, 2003.

[23] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with RocketFuel. In Proceedings of the ACM SIGCOMM, August 2002.

[24] T. Takagi, H. Hasegawa, K.-i. Sato, Y. Sone, A. Hirano, and M. Jinno.
Disruption minimized spectrum defragmentation in elastic optical path
networks that adopt distance adaptive modulation. In European Confer-
ence and Exposition on Optical Communications, pages Mo–2. Optical
Society of America, 2011.

[25] S.-W. Wang and C.-Y. Wen. Lightpath-level active rerouting algorithms
in all-optical wdm networks with alternate routing and traffic grooming.
In Information Networking (ICOIN), 2012 International Conference on,
pages 42–46. IEEE, 2012.

[26] A. Wason and R. Kaler. Rerouting technique with dynamic traffic in
wdm optical networks. Optical Fiber Technology, 16(1):50–54, 2010.

[27] E. W. Wong, A. K. Chan, and T.-S. P. Yum. Analysis of rerouting
in circuit-switched networks. IEEE/ACM Transactions on Networking
(TON), 8(3):419–427, 2000.

[28] M. Zhang, W. Shi, L. Gong, W. Lu, and Z. Zhu. Bandwidth
defragmentation in dynamic elastic optical networks with minimum
traffic disruptions. In Communications (ICC), 2013 IEEE International
Conference on, pages 3894–3898. IEEE, 2013.

[29] M. Zhang, C. You, H. Jiang, and Z. Zhu. Dynamic and adaptive
bandwidth defragmentation in spectrum-sliced elastic optical networks
with time-varying traffic. Journal of Lightwave Technology, 32(5):1014–
1023, 2014.

171

SWIFT: Bringing SDN-Based Flow Management to
Commodity Wi-Fi Access Points

Seppo Hätönen∗, Petri Savolainen∗, Ashwin Rao∗, Hannu Flinck† and Sasu Tarkoma∗
∗University of Helsinki, †Nokia Bell Labs

Abstract—Wi-Fi networks are largely served using over-the-
counter commodity Wi-Fi routers, access points (APs), and
possibly with wireless controllers. Existing approaches to bring
the benefits of Software-defined Networking (SDN) to such Wi-
Fi networks suffer from availability, hardware requirements, and
scalability issues. For instance, these approaches do not support
enterprise APs whose firmware cannot be modified. Furthermore,
we observe that using SDN controllers for managing all the
flows traversing these APs and routers requires more than just
installing an SDN switch on these devices. In this paper, we
present our solution called SWIFT: Software-defined Wi-Fi Flow
Management, for bringing SDN-based flow management to Wi-
Fi networks using commodity Wi-Fi APs, Wi-Fi routers, and
Wi-Fi controllers. We also detail its benefits, shortcomings, and
possible use cases. Specifically, our solution significantly lowers
the barrier-to-entry for deploying and conducting research on
software-defined Wi-Fi networks.

Index Terms—Network Management, SDN, Wi-Fi.

I. INTRODUCTION

Wi-Fi is becoming the communication medium of choice
in our homes and offices. This has compelled manufacturers
of televisions, home-entertainment systems, and other devices
that traditionally used wires for connectivity, to support Wi-
Fi. Paralleling the growth of Wi-Fi is the growing demand to
programmatically compose and manage communication net-
works using Software-Defined Networking (SDN) principles.
However, in spite of its growing presence and importance,
Wi-Fi has received significantly less attention in the SDN
community compared to its wired siblings.

The growing importance of Wi-Fi and SDN, and the limited
Wi-Fi support in existing SDN solutions, highlights the impor-
tance of addressing the roadblocks in bringing the benefits
of SDN to networks which use commodity Wi-Fi access
points (APs). The key roadblock is that commodity Wi-Fi APs
are typically Wi-Fi hubs/bridges that simply forward packets.
These include both open-source solutions such as hostapd [1]
and OpenWrt [2], and also proprietary APs used in enterprise
or home networks. Furthermore, these APs cannot take in-
telligent forwarding decisions because they cannot implement
the match/action rules used by SDN switches such as Open
vSwitch (OVS) [3]. As detailed in §II-B, simply installing an
OpenFlow switch such as OVS on an AP is not enough for
managing the network traffic flows traversing the AP.

The seminal work on bringing the SDN to Wi-Fi networks
was OpenRoads [4] which used protocols such as the Simple
Network Management Protocol (SNMP) for managing the
Wi-Fi APs. The insights from OpenRoads were leveraged

by several solutions such as ÆtherFlow [5], BeHop [6], and
OpenSDWN [7]. However, these solutions cannot be used as-is
in existing Wi-Fi networks because they suffer from scalability,
hardware, and availability issues (see §II). We therefore focus
on bringing SDN-based flow management to Wi-Fi networks
built using over-the-counter commodity APs and controllers.

In this paper, we present SWIFT, an architecture for bring-
ing SDN-based flow management to existing Wi-Fi networks.
Our architecture leverages on commonly available technolo-
gies: Client Isolation and SDN switches such as OVS. Client
Isolation prevents the Wi-Fi clients associated with an AP
from communicating with each other. This feature is supported
by a wide range of enterprise and consumer APs.1 We bring
SDN functionality to Wi-Fi networks by leveraging on Client
Isolation to take control of all flows in the Wi-Fi network.
The Intelligent AP technique achieves this by empowering
devices running OpenWrt with OVS. In contrast, the Thin AP
technique allows Wi-Fi APs that support Client Isolation to
offload the flow management to external SDN switches.

Our key contributions are as follows.

• We enable existing SDN controllers to manage the network
traffic flows in Wi-Fi networks built using commodity APs
and routers. This significantly lowers the barrier-to-entry to
deploy and experiment on software-defined Wi-Fi networks.

• Our Thin AP technique offloads the management of flows
traversing APs to external SDN switches. This technique can
be used in Wi-Fi networks and testbeds which use APs that
cannot run an SDN switch such as OVS within the AP. For
example, enterprise APs typically do not allow installation
of custom firmware such as OpenWrt, and custom software
such as OVS. Similarly, legacy commodity APs may not
have the resources for running SDN switches.

• Our Intelligent AP technique integrates OVS with OpenWrt,
and leverages the computational power of modern APs for
implementing the forwarding decisions mandated by the
SDN controller. This enables SDN controllers to manage
the traffic flows at the edge of Wi-Fi networks.

Roadmap. In §II, we discuss related works and our motiva-
tion. We then detail our two techniques and their use cases in
§III, and present the results of experimental evaluation of our
techniques in §IV. We finally conclude in §V.

1Client Isolation has many aliases such as Wireless Isolation, AP or Station
Isolation, Peer-to-Peer Blocking etc. In this paper we use Client Isolation.

ISBN 978-3-903176-08-9 c©2018 IFIP

TABLE I
COMPARISON TO THE STATE OF THE ART

Metric C
A

PW
A

P

O
pe

nR
oa

ds

Æ
th

er
Fl

ow

B
eH

op

O
pe

nS
D

W
N

SW
IF

T

Association control at controller X - - X X X
Association control at AP - X X - - X

Configure AP using OpenFlow - - X X - -
Configure AP using other protocols X X - - X X

Manage and control commodity APs - X X X X "

Manage and control enterprise APs X - - - - "
Packet forwarding at the controller X - - - - -

Packet forwarding at the AP X X X X X X

Existing approaches come with a trade-off of scalability versus the
ability to manage the flows between clients associated to the same
AP. A "implies that SWIFT allows AP management tools including
enterprise AP management tools such as the Cisco Wireless LAN
Controller to manage the APs.

II. BACKGROUND AND MOTIVATION

In this section, we first present other proposed approaches
for bringing SDN functionality to Wi-Fi networks. We then
motivate our work by discussing the roadblocks preventing
these approaches from being used in Wi-Fi networks using
commodity APs and routers.2

A. Existing approaches to integrate Wi-Fi networks with SDNs

In Table I, we compare the existing approaches for bringing
SDN functionality to Wi-Fi networks, namely, a) the Con-
trol and Provisioning of Wireless Access Points (CAPWAP)
protocol [8], [9], b) OpenRoads [4], c) ÆtherFlow [5], d)
BeHop [6], and e) OpenSDWN [7].

The CAPWAP protocol is one of the seminal techniques for
managing Wi-Fi APs. While CAPWAP predates SDN, they
share the same underlying principles: a logically centralized
CAPWAP controller manages the APs and takes decisions
based on the network state. The specifications of the CAPWAP
protocol are fairly detailed, and its proprietary siblings from
Cisco [10], Aruba Networks [11] and Ubiquiti Networks [12]
manage vendor-specific Wi-Fi hardware. In spite of its limited
support in open source solutions such as OpenWrt, CAPWAP
serves as a cornerstone for Software-defined Wi-Fi networks.

OpenRoads, ÆtherFlow, BeHop, and OpenSDWN, primar-
ily differ on the techniques used for managing client associ-
ations and client mobility. Client association can be handled
either at the AP or at the controller. While handling client
associations at the AP is easy to implement, a controller han-
dling associations can be extended to manage hand-overs for
implementing seamless connectivity. OpenRoads and Æther-
Flow handle client associations at the AP, while OpenSDWN
and BeHop handle associations at the controller.

OpenSDWN and BeHop support client mobility by creating
virtual APs (VAP) for the Wi-Fi clients. The Wi-Fi interface

2Please note that, in this paper we use the terms Wi-Fi router and Wi-Fi
AP interchangeably. A Wi-Fi AP typically acts as a bridge between Wi-Fi and
wired networks. In contrast, Wi-Fi routers also include routing capabilities.

of APs typically support multiple networks (BSSID), which
are extended as VAPs. OpenSDWN creates a unique VAP for
each client, and during client mobility the controller migrates
this VAP from one physical AP to another AP. BeHop uses
a similar approach, where a single VAP can serve multiple
clients. BeHop can also allow clients to locally select the best
physical AP. However, OpenSDWN and BeHop do not scale
as commodity APs may limit the number of VAPs that can
simultaneously run on a physical AP; e.g. a Cisco 3700 AP
supports 16 networks, i.e. 16 VAPs [13]. Furthermore, running
multiple VAPs incurs significant performance overheads due
to beacon frames [14]. This is a serious shortcoming given the
increasing number of Wi-Fi devices at home and at work [15].

Each approach presented in Table I uses a different tech-
nique for managing APs. While OpenRoads uses SNMP,
ÆtherFlow and BeHop extend OpenFlow to include com-
mands to manage APs. ÆtherFlow uses a modified CPqD [16]
OpenFlow switch to change AP configuration while BeHop
uses a local agent. Similarly, OpenSDWN uses an agent at the
AP that exposes configuration hooks to the controller.

B. Shortcomings of existing approaches

The existing approaches have limitations when dealing with
flows between clients associated to the same AP. OpenRoads,
ÆtherFlow, BeHop, and OpenSDWN are all built on top
of OpenWrt, which in turn uses the Linux IEEE mac80211
driver [17]. This driver maintains a list of clients associated
with the AP, which is used to directly forward packets between
associated clients; packets between clients do not traverse the
networking stack of the AP. A consequence of this optimiza-
tion is that an SDN switch such as OVS or CPqD running
on an AP is unable to manage the flows between Wi-Fi clients
associated with the same AP. OpenSDWN and BeHop address
this issue by creating VAPs. However, many APs support only
a limited number of VAPs, limiting the number of clients
served by a physical AP. Multiple VAPs, i.e. SSIDs, also incur
heavy overheads in the Wi-Fi due to beacon frames, making
them unsuitable for dense Wi-Fi networks or locations with
multiple overlapping networks [14]; the current Wi-Fi design
principles set the maximum number of SSIDs to only four.

The existing SDN approaches are also not suitable for
enterprise APs such as those from Cisco. Typically enterprise
APs neither offer support for SDN controllers nor do they
support customization by third parties. While these APs can
be configured to operate with a proprietary Wi-Fi controller
or work autonomously, the limited customization support
currently makes them impractical for many SDN research
activities or integrating them to SDN-based networks.

Similarly, the existing approaches are also not suitable for
legacy APs with limited storage space and limited compu-
tational capacity. The match-action rules mandated by SDN
are computationally expensive compared to the direct packet
forwarding. The legacy APs typically also have limited storage
space (in the order of a few MB [18]) which might not be
sufficient to add the binaries of SDN switches.

173

SWIFT SDN
Controller

Thin APs and Intelligent APs

Wireless
Controller

SDN
Switches

Fig. 1. Example SWIFT topology. The SWIFT SDN controller manages the
flows traversing the network, while the Wireless Controller manages the APs.

C. Motivation

Existing approaches suffer from scalability, hardware, and
availability issues for bringing the benefits of SDN-based
traffic management to Wi-Fi networks built using commodity
APs. This motivates us to find a solution which achieves
this requiring only minimal changes to the APs and can be
deployed on existing networks.

Programmatically managing a Wi-Fi network involves a)
managing and provisioning the APs and b) managing the flows
traversing these APs. The AP management and provisioning
includes managing the radio interface parameters such as
signal strength, channel, etc. This can be done either through
existing wireless LAN controllers such as Cisco Wireless Lan
Controller (WLC) [10], or through other network management
systems. These are solid and mature solutions for managing
commodity and enterprise APs. At the same time, SDN
switches such as OVS [3] and SDN controllers3 such as Open-
Daylight [19] and Ryu [20] are solid and mature solutions for
flow management. However, the existing approaches cannot
combine SDN solutions with existing Wi-Fi networks built
using commodity and enterprise APs. In particular, the SDN
controllers cannot manage the flows between Wi-Fi clients
associated with the same AP, while existing Wi-Fi APs do not
support SDN.

In the following, we present our SWIFT architecture for
bringing SDN-based flow management to existing Wi-Fi
networks. Our solution enables existing SDN controllers to
manage all the Wi-Fi traffic flows, including the flows between
clients associated with the same AP, while allowing existing
Wi-Fi controllers such as WLC to continue to manage the
client associations, the radio interfaces, etc., of these APs.

III. SWIFT: SOFTWARE-DEFINED WI-FI FLOW
MANAGEMENT

In this section, we present SWIFT, our software-defined Wi-
Fi flow management architecture. The SWIFT architecture is
illustrated in Figure 1, which depicts an enterprise network
with a Wi-Fi controller. The Wi-Fi controller is used to manage
the existing commodity APs, while the SWIFT controller
manages the network traffic flows.

3In the rest of the paper we use the term SDN controller to refer to SDN-
based network and flow management systems such as OpenDaylight and Ryu.

Hardware Switch
LAN
Port

LAN
Port

LAN
Port

LAN
Port

WAN
Port

CPU

w
an

0

Radio0
2.4GHzw

la
n

0
w

la
n

1 Radio1
5GHz

eth
0

V
LA

N
s

Fig. 2. A Wi-Fi router that internally uses VLANs. Using VLANs to
separate WAN and LAN ports reduces costs as only one physical interfaces is
needed at the CPU.

So
ft

w
ar

e
B

ri
d

ge

Hardware Switch
LAN
Port

LAN
Port

LAN
Port

LAN
Port

WAN
Port

CPU

eth0

Radio0
2.4GHz

Radio1
5GHz

wlan0

wlan1

br0

wan0

VLANs

Fig. 3. Interfaces on an OpenWrt router. Regardless of the internal wiring,
OpenWrt uses a Software bridge to manage the Wi-Fi network and the LAN.

A key building block for SWIFT is Client Isolation, a
feature for preventing Wi-Fi clients from communicating with
other clients associated to the same AP. When Client Isolation
is enabled on an AP, the AP stops bridging the traffic between
Wi-Fi clients associated with that AP. In III-A, we discuss
Client Isolation and present ways in which it can be used
to enable SDN switches to manage the Wi-Fi network traffic
flows. We then detail the following two techniques for bringing
SDN-based flow management to Wi-Fi networks.

a) Intelligent AP: In this technique (see §III-B), we run
OVS inside the AP. This enables APs to exert fine-grained
control over flows traversing its communication interfaces.

b) Thin AP: In this technique (see §III-C), an AP offloads
the flow management to a remote SDN switch and in essence
becomes a remote Wi-Fi interface on this switch; the AP and
the SDN switch form the Thin AP.

In III-D, we discuss the steps the SWIFT SDN controller
needs to take to manage flows traversing APs implementing
our techniques, and why simply adding OVS to an AP is not
enough to bring SDN to Wi-Fi networks.

A. Client Isolation

We now use the internals of OpenWrt running on commod-
ity Wi-Fi routers to present an overview of Client Isolation.

In Figure 2, we present the connectivity between the inter-
faces of widely used commodity Wi-Fi routers. A typical Wi-
Fi router has a WAN interface for the Internet connectivity,
an Ethernet switch for the wired LAN ports, and at least
one Wi-Fi interface. These interfaces are typically exposed
to the CPU using Virtual LANs (VLANs). In Figure 2 we
present a router (Netgear WNDR4300v1) that internally uses
two VLANs, one VLAN for the WAN and another VLAN
for the LAN. As shown in Figure 3, OpenWrt abstracts these
wiring internals and exposes a software bridge that connects

174

Open
vSwitch

Hardware Switch
LAN
Port

LAN
Port

LAN
Port

LAN
Port

WAN
Port

CPU

eth0

Radio0
2.4GHz

Radio1
5GHz

wlan0

wlan1
br0

wan0

VLANs

Fig. 4. AP configured for the Intelligent AP. OVS replaces the default
bridge provided by OpenWrt, and Client Isolation is enabled on the AP. This
allows the OVS to manage the flows traversing the AP.

Software
 Bridge

eth0

wifi

APs with wireless isolation enabled

Software
 Bridge

eth0

wifi

SDN Switch

Fig. 5. APs configured for the Thin AP. The APs have Client Isolation
enabled, and an external SDN switch manages the network traffic flows
traversing the AP.

the Wi-Fi and wired LAN interfaces. However, because of the
internal optimizations in the wireless LAN driver discussed in
§II-B, the packets exchanged between the clients associated
with the same Wi-Fi interface do not traverse this bridge.

This can be mitigated by enabling Client Isolation. However,
we have observed the three following implementations in
enterprise and consumer APs [2][10].

a) Permissive Isolation: The driver sends all traffic flows
to the AP’s network stack. An SDN switch running on the AP
can therefore be used to manage the flows traversing the AP.

b) Restrictive Isolation: The driver only allows Address
Resolution Protocol (ARP) messages to reach the network. An
external SDN switch connected to the AP can use these ARP
messages to impersonate the other hosts in the network. This
can be achieved by using various techniques such as a) Proxy
ARP for Private VLANs (PVLAN), also known as VLAN
Aggregation [21][22], or b) the SDN controller sending an
ARP reply with the MAC address of the switch in response
to ARP requests from clients associated with the AP.

c) Total Isolation: The driver discards all traffic between
wireless clients, which makes it impossible to extend Client
Isolation to allow SDN switches to manage the traffic flows.

OpenWrt-based APs use Permissive Isolation, and enterprise
APs may use any of the above implementations; the supporting
documentation may provide hints on the implementation used
by a given AP. For example, the Cisco 1131ag AP and Cisco
WLC can be configured to either use Restrictive Isolation
or Total Isolation [10]. In the following, we present two
techniques to combine SDN switches with APs that implement
either Permissive Isolation or Restrictive Isolation.

B. Intelligent AP

In this technique we run OVS on an OpenWrt-based AP.
As shown in Figure 4, we replace the Linux Bridge created
by OpenWrt (see Figure 3) with OVS. All interfaces that
were plugged to the bridge are moved to the OVS, and Client
Isolation is enabled on the Wi-Fi interfaces. Client Isolation
forwards all packets arriving on these interfaces to the OVS.
This allows the OVS to manage all flows between Wi-Fi clients
and the flows traversing the AP to the wired network.

The Intelligent AP technique also supports multiple Wi-Fi
networks (SSID) on the same AP. Each SSID appears as a
logical Wi-Fi interface on OpenWrt, which is then plugged
to the OVS. To manage the flows between Wi-Fi clients in

different SSIDs, the SDN controller only needs to know the
OVS port corresponding to a given SSID. The key benefit
of this technique is the implementation of SDN match/action
rules at the edge of the Wi-Fi network.

C. Thin AP

This technique is suitable for APs falling into one or more
of the following categories.

• A custom firmware such as OpenWrt cannot be installed
on the AP. For example, the flash memory size of the AP
is not large enough to install OpenWrt.

• A custom software such as OVS cannot be installed on
the AP. For example, the AP runs proprietary firmware
which does not allow customization of the AP.

• The hardware restrictions make it impractical to imple-
ment the Intelligent AP approach.

Most enterprise APs fall into one or more of the above
categories as they may not allow installation of third-party
firmwares or software. Similarly, many legacy APs which sup-
port OpenWrt but have either limited storage or computational
capacity to run OVS can use our Thin AP technique.

In this technique, the AP acts as a remote Wi-Fi interface for
an SDN switch, and each Wi-Fi network of the AP becomes a
port on that switch. This port and the AP connected to it form
the Thin AP, which is now responsible for the flows traversing
the AP. Furthermore, multiple APs can be connected to a single
SDN switch, i.e. only a single SDN switch is required to turn
a small Wi-Fi network into an SDN-managed one.

As discussed in §III-A, if the Client Isolation on an AP is of
the type Restrictive Isolation then the SDN controller will be
required to provide ARP responses to ARP queries made by
clients associated with the AP. However, this impersonation
may cause issues with device discovery, for example. We
discuss these issues in Section §III-F. In contrast, Intelligent
APs do not require the controller to handle ARPs because
these APs do not redirect traffic to an external SDN switch.

The key benefit of the Thin AP technique is that it only
requires Client Isolation on the AP. This enables the transfor-
mation of existing Wi-Fi networks to support SDN.

D. Flow Management using an SDN Controller

We now discuss the steps an SDN controller such as
OpenDaylight or Ryu must take to manage flows traversing
APs configured as either Intelligent AP or Thin AP.

175

1) Managing flows traversing Intelligent APs: The SDN
controller must perform the following additional tasks to man-
age the flows traversing Intelligent APs. First, the controller
must know which SDN switches are APs configured as Intel-
ligent APs. Second, the controller also has to keep track of the
hosts in the network that are associated with these APs, which
is essential for forwarding packets between wireless clients
associated with the same AP. For such flows, the packets
received from the wireless interface of an Intelligent AP must
be sent back to the wireless interface. The client’s MAC
address can be used for this. Additionally, for an Intelligent
AP to support encrypted Wi-Fi traffic, packets with EtherType
0x888e (EAP over LAN) must be sent to the AP’s network
stack to be processed by the AP’s WPA2 module.

2) Managing flows traversing Thin APs: A Thin AP has
a few more requirements from the SDN controller than an
Intelligent AP. In addition to Intelligent AP requirements,
the SDN controller has to track the IP addresses of all the
clients associated with each Thin AP. The SDN controller is
expected to examine the ARP queries made by Wi-Fi clients
for discovering the other wireless clients associated with the
same Thin AP. If the clients are allowed to communicate with
each other, the controller responds with an ARP reply with
the MAC address of the SDN switch connected to the AP,
for which the IP tracking is required. As a consequence of
this, a Wi-Fi client α communicating with Wi-Fi client β
will send a packet with the source MAC address of client
α, source IP address of client α, destination MAC address of
the SDN switch, and destination IP address of client β. For
such packets the SDN controller commands the SDN switch to
replace the source MAC address with the MAC address of the
SDN switch, and replace the destination MAC address with
the MAC address of client β, and finally send the packet to the
wireless interface of the Thin AP. This allows the SDN switch
to forward packets between clients associated with the Thin
AP. Unlike the Intelligent AP, the Thin AP does not require
any specific rules to support Wi-Fi encryption because these
frames are managed locally by the AP or by a Wi-Fi controller.

3) Supporting Client Mobility: Most Wi-Fi controllers offer
support for client mobility [10]. For the SDN controller to
support mobility, the controller must update the flow table
rules in SDN switches to ensure that packets are forwarded
to the AP which the client is associated to. Both Wi-Fi and
the SDN controllers can coordinate this using their respective
north-bound APIs or react to network changes.

The above actions are straightforward to implement in any
SDN controller, and we have implemented them in our SWIFT
SDN controller based on the Ryu controller framework.

E. Use Cases

We now discuss some of the use cases of our work.
1) Bringing SDN-based flow management to enterprise Wi-

Fi networks: Current enterprise APs are typically managed
using a proprietary Wi-Fi management solutions and do not
allow installation of custom firmwares. If these APs support
either Permissive Isolation or Restrictive Isolation, and if SDN

switches are added to the network, the Wi-Fi traffic flows can
be controlled by SWIFT. With the steps discussed in §III-D,
the existing Wi-Fi controllers can now function alongside
SWIFT and manage both Wi-Fi APs and traffic flows.

2) Using existing Wi-Fi testbeds for SDN research: Many
Wi-Fi testbeds contain a large number of legacy devices.
The hardware in these devices might be obsolete by modern
standards; for example, APs may have only 4MB of flash
storage [18]. However, these devices can run OpenWrt, and
our Intelligent AP or Thin AP techniques can be used on these
devices as OpenWrt supports Permissive Isolation. This allows
conducting SDN research in existing Wi-Fi testbeds.

3) Programmable Network-wide access control: An SDN
controller with a fine-grained view of the devices in the
network allows the implementation of network-wide access
control. The SDN controller can be used to dynamically grant
or deny devices access to network services and resources.
This level of control has many use cases especially for Wi-
Fi networks where many clients can enter and leave at will.
First, guest devices can be granted only a limited Internet
access while known devices have full access. Second, SDN
controllers can coordinate with AP management controllers
for creation of location specific access rules. By determining
where each client is located, the SDN controller can manage
which devices each client has access to. For example, access
to streaming devices such as Chromecast or AppleTV can
be restricted only to devices near the clients. Third, Wi-Fi
networks are increasingly being used to connect Internet-
of-Things (IoT) devices such as baby-monitors and security
cameras, which are known to have vulnerabilities. With our
techniques, these devices can be protected by creating an SDN-
based security overlay which controls the set of devices with
which such vulnerable devices can communicate.

4) Limit the number of SSIDs: Combined with the network-
wide access control, the SWIFT can limit the number of
SSIDs used to only a few while retaining the benefits of
multiple SSIDs. Different security or group memberships can
be allocated to Wi-Fi clients, allowing the dispensation of
specific networks such as ”guest” or ”accounting”.

F. Discussion

In this section, we presented our SWIFT architecture and
the techniques it is built on. The techniques combine off-the-
shelf components, mainly Client Isolation and SDN switches
such as OVS, to provide SDN-based management of all traffic
traversing a Wi-Fi network.

The Intelligent AP technique empowers routers and APs
which are supported by open-source firmwares such as Open-
Wrt, and allow installation of an SDN switch such as OVS.
The Thin AP technique can be used with existing Wi-Fi
APs which do not allow custom firmwares, or are otherwise
incapable of processing the computationally intensive SDN
match-action rules. Our two techniques can be used to bring
SDN-based traffic management to existing Wi-Fi networks.

Our techniques are straightforward to implement in any
SDN controller. The Intelligent and Thin AP approaches have

176

NetGear
Stock/Intelligent/Thin

TP-Link
Stock/Intelligent/Thin

Cisco 1131
Stock/Thin

SDN
Controller

SDN
Switch

Fig. 6. Testbed topology. The Netgear and TP-Link APs can be configured as
Stock, Intelligent, or Thin APs, while the Cisco AP can be configured as Stock
or Thin AP. We built our custom SDN controller using the Ryu framework.

some specific needs that must be addressed. For example,
when an AP is configured as a Thin AP, and a client sends
out a broadcast packet, the SDN switch to which the AP is
connected, sends broadcast packets back to the AP. This may
trigger a loop detection algorithm on the AP, causing the AP to
momentarily drop all packets sent back to it. This can either be
disabled in the AP, or it can be circumvented with application-
specific controller modules. For example, DHCP requests can
be routed directly to a DHCP server.

Our two techniques can also be combined with the other
solutions discussed in Table I. This would be beneficial as we
currently lack the remote AP configuration capabilities, offered
by for example Cisco WLC. At the same time, our techniques
address the scalability issue of multiple networks on a radio
interface; this is a serious shortcoming of existing solutions.

IV. EVALUATION

In this section we present results of experiments conducted
to a) quantify the overheads incurred by APs implementing our
two techniques, and b) address scalability. Please note that the
results presented here are for qualitative purposes only.

A. Experiment Setup for Quantifying Overheads of SWIFT

1) Devices Used and Network Topology: We used three
commodity APs for our experiments: a) Netgear WNDR-
4300v1, b) TP-Link WR1043NDv2, and c) Cisco 1131ag.
The Netgear and TP-Link can run OpenWrt while the Cisco
does not support custom firmware; each of these APs have
different hardware capabilities. The Netgear and TP-Link can
be configured either as a Stock, Intelligent, or Thin AP. We
run these two APs in their Stock OpenWrt configuration for
the baseline measurements. For the Intelligent AP tests, we
install OVS on these APs, enable Client Isolation, and include
a patch for hostapd to detect and exchange data with OVS to
support WPA2 encryption. For the Thin AP tests, the default
Linux bridge is used with Client Isolation enabled and the
OVS is located in a remote host. The Cisco is used in its Stock
configuration for baseline measurements, and Client Isolation
is enabled only when the AP is configured as a Thin AP. The
testbed topology is shown in Figure 6. We use a FIT-PC3
Pro as the main SDN switch for the testbed, and also as the
external SDN switch for our Thin APs. In addition, we used
two identical laptops as test clients.

2) SWIFT Controller: Our SWIFT controller extends Ryu
SDN to support our Thin and Intelligent AP implementations.
For each traffic flow, SWIFT installs corresponding flow rules
after an SDN switch receives the flow; in our implementation,
the forwarding decisions are based on the MAC addresses of
the clients. These give a lower bound on overheads, while
additional overheads can be incurred depending on the policies
that determine the rules. Our main focus was on the overheads
incurred by the redirection of packets to an SDN switch.

3) Test Scenarios: We use the following three scenarios.
We believe that these three scenarios emulate small Wi-Fi
networks and also testbeds used for Wi-Fi experiments.
Scenario A. In this scenario, our two laptops are associated
with the same AP. This scenario emulates a small Wi-Fi
network such as a home network with a single AP.
Scenario B. In this scenario, the two laptops are associated
with different APs. This scenario emulates a Wi-Fi network in
a small-office home-office scenario where the clients can be
associated with different APs.
Scenario C. In this scenario, one laptop is associated with an
AP, while the second laptop is in a high-speed wired network.
This scenario emulates a network such as a university network
where Wi-Fi clients communicate with servers present in a
high-speed wired network. The client in the wired network is
connected to the switch using a 1 Gbps Ethernet cable.

4) Traffic Generation: We use the Flent network bench-
marking tool [23] for quantifying the overheads incurred by
our changes to the APs. Our motivation for using Flent was
that it includes a Realtime Response Under Load (RRUL) test
for testing Bufferbloat [24]. During an RRUL test multiple
TCP flows between our clients traverse our network at the
same time. Furthermore, these competing flows can be con-
figured to have different priorities. For different priorities, the
Flent uses the Differentiated Services Code Point (DSCP) field
in IP packets; all the packets of a given TCP flow have the
same value in the DSCP field. This allows us to emulate the
network traffic where clients use different applications such
as VoIP and web browsing at the same time. This test is
particularly important as OpenWrt internally uses the Linux
networking stack where the default queue of the networking
interfaces is pfifo_fast. In the pfifo_fast configura-
tion, a queue has three bands labeled 0, 1, and 2, and the
DSCP field in the IP header determines the band of a packet;
packets in band 0 are served with a higher priority than those
in band 1 which in turn have a higher priority than those
in band 2 [25]. Each band is served First In First Out, and
packets in a band are served only when there are no packets
in a lower numbered band; for example, packets in band 2 are
served only when there are no packets in band 0 and band 1.
We use Flent’s RRUL tests in the following three modes.
a) RRUL (default): In this mode, the Flent on each client
creates multiple TCP and UDP flows with different priorities.
b) RRUL Best Effort: The Flent running on each client
generates multiple TCP and UDP flows. However, in this test
all traffic flows have the same priority, i.e., all TCP and UDP
packets have the same value in the DSCP field in the IP header.

177

c) RRUL Ping: The Flent uses only ICMP messages to
measure the round-trip time (RTT) without network load.
This provides a baseline measurements on the impact of the
Intelligent AP and Thin AP approach on the network latency.

We conduct the following experiments to quantify the
overheads incurred by of our two techniques. For each of the
three scenarios—Scenario A, Scenario B, and Scenario C—we
run the Netgear and TP-link AP in the Stock, Intelligent AP,
and Thin AP configuration, and the Cisco AP in the Stock and
Thin AP configuration. Furthermore, we run 30 iterations of
Flent in the default RRUL mode and the RRUL Best Effort
mode; during each iteration Flent generated the TCP flows
for 180 seconds. We also run one iteration of Flent for 300
seconds in the RRUL Ping mode.

B. Experiment Results on SWIFT Overheads

In Figure 7, we present the results of our experiments
conducted to quantify the overheads incurred by our two
techniques. In the Stock configuration, the packets between
two clients associated with an AP by-pass the kernel network
stack of the AP because they are forwarded directly by the
radio interface driver. Our Intelligent AP technique causes
these packets to be redirected to the OVS running on the
AP, while our Thin AP technique causes these packets to be
redirected to an external SDN switch. We quantify the impact
of these redirections using the mean TCP goodput and RTT
observed in the different scenarios discussed above.

In Figure 7(a) we present the RTTs observed during the
RRUL Ping test. The mean TCP goodput and the mean RTT
observed during the RRUL (default) test are presented in
Figure 7(b) and Figure 7(c) respectively; the corresponding
observations of RRUL Best Effort test are presented in Fig-
ure 7(d) and Figure 7(e) respectively. In each figure, S, I, and
T denote the Stock, Intelligent AP, and Thin AP configurations
respectively; cisco, ng, and tp denote the Cisco, Netgear,
and TP-Link AP respectively. The numbers above the X-
axis represent the percentage change in the value over the
corresponding Stock configuration. For instance, in Scenario
B when the Netgear and TP-Link APs are configured as
Intelligent APs for the RRUL BE test (ng-tp,I-I), we observe
a 1.2% decrease in the mean TCP goodput in Figure 7(d) and
a 226% increase in mean RTT in Figure 7(e) compared to the
mean goodput and mean RTT observed when the APs were
used in their Stock configuration (ng-tp,S-S).
Scenario A. In this scenario, two clients associated with
the same AP communicate with each other. The Thin AP
configuration is expected to incur a larger increase in RTT
compared to the Intelligent AP configuration because the
packets have to traverse an external switch. This increase is
clearly visible in Figure 7(a), Figure 7(c), and Figure 7(e);
the increase in RTTs for the Intelligent AP configuration
are smaller than the increase in the RTTs for the Thin AP
configuration. Note that the amount of increase in RTT is
dependent on the network latency between the AP and the
external SDN switch; for instance, the latency between our
external switch and our APs was under 1 ms. Furthermore, for

the Cisco and Netgear APs, the impact of this redirection on
the RTT is small compared to the increased queuing delays
faced when the network is loaded; the increase in RTT for
Cisco APs in the Thin AP configuration reduces from 55%
under no load (see Figure 7(a)) to 0.2% under load from
Best-Effort traffic (see Figure 7(e)). In RRUL Best Effort
Test, the mean round-trip for the Netgear AP configured as
a Thin AP is 5.7% lower while the TCP goodput is 1.4%
higher than the corresponding RTT and goodput in the Stock
configuration; we make similar observations in the RRUL Best
Effort test when the Netgear AP is configured as an Intelligent
AP. While the increases are mostly marginal, we believe that
these are due to more optimal efficient processing of queues
by OVS. In contrast, we observe an opposite behavior when
using the TP-Link in the Intelligent AP mode. These changes
in performance point to the hardware of the APs; the TP-
Link has the weakest hardware in terms of CPU capacity,
and this is evident from the high RTTs observed in the Stock
configuration in Figure 7(a).
Scenario B and Scenario C. In Scenario B, the two laptops
are associated with different APs. While in Scenario C, one
laptop is connected to an AP and the other is in the wired
network. With the help of Figure 6 one can see that for
Scenario B the path traversed by the packets in the Stock-
Stock configuration and Thin-Thin configuration are identical;
similarly, the Stock-Wired configuration and Thin-Wired con-
figuration are identical for Scenario C. The overheads incurred
between these configurations are therefore marginal.

We observe a small difference between the TCP goodput in
the Int-Int configuration and the goodput in the Stock-Stock
configuration for Scenario B in Figure 7(b) and Figure 7(d).
However, in Figure 7(c) and Figure 7(e), we can see that ICMP
messages sent by Flent during the RRUL test and RRUL BE
test incur a significantly higher RTT. Furthermore, for the Best
Effort test, while the TCP goodput decreases by only 1.2%
the RTT of the ICMP messages increases by 226%. Clearly,
the Thin-Thin configuration performs better than the Int-Int
configuration; this highlights the benefits of offloading the flow
management from commodity APs to an external switch.

For Scenario C, the difference in the TCP goodput and RTT
between the Intelligent-Wired configuration and the Stock-
Wired configuration is marginal. In Scenario C, we observe a
higher RTT compared to Scenario B and Scenario A because
of the 1 Gbps wired link; the TCP flows from the faster wired
network ensure that the queues at the AP are saturated.

Across all scenarios, we observe that values for the TCP
goodput and RTT in the RRUL test are significantly different
from those in the RRUL Best Effort test. In the RRUL test,
the ICMP messages used for the RTT measurements have the
least priority and therefore have higher queuing delays. In the
RRUL Best Effort test, all packets have the same priority; we
therefore observe smaller RTTs compared to the RRUL test.

C. Experiment for Testing Scalability of SWIFT

We also performed an experiment to showcase the scala-
bility of our architecture. As discussed in §II, the previous

178

−
− − − − − − − − − − − − − − − − − −

− − − − − − − −

0

1

2

3

4

−
− − − − − − − − − − − − − − − − − −

− − − − − − − −

n
g
−
tpn
g tp n
g tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

tp
−
n
g

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

3.6 2.4 55 18.3 19 3.4 0 0 0 1.1 2.9 1.1 0.9 4.1 −6.7 0 0 0

−
−
−
−
−
−
−
−
−
−

−
−
−
−
−
−
−
−
−
−

S I T S−S I−I T−T T−I S−W I−W T−W

Scenario−A Scenario−B Scenario−C

R
T

T
 (

m
s
)

(a) Mean round-trip times during RRUL Ping test. The error bars represent the standard deviation of the observed round-trip times. The numbers above
the X-axis present the percentage change in the measured value (mean round-trip time) over the value observed in the corresponding stock configuration.

−
−

−
−

− −
−

− − − − −
− − −

− − − − −

−

−

−

− −

−

−

0

20

40

60

80

−
−

−
−

− −
−

− − − − −
− − −

− − − − −

−

−

−

− −

−

−

n
g
−
tpn
g tp n
g tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

tp
−
n
g

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

−0.1 4.5 −0.1 −2.2 4.6 0.1 0 0 0 −1.3 0.1 0.1 −0.1 −0.1 0.1 0 0 0

−
−
−
−
−
−
−
−
−
−

−
−
−
−
−
−
−
−
−
−

S I T S−S I−I T−T T−I S−W I−W T−W

Scenario−A Scenario−B Scenario−C

G
o

o
d

p
u

t
(M

b
p

s
)

(b) Mean goodput during the default RRUL test. The error bars represent 99% Confidence Intervals for the mean TCP goodput.

− −
−

− −
− −

−
− −

−
−

− −

−

− −

−
−

−

−
−

−
− −

−
−

0
2000
4000
6000
8000

10000
12000

− −
−

− −
− −

−
− −

−
−

− −

−

− −

−
−

−

−
−

−
− −

−
−

n
g
−
tpn
g tp n
g tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

tp
−
n
g

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

0.1 −21.3 0.8 8.1 7.5 54.2 0 0 0 3.2 13 68.4 10.5 −2 6.5 0 0 0

−
−
−
−
−
−
−
−
−
−

−
−
−
−
−
−
−
−
−
−

S I T S−S I−I T−T T−I S−W I−W T−W

Scenario−A Scenario−B Scenario−C

R
T

T
 (

m
s
)

(c) Mean round-trip time during the default RRUL test. The error bars represent 99% Confidence Intervals for the mean round-trip time.

− − − − − − − −
− − − − − − −

− − − −

− − − − − − − −

0

20

40

60

80

− − − − − − − −
− − − − − − − − − − −

− − − − − − − −

n
g
−
tpn
g tp n
g tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

tp
−
n
g

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

1.5 −0.6 0.4 1.4 −1.8 −1.2 0 0 0 −5.6 3.3 −2.3 −0.8 0.5 −0.7 0 0 0

−
−
−
−
−
−
−
−
−
−

−
−
−
−
−
−
−
−
−
−

S I T S−S I−I T−T T−I S−W I−W T−W

Scenario−A Scenario−B Scenario−C

G
o

o
d

p
u

t
(M

b
p

s
)

(d) Mean goodput during the RRUL BE test. The error bars represent 99% Confidence Intervals for the mean TCP goodput.

− − − − − −
−

− − − −

−

− − −
− −

−

− − − − − − − − −

0
100
200
300
400
500
600

− − − − − − −
− − − −

−

− − −
− −

−

− − − − − − − − −

n
g
−
tpn
g tp n
g tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

tp
−
n
g

ci
sc

o n
g tp

ci
sc

o
−
n
g

ci
sc

o
−
tp

n
g
−
tp

ci
sc

o n
g tp

−7.2 3.4 0.2 −5.7 50 226 0 0 0 5.1 −47.1 187 422 1.7 −2 0 0 0

−
−
−
−
−
−
−
−
−
−

−
−
−
−
−
−
−
−
−
−

S I T S−S I−I T−T T−I S−W I−W T−W

Scenario−A Scenario−B Scenario−C

R
T

T
 (

m
s
)

(e) Mean round-trip time during RRUL BE test. The error bars represent 99% Confidence Intervals for the mean round-trip time. Note the lower
round-trip times compared to the default RRUL test. The ICMP messages have the same priority as the TCP flows in this test.

Fig. 7. Experiments Results. In each figure, S, I, and T denote the Stock, Intelligent AP, and Thin AP configurations respectively; cisco, ng, and tp denote
the Cisco, Netgear, and TP-Link AP respectively. For instance, T-I with cisco-ng represents a scenario where the first client was associated with a Cisco AP
configured as a Thin AP and the second client was associated with a Netgear AP configured as an Intelligent AP. Similarly, W represents a scenario when one of the
clients was in the wired network. For instance, I-W with ng represents a scenario where one client was associated with the Netgear AP configured as an Intelligent
AP and the second client was in the wired network. The numbers above the X-axis represent the percentage change in the value over the corresponding Stock
configuration. For instance, in Scenario B when the Netgear and TP-Link APs are configured as Intelligent APs for the RRUL BE test (ng-tp I-I), we observe
a 1.2% decrease in the mean TCP goodput in figure (d) and a 226% increase in mean round-trip time in figure (e) compared to the mean goodput and mean
round-trip time observed when the APs were used in the Stock configuration (ng-tp S-S). We observe that our two approaches incur negligible overheads in terms
of goodput, however their impact on the round-trip time varied with the tests.

179

approaches are limited to a single client per VAP if all traffic
flows need to be managed; however, the maximum number of
VAPs is limited by the hardware and drivers of the APs. We
show that our system can scale beyond the maximum number
of available SSIDs on the Cisco AP hardware, i.e. beyond 16.

In the experiment, we used the same testbed as above with a
single SSID. However, we used 20 different devices, including
laptops, mobile phones, and a Chromecast. We associated the
devices to the Cisco AP operating as Thin AP, and through
the SWIFT controller we pushed isolation rules to the AP to
isolate several of the devices from other devices.

As expected, the SWIFT controller was able to control all
the traffic flows traversing the Thin AP. The isolated devices
still retained the Internet access, but could not communicate
with other devices, i.e. full control of the flows was achieved.

D. Evaluation Summary

The goal of our evaluation was to quantify the impact of our
two techniques, and address the scalability of our architecture.
The overhead results presented in this section show that our
two techniques can be used on commodity APs. Furthermore,
the differences in performance between Stock, Intelligent, and
Thin configurations are negligible, and the performance largely
depends on an AP’s hardware capabilities. Specifically, the
performance of the Intelligent AP technique depends heavily
on an AP’s hardware capabilities. In contrast, the Thin AP
technique has fewer demands from the AP’s hardware than
the Intelligent AP, making it more suitable for APs with less
powerful hardware. Our results also highlight the benefits of
offloading the flow management from commodity APs to an
external switch. This implies that switches procured for SDN
research can be used in Wi-Fi testbeds having commodity APs.

The scalability experiment shows that our architecture can
support networks with a large number of clients with only a
single SSID, i.e. we can limit the overheads caused by a large
number of SSIDs, and push beyond the hardware limitations
of the APs which limit the other approaches.

Note that our goal was not to evaluate the performance of
OVS; this has been done by Pfaff et al. [3]. We are also
not quantifying the overheads of SDN policies because the
observed latencies and goodputs can be policy specific and
some policies can flood the switch with rules [26].

V. CONCLUSIONS

In this paper, we presented SWIFT, an architecture for
bringing SDN-based traffic flow management to Wi-Fi net-
works built using commodity enterprise and consumer devices.
SWIFT combines widely available technologies—Client Iso-
lation and SDN switches such as OVS—and can therefore
be used in almost all existing networks. The techniques used
by SWIFT require only a small number of tasks, which
are straightforward to implement in any SDN controller. We
strongly believe that our techniques provide a deployable way
to bringing SDN-based traffic management to Wi-Fi networks,
and significantly lower the barrier-to-entry for conducting
SDN research on Wi-Fi networks. For instance, our techniques

can be used to bring new features such as AP-specific access
control to enterprise networks, or conduct research on eval-
uating the benefits of SDN-based flow management in IoT
networks which use Wi-Fi.

The instructions for deploying SWIFT are available at [27].

ACKNOWLEDGMENT

This work is supported by the Nokia Center for Advanced
Research (NCAR), the Tekes PraNA project, and Tekes Take-5
project.

REFERENCES

[1] “hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS
Authenticator,” http://w1.fi/hostapd/.

[2] “OpenWrt,” https://openwrt.org/.
[3] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” in In Proc. of
USENIX NSDI, 2015.

[4] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “OpenRoads: Empowering Research
in Mobile Networks,” ACM SIGCOMM CCR., pp. 125–126, 2010.

[5] M. Yan, C. J. Casey, P. Shome, A. Sprintson, and A. Sutton, “Ætherflow:
Principled wireless support in SDN,” CoRR, vol. abs/1509.04745, 2015.

[6] Y. Yiakoumis, M. Bansal, A. Covington, J. van Reijendam, S. Katti, and
N. McKeown, “BeHop: A Testbed for Dense WiFi Networks,” in Proc.
of ACM WiNTECH ’14, 2014, pp. 1–8.

[7] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann,
“OpenSDWN: Programmatic Control over Home and Enterprise WiFi,”
in Proceedings of SOSR ’15. New York, NY, USA: ACM, 2015.

[8] P. Calhoun, M. Montemurro, and D. Stanley, “Control And Provisioning
of Wireless Access Points (CAPWAP) Protocol Specification,” Internet
RFCs, vol. RFC 5415.

[9] ——, “Control and Provisioning of Wireless Access Points (CAPWAP)
Protocol Binding for IEEE 802.11,” Internet RFCs, vol. RFC 5416.

[10] “Cisco Wireless LAN Controller,” www.cisco.com/c/en/us/products/
wireless/wireless-lan-controller/index.html.

[11] “Aruba Networks Mobility Controller,”
www.arubanetworks.com/products/networking/controllers.

[12] “Ubiquiti Networks UniFi,” www.ubnt.com/enterprise.
[13] “Cisco Aironet 3700 Deployment Guide,”

http://www.cisco.com/c/en/us/td/docs/wireless/technology/apdeploy/8-
0/Cisco Aironet 3700AP.html.

[14] “SSID Overheads,” http://www.revolutionwifi.net/revolutionwifi/2013/10/
ssid-overhead-how-many-wi-fi-ssids-are.html.

[15] “Total wi-fi device shipments to surpass ten billion this month,”
http://www.wi-fi.org/news-events/newsroom/total-wi-fi-device-
shipments-to-surpass-ten-billion-this-month, January 2015.

[16] “CPqD OpenFlow 1.3 Software Switch,”
http://cpqd.github.io/ofsoftswitch13/.

[17] “Linux Wireless,” wireless.wiki.kernel.org.
[18] “Linksys WRT54G Series,” https://en.wikipedia.org/wiki/Linksys

WRT54G series.
[19] “The OpenDaylight Platform,” https://www.opendaylight.org/.
[20] “Ryu SDN Framework,” https://osrg.github.io/ryu/.
[21] D. McPherson and B. Dykes, “VLAN Aggregation for Efficient IP

Address Allocation,” Internet RFCs, vol. RFC 3069.
[22] S. HomChaudhuri and M. Foschiano, “Cisco Systems’ Private VLANs:

Scalable Security in a Multi-Client Environment,” Internet RFCs, vol.
RFC 5517.

[23] T. Høiland-Jørgensen, “Flent: The flexible network tester.”
[24] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”

ACM Communications, pp. 57–65, January 2012.
[25] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,

P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic
control,” in Ottawa Linux Symposium, 2002, p. 213.

[26] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in IEEE Local Computer Network Con-
ference, Oct 2010, pp. 408–415.

[27] “SWIFT,” https://version.helsinki.fi/swift/.

180

Multipath IP Routing on End Devices:
Motivation, Design, and Performance

Liyang Sun∗, Guibin Tian∗, Guanyu Zhu∗, Yong Liu∗, Hang Shi†, and David Dai†
∗Electrical & Computer Engineering, New York University, Brooklyn, NY, 11201, USA

† Huawei Technology, Santa Clara, CA, 95050, USA

Abstract—Most end devices are now equipped with multi-
ple network interfaces. Applications can exploit all available
interfaces and benefit from multipath transmission. Recently
Multipath TCP (MPTCP) was proposed to implement multipath
transmission at the transport layer and has attracted lots of
attention from academia and industry. However, MPTCP only
supports TCP-based applications and its multipath routing flex-
ibility is limited. In this paper, we investigate the possibility of
orchestrating multipath transmission from the network layer of
end devices, and develop a Multipath IP (MPIP) design consisting
of signaling, session and path management, multipath routing,
and NAT traversal. We implement MPIP in Linux and Android
kernels. Through controlled lab experiments and Internet ex-
periments, we demonstrate that MPIP can effectively achieve
multipath gains at the network layer. It not only supports the
legacy TCP and UDP protocols, but also works seamlessly with
MPTCP. By facilitating user-defined customized routing, MPIP
can route traffic from competing applications in a coordinated
fashion to maximize the aggregate user Quality-of-Experience.

I. INTRODUCTION

Contemporary end devices are normally equipped with
multiple network interfaces, ranging from datacenter blade
servers to user laptops and handheld smart devices. Exploiting
all available interfaces, applications can adopt multipath trans-
missions to achieve higher and smoother aggregate throughput,
resilience to traffic variations and failures on individual paths,
and seamless transition between different networks. While
each application can implement its own multipath transmission
at the application layer, it is more desirable to provide mul-
tipath transmission services from the lower network protocol
stack so that all applications can benefit. Recently, Multipath
TCP (MPTCP) has been proposed and attracted lots of atten-
tion from academia and industry [1], [2], [3], [4], [5]. MPTCP
allows all TCP-based applications enjoy the multipath gain in a
transparent fashion. However, UDP-based applications cannot
benefit from multipath transmissions.

In this paper, we share our experience of orchestrating
multipath transmission from the network layer on end devices,
and present a complete design of Multipath IP Transmission
(MPIP). There are several advantages of implementing multi-
path transmission at the network layer:
Broader Coverage. MPIP can transmit IP packets generated
by any TCP or UDP based application. Being transparent to the
upper layers, MPIP can benefit all user applications without
changing the application and transport layer protocols.

Better View and Coordination. The network layer can
directly measure network status and promptly capture various
dynamic events, such as interface and network changes. Since
all application traffic go through the network layer, MPIP can
adjust the transmission strategies for all applications in a co-
ordinated fashion to maximally satisfy the diverse application
and user needs.
More Flexible Routing. With MPTCP, traffic allocated to a
path is determined by the rate achieved by the TCP subflow
on that path, i.e., routing is simply determined by congestion
control along multiple paths. This is too rigid and limited for
applications with different throughput and delay requirements,
and users with different resource and economic constraints.
MPIP instead can implement any customized multipath rout-
ing.
Lower Complexity. MPIP can eliminate redundant network
probings and routing adjustments attempted by individual
applications and sessions. From the implementation point of
view, similar to MPTCP, MPIP only requires changes on end
devices. MPTCP has to work with the complexity resulted
from the stateful TCP implementation. The legacy IP protocol
is stateless and its implementation is much simpler than the
legacy TCP. This leaves more design space for MPIP.

Meanwhile, MPIP also faces additional challenges. First
of all, due to the stateless nature of IP, there is no existing
session and path management mechanisms at network layer.
Secondly, to work with multiple paths, MPIP constantly needs
feedbacks about the availability and performance of each
path. However, the legacy IP does not provide end-to-end
feedbacks. Thirdly, various middle-boxes, e.g., NAT routers,
are by-no-means transparent. They change and verify IP
and TCP headers, and drop packets which they believe are
“unorthodox” according to the legacy TCP/IP protocol. Mul-
tipath transmission unavoidably leads to out-of-order packet
delivery. This will cause problem for running legacy TCP
over MPIP. Finally, MPIP design and implementation should
minimize the overhead and complexity added to the network
layer. We address those challenges in our MPIP design and
implementation. The contribution of our work is three-fold:

1) We develop a complete design to implement multipath
transmission at the network layer, consisting of signal-
ing, session and path management, multipath IP source
routing, and NAT traversal. Our MPIP design not only
can be used by the legacy TCP and UDP protocols, but
also works seamlessly with MPTCP.ISBN 978-3-903176-08-9 c© 2018 IFIP

Application

socket

transport

MPIP

IP11 IP12

Node A

Application

socket

transport

MPIP

IP21 IP22

Node B

session

IP Paths

Fig. 1. Example of MPIP Transmission

2) MPIP supports diverse multipath routing strategies. For
all-paths mode, we design a delay-based routing al-
gorithm for MPIP to balance the loads of available
paths. We also develop a user-defined multipath routing
framework, through which customized routing strategies,
such as selected-paths and single-path, can be realized
by MPIP to satisfy diverse application/user needs.

3) We implement MPIP in Linux and Android kernels.
We evaluate its performance using controlled lab exper-
iments and Internet experiments. We demonstrate that
MPIP can transparently achieve various multipath gains
at the network layer. It works seamlessly with legacy
transport layer protocols and popular applications. It can
significantly improve user Quality-of-Experience (QoE)
using easily configurable multipath routing strategies.

The rest of the paper is organized as follows. The semantics
of MPIP is presented in Section II. The complete MPIP design
is developed in Section III. Special issues related to TCP
are addressed in Section IV. In Section V, we report the
experimental results. Related work is summarized in Section
VI. The paper is concluded in Section VII.

II. SEMANTICS

MPIP works at the network layer on end devices. The basic
building blocks are: Node, Session, and Path.

• Node refers to an end device with potentially multiple
network interfaces, each of which gets assigned with a
private or public IP address. MPIP also works with nodes
with single network interface.

• Session is a transport layer flow between two nodes
served by MPIP. A session is established at the transport
layer, using the legacy TCP or UDP protocol, or even the
new MPTCP protocol.

• Path is an end-to-end IP route available for a session. For
each session, MPIP can use any interface on one node to
transmit packets to any interface on the other node. If
the two nodes have m and n interfaces respectively, the
number of possible paths is mn.

With the legacy IP, each session is associated with only one
IP (interface) and one port number on each node. The routing
decision is based on destination IP address. MPIP employs
customized session-based routing, and transmits packets of
each session using any combination of the available paths.
For the example in Figure 1, node A and node B are MPIP-
enabled. They use the legacy application layer and transport
layer. Each node has two interfaces (and the associated IP
addresses). There are four end-to-end IP paths, as illustrated
in Figure 1. When an application on node A opens a TCP/UDP
connection to node B, MPIP will treat this connection as a new
session. For each packet going from A to B, MPIP will choose
one of the four available paths to send it out. To do that, MPIP
will change the source and destination IP addresses as well as
the port numbers of the packet so that it can be forwarded
to the corresponding interface of the chosen path on node B.
When node B receives the packet, it will first check which
session it belongs to, then modify the IP address and port
number back to the original values of the session. Finally, the
packet will be passed to the corresponding TCP/UDP socket.
The whole process is transparent to TCP/UDP session. If
MPIP can simultaneously utilize the four paths by dispatching
different packets to different paths, TCP /UDP throughput can
be improved. Also the session can work normally as long as
one path is available. Consequently, a TCP/UDP session will
not be interrupted even if the default interfaces assigned to
the session by the OS are disconnected. This makes hand-
overs between different networks seamless and transparent
to the transport and application layers. In general, MPIP
routes packets from one session using several modes: 1) all-
paths mode: packets are dispatched concurrently to all the
available paths. Each packet will be transmitted along one of
the paths. MPIP Routing determines the traffic splitting ratios
among paths; 2) selected-paths mode: packets are routed on a
subset of paths that meet the requirements of the application.
Selected-paths mode avoids the inclusion of bad paths that
will drag down the application performance. Path selection
is application-specific and can be adapted by MPIP based on
both application and network dynamics; 3) single-path mode:
at any time, packets are only routed over one selected path,
which can change during the course of the session. MPIP will
handle seamless handover between paths, without interrupting
the session. Single-path mode eliminates path quality dispar-
ity, such as out-of-order packet delivery, by sacrificing the
throughput gain; 4) protected-path mode: a mission-critical
packet is simultaneously transmitted on multiple paths. The
receiver will pass the first arrived copy to the upper layer
and discard the subsequent redundant copies. It sacrifices
bandwidth for resilience.

III. MPIP DESIGN

A. Workflow of Sending/Receiving Packets

Before diving into the design details, we present the MPIP
workflow in Figure 2. When an outbound packet arrives at
network layer from transportation layer, given the destination
IP address and port number in header, MPIP checks whether

182

Dest MPIP
enabled?

Attach CM block

Modify packet header,
choose a path to send

out MPIP
packet?

Extract CM and process

MPIP
control packet?

Modify packet header,
push up

Drop
packet

Higher Layer (Transportation Layer, TCP, UDP)

Lower Layer (Link Layer, Mac)

Y

Y

N

N

Y

N

Fig. 2. MPIP Work Flow of Sending and Receiving Packets.

the destination node is MPIP enabled. If not, the packet will
be processed by the regular IP stack and sent to the data link
layer. If the destination is MPIP-enabled, MPIP will append a
MPIP control message (CM) block to the end of the packet,
change the IP and port addresses in packet header so that it
will be sent to a chosen IP path. When receiving an inbound
packet, MPIP processes the CM block to find the transport
layer socket that the packet belongs to. Then MPIP reverts the
IP and port addresses in packet header to the original values
before pushing the packet to the transport layer. The major
MPIP design components are: Signaling Channel, Handshake,
Session Management, Path Management, MPIP Routing, and
NAT Traversal.

B. Signaling Channel

TABLE I
CONTROL MESSAGE BLOCK

Source Session Local IP CM
Node ID ID Address List Flags

Path Feedback Packet Path
ID Path ID Timestamp Delay

MPIP needs realtime information about the availability and
performance of end-to-end paths. Due to its connectionless
design, legacy IP protocol doesn’t have its built-in end-to-
end feedback channel. We need a signaling channel for MPIP.
Instead of transmitting extra signaling packets, we piggyback
MPIP control information to each MPIP packet. For each
packet sent out by MPIP, we add an additional control message
(CM) data block at the end of user data. The size of the
CM block is 25 bytes, a small overhead for typical data
packets of 1000+ bytes. Considering the throughput gain and
robustness brought by MPIP, the overhead of CM block is
well acceptable. Packet size may exceed the link MTU after
attaching the CM block. We force the transport layer to reduce
the size of each segment, e.g. decreasing the MSS value for
TCP connection, to make sure the CM block fits within the
MTU limit. The information contained in a CM block of a
packet is shown in Table I.

Source Node ID is a globally unique ID of the sending node
of this packet. Since each node has multiple interfaces, and
their IP addresses may change over time, to have a semi-static
node ID, we use the MAC address of a NIC (preferable more
static ones) on the node to be its ID.

Local IP Address List carries all local IP addresses on the
sending node. This list will be used to construct MPIP paths.

CM Flags encodes the MPIP functionality of the packet.
With different values of CM Flags, different actions will be
operated when the packet is received.

Other fields will be explained in the following sections.

C. Handshake and Session Management

As an extension of IP, MPIP needs to be backward compat-
ible. To take advantage of MPIP, both end nodes of a session
need to be MPIP-enabled. Locally, every MPIP-enabled node
maintains a table to record the availability of MPIP on remote
nodes. A node can query the MPIP availability of a remote
node by sending out a MPIP packet with Flags Enable in
CM. If the remote node is MPIP-enabled, it will send back
confirmation. Both nodes will update their MPIP availability
table accordingly. Please refer to our technical report [6] for
the detailed handshake process, After the MPIP handshake, a
node can start to learn the interfaces available on each MPIP-
enabled remote node. Each node maintains a node ID to IP
address and port number mapping table. Every time a MPIP
packet is received, the receiver extracts the sender’s node ID
from the packet’s CM block, and IP address and port number
from the packet header. The three tuple is then written into
the mapping table.

MPIP conducts session-based routing. Session management
takes care of the addition and removal of TCP and UDP
sessions. At the transport layer, each session is identified by
the traditional 5-tuple: source and destination IP addresses and
port numbers, and protocol type. Since MPIP can transmit
a packet of a session using source and destination IP ad-
dress/port numbers different from the session’s original ones,
we can no longer use IP addresses/port numbers to associate
a MPIP packet with a transport layer session. Instead, we will
use session ID and node ID carried in the CM block to identify
the session of a MPIP packet. We need a table to correlate the
two different session mapping schemes employed by MPIP
and the legacy transport layer. This is achieved through the
session information table, as in Table II. The table maintains
one entry for each session to each remote node. For each entry,
the socket information, namely IP addresses and port numbers,
are the original ones from the transport layer.

After the MPIP availability handshake has been successfully
completed, when sending out a packet, the sender checks
Table II to see whether a proper session entry has been
generated. If not, MPIP generates a new session ID and adds
a new entry to Table II. After this, all packets belong to the
session will carry the session’s ID in its CM block. On the
receiver end, whenever a MPIP packet is received, the receiver
extracts the source node ID and session ID from its CM block.
If there is no entry found in its session information table, it

183

TABLE II
SESSION INFORMATION TABLE

Dest. Session Source Source Destination Destination Protocol Next Update
Node ID ID IP Port IP Port Type Sequence No Time
ID1 SID1 SIP 1 SPORT 1 DIP 1 DPORT 1 TCP S1 T1

ID1 SID2 SIP 1 SPORT 2 DIP 1 DPORT 2 UDP 0 T2

ID2 SID1 SIP 2 SPORT 3 DIP 2 DPORT 3 TCP S2 T3

ID2 SID2 SIP 2 SPORT 4 DIP 2 DPORT 4 UDP 0 T4

A

NAT1

B

NAT2

〈sip1, sp1〉 〈dip1, dp1〉

〈sip2, sp2〉 〈dip2, dp2〉
〈 ̂sip2, ŝp2〉

〈 ̂sip1, ŝp1〉

available paths to B

〈sip1, sp1〉 ⇔ 〈dip1, dp1〉
〈sip2, sp2〉 ⇔ 〈dip1, dp1〉
〈sip1, sp1〉 ⇔ 〈dip2, dp2〉
〈sip2, sp2〉 ⇔ 〈dip2, dp2〉

〈dip1, dp1〉 ⇔ 〈 ̂sip1, ŝp1〉
〈dip2, dp2〉 ⇔ 〈 ̂sip1, ŝp1〉
〈dip1, dp1〉 ⇔ 〈 ̂sip2, ŝp2〉
〈dip2, dp2〉 ⇔ 〈 ̂sip2, ŝp2〉

available paths to A

Fig. 3. MPIP Path Establishment with NAT

will generate a new entry and populate it with the source node
ID, session ID, and socket information carried in the packet
header, with swapped source and destination IP/port addresses.
This will make sure that both sides of the same session use the
same session ID. Removal of a session is done by expiration
based on the session’s Update Time in Table II. The column
Next Sequence No is used for TCP out-of-order process which
will be explained in Section IV-B.

D. Path Management

After a session is registered with MPIP, the next step is
to explore all the available paths for the session. One simple
solution is to have each node send their local IP addresses
to the other end using the Local Address List in CM block.
Then any pair of IP addresses on the two ends can be used
as a path for MPIP transmission. However, this only works if
all interfaces on both ends have public IP addresses. If one
node is behind a NAT, its local IP addresses cannot be used
directly to establish IP paths. To solve this problem, we have
to identify paths using a combination of IP address and port
number on both ends. Consequently, the path management has
to be done for each session individually.

1) Establishment: MPIP maintains a path information table
on each node, as in Table III, to record the available paths for
each session. Each entry contains the ID of the remote node
and the session ID. Each path is allocated with a path ID,
which is unique on the local node. The source and destination
IP and port addresses are the addresses carried in the header
of MPIP packet, NOT necessarily the same as those allocated
to the session at the transport layer.

Given m and n interfaces at each end node, there are totally
mn possible paths. After the MPIP handshake, each node
tries to send out packets from each of its local interfaces

to each of the known interface on the remote node. If a
packet with a certain combination of source and destination
IP/port addresses can get through, the node will add the path
to path information table. Let’s explain the process through
the example in Figure 3. Node A initiates a session with
node B. The IP and port addresses allocated to the session
at the transport layer are 〈sip1, sp1〉 and 〈dip1, dp1〉 on A and
B respectively. Without loss of generality, let’s assume the
session can be established correctly with legacy IP. Then on
both ends, MPIP records the new session, and adds the default
path between 〈sip1, sp1〉 and 〈dip1, dp1〉 for the session in
Table III. Since A knows B is MPIP-enabled, it also tries to
send the same packet from its other local interface with IP
address sip2 by changing its source addresses to 〈sip2, sp2〉.
When B receives the packet, possibly due to NAT, the source
IP and port addresses in the packet might be different from
〈sip2, sp2〉, say 〈ŝip2, ŝp2〉. Then B examines the Source Node
ID and Session ID in the packet’s CM block, it knows this
is a MPIP transmission for the same session but from a
different interface. B adds a new path with destination address
of 〈ŝip2, ŝp2〉 in its path information table. Now B will also
send back packets to A’s second interface, using destination
addresses 〈ŝip2, ŝp2〉. When A receives the packet, it confirms
the connectivity of its local path between 〈sip2, sp2〉 and
〈dip1, dp1〉, and adds it to its path information table. Similarly,
if B has another interface with public address dip2, A will
obtain the new address from the Local Address List in the
CM block of packets from B to A. Then A can establish more
IP paths to this new address using a similar process.

2) Monitoring: To facilitate path selection, MPIP contin-
uously monitors the performance of active paths. Given that
packet losses in the current Internet are rare, we mainly focus
on path delay in our current design. Due to asymmetric routing
and unequal congestion levels along two directions of the same
path, instead of measuring the round-trip delay of a path, we
measure the one-way path delay to infer the path quality on
each direction. When node A sends out a packet, it chooses
a path from Table III and sets Packet Timestamp with its
local system time T1. After node B receives this packet, it
calculates the one-way delay for the path as T2 − T1, where
T2 is B’s local time when receiving the packet. In practice,
the absolute value of path delay calculated here isn’t the real
delay value because of the clocks on node A and B are not
synchronized. But our path selection algorithms depend on
the relative ordering of path delays, instead of their absolute
values. Clock difference between nodes has little impact. B
then sends back the path delay information in the CM block

184

TABLE III
PATH INFORMATION TABLE

Dest Session Path Src Src Dest Dest Minimum Real-Time Real-Time Maximum Path
Node ID ID ID IP Port IP Port Path Delay Path Delay Queuing Delay Queuing Delay Weight

ID SID1 PID11 sip1 sp1 dip1 dp1 Dmin11 D11 Q11 Qmax11 W11

ID SID1 PID12 sip2 sp2 dip1 dp1 Dmin12 D12 Q12 Qmax12 W12

ID SID2 PID21 sip1 sp1 dip2 dp2 Dmin21 D21 Q21 Qmax21 W21

ID SID2 PID22 sip2 sp2 dip2 dp2 Dmin22 D22 Q22 Qmax22 W22

of the next packet going back to A, which records the path
delay value into the column Real-Time Path Delay in Table III.
Path delay values are smoothed using a simple moving average
algorithm. More details can be found in our technical report [6]

3) Dynamic Path Management: MPIP supports dynamic
addition and removal of paths from Table III. When IP address
change happens on one node, it sets Flags IP Change in
the CM block of its next outgoing packet. After receiving a
packet with this flag, the receiver knows that IP address on
the sender has changed, it removes all path entries related
to the changed IP address in Table III. Meanwhile, the entry
for this session in Table II remains unchanged. The path that
sends out the IP change notification will be added back to
the aforementioned tables as the only path of the session.
Also, the sender does the same reset for this session. After
all these resets, there is only one path left for this session,
all the other available paths will be added back through the
procedure in Section III-D1. Similarly, when a new interface
becomes available, new IP paths from it can be added using the
the mechanism in Section III-D1. Table III should be updated
continuously on both sides. The updates are piggybacked on
MPIP packets. For sessions with one-way traffic, such as some
UDP sessions, a periodical heartbeat mechanism is introduced
to keep Table III fresh. More details can be found in our
technical report [6].

E. Multipath IP Source Routing

Given all paths available for a session, every time one node
needs to send out a packet, it chooses the most suitable path
from Table III. MPIP offers different routing strategies to
satisfy the diverse needs of applications.

1) All-paths Mode: Many applications, e.g., web, file trans-
fer, and video streaming, can benefit from high-throughput
transmissions. MPIP can concurrently transmit packets along
multiple paths to achieve higher throughput than the traditional
single path routing. Since MPIP works under rate control
schemes from transport and application layers, it will be
redundant and possibly conflicting to implement fine-grained
rate control for each MPIP path at the network layer. Instead,
the main design goal of MPIP routing is to balance load among
concurrent paths using end-to-end path delay feedback and
probabilistic packet dispatching algorithm. As in Table III, we
maintain a Path Weight (W) for each active path. Each packet
will be dispatched to a path k with the probability P (k), which
is calculated as:

P (k) =
Wk∑N
i=1 Wi

. (1)

We use realtime one-way path delay to dynamically update
path weights. End-to-end path delay consists of propagation
delay, transmission delay, processing and queueing delay.
While propagation delay and transmission delay are mostly
constant, processing and queue delay are time-varying and
increase with congestion level. We maintain the minimum
path delay to represent the constant portion of end-to-end path
delay, and use the difference between real-time and minimum
delay to infer the queuing delay, which reflects the congestion
level along the path. We then adjust the weight of each path
using the real-time queuing delay. When a new delay sample
D is received, the other three delay metrics are updated:

1) Minimum Path Delay: Dmin = min {Dmin, D};
2) Real-Time Queuing Delay: Q = D −Dmin;
3) Maximum Queuing Delay: Qmax = max {Qmax, Q}.
We adjust the weights of all paths together based on their

queueing delay variations as in Algorithm 1. N is the number

Algorithm 1 Path Weight Adjustment.

1: Qavg =
∑N

i=1 Qi

N ; //average delay among all paths
2: if Qi ≤ Qavg then
3: Wi = Wi + S; //increase weight for low delay path
4: if Wi > 1000 then
5: Wi = 1000; //upper bound for path weight
6: end if
7: else
8: Wi = Wi − S; //decrease weight for high delay path
9: if Wi < 1 then

10: Wi = 1; //lower bound for path weight
11: end if
12: end if
13: return ;

of paths that belong to one session, Qi and Wi are queuing
delay and weight of path i, and S is the adjustment granularity.
Initially, every path has the same path weight of 1000

N . In each
iteration, the path weight increases or decreases by S based on
whether its queuing delay is higher or lower than the average
delay. The maximum weight is 1000, and the minimum is 1.
This way, we keep all live paths in consideration. Heavily
congested paths will not be completely eliminated. Instead
they will have the minimum weight, and their weights will
be increased after congestion is relieved. Algorithm 1 is
executed periodically, the length of each period is defined as
a configurable system parameter T .

185

2) User-defined Multipath Routing: Not all applications
take throughput as the first priority. To address the diverse
needs of applications, we design MPIP to support user-
defined routing schemes, including selected-paths, single-path
and protected-path. Users can inform MPIP of their desired
multi-path routing policies by configuring a routing table as
illustrated in Table IV. Each line of the table is a customized

TABLE IV
USER-DEFINED MULTIPATH ROUTING TABLE

IP Port Protocol Start End Routing
Address Number Type Size Size Priority
∗ 22 TCP 0 200 Rf

192.168.1.2 5222 UDP 200 ∗ Tf

192.168.1.2 5221 UDP 0 500 Rf

routing rule for outgoing packets. Each rule matches a set
of packets and the routing priority for the matched packets.
Packet matching is done using destination IP address, port
number, protocol, and the range of packet length. We currently
define two types of routing priorities: throughput-first Tf , and
responsiveness first Rf . Outgoing packets with Tf priority
will be dispatched to available paths using the all-paths mode
presented in Section III-E1. Outgoing packets with Rf priority
will always be sent to path with the lowest delay using the
single-path mode. For example, based on the first row of
Table IV, for any TCP connection with destination port 22
(ssh session), if the packet length is smaller than 200 bytes,
the packet will be forward to the lowest delay path. The second
row defines that all UDP packets going to a remote host with
packet size larger than 200 bytes should be forwarded using
all-paths mode. The third row specifies that for a UDP packet
going to the same remote host, but a different port number,
if the packet size is less than 500, it will be forwarded to the
lowest delay path instead. We will extend this basic framework
to incorporate more flexible and more user-friendly packet
matching rules and more diverse routing policies with finer
granularity in our future work.

IV. TCP-RELATED ISSUES

By deviating from the default single-path transmission,
MPIP also brings some new issues for the upper layer proto-
cols, especially TCP, such as NAT checking and out-of-order
packet delivery. It is also intriguing to explore the co-existence
of MPIP with multi-path transmissions at upper layers, such
as MPTCP. We now present solutions to TCP-related issues.

A. NAT Checking

Based on our experiments and other studies, e.g. [1], NAT
devices are by no means transparent, and conduct all kinds
of mapping, verification, and dropping to end-to-end sessions,
especially TCP. One immediate obstacle introduced by NAT
to MPIP is that many NAT devices drop a TCP packet if they
don’t have a record about the TCP connection that the packet
belongs to. In MPIP, if we transmit TCP packets on a path dif-
ferent from the original one through which the TCP connection
is established, NAT devices along the path are not aware of

the connection and will drop these packets before they arrive
at the destination. We provide two solutions. One solution is
to construct a fake TCP three-way hand-shake on the NAT’s
path before sending packets over. When a client receives the
IP address list of the server, it sends out a SYN packet along
each possible path to the server except the original one which
was used to initiate the real TCP connection. After the fake
three-way handshake is completed successfully, NAT routers
along the path have a record about this fake TCP connection,
will pass TCP packets assigned to the path. Another solution
is UDP wrapper. During our experiments, most NAT devices
don’t verify socket information of UDP packets. We make use
of this feature and wrap a TCP packet inside a UDP packet
to pass NAT checking. Whenever MPIP chooses for a TCP
packet a path different from its original path, it encapsulates
the TCP packet into an UDP packet by adding a forged UDP
header using the corresponding IP addresses and port numbers
of the chosen path. At the receiver end, MPIP removes the
UDP header and extract the original socket information from
Table II to be filled into the TCP and IP headers.

B. Out-of-order Packet Processing

Packets sent over multiple interfaces/paths can arrive at the
destination node out of order. When TCP works over MPIP,
if the delay difference between multiple paths is significant,
we can expect a lot of out-of-order packets. To resolve this
problem, for each session in Table II, if it is TCP protocol,
MPIP maintains the sequence number S of the next in-order
packet of the session to be received. MPIP also maintains a
separate re-sequencing buffer B for each active session to store
out-of-order packets. Whenever a new packet is received, if the
sequence number is larger than S, it will be stored in B; if
the sequence number equals to S, MPIP pushes all consecutive
packets in B to the transport layer and update S accordingly.
To avoid blocking introduced by a lost packet, we limit the
size of re-sequencing buffer. All the packets in the buffer will
be pushed up once the buffer is full. In our prototype, we set
the maximum buffer size to 100 packets.

C. MPTCP over MPIP

A MPTCP session employs multiple subflows, each of
which is a legitimate TCP connection over a single IP path.
When MPTCP runs over MPIP, each TCP subflow can now
utilize multiple paths. For the example in Figure 1, a MPTCP
session can have 4 subflows. MPIP will treat each subflow
as an independent TCP session, and will create 4 paths for
each subflow. As a result, there are totally 4 sessions and
16 paths managed by MPIP. When congestion accumulates
on one path, MPIP will first notice the high queuing delay
on that path, reduce the path weight and shift packets to less
congested paths. The load balancing conducted by MPIP at the
network layer makes the congestion variations along different
paths less perceivable for MPTCP subflows so that MPTCP
can make better use of subflows to achieve higher throughput.
We will demonstrate this using MPTCP+MPIP experiments in
Section V-A1.

186

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed design, we
implement MPIP in Linux kernel 3.10.11 in Ubuntu system
for IPv4. The main MPIP functions are implemented with
more than 5, 000 lines of code. MPIP is also implemented into
Android system 6.0.1 with kernel version 3.10.73. For all TCP
experiments, we use CUBIC-TCP [7]. MPTCP version 0.92 is
used in our evaluation. We use Iperf/Iperf3 to generate traffic.

Seconds
0 10 20 30 40 50 60

M
b
p
s

0

20

40

60

80

Path 1
Path 2
Total

(a) Load Balancing

Normal Extra Delay Bandwidth Limit

50

60

70

80

MPTCP
MPIP
MPIP & MPTCP

(b) MPIP and MPTCP

Fig. 4. TCP over MPIP Performance

A. Controlled Lab Experiments

In our lab, we install the prototype on two desktop com-
puters, which are connected directly to a router. Each desktop
has two 100Mbps NICs, leading to 4 paths with aggregate
capacity of 200Mbps. We use tc (traffic control) tool in Linux
to control bandwidth and delay on each path.

1) TCP over MPIP: To test the effectiveness of MPIP load-
balancing, we enable only two parallel paths between the two
desktops so that they don’t share any NIC to prevent traffic
coupling. To make it more intuitive, we limit the bandwidth
of path 1 to 40Mbps and path 2 to 20Mbps. From the
throughput trend in Figure 4(a), both paths converged close to
their capacities and remained stable for the whole experiment.
We then compare path failure response time of TCP/MPIP
and MPTCP/IP by disconnecting then reconnecting one path.
MPTCP always suffers a 10 ∼ 20 seconds delay to re-establish
the subflow. MPIP promptly detects the re-activated path at the
network layer to ramp up the throughput.

As mentioned in Section IV-C, MPIP should be compatible
with MPTCP. Three groups of experiments are conducted
for different combinations of multipath transmission at trans-
port and network layers, namely, MPTCP/IP, TCP/MPIP, and
MPTCP/MPIP. For the first group (normal), two available
paths with 40Mbps bandwidth each are configured; for the
second group (extra delay), an extra 10ms delay is added to
path 1; at last, bandwidth of path 1 is limited to 20Mbps. In
Figure 4(b), the boxplots for throughputs of all combinations
are plotted. MPTCP/IP throughput is stable and close to the ca-
pacity in all cases. TCP/MPIP and MPTCP/MPIP throughputs
are little lower but still close to the capacity. Their throughput
variances are also larger than MPTCP. The interaction between
MPIP load balancing and upper layer congestion control needs
further study and fine-tuning.

Fig. 5. MPTCP/MPIP Compete with Single Path TCP

Seconds
0 10 20 30 40 50

M
b

p
s

0

5

10

15

20

25

30
MPTCP Subflow 1
MPTCP Subflow 2
TCP

(a) MPTCP/IP and TCP/IP

Seconds
0 10 20 30 40 50

M
b

p
s

0

5

10

15

20

25

30
MPIP Path 1
MPIP Path 2
TCP

(b) TCP/MPIP and TCP/IP

Fig. 6. Fairness with Legacy TCP/IP

2) Fairness with Legacy TCP/IP: We next conduct experi-
ments to study how TCP/MPIP co-exists with legacy TCP/IP
sessions, and compare it with MPTCP. Consider a network
containing three types of sessions, TCP/IP, MPTCP/IP, and
TCP/MPIP, illustrated in Fig 5. Similar to the MPTCP fairness
study in [8], two paths are set up with two bottleneck links
of 20Mbps. The upper path is shared by the TCP/IP session
and MPIP (or MPTCP) session. The MPIP (MPTCP) session
starts first. The TCP/IP session follows after ten seconds,
and lasts for thirty seconds. Fig 6(a) illustrates how MPTCP
with BALIA congestion control (CC) co-exists with TCP.
MPTCP gradually reduces its traffic on the shared path to
leave space for the single-path TCP, which eventually gets
comparable throughput as MPTCP. When TCP session is done,
it takes a while for MPTCP to reclaim the capacity on the
shared path. Meanwhile, from Fig 6(b), MPIP reacts much
faster than MPTCP to make space for single-path TCP, which
obtains nearly all the available bandwidth of the shared link.
After single-path TCP completes, MPIP also reclaims the
available bandwidth faster than MPTCP. This demonstrates
that MPIP’s load balancing at the network layer can facilitate
fair bandwidth sharing at the transport layer.

3) UDP over MPIP: To evaluate how UDP-based applica-
tions, such as Real Time Communications, can benefit from
MPIP, we run WebRTC video chat over MPIP and collect
application-level performance by capturing the statistics win-
dows of WebRTC-internals embedded in Chrome, then extract-
ing data from the captured windows using WebPlotDigitizer.
We first configure two IP paths between two lab machines
without bandwidth limit, and then run WebRTC video call
between the two machines. To test the robustness of MPIP

187

against path failures, one path is disconnected in the middle
of experiment. If WebRTC video chat is running over legacy
IP, when the original path is disconnected, video freezes for
few seconds before video flow migrates to the other path.
This demonstrates that while WebRTC can recover from path
failure at the application layer, its response is too sluggish and
user QoE is significantly degraded by a few seconds freezing.
With MPIP, video streams continuously without interruption.
In addition, to demonstrate how WebRTC benefits from MPIP
multipath throughput gain, we limit the bandwidth of each path
to 1Mbps. Comparison presented in Figure 7(a) illustrates that
with the help of MPIP, WebRTC video throughput improves
from 600Kbps to 1200Kbps. We then introduce additional
delays of 50ms and 80ms to the two paths respectively. MPIP
then use single-path mode to route audio packets to the path
with shorter delay, while video packets are routed using all-
paths mode. Figure 7(b) shows clearly that audio delay is
reduced by 30ms while the video quality is not affected.

Seconds
0 20 40 60 80 100 120

K
b

p
s

400

600

800

1000

1200

1400 with MPIP
w/o MPIP

(a) Video Rate under B.W. Limit

Seconds
0 20 40 60 80 100 120

m
s

20

40

60

80

100

with Customized Routing
w/o Customized Routing

(b) WebRTC Audio Delay

Fig. 7. WebRTC Performance over MPIP: (a) all-paths mode; (b) single-path
mode for audio, all-paths mode for video.

B. Internet Experiments

Besides the controlled lab experiments, we also conduct
experiments on the Internet to evaluate MPIP’s compatibility
with real applications and various middle boxes, e.g. NAT
routers inside ISP and CSP networks.

1) Coordinated Routing between Applications: We study
coordinated MPIP routing for Youtube video streaming and file
downloading applications using the testbed in Figure 8. Since
we cannot install MPIP on YouTube servers, we configure a
MPIP proxy using Squid on Ubuntu. Three NICs are installed
on the proxy server: one NIC is connected to Internet, and the
other two are connected to a MPIP client through two paths
in an emulated network. We setup 2Mbps bandwidth limit for
each path and introduced 20ms extra delay to one path.

Fig. 8. MPIP works with YouTube through Proxy

Seconds
0 30 60 90 120 150 180

S
e

c
o

n
d

s

0

20

40

60

80
Compete
Phase

Coordinate
Phase

Video only
Phase

(a) Video Buffer Health

Seconds
0 30 60 90 120 150 180

K
b

p
s

0

1000

2000

3000

4000

5000

6000
Compete
Phase

Coordinate
Phase

Video only
Phase

(b) Video Throughput

Fig. 9. Youtube 720p Video Streaming with Coordinated MPIP Routing

At the beginning, besides the YouTube video session,
another file downloading session is added to transmit data
from MPIP proxy server to client. Initially MPIP operates in
the all-paths mode and establishes two paths for each session
to acquire more bandwidth. Due to the path delay difference,
out-of-order packet deliveries limit the TCP throughput for
both sessions. Sixty seconds into the experiment, MPIP
implements coordinated routing: both sessions are routed
using the single-path mode, with Youtube session assigned to
the path with shorter delay and the file downloading session
assigned to the other path. In Figure 9, coordinated routing
significantly improve the performance of the video session:
video throughout increases by 400Kbps (from 1, 500Kbps to
1, 900Kbps), and buffer length accumulates to 10 seconds
without freezing. Meanwhile, the average throughput of the
downloading session drops from 2.51Mbps to 1.89Mbps.
Since users are more sensitive to video quality than the file
downloading throughput, the coordinated routing presumably
improves the overall user experience. Sixty seconds later, we
terminated the downloading session. From Figure 9(a) and
9(b), we observe that both the video throughput and preload
buffer length increase significantly.

Seconds
0 10 20 30 40 50 60

M
b
p
s

0

2

4

6

8
Wi-Fi
AT&T Cellular
Total

(a) WiFi and Cellular

Seconds
0 10 20 30 40 50 60

M
b
p
s

0

2

4

6

8 T-Mobile Hotspot
AT&T Cellular
Total

(b) Two Cellular Networks

Fig. 10. MPIP over Wireless

2) Android Experiments: We use a Nexus 5X phone located
in California to test Android MPIP. The phone is equipped
with one cellular interface and one WiFi interface. We use
it to download data from a server located in New York
City with one public IP address. We first connect the phone
to a corporate ISP through WiFi and AT&T CSP through
4G cellular. Without MPIP, the phone can achieve average

188

bandwidth of 4.5Mbps through WiFi and 4.3Mbps through
cellular respectively. The average RTTs of WiFi and cellular
are 76.2ms and 155.9ms respectively. When MPIP is enabled,
as illustrated in Figure 10, Android MPIP can concurrently
transmit data on both paths going through different ISP/CSP
and reach aggregate throughput of 7.5Mbps in the face of
large delay disparity. Next we replace the corporate WiFi
router with a hotspot hosted by another phone connected to
T-Mobile cellular network. As all data through the hotspot
are forwarded by another phone, the average RTT on the T-
Mobile path increases dramatically to 349.2ms and the average
bandwidth is only 1.52Mbps. Figure 10(b) demonstrates that
even when one cellular path has bad performance, MPIP still
manages to multiplex bandwidth from two CSPs to achieve
higher aggregate throughput.

VI. RELATED WORK

The growing popularity of multi-homed devices makes it
possible to initiate multipath transmission from end devices.
Back to 2001, Hsieh et al proposed pTCP[9] that effectively
performs bandwidth aggregation on multi-homed mobile hosts.
In [10], the authors investigated the potential benefits of
coordinated congestion control for multipath data transfers.
In [11], Dong et al implemented concurrent TCP(cTCP) in
FreeBSD to improve throughput. Also, the Stream Control
Transmission Protocol (SCTP)[12], [13] is an early protocol
designed for multihoming to support failover and simultaneous
transmission. In 2010, Barre et al published experimental
results of using multiple paths simultaneously in TCP trans-
mission [4], [1]. IETF RFC 6182 [14] for Multipath TCP
was published in in 2011. In [2], Chen et al did a thorough
measurement of MPTCP over wireless links. Different from
those multipath protocols at the transport layer, MPIP is a
transparent multipath solution at the network layer of end de-
vices. As bandwidth of cellular network becomes comparable
with the wired Internet, switching among WiFi and cellular
becomes practical for mobile devices, e.g. [15], [16]. All these
solutions require significant changes and coordination at mul-
tiple layers. In [17], a pure user-level solution, called msocket,
was proposed for seamless handover between different mobile
networks. Different from these previous work, MPIP realizes
path selection and seamless handover by only changing the
network layer. It has long been observed that routing for
applications on the same device needs to be coordinated [18],
[19]. MPIP serves as a light-weight framework to implement
coordinated routing for multiple applications.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed MPIP, a complete design of mul-
tipath transmission at the network layer of end devices. MPIP
consists of signaling, session and path management, multipath
routing, and NAT traversal. MPIP can be used by both TCP
and UDP-based applications. It also works seamlessly with
MPTCP, and supports user-defined routing strategies. We
implemented MPIP in Linux and Android kernels. Through
extensive lab and Internet experiments, we demonstrated that

MPIP can transparently support flexible and coordinated rout-
ing for diverse applications to achieve multipath gains. MPIP is
only our first attempt for implementing multipath transmission
at the network layer. The signaling and feedback mechanisms
can be further optimized to reduce its overhead and improve its
robustness. The delay-based load balancing algorithm can be
improved to better address path heterogeneity, especially for
WiFi, LTE, and the emerging 5G Cellular links. We will extend
the user-defined routing framework to support finer routing
granularity and more flexible forwarding actions. We will also
port MPIP to IPv6. Finally, we will further study the efficiency,
fairness and stability of the vertical and horizontal interactions
of MPIP with legacy TCP and IP protocols through analysis,
simulations and prototype experiments.

REFERENCES

[1] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in NSDI, 2012.

[2] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of multipath tcp performance
over wireless networks,” in IMC, 2013.

[3] Y.-C. Chen, D. Towsley, E. M. Nahum, R. J. Gibbens, and Y.-s. Lim,
“Characterizing 4g and 3g networks: Supporting mobility with multipath
tcp,” School of Computer Science, University of Massachusetts Amherst,
Tech. Rep, vol. 22, 2012.

[4] S. Barre, C. Raiciu, O. Bonaventure, and M. Handley, “Experimenting
with multipath tcp,” in SIGCOMM 2010 Demo, September 2010.

[5] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath tcp,” in CoNEXT, 2013.

[6] L. Sun, G. Tian, G. Zhu, Y. Liu, H. Shi, and D. Dai, “Multipath IP
Routing on End Devices: Motivation, Design, and Performance,” Tandon
Engineering School, New York University, Tech. Rep., 2017, available
at http://eeweb.poly.edu/faculty/yongliu/docs/MPIP Tech.pdf.

[7] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, Jul. 2008.

[8] Q. Peng, A. Walid, J.-S. Hwang, and S. H. Low, “Multipath tcp algo-
rithms: Theory, design and implementation,” IEEE/ACM Transactions
on Networking, 2016.

[9] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts,” in MobiCom,
2002.

[10] P. Key, L. Massoulié, and D. Towsley, “Path selection and multipath
congestion control,” Commun. ACM, vol. 54, no. 1, Jan. 2011.

[11] Y. Dong, D. Wang, N. Pissinou, and J. Wang, “Multi-path load balancing
in transport layer,” in Next Generation Internet Networks, 3rd EuroNGI
Conference on, May 2007.

[12] L. Ong, C. Corporation, and J. Yoakum, “An introduction to the stream
control transmission protocol (sctp),” IETF RFC 3286, 2002.

[13] I. Joe and S. Yan, “Sctp throughput improvement with best load sharing
based on multihoming,” in INC, IMS and IDC, 2009. NCM ’09. Fifth
International Joint Conference on, Aug 2009.

[14] A. Ford, C. Raiciu, M. Handley, S. Barre, U. C. D. Louvain, and
J. Iyengar, “IETF RFC 6182: architectural guidelines for multipath tcp
development,” 2011.

[15] P. Nikander, T. Henderson, C. Vogt, and J. Akko, “End-host mobility
and multi-homing with host identity protocol,” IETF RFC 5206, 2008.

[16] A. Singh, G. Ormazabal, H. Schulzrinne, Y. Zou, P. Thermos, and
S. Addepalli, “Unified heterogeneous networking design,” in IPTComm,
2013.

[17] A. Yadav and A. Venkataramani, “msocket: System support for mobile,
multipath, and middlebox-agnostic applications,” in 2016 IEEE 24th
International Conference on Network Protocols (ICNP), 2016.

[18] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated congestion
management architecture for internet hosts,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, ser. SIGCOMM ’99, 1999.

[19] H. Balakrishnan and S. Seshan, “Ietf rfc 3124: The congestion manager,”
2001.

189

QAware: A Cross-Layer Approach to MPTCP
Scheduling

Tanya Shreedhar∗, Nitinder Mohan†, Sanjit K. Kaul∗, Jussi Kangasharju†
∗Wireless Systems Lab, IIIT-Delhi, India, †University of Helsinki, Finland

Abstract—Multipath TCP (MPTCP) allows applications to
transparently use all available network interfaces by creating
a TCP subflow per interface. One critical component of MPTCP
is the scheduler that decides which subflow to use for each
packet. Existing schedulers typically use estimates of end-to-end
path properties, such as delay and bandwidth, for making the
scheduling decisions. In this paper, we show that these scheduling
decisions can be significantly improved by including readily
available local information from the device driver queues to the
decision-making process. We propose QAware, a novel cross-layer
approach for MPTCP scheduling. QAware combines end-to-end
delay estimates with local queue buffer occupancy information
and allows for a better and faster adaptation to the network
conditions. This results in more efficient use of the available
resources and considerable gains in aggregate throughput. We
present the design of QAware and evaluate its performance
through simulations, and also through real experiments, com-
paring it to existing schedulers. Our results show that QAware
performs significantly better than other available approaches for
all use-cases and applications.

I. INTRODUCTION

Multipath TCP (MPTCP) is a recently-standardized ex-
tension to TCP that allows devices with multiple network
interfaces, e.g., smartphones with WiFi and LTE, to seamlessly
form multiple parallel connections to exploit the full network
capacity. MPTCP offers increased robustness and resilience,
as well as seamless handovers and it has been proposed to be
also used in datacenters [23], opportunistic networks [24], etc.
There is both an open source implementation for Linux [21],
and companies, such as Apple, have incorporated MPTCP into
their products and have made the APIs open to application
developers [2].

Figure 1 shows the network stack of MPTCP-compliant
machine. Applications utilizing MPTCP can send their data
over multiple TCP subflows, where each subflow is associated
with a unique network interface. TCP packets scheduled over
a subflow wait in the device driver queue of the corresponding
network interface before they are transmitted by the network
interface card (NIC). The choice of network path for sending
application data is made by the MPTCP scheduler block and
depends on the scheduling policy.

Scheduling between the multiple connections is an ob-
vious research problem and recently multiple propos-
als [8], [9], [15], [17] have emerged to improve the default
MPTCP scheduler [20]. Typically, these schedulers use a
transport layer estimate of the end-to-end bandwidth/delay (for
example, the smoothed round-trip time) for each TCP subflow

S
e
n
d
 B

u
ff

e
r

 M

P
T
C

P

S
c
h
e
d
u
le

r TCP

Subflow

 1

 TCP

Subflow

 2

Device Driver

 Queue 1

Device Driver

 Queue 2

NIC 1

NIC 2

Network Stack

Send

App 1

Figure 1: An illustration of MPTCP-compliant machine and
how its subflows interact with their corresponding network
interface queues.

as an input to the scheduling policy that decides on how
application data must be assigned to the multiple subflows.

In this paper, we propose a novel scheduler for MPTCP,
QAware, which departs from the previous proposals in a
fundamental way. While we also use the end-to-end delay
estimates, like current schedulers, QAware additionally con-
siders the number of packets in the device driver queue of
the sender. This modification is motivated by our findings,
which we discuss further in Section III. The key motivation,
as we will demonstrate, is that as a particular flow is used
more, its end-to-end delay increases gradually, making it less
attractive to use. However, the traditional, purely end-to-end-
based estimation, reacts very slowly to these changes.

Additionally, utilizing queue occupancy information allows
QAware to use all available subflows optimally, especially
when their properties are highly heterogeneous. Existing pro-
posals like [8], [17], [30], treat the flows as separate entities
and typically do not fully use all the flows. QAware optimizes
transmission over all the flows and gets a significantly higher
aggregate throughput, with no loss of performance in any
situation.

The contributions of this paper are:

(a) We propose QAware, which is a novel cross-layer ap-
proach to scheduling packets across all available MPTCP
subflows. The design is motivated by our experimental
findings that combining local device driver queue occu-
pancy with the traditional end-to-end delay measurements
yield far superior performance.

(b) We model available MPTCP subflows as multiple parallel
service facilities that can service data provided by an ap-
plication. This enables us to leverage queueing theoreticalISBN 978-3-903176-08-9 c© 2018 IFIP

12 14 16 18
Time (secs)

0

10

20

30

40
B

it
s
 o

ff
e

re
d

/s
e

c
 (

M
b

p
s
)

Flow 1 Flow 2

(a)

12 14 16 18
Time (secs)

0

0.5

1

1.5

R
T

T
 (

s
e
c
s
)

Flow 1 Flow 2

(b)

Figure 2: (a) Loading (Mbps) at the subflows and (b) their
RTT(s). The paths taken by the subflows and the network are
shown in Figure 3.

insights to create a scheduling policy that combines end-
to-end delays and device driver queue occupancy.

(c) Our simulations and real-world experimentation over a
wide range of applications compare QAware with the
default MPTCP scheduler [20], ECF [17], DAPS [15], and
BLEST [8].

Rest of the paper is organized as follows. We discuss
the relevant background and related works in Section II.
Section III motivates the need for a cross-layer approach to
scheduling. In Section IV, we describe the scheduling policy
used by QAware. Section V provides implementation details
of QAware in latest MPTCP v0.93. Section VI provides an
overview of our evaluation methodology. Sections VII and VIII
quantify the performance of QAware using extensive simula-
tions and real-world experiments, respectively. We conclude
in Section IX.

II. BACKGROUND AND RELATED WORK

The default MPTCP scheduler (minSRTT) allocates traffic
on the fastest subflow (one that has the smallest smoothed
RTT) with available congestion window at each packet arrival.
Several researchers have proposed improvements to the default
minSRTT scheduler. Most approaches leverage the difference
in RTT of the subflows [3], [11]. Others have also considered
additional TCP-layer parameters such as SSThresh, congestion
window, selective ACK and receiver buffer size along with
RTT [6], [18], [19].

In [30], the authors introduce an additional sender queue to
schedule packets on a subflow even when it is unavailable. De-
lay Aware Packet Scheduler (DAPS) [15] generates a schedule
for sending future segments over subflows based on their RTT
ratios. However, this makes DAPS unable to react promptly
to network changes due to pre-computed long schedules.
Blocking-Estimation-based MPTCP Scheduler (BLEST) [8]
aims to reduce head-of-line blocking by waiting for the faster
subflow despite the availability of space in congestion window
of the slower subflow. ECF [17] follows a similar principle as
that of BLEST, but while BLEST aims to reduce out-of-order
delivery assuming that the send buffer is a bottleneck, ECF
aims to minimize completion time.

Client ServerBackbone

Switch

Access Point 1

Access Point 2

Flow1@AccessPoint1

Flow2@AccessPoint2

Figure 3: Topology used in experiments and simulations.

Researchers have also proposed schedulers that improve
MPTCP performance for specific application use-cases. De-
coupled Multipath Scheduler (DEMS) [9] aims to reduce
fixed-size file’s delivery time over MPTCP by estimating avail-
able bandwidth on subflows. However, the authors rely on ex-
act knowledge of data chunk boundary for efficient scheduling.
In [7] authors leverage application layer information for flow
scheduling decisions to provide delay-resilient video streaming
in MPTCP. MP-DASH [10] exploits path information from
streaming client to improve DASH video delivery. [26] labels
WiFi subflow as active/inactive for data transmission based
on a minimum desired signal strength. However, unlike other
cross-layer approaches which optimize specific application
performance over MPTCP, QAware taps into lower layer
information to improve performance for all MPTCP traffic.
Furthermore, as shown later in the paper, QAware’s unique
design of leveraging hardware queue occupancy enables it to
swiftly adapt to varying network conditions and co-existent
network applications sharing bottleneck paths.

III. MOTIVATING USE OF CROSS-LAYER INFORMATION

Figures 2(a) and 2(b) respectively show loading (bits offered
per second) and the corresponding estimates of round-trip
times (RTT) of two available subflows by the default MPTCP
scheduler, minSRTT. They were obtained from controlled
testbed experiments and show how the scheduler optimizes
over two available TCP subflows that use non-interfering end-
to-end paths. The network topology used in the experiment
is shown in Figure 3. The last-mile links were WiFi using
802.11g and the rest were 1 Gbps Ethernet. Neither flow
dropped any packets during the length of the experiment.

In the experiment, the default scheduler only utilizes ≈ 60%
of available aggregated bandwidth. Observe (Figure 2(a)) that
the default scheduler, more often than not, prefers to send
packets on one flow over the other. However, this by itself
is not responsible for the low utilization of the available
bandwidth. The reason, we argue, is that the default scheduler
loads a flow deemed to be the best amongst available flows for
undesirably long intervals. This is because the scheduler uses
only the SRTT of the flows, which is a delayed end-to-end
transport layer measurement, for its scheduling decisions.

Consider the RTT of flow 1 in Figure 2(b). The RTT
captures in a lagged manner the impact of scheduling decision
on the subflow. The consistently high values (see interval
12s to 14s in the figure) correspond to an earlier interval of

191

Send Buffer

 Queue 1

Queue 2

Scheduler

 Block

App
μ1

μ2

NIC

 MPTCP

 host

Service

facility

Figure 4: Queueing abstraction of an end-to-end MPTCP
connection with two subflows.

time when the subflow was being assigned packets by the
scheduler while it was heavily loaded. That is, the device
queue corresponding to the subflow had previously many
packets queued at the NIC.

The sharp dip in values (around time 14s in the figure)
captures the transition from when the flow stopped being
assigned packets due to high RTT to when it was again
assigned packets. These assigned packets arrive at a rather
lightly loaded flow and see much smaller RTT, which causes
the dip. The small RTT that follows the dip corresponds to
packets being assigned to the flow while it was still lightly
loaded. As the subflow continues to be assigned packets, the
same is reflected, albeit in a delayed manner, in increasing
RTT (seconds 16 to 18 in Figure 2(b)) that eventually peaks
as it did during 12 − 14 seconds. By the time the resulting
large RTT makes the scheduler switch to the other flow, the
scheduler has already spent an undesirably long time injecting
packets to a loaded subflow.

In summary, the scheduling decisions that lead to high
device queue occupancy and increase in RTT were made using
values of RTT that corresponded to an earlier interval when
the flow was less loaded. So while a device queue (local to
the MPTCP sender and used by the MPTCP flow) is loaded
with packets, MPTCP scheduler remains oblivious to the same.
Instead, it waits to be informed via a delayed end-to-end RTT
based feedback mechanism. In the process, it loses out on
many opportunities of scheduling packets to the other better
flow; one that is lightly loaded.

The above observations motivate QAware. It uses the oc-
cupancy of the device queues together with RTT estimates to
use all available flows more efficiently.

IV. QAWARE SCHEDULER

We consider a simplified queue-theoretic abstraction to
capture the essentials of the scheduling problem, with the
goal of maximizing end-to-end throughput. Specifically, we
model each subflow by a service facility. Figure 4 illustrates
the abstraction for an MPTCP end-to-end connection that uses

two TCP flows. The abstraction allows us to apply results from
analysis of multi-queue systems [25].

In our queueing abstraction, packets generated by an appli-
cation arrive into a queue that models the TCP send buffer
(Figure 1). Packets in this queue are assigned to one of the
available service facilities in a first-come-first-serve (FCFS)
manner. Each facility consists of a finite queue and a server.
Packets inside a facility are serviced in an FCFS manner.

The queue in a service facility is the device driver queue
(Figure 1) that is used by the TCP subflow corresponding to
the facility. The server includes the source host NIC, access
network used by the subflow, intermittent nodes in the core
and the destination host (all layers of the TCP/IP stack).

When a packet is assigned to a service facility, it may find
other packets waiting for service in the facility’s queue. This
packet must wait for all the other waiting packets to finish
service before it enters the server of the facility. The total
time a packet spends in a facility, often referred to as its system
time, includes the time it waits in the facility’s queue and the
time it spends getting service.

Origins of the QAware scheduler: Many analytical works on
queueing systems have looked at scheduling customer/packet
arrivals to parallel service facilities [25], [27]–[29]. For many
general arrival processes and service time distributions, when
all servers are stochastically identical, the optimal policy
is to choose a service facility with a minimum number of
packets in its queue [25], [27], [29], that is it minimizes the
average packet system time. For the case of non-identical
servers, a scheduling policy that assigns a packet to a service
facility that minimizes the conditional expected system time
of the packet, conditioned on the knowledge of the number
of packets waiting for service in the facility, shows good
performance [25]. Our QAware scheduler uses the policy in
an MPTCP setting.

Consider K service facilities indexed 1, . . . ,K. Let facility
k have a service rate of µk. The two facilities in Figure 4
have service rates of µ1 and µ2. Let nk(t) be the number of
packets waiting for service in facility k at time t. The policy
assigns a packet to a service facility k∗ given by

k∗ = argmin
k

nk(t) + 1

µk
. (1)

Note that 1/µk is the expected service time of a packet in
facility k. Thus, the conditional waiting time of a packet that
enters such a facility is nk(t)/µk, which is the sum of the
expected service times of the nk(t) packets currently waiting
for service in the facility. In addition, we add the term 1/µk to
nk(t)/µk, to include the expected service time of the packet
to be scheduled. Thus, the expression being minimized in (1)
is the conditional expected system time of a packet if it were
to be assigned to facility k.

Adapting scheduling policy (1) to multiple end-to-end TCP
subflows: The number nk(t) of packets in the queue of service
facility k is the number of packets waiting in the device driver
queue of the corresponding subflow k and can be obtained.

192

However, we must estimate the average service time 1/µk of
subflow k.

Consider the ith packet arrival. Let tsi be the time the packet
is assigned to a subflow. Let tai be the time that a TCP ACK
acknowledges receipt of the packet. The round-trip time of
the packet is RTTi = tai − tsi . Note that this includes the time
packet waits in the device driver queue of its assigned subflow
before it starts service and the time it spends in service. This is
the system time of the packet. Let Wi

1 be the time the packet
i waits in the queue. This time can be calculated locally at the
MPTCP sender. The time Xi that the packet spends in service
begins when the packet enters the NIC for transmission and
ends when a TCP ACK for the packet is received. Given Wi

and RTTi, we have Xi = RTTi − Wi. The estimate of the
service time is updated on receipt of a TCP ACK. Let Ŝk be
the current estimate of the average service time of facility k.
On receipt of a TCP ACK for packet i, we update

Ŝk = αŜk + (1− α)Xi, (2)

where 0 < α < 1 applies appropriate weights to the last
estimate of the average and the current service time. We use
α = 0.8 in this work which is also the smoothing factor for
TCP congestion control 2 . The corresponding estimate of the
service rate is 1/Ŝk. At time t, QAware schedules to the TCP
subflow k∗ that satisfies

k∗ = argmin
k

(nk(t) + 1)Ŝk. (3)

Finally, note that since Xi = RTTi − Wi, we have Ŝk =
RTT− Ŵ , where RTT and Ŵ are the exponentially weighted
moving averages, with coefficient α, of packet round-trip
times and device driver queue waiting times, respectively, for
the subflow k. In our real implementation, summarized in
(Algorithm 1), we use RTT estimates that are readily available
for each subflow and we calculate an approximation of Ŵ
based on information available from device driver queues.

V. IMPLEMENTATION

We implement QAware as a modular scheduler using
MPTCP v0.93 based on Linux kernel v4.9.60 [12]. The code
is available at [22].

As shown in Section IV, QAware’s functioning depends
on the current estimate of network interface (NIC) queue
occupancy. Conventionally, the NIC queues were either im-
plemented within the hardware itself or as part of the driver;
which made NIC queues invisible to the Kernel and its
occupancy extremely hard to estimate. However, since Linux
Kernel > v3.3.0, several NIC queue management protocols,
known as Byte Queue Limits (BQL), have been introduced
as part of the Kernel code to resolve starvation and latency at
the NIC [14]. The BQL algorithms push queueing abstractions

1For simplicity of exposition we ignore the time a TCP ACK may have to
wait in a queue before being sent to the TCP layer.

2We examined for other values of α which did not impact the overall
performance of QAware.

Algorithm 1 QAware Algorithm
1: Inputs:

Available Subflows SF∈ {1, . . . , n}
2: Initialize at packet arrival Pk:

minService ← 0xFFFFFFFF
selectedSubflow ← NONE

3: //The function below will return best subflow for packet Pk

4: for each subflow ∈SF do
5: nk ← queueSize(subflow)
6: if nk 6= 0 then
7: ∆t ← sampling time
8: ∆packets ← packets dequeued in ∆t
9: Wk ← [1/(∆packets

∆t
)]nk

10: else
11: Wk ← 0
12: end if
13: Ŵ ← αŴ + (1− α)Wk

14: Ŝk = [RTT− Ŵ]
15: TSk = (nk + 1)Ŝk

16: if TSk < minService then
17: minService← TSk

18: selectedSubflow ← subflow
19: end if
20: end for

from hardware drivers to specific data structures which can be
accessed from within the Kernel 3.

Our implementation closely follows the Algorithm 1. We
first tap the network device address mapped to MPTCP socket
via struct dst_entry to access DQL4 as follows:

dql = netdev_get_tx_queue(dst->dev)->dql

We further utilize DQL entry to estimate current NIC
(netdevice) queue occupancy of each MPTCP subflow.

qSize = {dql->num_queued -

dql->num_completed}

Here, num_queued and num_completed refer to the to-
tal number of bytes queued in the network device and number
of bytes successfully transmitted by the device respectively.

Apart from NIC queue estimates, we utilize the smoothed
mean RTT estimates in microseconds via srtt_us accessible
through struct tcp_sock. We ensure that our implemen-
tation is in line with guidelines mentioned in RFC 6182 [13].

VI. EVALUATION METHODOLOGY

In following sections, we evaluate QAware’s performance
through an extensive set of simulations and real-world ex-
periments. We model our evaluation methodology to mimic
real MPTCP network configurations and application use-cases.
In majority of our evaluation, we model a realistic network
scenario (as illustrated in Figure 3) wherein a client leverages
two distinct network paths to connect to a distant server.

3Currently, only PCIe-based ethernet drivers support BQL [5]. However,
a significant effort is being made from the Linux developer community to
support broader list of NICs, including wireless NIC’s [4].

4In Linux, BQL is implemented as Dynamic Queue Limit (DQL).

193

(a) Subflows F1 and F2 use links with PHY rates of 6 Mbps.

(b) Subflow F1 and F2 use links with PHY rate of 12 Mbps and
6 Mbps respectively.

Figure 5: Throughput achieved by minSRTT, ECF and QAware
schedulers for different CBR rates.

For simulations, we implement QAware on ns-3 network
simulator. We compare QAware with default minSRTT and
Earliest Completion First (ECF) [17] scheduler for constant bit
rate (CBR), file downloads, and web browsing workloads. The
simulations help us zoom into the workings of the schedulers
and allow us to evaluate QAware over a variety of workloads
and network path configurations. Our evaluation setup and
results are described in Section VII.

We further examine and validate the performance gains
obtained by QAware in simulated environments via real
network experiments. We utilize our Kernel implementation
summarized in Section V. The experiments were performed in
a university data center and consider a variety of workloads
such as video streaming, web file downloads, etc. We compare
QAware with several state-of-the-art schedulers such as min-
SRTT, Delay Aware Packet Scheduler (DAPS) [15], Blocking
Estimation based scheduler (BLEST) [8], and ECF [17]. The
details of our experiments and consequent results are discussed
in Section VIII. All our results throughout evaluation are
averaged over multiple runs.

VII. SIMULATION SETUP AND RESULTS

We simulated network topologies of the kind shown in
Figure 3. For all simulations, the links between the access
points and the backbone switch and between the backbone
switch and the server were modeled as wired links with rate
30 Mbps and 50 Mbps respectively. The client is connected to
the two access points over wireless links with physical layer
(PHY) rates in the range 6−12 Mbps. These two wireless links

7 8 9

Time (secs)

0

2

4

6

T
h
ro

u
g
h
p
u
t
(b

it
s
/s

) ×10
6

7 8 9

Time (secs)

0

0.2

0.4

S
R

T
T

 (
s
e
c
s
)

7 8 9

Time (secs)

0

100

200

300

Q
u
e
u
e
 S

iz
e

(p
a
c
k
e
ts

)

Flow1 Flow2

(a) minSRTT Scheduler

7 8 9

Time (secs)

0

2

4

6

T
h
ro

u
g
h
p
u
t
(b

it
s
/s

) ×10
6

7 8 9

Time (secs)

0

0.2

0.4

S
R

T
T

 (
s
e
c
s
)

7 8 9

Time (secs)

0

100

200

300

Q
u
e
u
e
 S

iz
e

(p
a
c
k
e
ts

)

Flow1 Flow2

(b) ECF Scheduler

7 8 9

Time (secs)

0

2

4

6

T
h
ro

u
g
h
p
u
t
(b

it
s
/s

) ×10
6

7 8 9

Time (secs)

0

0.2

0.4

S
R

T
T

 (
s
e
c
s
)

7 8 9

Time (secs)

0

100

200

300

Q
u
e
u
e
 S

iz
e

(p
a
c
k
e
ts

)

Flow1 Flow2

(c) QAware Scheduler

Figure 6: Per-flow throughput, device driver queue occupancy,
and SRTT behavior as a function of time. These correspond
to the throughputs in Figure 5(a) and a CBR rate of 12 Mbps.

provided the two network paths over which application data
was sent. Both subflows use independent congestion control.

We simulated the following applications: i) constant bit rate
(CBR) data from low to high rates, ii) file transfer for sizes
of 10 − 30 MB, iii) web browsing of top 10 out of the US
Alexa-100 websites, and iv) CBR with one of the paths being
shared by UDP traffic. For the applications, we simulated the
following network configurations: i) both wireless links have
the same rate, ii) one link is much faster than the other, and
iii) one link drops TCP packets. Comparisons of QAware with
ECF and minSRTT5 demonstrate the benefits that are accrued
by QAware because it optimally utilizes both network paths.

A. Constant Bit Rate Traffic

Access paths with no packet errors: Figure 5(a) shows the
TCP throughputs obtained by the schedulers for increasing
CBR rates. Each wireless link was configured with a PHY
rate of 6 Mbps. This results in homogeneous network paths.
On average, QAware achieves percentage throughput gains of
about 40% over the rest. Further, note that all schedulers use
both subflows. However, unlike the others, QAware utilizes
both the subflows almost equally for the entire simulation
time for all the CBR loads. To better understand their be-
haviors, consider Figure 6, which shows for each scheduler
and subflow, the variation of throughput, device driver queue
occupancy, and smoothed RTT, as a function of time, for a

5In simulation, the scheduler assigns packets over independent TCP
streams. We do not incorporate other MPTCP functionality such as re-
transmission handler and path manager.

194

Figure 7: Per-flow throughput comparison for different CBR
rates where subflow F1 experiences a packet drop rate of 10−2.

2 second interval. The CBR rate was set at 12 Mbps. From
the subflow throughputs and queue occupancy, it is clear that
QAware uses both subflows almost simultaneously. ECF uses
just one subflow for most of the interval, and while minSRTT
uses both flows during the interval, it switches between them
very infrequently. Both minSRTT and ECF rely on the delayed
feedback provided by SRTT and so end up scheduling packets
to one subflow for longer intervals than QAware. Essentially,
they switch flows when SRTT of the subflow in use exceeds
that of the other subflow. In addition, ECF, by design, declines
scheduling opportunities to a subflow with a larger RTT and
prefers to wait for faster subflows. This explains the reason for
using one flow for a longer duration than minSRTT scheduler.
In minSRTT and ECF, subflows experience swings in SRTT.
The SRTT increases linearly while it is the subflow of choice.
This increase eventually makes the subflow less desirable than
the other and the scheduler switches to the other flow, which,
due to the current low occupancy in the corresponding device
queue, experiences low SRTT.6

Figure 5(b) shows throughputs obtained by the CBR ap-
plication when the PHY rate of one of the wireless links is 6
Mbps and the other is 12 Mbps. While all schedulers utilize the
subflow using the 12 Mbps link equally, QAware also utilizes
the subflow mapped on the 6 Mbps link. On average, QAware
achieves throughput gains of about 50% over the rest.

Access paths with packet errors: Figure 7 shows the
throughput obtained when one subflow suffers a packet loss
rate of about 10−2. Both wireless links have PHY rates of
6 Mbps. Upon detecting packet loss, the congestion window
of the subflow decreases based on TCP congestion avoidance
algorithm, which limits the number of packets that can be
sent on that subflow. Even in this situation, QAware is able
to exploit both subflows better and achieves about 32% and
15% improvement over minSRTT and ECF respectively. For
the case when the wireless links are 12 Mbps and 6 Mbps with
an error on the slower link, the corresponding gains are 53%
and 6% (figure not shown due to space limitations). Note that
since ECF is biased toward using the faster path, it performs
almost as well as QAware when the error-free path has a faster

6Our observations with respect to QAware and minSRTT for three homo-
geneous paths are similar. We skip them due to lack of space.

10MB 15MB 20MB 25MB 30MB
0

20

40

60

 D

o
w

n
lo

a
d

 T
im

e

 (

s
e

c
s
)

minSRTT ECF QAware

Figure 8: File download completion times when both subflows
use wireless link with PHY rate of 6 Mbps.

N
ew

s
Tec

h

R
ad

io

Sho
pp

in
g

Fin
an

ce
W

ik
i

M
ar

ke
t

Soc
ia
l

M
ov

ie

Tra
ve

l
0

2

4

6

8

C
o
m

p
le

ti
o
n
 T

im
e

(s

e
c
s
)

minSRTT ECF QAware

Figure 9: Download completion time for 10 websites from top
U.S. Alexa-100 websites.

wireless link. On the other hand, while minSRTT uses the
error-prone path better than ECF, it is unable to make good
use of the error-free path as the other two schedulers.

B. Fixed Size File Transfer

Figure 8 shows the download completion time achieved
by the three schedulers for five different file sizes ranging
from 10MB to 30MB. Both wireless links were set to a
PHY rate of 6 Mbps. Observe that QAware obtains the least
download time for all the file sizes. This is explained by its
ability to effectively utilize both the subflows for data transfer.
The performance gap increases proportionally with file size.
Overall, QAware achieves 35% and 30% reduction in average
download time over minSRTT and ECF respectively.

C. Web-browsing

To simulate web browsing, we deployed objects of 10 out of
top U.S. Alexa-100 websites, which are summarized in Table
I, in our simulated server. The client consecutively downloaded
relevant objects of each website from the server at a variable
rate between 10Mbps to 30Mbps chosen in a probabilistic
manner. We compared scheduler performance for when both
wireless links are 6 Mbps and when one of the links is 12

Website News Tech Radio Shopping Finance

#Objects 202 67 66.2 52.2 39.7
Size (KB) 3821.2 2152.2 2453 1000.7 1988.1

Website Wiki Market Social Movie Travel

#Object 28 49 69 39 21
Size (KB) 601.2 2032.8 1700.2 845.7 2000.4

Table I: Web objects for traffic generation

195

6

6

6

Figure 10: Per-flow throughputs when the interface used by
subflow F1 sees UDP traffic for 4 seconds (greyed).

Mbps. QAware achieves a significant reduction in download
completion time for both configurations, specifically up to
35% for the former (see Figure 9) and up to 28% for the latter
(figure not shown due to space limitations). On the other hand,
ECF and minSRTT perform similarly.

D. Multiple Applications

In current computing environments, end hosts typically run
multiple applications which must share the interfaces available
at the host for network transfers. An ideal MPTCP scheduler
must be able to efficiently adapt to bandwidth competition on
bottleneck links in such coexisting environment. To evaluate
the impact of such sharing on the schedulers, we used the
following setup. The PHY rates of the wireless links were set
to 9 and 6 Mbps. A CBR application generated data for a
10 second interval and used both the MPTCP subflows. The
results are shown in Figure 10.

Starting at 4 seconds, we introduced traffic from a UDP
application that used the network path with the 9 Mbps
wireless link. The greyed area in the figure denotes the time
duration when both MPTCP and UDP applications were active
at the client. The UDP traffic lasted for 4 seconds. Before the
start of the UDP traffic, only QAware scheduler was utilizing
both available subflows. Once the UDP application starts, the
device queue of the 9 Mbps wireless link saturates. QAware,
however, quickly adapts to it and reduces the traffic being sent
on the corresponding subflow. All the while, it keeps utilizing
the subflow over the slower wireless link. On the other hand,
both minSRTT and ECF need to wait for several RTT updates
for the impact of UDP traffic on queue wait times to get
reflected in the SRTT of the subflow. Lastly, unlike the other
schedulers, QAware is also quick to detect the availability of
the subflow after the 8 second mark, which is when the UDP
application stops its transfer. Overall, QAware leads to gains
of about 40% over minSRTT and about 50% over ECF.

VIII. REAL-WORLD SETUP AND EXPERIMENTS

We next examine QAware’s performance in real network
environments. Figure 11 shows our test network topology

Client Server

ToR

Switch

Flow 1

Flow 2

Figure 11: Real network testbed in university datacenter.

in University of Helsinki data center. We assign two simi-
lar machines with 16 core AMD Opteron processor, 8 GB
DDR2 RAM running Ubuntu 16.04 LTS with latest stable
MPTCP implementation (version 0.93, based on Linux kernel
v4.9.60 [12]) as client and server. The implementation uses
default congestion control algorithm (coupled OLIA). Both
machines are interconnected via two separate Gigabit Ethernet
interfaces. One Ethernet connection is routed through internal
University of Helsinki network and therefore encounters back-
ground traffic from University staff. It has an end-to-end RTT
of >1ms. The other connection is over Top-of-Rack (ToR)
switch with RTT <1ms.

We compare QAware with the following schedulers: i) min-
SRTT, ii) Delay Aware Packet Scheduler (DAPS) [15]
iii) Blocking Estimation based Scheduler (BLEST) [8], and
iv) Earliest Completion First (ECF) [17]7 8. We first compare
scheduler performance for application generating bulk traffic.
This workload provides a qualitative validation of the results
we obtained in Section VII. We further present scheduler per-
formance for DASH video streaming and web file downloads.
We used the Linux Traffic Control system (tc) in combination
with a Hierarchical Token Bucket (HTB) packet scheduler
using Statistical Fair Queuing (SFQ) for network shaping.
In between runs, we flushed out the TCP cache to ensure
that each run is independent of the next. All our results are
averaged over ten runs.

A. Bulk Traffic

In this section, we compare QAware’s performance with
other schedulers for high application transfer rate over both
subflows. We performed experiments with different settings
of delays along the two paths. The setting includes i) default
path delays (< 1ms and > 1ms), ii) delay shaping to introduce
40ms of delay along one path and 80ms along the other, and
iii) 40ms along one path and 160ms along the other. Path
bandwidths corresponding to the different delays are stated in
Table II(a).

7For DAPS and BLEST, we use the implementation at https://bitbucket.
org/blest mptcp/nicta mptcp. For ECF, we use the implementation at http:
//cs.umass.edu/∼ylim/mptcp ecf

8DAPS, BLEST, and ECF are implemented on MPTCP v0.89 whereas the
default minSRTT and QAware are based on MPTCP v0.93. We could not
implement QAware on MPTCP v0.89 as it is based on Linux v3.18 which
does not support BQL. Please see [12] for exact changes between the two
versions.

196

m
in

SRTT

DAPS

BLEST
ECF

Q
Aware

0

1

2

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(a) Default

m
in

SRTT

DAPS

BLEST
ECF

Q
Aware

0

100

200

300

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

(b) 40+80ms
m

in
SRTT

DAPS

BLEST
ECF

Q
Aware

0

100

200

300

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

(c) 40+160ms

Figure 12: Bulk Traffic throughputs for different access path
delays.

m
in

SRTT

DAPS

BLEST
ECF

Q
Aware

0

1

2

3

4

A
v
g
.
B

it
ra

te
 (

M
b
p
s
)

(a) 2+2 Mbps

m
in

SRTT

DAPS

BLEST
ECF

Q
Aware

0

1

2

3

4

A
v
g
.
B

it
ra

te
 (

M
b
p
s
)

(b) 2+1.6 Mbps

m
in

SRTT

DAPS

BLEST
ECF

Q
Aware

0

1

2

3

4

A
v
g
.
B

it
ra

te
 (

M
b
p
s
)

(c) 2.4 +1.6 Mbps

Figure 13: Average bitrate in video streaming for different path
bandwidths.

Figure 12(a) compares average throughput obtained by
different schedulers for default path delays. QAware achieves
more than 45% increase in throughput compared to DAPS,
BLEST and ECF. QAware also provides an improvement of
37% over the default minSRTT scheduler. Interestingly, the
minSRTT scheduler outperforms DAPS, BLEST, and ECF
in the experiment. We attribute minSRTT’s efficiency to two
reasons. Firstly, DAPS, BLEST and ECF schedulers have been
designed to improve MPTCP performance for heterogeneous
delays along available network paths. In fact, BLEST and ECF
even go as far as not sending an available packet on a slower
subflow and wait for the faster subflow to become available.
When subflows witness similar delays (as in the current case),
the default scheduler places more packets on each path as
opposed to DAPS, BLEST, and ECF. Secondly, based on latest
MPTCP kernel, minSRTT enjoys several code improvements
and optimizations.

For when the path delays are 40 and 80ms, QAware yields
an average throughput of 310 Mbps which is an improvement
of about 10% over the default scheduler and DAPS and 5%
over ECF and BLEST (shown in Figure 12(b)). As presented
in Figure 12(c), all schedulers perform quite similar to each
other as all try to fully utilize the lower delay subflow when
path delays are 40 and 160ms. In this case, QAware still
manages to achieve an improvement of about 7% over the
default scheduler and DAPS, and about 4% over BLEST and
ECF.

B. Video Streaming

Streaming is a dominant Internet use case and is widely
adopted by content providers such as Netflix and YouTube [1].
We set up a DASH server and host Big Buck Bunny, available
from a public dataset, on it [16]. We configured the streaming

Delay (ms) 1 40 80 160
Bandwidth (Mbps) 950 600 300 200

(a) Configurations for Bulk Traffic Experiments

Bandwidth (Mbps) 2.4 2 1.6
Delay (ms) 10 20 30

(b) Configurations for Video Streaming Experiments

Table II: II(a) shows bandwidth achieved by delay throttling
on a 1Gbps Ethernet interface whereas II(b) presents values
after both bandwidth and delay shaping

server to provide five representations of the video from 240p
to 1080p (same as most content providers). We re-encoded
each representation in at least three different bitrates with
overall available bit rates from 128Kbps to 3.8Mbps using
H.264/MPEG-4 AVC codec. The streaming client employs
an Adaptive Bit Rate (ABR) algorithm to download video
segments according to the available network bandwidth. We
throttled our testbed bandwidth to match the bitrates of DASH
encodings. Table II(b) shows the average delay measured
at client-side for each bandwidth configuration. We evaluate
and compare QAware’s performance with other schedulers for
when the two subflows i) have bandwidths of 2 Mbps, ii) have
bandwidths of 2 Mbps and 1.6 Mbps, and iii) have bandwidths
of 2.4 Mbps and 1.6 Mbps.

From Figure 13, we observe that QAware improves the
performance of streaming applications in all network condi-
tions. The performance improvement is more significant in
scenarios where the path bandwidths are similar (8% and 5%
with respect to default and 10% and 6% with respect to ECF,
in Figures 13(a) and 13(b) respectively) as QAware utilizes
available paths more efficiently than other schedulers. DAPS
consistently gives the worst performance out of all schedulers
due to its strong dependence on RTT ratio of two subflows.

C. Web File Download

We now evaluate QAware’s performance for simple web
downloads using curl. We set up an HTTP server using Apache
2.2.22 and hosted varying file sizes of range 128KB to 500MB.
We eliminate application connection time by only considering
the transport-level time in overall download completion time
observed at the client. Figure 14 presents the average com-

128KB 512KB 1MB 10MB 100MB 500MB

N
o

rm
a

liz
e

d

C
o

m
p

le
ti
o

n
 T

im
e

minSRTT DAPS BLEST ECF QAware

Figure 14: Normalized download completion time for different
file sizes (smaller is better).

197

pletion time normalized to the maximum achieved value by
scheduler for a given file size.

For small web transfers (<1MB) all schedulers perform
quite similar to each other (it took 0.002s to download a
128 KB file by QAware vs. 0.003s by minSRTT). This is
because for small data transfers, the bandwidth of the primary
subflow is more than capable of single shot transmission
and thus MPTCP rarely switches to the secondary subflow.
Therefore, until the performance of primary subflow degrades
during transfer, the choice of the scheduler does not affect the
performance for small files. The default and DAPS scheduler
achieve lower completion time for medium file sizes (≈10/100
MB) in comparison to BLEST and ECF. This is likely because
BLEST and ECF add additional delays by waiting for the
faster subflow to become available. For large files (500 MB),
BLEST and ECF utilize faster subflow more efficiently than
default and DAPS, thus achieving a lower completion time.
QAware always outperforms other schedulers and realizes up
to 20% decrease in completion time for medium file sizes
(0.709s by QAware vs. 0.895s by ECF for 100 MB file) and
30% for large file downloads (3.46s by QAware vs. 4.93s by
minSRTT for 500 MB).

IX. CONCLUSION

We proposed, QAware, a novel cross-layer MPTCP sched-
uler that combines hardware device queue occupancy and
TCP RTT for efficient scheduling decisions. We detailed its
design and implementation. We evaluated QAware using an
extensive set of simulations and real network experiments
for various network configurations and applications such as
bulk data transfers, web browsing, web file downloads, and
video streaming. Comparisons with various state-of-the-art
schedulers such as DAPS, BLEST, and ECF were used to
demonstrate the efficacy of QAware. It outperformed other
schedulers in all network configurations and workloads we
tested. Further, we show that QAware quickly adapts to co-
existing applications and sudden variations in network condi-
tions. We have open-sourced QAware’s implementation as a
modular scheduler for latest stable MPTCP Linux release.

ACKNOWLEDGMENT

This research was funded by TCS Research Scholarship
Program, EU FP7 Marie Curie Actions Cleansky Project (Con-
tract No. 607584) and Young Faculty Research Fellowship
(Visvesvaraya Ph.D. scheme) from MeitY, Govt. of India.

REFERENCES

[1] Global Internet phenomenon. www.sandvine.com/.../
global-internet-phenomena-report-latin-america-and-north-america.

[2] Apple Inc. Use Multipath TCP to create backup connections for iOS.
https://support.apple.com/en-us/HT201373, 2017.

[3] S. H. Baidya and R. Prakash. Improving the performance of multipath
tcp over heterogeneous paths using slow path adaptation. In 2014 IEEE
International Conference on Communications (ICC), 2014.

[4] Bufferbloat community. Make WiFi fast project. https://www.
bufferbloat.net/projects/make-wifi-fast/wiki/, 2014.

[5] Bufferbloat community. The FlowQueue-CoDel Packet Scheduler
and Active Queue Management Algorithm. https://tools.ietf.org/id/
draft-ietf-aqm-fq-codel-06.html, 2014.

[6] Y. Cao, Q. Liu, G. Luo, and M. Huang. Receiver-driven multipath data
scheduling strategy for in-order arriving in sctp-based heterogeneous
wireless networks. In 2015 IEEE 26th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015.

[7] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon.
Cross-layer scheduler for video streaming over mptcp. In Proceedings
of the 7th International Conference on Multimedia Systems, MMSys ’16.

[8] S. Ferlin, . Alay, O. Mehani, and R. Boreli. Blest: Blocking estimation-
based mptcp scheduler for heterogeneous networks. In 2016 IFIP
Networking Conference (IFIP Networking) and Workshops, 2016.

[9] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen. Accelerating
multipath transport through balanced subflow completion. In Proceed-
ings of the 23rd Annual International Conference on Mobile Computing
and Networking, MobiCom ’17, 2017.

[10] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. Mp-dash: Adaptive video
streaming over preference-aware multipath. In Proceedings of the 12th
International on CoNEXT, 2016.

[11] J. Hwang and J. Yoo. Packet scheduling for multipath tcp. In Seventh
International Conference on Ubiquitous and Future Networks, 2015.

[12] M. T. IETF. MPTCP Linux implmentation v0.93. http://multipath-tcp.
org/pmwiki.php?n=Main.Release93, 2017.

[13] Internet Engineering Task Force (IETF). Architectural Guidelines for
Multipath TCP Development. https://tools.ietf.org/html/rfc6182, 2011.

[14] Internet Engineering Task Force (IETF). BQL enabled drivers. https:
//www.bufferbloat.net/projects/bloat/wiki/BQL enabled drivers/, 2014.

[15] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli.
Daps: Intelligent delay-aware packet scheduling for multipath transport.
In IEEE International Conference on Communications (ICC), 2014.

[16] S. Lederer, C. Müller, and C. Timmerer. Dynamic adaptive streaming
over http dataset. In Proceedings of the 3rd Multimedia Systems
Conference, MMSys ’12, 2012.

[17] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. Ecf: An mptcp
path scheduler to manage heterogeneous paths. In Proceedings of the
13th International Conference of CoNEXT, 2017.

[18] D. Ni, K. Xue, P. Hong, and S. Shen. Fine-grained forward prediction
based dynamic packet scheduling mechanism for multipath tcp in
lossy networks. In 2014 23rd International Conference on Computer
Communication and Networks (ICCCN), 2014.

[19] D. Ni, K. Xue, P. Hong, H. Zhang, and H. Lu. Ocps: Offset compen-
sation based packet scheduling mechanism for multipath tcp. In 2015
IEEE International Conference on Communications (ICC), 2015.

[20] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental
evaluation of multipath tcp schedulers. In Proceedings of the 2014 ACM
SIGCOMM Workshop on Capacity Sharing Workshop, CSWS ’14, 2014.

[21] C. Paasch and B. Sebastian. Multipath TCP in the Linux Kernel. http:
//www.multipath-tcp.org, 2017.

[22] QAware. QAware scheduler for MPTCPv0.93. https://github.com/
nitinder-mohan/mptcp-QueueAware.git, 2018.

[23] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness with
multipath tcp. In Proceedings of the ACM SIGCOMM 2011 Conference.

[24] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley. Opportunistic
mobility with multipath tcp. In Proceedings of the Sixth International
Workshop on MobiArch, MobiArch ’11, 2011.

[25] Z. Rosberg and P. Kermani. Customer routing to different servers with
complete information. Advances in Applied Probability, 21, 1989.

[26] Y. s. Lim, Y. C. Chen, E. M. Nahum, D. Towsley, and K. W. Lee.
Cross-layer path management in multi-path transport protocol for mobile
devices. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, 2014.

[27] R. R. Weber. On the optimal assignment of customers to parallel servers.
Journal of Applied Probability, 1978.

[28] W. Whitt. Deciding which queue to join: Some counterexamples. Oper.
Res., 1986.

[29] W. Winston. Optimality of the shortest line discipline. Journal of Applied
Probability, 1977.

[30] F. Yang, Q. Wang, and P. D. Amer. Out-of-order transmission for in-
order arrival scheduling for multipath tcp. In 2014 28th International
Conference on Advanced Information Networking and Applications
Workshops, 2014.

198

The effect of network topology on the control
traffic in distributed SDN

Muhammad Zeshan Naseer and Viktoria Fodor
Department of Network and System Engineering, KTH - Royal Institute of Technology, Stockholm

{mznaseer, vjfodor}@kth.se

Abstract—Software Defined Networking (SDN) has the promise
of flexible routing, traffic management and service provisioning
in communication networks. To allow SDN based networks scale
in size, the control architecture needs to be distributed, which in
turn requires the introduction of controller to controller commu-
nication. This is needed to ensure that the distributed controllers
have the same understanding about the underlaying network and
can make consistent local decisions. In this paper we evaluate the
volume of the emerging control traffic, considering a distributed
controller architecture based on ONOS and OpenFlow. We show
that the control traffic increases drastically with the number of
controllers, as well as with the size of the underlaying network.
We evaluate topologies forming regular and random graphs,
and conclude that the type of the topology influences the traffic
volume significantly, while the network density has less significant
effect. We show that the control traffic is significant even if the
number of controllers is selected such that the control traffic is
minimized, and we argue that further optimization of ONOS is
needed to trade off control traffic load and consistency in the
network views.

Keywords—SDN, ONOS, control, scalability

I. INTRODUCTION

Software Defined Networking (SDN) is becoming a ge-
nerally accepted solution to provide the increased flexibility
needed for service differentiation and resource efficiency in
wired as well as in wireless networks [1] [2]. In an SDN, a
centralized controller takes over the control from the indivi-
dual switching nodes. The network operating system collects
the information about the network, and helps the controller
to make an abstract model of the network topology. This
complete knowledge of the network helps the controller to
dynamically provision the network resources, to apply the
concepts of fairness and traffic shaping, as well as to provide
complex routing policies for enhancing security, achieving
quality of service differentiation or to support network function
visualization.

The use of a single controller however raises reliability
and scalability issues. First, a single controller SDN beco-
mes a single point of failure, which is critical for network
performance and reliability. Second, a single controller cannot
support a large network due to limited memory and processing
capabilities. Finally, the position of a single controller is also
critical in terms of switch to controller network delays. As
a result, a network based on a single controller would have

ISBN 978-3-903176-08-9 2018 IFIP

scalability constraints based on memory, processing capability
and reaction time.

For improved scalability of the network, a logically cen-
tralized controller can be implemented through a cluster of
controllers, leading to a distributed SDN architecture. This
architecture permits to balance the switch to controller traf-
fic among different controllers, improves reliability and can
achieve scalability by limiting the load of a single controller
and the switch to controller network delays. However, this
architecture also implies that the controllers must coordinate
to obtain a consistent view of the network state [3]. As
the set of controllers need to share information about the
switches they own and about the network topology, controller
to controller traffic is introduced which may be non-negligible
as the number of controllers or the network itself grows [4].

The objective of this paper is to evaluate the effect of
the network topology on the emerging control traffic, and to
discuss how these traffic can be minimized. We estimate the
volume of the emerging control traffic in large distributed
SDNs, that applies ONOS for controller to controller and
OpenFlow for switch to controller communication. We utilize
the measurement results of [4], and build a model for the
controller to controller traffic for general network topologies.
Then we consider the specific cases of regular and random
network topologies, and evaluate the effect of the network
size and of the number of controllers. We show that for the
same network size and density, the control traffic is higher
in regular networks, but the scalability properties in the two
topologies are similar. The optimal number of controllers
depends significantly on the network size and on the intensity
of the switch to controller queries, while the density of the
network has only marginal effect.

II. RELATED WORK

The placement of controllers is one of the main issues in
the design of distributed SDNs and the literature addresses
controller placement for various objectives. The seminal paper
[5] proposes controller placement heuristics that trade off
latency, failure tolerance and load balancing. In [6], [7] a
given set of controllers is placed, such that the computational
capacity of the controllers is obeyed and the maximum switch
to controller delay is minimized, while [8] minimizes the
cost of controller deployment and maintenance, keeping the
constraints on the controller and network capacities as well as

Fig. 1. Distributed SDN architecture. Controllers A and B exchange infor-
mation to form a virtual centralized controller.

on the switch to controller delays. Reliable distributed SDN is
considered in [9], [10], where delay and capacity constraints
have to be fulfilled even when backup controllers are used.

There are only few works addressing the controller place-
ment problem from the point of view of the control traffic,
since network operating systems for distributed architectures
are in their infancy. The emerging ONOS is evaluated in [4],
by emulating small networks with the objective of finding
mathematical models of the controller to controller traffic load.
These findings are then used in [11] to evaluate the effect
of controller placement on the control traffic in given, large
topologies. In our work we build as well on the measurement
results of [4] to systematically evaluate how the control traffic
is affected by the network size and network topology. To
estimate the rate of switch to controller traffic for flow setup,
we use the measurement results of [12]. More exact models
considering network topology as well as traffic matrix are also
available in the literature [13], these could be considered for
more detailed studies.

III. DISTRIBUTED SDN

In this paper we consider a distributed software defined
network with the general architecture shown on Figure 1.
According to the SDN principles, the control functions are
decoupled from the forwarding functions at the network
switches, and are implemented by a set of controllers, each
responsible for a cluster of switches. The controllers exchange
information to have a common network view and to form a
virtually centralized controller.

In this architecture two control planes can be identified: the
switch to controller (s2c) plane , which is present already in a
centralized SDN and supports the set up of the forwarding
tables based on the transmission paths determined at the
controller, and the controller to controller (c2c) plane, which
ensures correct controller functionalities despite the distributed
implementation. The availability of the shared data structures
affects the process of providing information for the switches
querying their controller. In this paper we consider the multiple
data-ownership model, where each controller has a local copy
of all data required for routing decisions, therefore switch
queries never need to be forwarded in the c2c plane.

The s2c plane has rich literature with mature architecture
designs and protocol implementations like OpenFlow [14].
The development of the c2c plane is less mature, where
ONOS [15] and OpenDaylight [16] are two prominent open
implementations. In this work we build our analysis on the
characteristics of ONOS, but our results could be generalized
for other solutions.

The design of the c2c plane needs to address two main
issues: first, the consistency of the shared view of the network
graph, which is required for the correct control of the for-
warding plane; and second, the availability of the shared data
structures, required for fast decision making. Consistency in
general can be strong or eventual. Strong consistency means
that all available information is identical at all the controllers,
while eventual consistency means that the controllers may have
temporally different views, but these will converge with time.
In systems with communication delays strong consistency
compromises all time data availability [17]. Therefore, ONOS
combines strong and eventual consistency models, to trade-off
between delay and consistency:

1) The controllers need to have an agreement all the time
on the assignment of the switches. Therefore, cluster
membership is shared under the strong consistency
model, using the Raft protocol [18]. Raft messages
are exchanged when the membership of a cluster has
changed – that is, a new switch got connected or a switch
has left.

2) Other information, including the network topology, is
shared under the eventual consistency model, using
the so called anti-entropy algorithm [19], implementing
simple gossiping among all the controllers. In the anti-
entropy algorithm, controllers send out update messages
periodically to randomly selected controllers and in
this way the information on the changes eventually
propagates in the network of controllers. The consensus
time for the fully connected network of C controllers is
O(lnC) [20].

IV. CONTROL TRAFFIC MODEL

A. Methodology

Our objective is to build up an SDN control traffic model,
including both controller to controller (c2c) and switch to
controller (s2c) traffic. Since control messages are transmitted
through the network links over multihop paths, the model
need to reflect the length of the transmission paths across
the network that the control messages travel. Therefore, we
derive the control traffic load in two steps: first we express
the bandwidth (or rate) of the generated c2c and s2c control
traffic, Bc2c and Bs2c and then weight them by the length of
the transmission paths the control messages travel, to get the
total control traffic TT = Tc2c + Ts2c.

Our objective is to evaluate the effect of the topology on
the control traffic load. Therefore, we consider two comple-
mentary topologies, regular grids and Erdős-Rényi random
graphs. These graph structures represent two extremes in the

200

world of network models: regular grids have large average path
length, but also high clustering coefficient. On the other end,
ER graphs have logarithmic increase in path length, but low
clustering coefficient. These graph metrics are important in the
case of distributed SDNs, for efficient controller to controller
and switch to controller communication respectively.

For simplicity, throughout the paper we assume that fraction
and square root operations give integer values. If it does not
hold, the results are approximate.

B. Control traffic bandwidth

We consider a network of S switches and C controllers,
forming a clustered distributed SDN architecture, where each
controller is responsible for a subset of the switches.

The ONOS control traffic bandwidth have been measured
systematically for networks with two and three controllers
in [4]. The measurements revealed that the control traffic
bandwidth between two controllers depends linearly on the
number of switches and edges in the clusters and on the
number of edges between the clusters. Using these results, we
can build up a general model for networks with C controllers,
and the control traffic generated by any controller i to any
other controller can be expressed as

(1)

Bi = b0 + bsSi + blLi + bs−
∑
j 6=i

Sj + bl−
∑
j 6=i

Lj

+ bd
∑
j 6=i

Lij + be
∑
j 6=i

∑
k 6=i,j

Ljk,

where Si is the number of switches in cluster i, Li is the
number of internal links in the cluster, and Ljk is the number
of links where the end nodes belong to cluster j and k
respectively. Parameter b0 is the zero bandwidth, representing
the control traffic that is generated even when the network
does not contain any switches. Parameters bs and bl represent
control information about switches and links in the own
cluster, bs− and bl− about switches and links within other
clusters, bd about links with one end in the own cluster and
be on links running among other clusters.

The measurement results in [4] show that the b∗ (the *
may denote s, l, s−, l−, d or e) parameters depend on the
number of controllers C in the network. Due to the anti-
entropy protocol, where the controller to communicate to is
selected randomly, we could expect that b∗ ∝ 1/C, but the
measured values for C = 2 and 3 show that b∗ includes also
a fix part. Therefore, we consider

b∗ = b∗f +
1

C − 1
b∗p, (2)

where b∗f is the fix part, and b∗p contributes to the part that
scales down inversely proportionally with C.

Table I shows the parameter values estimated from the
measurements results in [4]. Note that from (2) we have
bdf = 0, therefore we estimate bef ≈ 0. From the table
we can also conclude that the dominating parameter is the
zero bandwidth b0 for small networks. For large networks the
switch and link related control traffic has similar contribution.

TABLE I
BANDWIDTH PARAMETER VALUES. THE UNIT IS KBPS, THE C = 2 AND

C = 3 VALUES ARE FROM [4]

Parameter C = 2 C = 3 b∗f b∗p
b0 53 43 33 20
bs 1.45 1.12 0.79 0.66
bl 1.45 0.93 0.41 1.04
bs− 0.48 0.35 0.22 0.26
bl− 0.94 0.53 0.12 0.82
bd 1.55 0.87 0 1.6
be - 0.7 0 0.7

Finally, we derive the aggregated generated c2c control
traffic, including all traffic generated by all the controllers to
all the other controllers, resulting

Bc2c =

C∑
i=1

(C − 1)Bi

= C(b0f (C − 1) + b0p)

+ S(bs−f (C − 1)2 + bs−p (C − 1) + bsf (C − 1) + bsp)

+ L(bl−f (C − 1)2 + bl−p (C − 1) + blf (C − 1) + blp)

+ Ld(2bd + (C − 2)be),

(3)

where L is the number of intra-cluster links, and Ld is the
number of inter-cluster links. Note that (3) provides a closed
form expression of the control traffic that does not depend on
the characteristics of the single clusters. We can conclude that
the control traffic depends on the total number of controllers
C, switches S, intra-cluster links L, and inter-cluster links Ld.
As we see, B depends linearly on S, L and Ld, but increases
quadratically with C, which introduces significant penalty as
the number of controllers is increased.

The controllers also communicate with the switches in
their own cluster, e.g., through the OpenFlow protocol, where
switches query the controllers for routing information. We
express the aggregated switch to controller traffic as

Bs2c = (S − C)2λG, (4)

where λ is the long term average of the number of messages
generated by a switch per second, G is the average message
size in bits. The expression reflects that the C controllers are
hosted by C switches, and these switches do not generate s2c
control traffic on the network links.

To proceed and derive the actual volume of control traffic
in the network, we need to consider the length of the paths
the control traffic is forwarded on. Therefore, from this point
we consider specific topologies.

C. Network control traffic in regular grid topology

First we consider a wrapped two dimensional grid topology.
We present detailed results for the rectangular grid, where each
node has k = 4 neighbors, as shown on Figure 2. Then we
generalize the results for some specific k > 4 values to see
how k affects the control load.

201

Fig. 2. Network forming a regular, folded grid with k = 4. Controllers
(marked by squares) are placed regularly. Switches join the closest controller,
which results equal size clusters (marked by shaded areas).

The S switches form C rectangular clusters of size SC =
S/C, and the controller is placed in one of the central switches
to minimize the s2c control traffic as well as the maximum
s2c delay. In the regular grid topology all controllers have
statistically the same location, and consequently, all the Bi

values are identical. Let Pij be the length of the transmission
path from controller i to controller j, and P̄G

c2c the average
controller to controller path length. We can then express the
aggregate controller to controller load as

(5)

TG
c2c =

C∑
i=1

C∑
j=1,j 6=i

BiPij

= Bi

C∑
i=1

C∑
j=1,j 6=i

Pij

= BiC(C − 1)

∑C
i=1

∑C
j=1,j 6=i Pij

C(C − 1)

= C(C − 1)BiP̄
G
c2c

= BG
c2cP̄

G
c2c.

To express BG
c2c, we need to replace the topology dependent

parameters in (3), that is, the number of inter-cluster links and
the number of intra-cluster links with the grid topology specific
values. In the case of k = 4, the number of inter-cluster links
leaving one cluster is equal to the length of the cluster border
4
√
SC , thus, for the entire network we get

LG
d = C

4
√
SC

2
= 2
√
SC, (6)

then, sice altogether there are 2S links, the number of intra
cluster links can be calculated as

LG = 2S − 2
√
SC. (7)

Finally, we need to derive the average path length P̄G
c2c.

We notice that in the considered topology, shortest paths

connecting far away controllers can be constructed from path
segments between neighboring controllers. Therefore

(8)P̄G
c2c = H̄G

c2c

√
S

C
,

where
√
S/C is the distance of neighboring controllers and

H̄G
c2c is the average number of path segments to travel from

any controller to any controller.
Let us derive H̄G

c2c. We restrict the derivation for odd
√
C

values. We can see that each controller needs to reach other
controllers in maximum (

√
C − 1)/2 steps away in both

horizontal and vertical directions. Therefore, for odd
√
C we

get the average number of path segments to travel

(9)H̄G
c2c =

√
C

2
,

which provides

P̄G
c2c =

√
C

2

√
S

C
=

√
S

2
. (10)

H̄c2c is somewhat higher for even
√
C values, but the

difference diminishes as C increases, and therefore we use
(10) in the followings.

Substituting (3) and (10) into (5), we get

TG
c2c =

S3/2

2

[
1

SC

(
b0f

(S

SC
− 1
)

+ b0p

)
(11)

+

(
bs−f

(S

SC
− 1
)2

+ (bs−p + bsf)
(S

SC
− 1
)

+ bsp

)
+ 2
(

1− 1√
SC

)(
bl−f

(S

SC
− 1
)2

+ (bl−p + blf)
(S

SC
− 1
)

+ blp

)
+

2√
SC

(
2bd +

(S

SC
− 2
)
be
)]
,

where SC = S/C is the size of the clusters. From (11) we
can conclude that the controller to controller traffic increases
with S7/2, while it decreases inversely proportionally with the
cluster size. This would motivate the use of few controllers,
to decrease the controller to controller traffic.

Let us now consider the control traffic generated by the
switch to controller messages, given by (4). The optimal
position of the controller is in the middle of a cluster. Then
the average length of the switch to controller transmission path
can be calculated similarly to H̄G

c2c, but considering the grid
of switches, instead of the grid of controllers, which gives
P̄G
s2c =

√
SC/2, and the total switch to controller traffic load

becomes

TG
s2c = BG

s2cP̄
G
s2c = λGS

√
SC

(
1− 1

SC

)
. (12)

From (11) and (12) we see that Tc2c decreases, while Ts2c
increases with the cluster size SC . Therefore, as expected,
there is a cluster size that minimizes the control traffic for

202

Fig. 3. Network forming a regular, folded grid. Neighborhood areas for k =
12 and 24, resulting in l = 2 and 3 respectively are shown. For the k = 12
case we also show the connection pattern.

given network size and the intensity of the switch to controller
traffic λ.

To generalize the results, we consider grid topologies where
each node can reach its k closest neighbors, resulting in
a denser, but still regular grid. To simplify the derivations,
while still addressing large networks, we consider the specific
k values, where it holds that shortest c2c paths can be
constructed using only horizontal and vertical edges. E.g., this
is the case for k = 12 and 24, where single hop neighbors
form a rectangular as shown on Figure 3. Also we assume that
the cluster diameters are much larger than the longest single
hop in the grid, and thus the derivation steps we followed for
k = 4 are still valid. That is, we need to derive the k specific
LG, LG

d , P̄G
c2c and P̄G

s2c expressions.
Let us denote by l the length of the longest transmission,

measured in the distance of the neighboring nodes (e.g., for
k = 4 l = 1, and for k = 12 shown on Figure 3, l = 2.
Inspecting Figure 3 we can derive the relationship between k
and l

k = 4(1 + 2 + ...+ l) = 2l(l+ 1), l =

√
1 + 2k − 1

2
. (13)

We start by deriving LG
d . Now all the nodes that are within

distance l of the cluster border have inter-cluster links, giving

LG
d = 2

√
C
√
S

l−1∑
i=0

(l − i)(2i+ 1) = . . . =

√
SCk

√
1 + 2k

6
,

LG =
1

2
kS − LG

d . (14)

Equation (9) still holds, while the distance of neighboring
controllers becomes

√
S/C/l. This provides the average con-

troller to controller transmission path

P̄G
c2c =

√
S

2l
=

√
S√

1 + 2k − 1
. (15)

We can see k has opposite effects on LG, LG
d and P̄G

c2c. The
final TG

c2c expression becomes

Fig. 4. Network forming an Erdős-Rényi random graph. Controllers (marked
by squares) are placed randomly. Switches join the closest controller, which
results clusters of variable size. Some nodes of the same cluster are marked
by shaded circles.

TG
c2c =

S3/2

√
1 + 2k − 1

[
1

SC

(
b0f

(S

SC
− 1
)

+ b0p

)
(16)

+

(
bs−f

(S

SC
− 1
)2

+ (bs−p + bsf)
(S

SC
− 1
)

+ bsp

)
+
k

2

(
1−
√

1 + 2k

3
√
SC

)(
bl−f

(S

SC
− 1
)2

+ (bl−p + blf)
(S

SC
− 1
)

+ blp

)
+
k
√

1 + 2k

6
√
SC

(
2bd +

(S

SC
− 2
)
be
)]
.

The c2c traffic still increases with S7/2. Larger part of the
traffic decreases with

√
k, due to the longer single hop trans-

missions, however, the traffic has a component that increases
linearly with k, due to the increasing number of edges that
has to be reported in the ONOS messages.

Considering the switch to controller traffic, the longer links
lead to shorter transmission paths, giving

P̄G
s2c =

√
SC

2l
=

√
SC√

1 + 2k − 1
. (17)

This makes TG
s2c decrease with increasing

√
k, that is, the

increased network density effects only positively the switch
to controller traffic.

D. Network control traffic under random topology

Let us now consider a network with random topology, spe-
cifically, a network of S switches, and links forming an Erdős-
Rényi (ER) random graph, where two switches are connected
with probability p. Since all switches see statistically similar
neighborhood, we place the C controllers at random switch
locations, and we assume, that each of the switches connects to
the closest controller. A possible realization of such a network
is shown on Figure 4.

203

The ER graph is homogeneous in the sense that from each
node the path length distribution to all other nodes can be
characterized by the same CDF F (x) and pdf f(x). Then, the
probability that a given switch i with path length xi selects
controller j as its closest controller is the probability that
the paths to the other controllers are longer than xi, that
is F̄ (xi)

C−1. The probability that an arbitrary node selects
controller j becomes pj =

∫
F̄ (x)C−1f(x)dx. Note, that

the right hand side of this equation is independent from j,
and therefore has to be the same for each controller, that is,
pj = p = 1/C. Consequently, the size of the clusters is
binomially distributed with parameters S and 1/C, with an
average cluster size of S/C.

We follow (5) to calculate the total controller to controller
traffic load. Since now we have random topology, we express
the mean value, T̄ER

c2c =
∑C

i=1

∑C
j=1,j 6=iBiPij = B̄c2cP̄c2c.

Again we need the topology specific values of L and Ld to
express B̄c2c. Since now we have a random topology, the L
and Ld values are random numbers. As Bc2c depends linearly
on L and Ld, we use the average values to express B̄c2c. Let
us introduce k̄ = (S − 1)p as the average number of links a
switch has. The expected number of intra-cluster links of a
switch s is

L̄s = E[Ls] =

S∑
q=1

S−1∑
n=0

E[L|q, n] =
(S
C − 1)k̄

S − 1
, (18)

where n denotes the number of links the switch has, and q
the size of the cluster it belongs to, and both of these random
variables have Binomial distribution B(S − 1, p) respectively
B(S, 1/C). E[L|q, n] is the expected number of intra-cluster
links under given n and q values, with distribution B(n, q/S).

Then, for the average number of intra-cluster respectively
inter-cluster edges in the entire network we get

L̄ =
S

2
L̄s =

S(SC − 1)k̄

2(S − 1)
, (19)

L̄d =
Sk̄

2
− L̄ =

SSC(C − 1)k̄

2(S − 1)
, (20)

where SC = S/C as before.
Now let us consider the average length of the transmission

paths between the controllers. We use the results of [21], that
gives the CCDF of the path length between any two nodes in
an ER graph as

F̄ (x) = exp
[k̄x

S − 1

]
, (21)

and the average path length, which is also the average c2c
path length as

P̄ER
c2c =

ln(S)− γ
ln k̄

+
1

2
, (22)

where γ = 0.5572 is the Euler constant.
Comparing these parameters to the ones in the regular grid,

we see that now a larger ratio of links are inter-cluster links,
which slightly increases the generated control traffic according

to Table I. Most importantly, however, the average path lengths
have very different characteristics for the two topologies. In the
grid topology it increases with

√
S, while in the random graph

only with lnS, which shows already that the total controller
to controller traffic load will be lower under the random graph
topology. We see as well that the number of neighbors k̄ has
stronger effect in the grid topology.

The final expression of T̄ER
c2c is

T̄ER
c2c =

(
ln(S)− γ

ln k̄
+

1

2

)(
S

SC

(
b0f

(S

SC
− 1
)

+ b0s

)
+ S

(
bsf−

(S

SC
− 1
)2

+ (bss− + bsf)
(S

SC
− 1
)

+ bss

)
+
((SC − 1)k̄

2

)(
blf−

(S

SC
− 1
)2

+ (bls− + blf)
(S

SC

− 1
)

+ bls

)
+

(S − SC)k̄

2

(
2bd +

(S

SC
− 2
)
be
))

.

(23)

As expected, the increase of the traffic in the number of
switches S is lower than in the case of the regular grid, but
still the traffic scales with S3 ln(S).

Finally, let us consider the switch to controller control traffic
load, which depends on the average switch to controller path
length. Let Xi denote the random variable representing the
path length from a node to controller i, with CCDF given in
(21), and let Y = min(X1, X2,Xc) be the path length to
the closest controller. Then

F̄Y (x) = (F̄ (x))C = exp
[Ck̄x
S − 1

]
, (24)

and following [21] we can estimate the mean value of Y ,
P̄ER
s2c as

P̄ER
s2c =

ln(S
C)− γ
ln k̄

+
1

2
=

ln(SC)− γ
ln k̄

+
1

2
. (25)

Since Ps2c is proportional to ln (SC), the increase in cluster
size does not increase the path length significantly. This is a
good phenomena as shorter path length guarantees low latency
and less traffic in the network. We also see that the positive
effect of increasing k̄ will be small at large k̄ values, and k̄
does not change the characteristics of the scaling in network
size.

Combining (4) and (25) we can write total switch to
controller traffic in the network as

T̄ER
s2c = λG

(
1− 1

SC

)(
2(ln(SC)− γ)

ln k̄
+ 1

)
, (26)

that is, overall the switch to controller traffic increases with
the cluster size, however, this increase is only logarithmic.
Similarly to the regular grid, the traffic is proportional to the
intensity and the size of the switch to controller queries.

204

104 105

1010

1015

Fig. 5. Controller to controller traffic in regular grid and ER networks as
a function of the number of switches S, and for different clusters sizes SC

(k̄ = 4).

101 102 103
108

1010

1012

1014

1016

Fig. 6. Controller to controller traffic in regular grid and ER networks, as
a function of the cluster size SC , and for different number of switches S
(k̄ = 4).

V. NUMERICAL EXAMPLES

In this section we use the expressions derived in Section IV
to evaluate the effect of the network size, the cluster size, the
intensity of the switch to controller traffic, and the network
topology on the value of the control traffic emerging in the
network, and discuss the selection of the preferable number
of controllers. To be able to evaluate scalability, we consider
network sizes in the range of 105 − 105 switches, which
corresponds to networks of a large number of autonomous
systems. Unless otherwise noted, we consider k̄ = 4, s2c
control packet size of G = 128Bytes and per switch packet
generation rate λ = 25kpps [14]. The parameter values of the
ONOS control traffic are given in Table I.

Figure 5 shows total c2c traffic in the network as a function
of the number of switches, for a given cluster sizes for grid
and ER networks, on a log-log plot. It reflects well the analytic
results on the scaling of the traffic in S. We note that the
gradient, giving the exponent of S, is only slightly lower in
the ER graph, however, the absolute values differ in ca. one
order of magnitude. We see as well that the cluster size has
significant effect. The traffic level is very high in general, in

101 102 103
108

1010

1012

1014

1016

Fig. 7. Switch to controller traffic in regular grid and ER networks as a
function of the cluster size SC and for different number of switches S (k̄ = 4,
G = 128Bytes and λ = 25kpps).

101 102 103
108

1010

1012

1014

1016

Fig. 8. Total control traffic in regular grid and ER networks as a function
of the number of switches S, and for different cluster sizes SC (k̄ = 4,
G = 128Bytes and λ = 25kpps). Optimal cluster sizes are marked.

the order of terabits per second.
Let us next evaluate the amount of the controller to con-

troller traffic as a function of the cluster size. Figure 6 shows
that the decrease of the control traffic is similar in the grid
and ER topologies, and is dominated by the parts of (11) and
(23) with quadratic decrease, which would motivate the use
of large clusters in both topologies.

In contrast, we expect that decreasing cluster size increases
the switch to controller traffic. As we see on Figure 7, this
increase is significant in the case of the grid topology where
the switch to controller path length is proportional to

√
SC ,

while less dominant in the ER case, where the path length to
the closest controller increases with lnSC .

Figure 8 gives the total traffic and optimum cluster size
for both topologies. As the c2c traffic is dominating in large
networks, the optimal cluster size is also large. We see that
in middle-sized networks the traffic decreases significantly at
smaller than optimal cluster sizes, while there is little penalty
if the cluster size is too large. In small networks, under and
over dimensioned cluster sizes have similar effect. In general,
the cluster size that minimizes the total traffic is smaller

205

101 102 103

1012

1014

1016

1018

1020

Fig. 9. Total control traffic in regular grid and ER networks as a function
of the cluster size SC , and for different switch to controller traffic intensity
values λ (S = 16384, k̄ = 4 and G = 128Bytes). Optimal cluster sizes are
marked.

102 103 104 105

1014

1016

Fig. 10. Total control traffic in regular grid and ER networks as a function
of the cluster size SC , but for different degree values k̄ (S = 102400, G =
128Bytes and λ = 25kpps)). Optimal cluster sizes are marked.

in smaller networks, and, for the considered parameters, the
optimal values are similar for the two network topologies.

Figure 9 compares the total traffic for different switch to
controller query rates λ and fixed network size S = 16384.
The figure shows that the intensity of the s2c traffic has
significant effect not only on the traffic levels, but also on
the preferred cluster size. High λ allows only smaller clusters,
while under low traffic intensity larger clusters can decrease
the control traffic significantly. Therefore the network should
be configured, or even reconfigured according to the s2c traffic.

Finally, on Figure 10 we evaluate the effect of the network
density, that is, the average node degree k̄, considering k
values from 4 up to 24. The analytic results already showed us
that k̄ does not affect how the traffic volume depends on the
network size S and on the cluster size SC , but scale the volume
of the traffic. Increased network density has the negative effect
of increasing the amount of information that needs to be
exchanged in the control traffic, but it also have the positive
effect of shorter transmission paths. In the grid network, these
two are in balance when the c2c traffic dominates, and we
see the positive effect of increased k̄ only when the s2c traffic

becomes significant. In the ER network the positive effect is
visible for all cluster sizes, but the gain diminishes already at
around k̄ = 24, even for the considered large network.

VI. CONCLUSIONS

In this paper we have modelled the volume of the con-
trol traffic in distributed SDNs, when ONOS is used for
maintaining the shared view of the network. We evaluated
the effect of the network size, the number of controllers in
the network, and the network topology. We have seen that
regular grid networks will have high control traffic due to
the long transmission paths, but even random graphs with
small-world property suffer from heavy control traffic. We
have demonstrated that there is an optimal cluster size that
minimizes the volume of the control traffic, and that this
cluster size depends significantly on the intensity of the switch
to controller traffic, but is often less sensitive to the network
topology itself. Similar studies could also help the network
design in specific application areas, like data center networking
[22]

We have shown that the density of the network have
contradicting effects on the control traffic, and little is gained
in well-connected networks. Our results consider full mesh
connectivity among the controllers. This ensures the fast
convergence of the anti-entropy algorithm, but leads to heavy
control traffic, due to the long controller to controller paths. A
further optimization of the ONOS protocol thus could employ
different connection patterns, to trade off consistency and
control traffic load.

REFERENCES

[1] B. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1617–1634, March 2014.

[2] M. Caria, A. Jukan, and M. Hoffmann, “A performance study of
network migration to sdn-enabled traffic engineering,” in Proc. of IEEE
Globecom, 2013.

[3] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a software-defined
network via distributed controllers,” in Proc. of the NEM Summit, 2012.

[4] A. S. Muqaddas, A. Bianco, P. Giaccone, and G. Maier, “Inter-controller
traffic in ONOS clusters for SDN networks,” in Proc. of IEEE ICC, May
2016.

[5] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4–17, March 2015.

[6] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller pla-
cement problem in software defined networks,” IEEE Communications
Letters, vol. 18, no. 8, pp. 1339–1342, Aug 2014.

[7] B. P. R. Killi and S. V. Rao, “Capacitated next controller placement in
software defined networks,” IEEE Transactions on Network and Service
Management, vol. 14, no. 3, pp. 514–527, Sept 2017.

[8] A. Sallahi and M. St-Hilaire, “Optimal model for the controller pla-
cement problem in software defined networks,” IEEE Communications
Letters, vol. 19, no. 1, pp. 30–33, Jan 2015.

[9] N. Perrot and T. Reynaud, “Optimal placement of controllers in a
resilient SDN architecture,” in Proc. of IEEE Design of Reliable Com-
munication Networks (DRCN), 2016.

[10] F. J. Ros and P. M. Ruiz, “On reliable controller placements in software-
defined networks,” Computer Communications, vol. 77, pp. 41 – 51,
March 2016.

[11] T. Zhang, P. Giaccone, A. Bianco, and S. D. Domenico, “The role
of the inter-controller consensus in the placement of distributed SDN
controllers,” Computer Communications, vol. 113, pp. 1 – 13, Sept 2017.

206

[12] P. Megyesi, A. Botta, G. Aceto, A. Pescapè, and S. Molnár, “Available
bandwidth measurement in software defined networks,” in Proc. of ACM
Symposium on Applied Computing, 2016.

[13] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, and V. Vercellone,
“Evaluating the sdn control traffic in large isp networks,” in 2015 IEEE
International Conference on Communications (ICC), June 2015.

[14] D. Levin, A. Wundsam, A. Feldmann, S. Seethamaran, M. Kobayashi,
and G. Parulkar, “A first look at OpenFlow control plane behavior from
a test deployment,” Technische Universitt Berlin, Fakultt Elektrotechnik
und Informatik, Tech. Rep., 2011.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: towards
an open, distributed SDN OS,” in Proc. of ACM Worshop on Hot Topics
in Software Defined Networking. ACM, 2014.

[16] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” in Proc. of IEEE International Confe-
rence on Parallel and Distributed Systems (ICPADS), 2014.

[17] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for
networks,” in Proc. of ACM SIGCOMM workshop on Hot Topics in
Software Defined Networking, 2013.

[18] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. of USENIX Annual Technical Conference, 2014.

[19] R. A. Golding and D. D. Long, “Simulation modeling of weak-
consistency protocols,” Network Systems Design, Jan 1999.

[20] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influ-
ence through a social network,” in Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003.

[21] J. A. H. Agata Fronczak, Piotr Fronczak, “Average path length in random
networks,” Physical Review E, vol. 70, Issue 5, id. 056110, pp. 1–7,
2004.

[22] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center
networking (dcn): Infrastructure and operations,” IEEE Communications
Surveys Tutorials, vol. 19, no. 1, pp. 640–656, 2017.

207

HARMLESS: Cost-Effective Transitioning to SDN
for Small Enterprises

Levente Csikor∗, László Toka†‡, Márk Szalay†, Gergely Pongrácz§, Dimitrios P. Pezaros∗
and Gábor Rétvári†∗School of Computing Science, University of Glasgow, Email: {firstname.lastname}@glasgow.ac.uk

†High Speed Networks Lab, Budapest University of Technology and Economics, Email: {lastname}@tmit.bme.hu
‡MTA-BME Network Softwarization and Information Systems Research Groups
§Ericsson Research, TrafficLab Hungary, Email: gergely.pongracz@ericsson.com

Abstract—Software-Defined Networking (SDN) offers a new
way to operate, manage, and deploy communication networks
and to overcome many long-standing problems of legacy net-
working. However, widespread SDN adoption has not occurred
yet due to the lack of a viable incremental deployment path and
the relatively immature present state of SDN-capable devices
on the market. While continuously evolving software switches
may alleviate the operational issues of commercial hardware-
based SDN offerings, namely lagging standards-compliance, per-
formance regressions, and poor scaling, they fail to match the
cost-efficiency and port density.

In this paper we propose HARMLESS, a new SDN switch
design that seamlessly adds SDN capability to legacy network
gear, by emulating the OpenFlow switch OS in a separate
software switch component. This way, HARMLESS enables a
quick and easy leap into SDN, combining the rapid innovation
and upgrade cycles of software switches with the port density
and cost-efficiency of hardware-based appliances into a fully
dataplane-transparent and vendor-neutral solution. HARMLESS
incurs an order of magnitude smaller initial expenditure for an
SDN deployment than existing turnkey vendor SDN solutions
while it yields matching, or even better data plane performance
for smaller enterprises.

Index Terms—SDN, Migration, OpenFlow, Switch design

I. INTRODUCTION

SDN offers a radical break with traditional ways of building,
operating and managing networks. By the physical and logical
separation of the network control plane from the packet pro-
cessing functionality, SDN exposes new levels of abstraction
to the operator. SDN hides the specifics of the underlying data
plane technologies from the network control applications be-
hind a standardized southbound interface, and unprecedented
network and service programmability, since the network is
now controlled by an adaptable software functionality via an
open API. Migration to SDN architecture improves network
operations by eliminating the need for box-by-box manage-
ment and troubleshooting, eases to create network functions
and services due to the flexibility of the global network view
in the centralized SDN control plane, and allows the operator
to easily buy into new models for network management and
operations, like automated orchestration, on-the-fly chaining
of services, and “as-a-service” schemes [1]–[4].

ISBN 978-3-903176-08-9 © 2018 IFIP

Despite the fact that many large corporations (e.g.,
Google [5]) and telcos (e.g., Deutsche Telekom [6]) have al-
ready gained significant foothold in SDN, smaller businesses,
campus network operators, and service providers without
substantial in-house expertise and select IT staff (“organiza-
tions that aren’t called Google” [7]) face significant business,
economic, and technical deployment barriers, since migration
to SDN requires a nontrivial amount of forward planning,
an extensive investigation of vendor offerings/options, and a
fairly radical change in the mental model, producing a typical
chicken and egg problem [1]–[4], [7].

First, there is a broad selection of SDN migration strategies:
incremental deployment strategies may offer the smoothest
upgrade path and the least interference with daily network
operations [8], yet managing heterogeneous network archi-
tectures may prove challenging [2], [4]. Jumping outright to
full-blown SDN by swapping all legacy network gear to
SDN-capable devices overnight may mitigate this pain fac-
tor, but greenfield migration is hardly an option for small
businesses due to the huge capital expenditure, the flag-day
deployment, and the induced service downtime. A lightweight
SDN migration combining the smoothness and reversibility
of incremental upgrades with the swiftness and transparency
typical to greenfield deployments is still largely missing [9].

Second, there is the paradox of choice inherent to the
booming and immature state of the SDN market today, with
a breadth of vendor SDN offerings, turnkey solutions, and
marketing hype, that a less informed operator may find very
challenging to explore and evaluate [1], [6]. For a starter,
to obtain an SDN-enabled appliance a network operator has
essentially two nontrivial choices: buying commercial off-the-
shelf (COTS) and white-box (i.e., generically branded switches
with no default network operating system) hardware switches
or relying on, possibly already purchased and deployed,
general-purpose servers and running a virtual software switch
on top (e.g., Open vSwitch, OVS [10]). Thanks to the use
of special-purpose ASICs and network processors, hardware
SDN network gear has traditionally been praised for providing
high port density at a reasonable price tag, albeit notorious
for lacking standards-compliance, limited TCAM sizes (typ-
ical 1st and 2nd generation devices can have at most 100s
and couple of 1000s of flow rules in TCAM), performance

(a) SDN with OpenFlow (b) HARMLESS

Fig. 1: HARMLESS: SDN with an extra level of separation.

regressions, and unscalability [9], [11], [12]. In particular,
users are widely complaining about missing OF features (even
as basic as IP address rewrite [9]), switch control plane
performance and delays in updating the data plane, atomic
flow modification commands not being applied atomically or
at all [11], [13], etc. Note that some newer generation OF
switches (e.g., NoviFlow, Corsa, Barefoot) offering
high performance with up to 1 million flow rules have recently
become available in the market, however not just their costs
hinders smaller enterprises to obtain one, but due to the way
ASICs are designed an arbitrary forwarding pipeline cannot
be applied without fulfilling certain requirements [14] (e.g.,
wire-speed VLAN handling can only be done in table 0).

Software SDN switches, on the other hand, struggle to
match the port density of hardware switches due to the
physical space limits of blades and the steep price of multi-
port NICs, but at the same time excel at programmability,
extensibility, rapidly evolve with new standards and receive
bug fixes very fast [10], [15]. While, thanks to recent advances
in softswitch design and implementation (e.g., multi-threaded
switch design, hierarchical flow caching, custom-compiled OF
datapaths [10], [15]–[19]) the performance tax of software
switching has greatly decreased, programmability and port
density are still competing, if not mutually exclusive, goals
in current SDN networking equipment.

In this paper, we propose HARMLESS, the Hybrid AR-
rchitecture to Migrate Legacy Ethernet Switches to SDN, to
foster SDN migration for smaller enterprises. HARMLESS
leverages the current trend for “software-defined-everything”,
but takes this idea to the extreme: it applies an additional level
of abstraction on top of the conventional control plane–data
plane separation by further decoupling the packet processing
hardware from the switch’s operating system, which are today
integrated in COTS devices in a single box, and implementing
the OpenFlow (OF) OS in a dedicated software switch (see
Fig. 1). This makes it possible to add SDN capability to
plain Ethernet switches, or to any legacy network device
for that matter, through bypassing the legacy switch OS.
Thanks to the additional level of virtualization, HARMLESS
realizes a delicate sweet spot between hardware and software
SDN switching. In particular, it combines the advantages
of software and hardware switching, whereas the hardware
component delivers the high port density and raw packet
processing functionality, and the softswitch adds programma-
bility, adaptability, and standards-compliance. Using extensive

measurements with a HARMLESS prototype, we show that the
benefits of HARMLESS are realized with no significant impact
on raw packet processing performance, latency, and dataplane
transparency (note that the performance is upper bounded by
the used software switch).

From an economical aspect, HARMLESS offers a viable
migration strategy to smaller enterprises. Since HARMLESS
leverages the existing network infrastructure it offers distinct
price advantages over SDN alternatives available on the market
(see details in Sec. III). Crucially, in cases where legacy
switches and bare-metal servers for running the OF component
are readily available, like in smaller private clouds, enterprise
and research networks, HARMLESS makes it possible to get
into SDN instantly, incurring zero expenditure for a partial
or even a complete deployment. And even if equipment must
be purchased anew, HARMLESS can save up to an order of
magnitude investment. In a broader perspective, HARMLESS
sheds a fresh new light on the ages-old, and often highly
contentious, “hard switch vs softswitch” debate and presents
an interesting new dimension in switch architectures [20]–[25].

Roadmap: in Sec. II we present the HARMLESS architec-
ture, in Sec. III we give a cost analysis, in Sec. IV we evaluate
HARMLESS in many aspects, in Sec. V we summarize related
work, and finally Sec. VI concludes the paper.

II. THE HARMLESS ARCHITECTURE

So how to magically turn a legacy device, say, a dumb
Ethernet switch, into an OpenFlow-speaking one? After all,
this would require to open up what is traditionally a closed
black box and substitute the legacy switch OS with an SDN-
capable one, something that has proved notoriously difficult
to do so far. Instead, we adopt a more viable and backward
compatible approach for the purposes of HARMLESS by ex-
tending the “Tagging and Hairpinning” technique (also called
“anything-on-a-stick” [26], [27] or distributed switch design
[28]), originally advocated for hypervisor switches by Cisco
and HP, to the general context of SDN [24].

The idea behind “Tagging and Hairpinning” is to offload
VM-to-VM communication from the hypervisor to the first
hop switch. When a VM sends a packet it is marked by a
unique VLAN id (“tagging”) and forwarded to the access
switch, which will then do a forwarding/policy lookup to
decide whether to loop the packet back to another VM, in
which case it is marked with the unique VLAN id of the
target VM (“hairpinning”), or send it further along the data
center fabric, or drop it right away. The rationale for this
technique is that packet processing is done on efficient special
purpose hardware at the first hop switch instead of a potentially
less powerful hypervisor switch, while the downsides are
doubling bandwidth utilization and increased latency. The
main contribution of this paper is the observation that, when
cast in the general context of SDN switching, the “Tagging
and Hairpinning” technique yields a uniquely cost-efficient
organization of packet processing functionality and forward-
ing intelligence, and presents an appealing incremental SDN
deployment path.

209

Fig. 2: Transparent HARMLESS: Software Switch Twice (S4).

For the purposes of presenting HARMLESS, suppose that
an operator is given a manageable Layer-2 (L2) 802.1Q
Ethernet switch with free high-speed trunk ports, a general
purpose server that has spare NICs and available capacity to
run an OpenFlow vswitch, and adequate cabling, backplane
capacity, or other means for interconnecting the switches’
trunk ports with the softswitch NICs (see bottom of Fig. 2).
Suppose further that a host with IPv4 address 192.168.2.3
connected to port 7 on the legacy switch wishes to send
packets to another host with address 192.168.0.1 con-
nected to port 10 on the same switch, and suppose that a
security policy is in place according to which these two hosts
are permitted to exchange traffic only between each other.
Accordingly, suppose that the operator wants to control the
switch through OpenFlow and so wishes to program this
forwarding behavior as given by the Flow table of SS 2 in
Fig. 2. This would handle communication between the two
hosts adequately, except that it would be impossible to control
the legacy switch through OpenFlow due to the black box
nature of legacy COTS appliances.

This is where the “Tagging and Hairpinning” technique
comes in: let the legacy switch tag each packet with a unique
VLAN id that identifies the access port it was received from,
forward the tagged packet to the software switch along the
trunk-port–softswitch interconnect (the uplink) to enforce the
OpenFlow forwarding and security policies, and send the
packet back to the legacy switch via another uplink “hair-
pinned”, i.e., tagged with the unique VLAN id of the proper
outgoing port as per the specified flow table. (If the packet
was already VLAN-tagged, the legacy switch can use VLAN
Q-in-Q tunneling [29] or any other tagging scheme.)

In a strawman’s approach, the controller would need to
program a slightly modified flow table into the software
switch, whereas the “match on ingress port X” rules are
converted to “match on VLAN id X” rules and the “output
to port Y” actions are rewritten to “modify VLAN id to Y

and output to default port” actions. However, to avoid having
to tailor controller programs to the underlying HARMLESS
layer, we introduce a transparent HARMLESS setup, where
the novel idea is to carefully extend the framework with an
additional OpenFlow Translator Component (OTC) to serve
as an adaptation layer. OTC is realized by an additional
softswitch [30], which is connected to the OF component by
as many patch ports (10 in our example) as the number of the
access ports managed and dispatches packets to and from patch
ports based on the VLAN ids (see Fig. 2). In our particular
example, upon receiving a packet on port 7 from the first host,
the legacy switch would tag it with a unique VLAN id, say,
107, and send it along the uplink. The OTC then dispatches
the packet (with the VLAN tag removed) to patch port 7
towards the the softswitch SS 2 (managed by the controller),
which in turn identifies the original input port based on the
patch port and makes sure that the originating host is allowed
to communicate with the destination host by matching the
first flow entry in the flow table (see Flow Table of SS 2 in
Fig. 2). Then, SS 2 sends out the packet on its patch port 10
towards the OTC, which pushes a unique VLAN id, say, 110
onto the packet, then it is looped back to the legacy switch,
which, after doing a VLAN-to-port translation, forwards it to
the destination host (on physical port 10). Note that the only
requirements for the legacy switch are manageability (to setup
the VLANs on the access ports), support for 802.1Q (to do
the VLAN un/tagging), and free trunk ports to be used for
an uplink (later, in Sec. IV we will deal with the “loss” of
trunks), which allows to use HARMLESS over basically any
legacy Ethernet switch on the market today [31], [32].

These modifications render HARMLESS data plane-
transparent enabling to write controller programs ignoring
the fact that the underlying data plane is realized with
HARMLESS, to make controller programs portable between
deployments, and to allow to invoke higher-level languages
and policies to setup the data plane [33], [34].

III. COST ANALYSIS

Below, we argue that HARMLESS strikes a fine balance be-
tween the cost-efficiency of COTS switches and the flexibility
of softswitches in terms of deployment costs.

A. Hard vs. Softswitch

The great majority of COTS and white-box SDN switch
market options come with 24 or 48 ports at 1G (or 10G),
supplemented with 2–4 uplink ports operating at 10G (or
40G, respectively) in 1U or 2U form-factor. In case of carrier
grade port rates, e.g., 40G, the vendor offerings are even more
diverse, often having no designated uplink ports. Prices vary
in a wide range; the cheapest OpenFlow-capable 24x1G-port
switch (HP-2920) can be purchased at $1, 200 while the most
expensive 48x10G offering comes at a whopping $30, 000.
The 48-port form factor seems to provide the most economic
per-port prices, with the average price tag of $2, 700 for a
48x1G+4x10G OF switch and $11, 200 for a 48x10G+4x40G
device. Based on these considerations, the following formulas

210

0

5K

10K

15K

24 48 96

O
ve

ra
ll

co
st

s
[$

]

Number of ports

SW switch
HW switch

HARMLESS

x
x HP 3500

x Brocade CER 2000

x
x HP 5130x x NEC PL5240xx HP 3800

x

HP 5412 x

DELL S6000 x

(a) CAPEX per 1G port density

0

10K

20K

30K

24 48 96

O
ve

ra
ll

co
st

s
[$

]

Number of ports

SW switch
HW switch

HARMLESS

x
x Cisco WS-C4500x HP 5920

x Extreme Summit x670

x Cisco 7700

HP 5940 x

x Quanta T3048

x

(b) CAPEX per 10G port density

Fig. 3: CAPEX for a software, COTS/white-box hardware, and
HARMLESS switch as the function of the number of (a) 1G
access ports and (b) 10G access ports (prices from 2017).

estimate the CAPEX of hardware switch deployment with a
total of x ports:

C1G
HW = $2700

⌈ x
48

⌉
, C10G

HW = $11200
⌈ x
48

⌉
.

In case of softswitches, the main CAPEX factor is purchas-
ing servers with a sufficient number of NICs and CPUs. We
consider x86-based 1U servers at a bulk price of $1, 400 on
average, including the motherboard with 1 CPU, 4x1G built-in
ports, 3 PCIe (3.0 x8 or x16) slots, memory, disk, power, etc.
A server can host up to 3 additional NICs, costing $160 for
4x1G (Intel i350), $480 for 4x10G (Intel X710), and $500 for
2x40G (Intel XL710), which total up to 16 ports per server at
1G, 12 ports at 10G, and 6 ports at 40G. Note that when a
single server cannot provide the required port density another
server must be purchased. Furthermore, in most cases the third
PCIe slot is hardwired to the second CPU socket, therefore
a single CPU server can host up to 12 1G (8 at 10G, 4 at
40G) ports; for more ports per server a second CPU must be
installed (hence the last negative term in the below formulas,
where the variable #extraCPU indicates in both the 1G and
10G cases whether the last server is sufficient to serve the rest
of the ports w/o an additional CPU). The price of a server CPU
ranges between $200 and $7, 000 depending on the CPU class,
cache size, clock rate, and power consumption; we calculate
with the price of a 6-core Intel E5-2620v3 CPU at $400.

With this in mind, the following formulas estimate the
CAPEX of a software switch deployment with x ports:
C1G

SW = $1400
⌈ x
16

⌉
+ $160

(⌈x
4

⌉
−
⌈ x
16

⌉)
+ $400

(⌈ x
16

⌉
−#extraCPU1G

SW

)
C10G

SW = $1400
⌈ x
12

⌉
+ $480

⌈x
4

⌉
+ $400

(⌈ x
12

⌉
−#extraCPU10G

SW

)
#extraCPU1G

SW =

{
1, if 0 < (x mod 16) < 13

0, otherwise

#extraCPU10G
SW =

{
1, if 0 < (x mod 12) < 9

0, otherwise

For the sake of simplicity, in the price analysis for
softswitches and HARMLESS we do not account for OPEX

components (e.g., energy consumption, cooling, cabling, rack
space occupancy) and we did not take into account the
forwarding and trunk port availability a typical COTS device
offers; we return to further CAPEX/OPEX issues later. Fig. 3
shows the CAPEX analysis for the purchase of a single
hardware-based and software-based SDN switch. The price
figures show that hardware switches are more economical at
port density 24 and 48, due to software switches needing
many expensive NICs and additional servers to match the same
number of ports (even though the price advantages level off
at high-end switches with 96 ports).

In summary, current market trends suggest that hardware
SDN switches provide high port density at moderate prices
but lag behind software switches in scalability, standards-
compliance and programmability.

B. HARMLESS: High port density at low cost

Next, we evaluate HARMLESS as a cost-efficient middle-
ground between the two extremes. HARMLESS unifies the
advantages of hardware and software switches, by decoupling
the raw forwarding functionality from the OpenFlow glue,
resulting in an optimal separation of concerns: high port
density by legacy devices, while the softswitch component
enables implementing the packet processing intelligence in a
clear and extensible way. Observe that the softswitch does not
need to match the port density of the legacy switch effectively
removing the major cost component, NIC prices.

HARMLESS leverages the existing and deployed comput-
ing and networking infrastructure, readily available in many
prospective SDN deployments like SOHO networks, small
and medium sized enterprises, private data centers, campus
networks and private clouds. For these use cases, HARMLESS
offers an instantaneous SDN transition path with zero initial
expenditure, apart from the usual practice of server relocation,
cabling, etc. Note, however, that the server running the Open-
Flow component and the legacy switches do not even need to
be co-located; in fact, the OpenFlow logic can be virtualized
at a remote site or even delegated to a public cloud at the price
of proper traffic forwarding and slightly increased latency.

Even in cases where spare servers or Ethernet switches
are not available, purchasing them anew in a HARMLESS
setup is still much less costly than purchasing equivalent
SDN network gear from commercial suppliers. For the below
CAPEX analysis, we assume that the legacy 48x1G+4x10G
(or 48x10G+4x40G at 10G access) Ethernet switches are
already on stock (if not, add another couple of hundred USD
per switch), so only bare-metal servers for the OpenFlow
components and 10G NICs (respectively, 40G) need to be
purchased. We aggregate 12 access ports to each trunk port,
over-committing the uplink at a similar rate as plain Ethernet
networks [35], multiplexing up to 144 access ports (72 at 10G)
to a single OpenFlow component. Accordingly, the CAPEX for
a HARMLESS (HL for short) deployment with x ports are as
follows:

211

C1G
HL = $1400

⌈ x

144

⌉
+ $480

⌈ x
48

⌉
+ $400

(⌈ x

144

⌉
−#extraCPU1G

HL

)
C10G

HL = $1400
⌈ x
72

⌉
+ $500

⌈ x
24

⌉
+ $400

(⌈ x
72

⌉
−#extraCPU10G

HL

)
#extraCPU1G

HL =

{
1, if 0 < (x mod 144) < 97

0, otherwise

#extraCPU10G
HL =

{
1, if 0 < (x mod 72) < 49

0, otherwise

Similar to software switches, the first term accounts for the
server, the second term for the NICs, and the third for the
additional CPUs. Using this estimate, the CAPEX analysis in
Fig. 3 shows that HARMLESS is by a large margin the most
cost-efficient SDN migration option, thanks to the high level
of aggregation that reduces the number of costly servers and
NICs as compared to pure softswitches, providing one order
of magnitude more economical option.

IV. EVALUATION

Next we turn to the practical aspects of HARMLESS
and compare it against market alternatives. We evaluate the
scalability, standards compliance, data plane performance,
latency in diverse use cases taken from practical networking
applications and under different workloads, and we present
the results side by side with the SDN migration cost anal-
ysis (CAPEX/OPEX) for each possible SDN switch option
(softswitch, COTS and white-box switches, and HARMLESS).
First, we describe our testbed and the measurement method-
ology, then we present the specific use cases, and finally we
present the evaluation results.

A. Testbed and methodology

Our testbed includes two IBM x3550 M5 servers with Intel
Xeon E5-2620v3 processors and 16GB of memory running
Debian Linux Jessie 8.0/kernel 4.9, each server equipped
with an Intel X710 NIC (10G) and Intel XL710 (40G) NIC,
respectively. The setup also contains two legacy switches, a
Cisco 3750X (24x1G + 4x10G) and an Arista 7048T
(48x1G + 4x10G), three COTS OpenFlow switches, an HP
3500 (24x1G), an Extreme X440 (28x1G + 2x10G), and
a Brocade ICX6610 (28x1G + 4x10G), and two white-
box switches (Quanta T1048 and Edge-Core AS4610)
all supporting OpenFlow v1.3. The COTS switches represent
the state-of-the-art in COTS SDN switching as of 2015, while
the white-box switches are from the low-end market of 2016.
The switches have the following flow table size limitations:

• HP 3500: 1 flow table in TCAM with max. 1500 rules,
and 4 further logical tables (processed in software);

• Extreme X440: 1 flow table in TCAM with max. 255
flow rules, assuming each one has limited length in terms

of match fields, and another table for MAC and VLAN
matching rules (also in TCAM);

• Brocade ICX6610: 1 flow table with max. 3000 rules
in TCAM (half if rules match on both L2 and L3 headers),
and no further tables.

• Quanta T1048: 1 flow table in TCAM with roughly
2000 flow rules and 6 logical tables for tens of thousands
of flow rules and different layer matching (e.g., matching
on both source and destination MAC address can only be
implemented in a logical table).

• Edge-Core AS4610: supports multiple flow tables,
one of them containing actions, carrying maximum only
3840 flow rules in TCAM (plus 24, 576 and 32, 768 flow
rules for exact matching on destination MAC address and
destination IP address, respectively)

In each experiment, one of the servers was configured to
run NFPA [36], an Intel DPDK pktgen-based benchmarking
tool, back-to-back with the system-under-test (SUT). For the
software switch evaluations the SUT was provisioned on the
other IBM server, running a stable version of OVS (v2.7.0)
and ESwitch [15], both compiled with a stable Intel DPDK
v16.11.1. The hardware switch option was evaluated on each
of our COTS switches, while for HARMLESS the Open-
Flow component was again configured on the IBM server
running OVS (HARMLESS-OVS) or ESwitch (HARMLESS-
ESwitch), connected to one of the legacy switches.

The measurements were conducted over synthetic traffic
traces, specially tailored to each use case (see below) to
contain a configurable number of flows. Note that packets were
never dropped intentionally, instead the OpenFlow pipelines
contain default catch-all rules to forward unmatched/dropped
packets to the external port; our aim was to measure raw
throughput and not whether the switches can filter traffic
adequately (they can). With this configuration, packet loss
only occurs when the SUT becomes a physical bottleneck and
therefore the packet rate received at the packet generator is rep-
resentative of the raw performance. Packets were minimum-
sized (i.e., 64 bytes) and Receive Side Scaling (RSS) was
turned on in multi-core setups [37]. All measurements were
conducted at 40G for at least 60 seconds [38]. At first the
packet rates were measured in a single-core setup; note that
the attainable throughput using a single core and PCIe x8 v3
bus speed is 15 Gbps (22 Mpps) with 64-byte packets; multi-
core scalability is studied in a separate measurement round.

1) Use cases: We considered 4 realistic use cases [36],
from private data centers to telco gateways. All scenarios
will be cast in a single hypothetical service provider’s legacy
network (see Fig. 4). The setup contains a smaller data center
(DC) with 4 racks connected into a CLOS topology with
separate L2 domains at the leaves and an L3 domain as the
spine [39], an industrial-scale load-balancer [40], and a telco
access gateway [41] that aggregates subscribers located behind
Customer Endpoints (CEs) [42].

The lower layer of the DC topology represents the L2 use
case, with each top-of-rack (ToR) switch provisioned as a
separate L2 domain; a sample L2 traffic flow is marked with

212

Fig. 4: Use cases in a service provider network.

orange in Fig. 4. While certain data centers may differ in the
configuration of L2/L3 domains [43] this use case describes
large L2 networks illustratively, to be migrated from traditional
802.1 to SDN with the aim of eliminating dependency on
spanning trees and benefiting from centralized control [44].

The L3 use case embodies the upper layer of the CLOS
network interconnecting the L2 islands, a common setup in
DCs [39]; a sample traffic is marked with cyan in Fig. 4.

The load balancer and access control list use case in the
middle of Fig. 4 captures the functionality of a web frontend,
balancing incoming web traffic (TCP port 80) for 100 different
web services, each available at a unique IP address [36].
During the measurements, traffic traces were crafted so that
70% of packets go to a randomly chosen web service while
the rest is filtered at the ACL.

The telco access gateway use case [36] on the right hand
side of Fig. 4 is the most complex one consisting of a
Virtual Provider Endpoint (VPE) that serves Internet access
to subscribers located behind Customer Endpoints (CEs). For
brevity, we identify CEs with the MAC address and we
assume that the operator sets 10 CEs, each serving 20 users
provisioned with unique private IP addresses.

B. Measurement results

1) Scalability and standards-compliance: Configuring the
use cases on COTS and white-box switches proved far from
trivial, due to the prohibitive flow table sizes and subtle
restrictions on flow matching rules. The hardware switches
support only a single flow table in TCAM and may or may not
provide additional tables in software. Thus, multi-table Open-
Flow pipelines had to be tediously collapsed into a single table
by hand; in case of the white-box devices their software, e.g.,
Pica8 PicOS on Quanta and ONL+Indigo on EdgeCore,
do this automatically. Unfortunately, even then the switches
rapidly run out of TCAM space because of the flow-state
explosion effects for which table collapsing is notorious [10].
In the access gateway use case for instance a separate flow
entry must be created for every (user, CE, IP prefix) tuple,
yielding so many entries that none of the hardware offerings
could implement this use case. Furthermore, one has to take
into account the ramifications of the chip in each individual
switch, e.g., the HP switch does not support static matching
on MAC addresses, the Brocade switch does not support

MAC rewrite, the EdgeCore switch cannot modify IP fields,
only on slow-path. Current hardware switches do not scale
beyond small and medium workloads, and even in that case
may require hand-tweaking the OpenFlow pipeline, while
softswitches and HARMLESS support very large deployments.

2) Performance: Fig. 5a, 5b, 5d, and 5e compare the raw
packet rate with the hardware switches, the software switches,
and HARMLESS measured in the L2, L3, load balancer and
access gateway use case, respectively. Recall that due to the
attainable packet rate of a single CPU core the y axes are
scaled up to 22 million packets per seconds (Mpps). Note that
for each use case results are reported only for the hardware
switches that could handle the use case.

Our observations are as follows. First, as long as hardware
OpenFlow switches manage to forward packets purely in the
fast path they perform at wirespeed. However, as soon as a
hardware switch runs out of TCAM space and forwarding falls
back to the software slow path performance plummets. Note,
however, that among the devices providing logical tables only
HP can use TCAM and logical tables at the same time for
the same scenario; Quanta installs as many flow rules in its
TCAM as it can (2K), and silently ignores the rest without
notifying the controller. For instance, in the L2 use case the
Extreme switch could handle 100 flows at line rate (1K and
2K flows with the Brocade and the Quanta, respectively)
but could not tackle 1K flows at all (10K for the Brocade
and the Quanta). On the other hand, all hardware switches
can support the relatively small flow table of the load balancer
use case adequately (even though the HP proved to be slower).

Meanwhile the ESwitch-based OpenFlow softswitch per-
forms close to line rate at small and medium sized workloads
and only becomes worse at very large flow tables. Depending
on the workload, the HARMLESS-ESwitch combination attains
a performance very close to that of the TCAM-based fast path
of hardware switches and the best softswitches, in the majority
of the cases reaches up to 90–95% and it robustly outperforms
the hardware’s slow-paths and the HP switch. Results with
OVS (only presented for the load balancer and the access
gateway use cases for brevity) are much worse, but then again
the HARMLESS-OVS mix is very close to pure OVS. This
suggests that the performance of HARMLESS is eminently
conditioned on the OpenFlow softswitch component; here, the
HARMLESS-ESwitch combination seems very appealing.

213

 0

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

(a) L2 performance

 0

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

(b) L3 performance

0

25K

50K

75K

85 144 300 500

O
ve

ra
ll

co
st

s
[$

]

Number of forwarding ports

HW switch
SW switch

HARMLESS

(c) CLOS CAPEX

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

SW-ESwitch
SW-OVS
HW-Brocade
HW-Extreme
HW-HP
HW-Quanta
HW-Edgecore
HL-ESwitch
HL-OVS

(d) LB performance

 0

 5

 10

 16

 22

100 1K 10K 100K

P
ac

ke
t r

at
e

[M
pp

s]

Number of flows

(e) GW performance

0

50K

100K

150K

200 400 600

O
ve

ra
ll

co
st

s
[$

]

Number of forwarding ports

SW switch
HW switch

HARMLESS

(f) GW CAPEX

Fig. 5: Raw packet throughput as the function of the workload size in (a) the L2, (b) the L3, (d) the load balancer (LB) and
(e) the access gateway (GW) use cases, and the CAPEX at different deployment scales for (c) a full CLOS topology that
integrates the L2 and L3 use cases, and (f) the access gateway. Note the common legend for panel (a), (b), (d), and (e) in plot
(d): SW: software switches, HW: hardware switches, HL: HARMLESS.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6

Th
ro

ug
hp

ut
 [G

bp
s]

Number of cores

HL-ESwitch-LB
HL-ESwitch-L3
HL-OVS-LB
HL-OVS-L3

Fig. 6: HARMLESS Multi-core scalability: throughput (Gbps)
with ESwitch and OVS (128-byte).

We measured the throughput on multiple CPU cores (Fig. 6)
under the larger workloads (namely, in the L3/100K and
LB/10K use cases [36]); this time, we use 128-byte packets
as the Intel XL710 NIC cannot be saturated with smaller
packets [45]. The results indicate that HARMLESS scales
to multiple cores linearly, however the HARMLESS-ESwitch
mix already achieves its maximum performance (much higher
than OVS can attain with 6 cores) with only 4 cores.

3) CAPEX: Fig. 5c compares the CAPEX for a greenfield
deployment in the CLOS-based telco DC (the L2 and L3
use cases combined) as the function of access port density
supported at the ToR switches. Note that due to the different
form factors the spine layer scales differently: purchasing four
48x10G hardware switches for the spine incurs a huge initial
investment but can then scale to 48 leaf switches economically;

in case of software switching, one leaf switch, offering similar
aggregation ratios as a typical hardware device provides (e.g.,
48x1G vs. 4x10G), mounts 12x1G + 1x10G, thus we only
need one server with 12x10G capacity as the spine resulting
in a small CLOS topology (providing 144 access ports at the
most). Observe in Fig. 5c that in contrast to COTS devices
and HARMLESS, where we are given 4 spine switches (the
most expensive parts of the CLOS topology), the necessity of
only one spine server is the only reason why software switches
involve less initial investment.

Since in case of HARMLESS the trunk ports of the legacy
devices are used to provide the OpenFlow capability, special
attention is needed in order to preserve the non-blocking 1:1
over-subscription ratio of the CLOS topology. Therefore, in
HARMLESS a spine switch is comprised of a 48x10G+4x40G
legacy switch plus a server with two 4x10G NICs for the
softswitch component, and 2x100G NIC with an additional
CPU for compensating the inherent “loss” of uplink ports
resulting in a sum of $4,100 per spine switch (for the NIC
we considered the average price of a Mellanox ConnectX-5
NIC of $1,300). Nonetheless, a legacy leaf switch of 48x1G
+ 4x10G only requires a HARMLESS server with two 4x10G
NICs resulting in an average price of $2,350 per leaf switch.

Fig. 5f gives the CAPEX for a telco access gateway
greenfield SDN deployment in a simple tree topology (Fig. 4)
with a depth of 3 consisting of 48x1G forwarding ports at the
leafs, 48x10G aggregation switches in the middle, and one
switching gear with 40G forwarding ports as the core (we

214

TABLE I: Latency over in a bridge and in the L2/1K use cases,
energy consumption, and rack space.

SDN switch Latency [µs] Power [W] RackBridge L2 Min Max
SW-ESwitch 238 233 70 230 3U
HW-HP 138 NA 142 616 1UHW-HP-SW 697 730
SL-ESwitch 268 265 164 350 1.3U

considered the average price of $21,500 USD) offering an
overall 1:1 over-subscription ratio. One can observe that when
relying merely on software switches, expenses can easily reach
high even for fewer number of ports. On the other hand, in
case of the hardware devices and HARMLESS the steep cost
steps arrive at 576 forwarding ports: those indicate the price
of the 32x40G OpenFlow-enabled core switch, and the three
2x100G NICs for HARMLESS, respectively. Crucially, in all
cases HARMLESS is the most cost-efficient option, supporting
roughly the same performance at the fraction of the price:
on average HARMLESS is 2–4 times less expensive than a
softswitch-, a COTS-, or a white-box-based deployment, but
the price difference can even reach to an order of magni-
tude. Here, we assume that the legacy Ethernet switches for
HARMLESS are on stock; if not, HARMLESS is still 1.5–3
times more cost-efficient due to the economical price tag of
commodity Ethernet switches; however, if Ethernet switches
and spare servers are available in adequate number then, recall,
SDN migration with HARMLESS incurs zero cost.

4) Latency: In order to check whether the additional
softswitch in the loop increases the latency of HARMLESS
prohibitively (extra latency occurs for inter-port communica-
tion only, but not for out-of-switch traffic), we conducted a
series of latency measurements in various setups; Table I gives
the results for a single port-forwarding rule in the OpenFlow
pipeline and for the L2/1K workload. The HP switch, when us-
ing the TCAM-based fast path, yields roughly 130 µsec delay,
but it is much less efficient when it falls back to the software
datapath (around 700 µsec). ESwitch’s delay is around 230
µsec reliably, with HARMLESS only 10% more thanks to the
fast underlying plain Ethernet switch (adding roughly 30–50
µsec to the softswitch latency), but still much faster than the
software fallback of the COTS switch. The results indicate
that the additional softswitch does not introduce prohibitive
latency in HARMLESS, just the contrary, its latency is on par,
and in some cases even better than, alternatives; accordingly,
HARMLESS latency seems sufficient for anything but the
most delay-critical applications.

5) OPEX: Below, we extend our analysis with operational
costs, which can constitute a significant factor in the total
spending. Table I shows an evaluation of two important OPEX
components. The energy consumption is estimated from the
datasheets of the switches and the CPUs (note that the legacy
Ethernet switch used in HARMLESS consumes less power
than a full-scale SDN switch). The rack space occupancy
is normalized for the standard 48x1G form factor: 1U for
a hardware switch, 3U for the three 16x1G servers needed

for a 48-port software switch, and for HARMLESS 1U for
the legacy 48x1G switch and 1U for the 12x10G server, but
the latter can handle 2 additional legacy switches as well
which gives 1.3U normalized to 48 ports overall. Cabling
might be more difficult though, since some high-speed uplinks
that could otherwise be used for aggregation are allocated for
HARMLESS; yet, the flexibility of access port assignment
in HARMLESS may be exploited to optimize cabling costs.
Overall, the costs for operating HARMLESS are at the same
level as that of the alternatives.

V. RELATED WORK

SDN migration. The new levels of abstraction, programmabil-
ity, and logically centralized control are important motivators
for deploying SDN [1] in enterprise networks [46], DC fab-
rics [47], transport networks [48], [49], WANs [3], [5], and
Internet exchanges [50]. However, most deployments involve
the complete and irreversible overhaul of the existing legacy
networking infrastructure. Incremental deployment strategies
[8] seek to find a smoother migration path than a flag-
day greenfield upgrade [1], [2]. Managing a heterogeneous
network, however, can become rather unwieldy due to the po-
tential interference between coexisting legacy and SDN control
planes. For example, forwarding loops may be formed due to
the legacy control plane masking certain forwarding decisions
from the SDN controller [4]. HARMLESS fits into any of
these SDN migration paths smoothly, thanks to its dataplane
transparency, fine-grained upgrades, and vendor neutrality.
Hybrid SDN. Similar to HARMLESS, the hybrid SDN
scheme Panopticon [2] connects legacy device ports to SDN-
capable switches using VLAN tagging. The aim in Panopticon
is different though: guaranteeing that each forwarding path
traverses at least one SDN switch that can exert control over
the traffic along that path. On the contrary, HARMLESS is
dataplane-transparent and can accommodate any SDN policy
without special tweaking. Furthermore, Panopticon needs a
nontrivial number of newly purchased SDN switches, while
HARMLESS can introduce the existing legacy network infras-
tructure to under SDN control and hence is more economical.

Fibbing [3], [49] endues a legacy network employing a
distributed routing protocol with SDN control. However, it is
bound by the limitations of destination-based routing, while
HARMLESS opens up the full power of SDN.

VI. CONCLUSION

Recently, SDN has grown out of the “niche status” and
found important use in communication networks. However,
there still exist areas it has not penetrated, mainly service
provider networks and smaller businesses with less technically
savvy IT staff. In this paper, we presented HARMLESS, a new
SDN switch design to offer an attractive deployment path.

The main idea in HARMLESS is opening up traditional
black-box network gear and virtualizing the switch OS in
a separate softswitch component. HARMLESS allows an
operator to start experimenting with SDN instantaneously: by
connecting the trunk port of a legacy Ethernet switch to a

215

spare x86 server and firing up HARMLESS, an operator can
immediately engage with OpenFlow controller programs with
zero initial investment. Later, any combination of legacy ports
and switches can be connected to the HARMLESS software
switch to incrementally reach a full SDN deployment.

HARMLESS realizes an appealing combination of hardware
and software switching, with the hard switch providing the
port density and the softswitch delivering programmability.
Our comprehensive CAPEX analyses on realistic SDN mi-
gration scenarios indicate that HARMLESS attains the most
economic SDN migration strategy today, with performance
close to (90–95%), and in some cases even higher than that
of the alternatives. Crucially, HARMLESS is exempt from
the dataplane quirks and performance regressions experienced
with COTS OpenFlow appliances. With the continuous evolu-
tion of software-based switching and general-purpose packet
processing solutions, throughput achieved with HARMLESS
will likely further improve in the future.

ACKNOWLEDGEMENTS

The work has been supported in part by the European
Cooperation in Science and Technology (COST) Action CA
15127: RECODIS - Resilient communication and services;
and by the UK Engineering and Physical Sciences Research
Council (EPSRC) projects EP/L026015/1, EP/N033957/1, and
EP/P004024/1. Project no. PD 121201 has been implemented
with the support provided from the National Research, Devel-
opment and Innovation Fund of Hungary, financed under the
PD 16 funding scheme.

REFERENCES

[1] Open Networking Foundation, “SDN Migration Considerations and Use
Cases,” ONF Solution Brief, Nov 2014.

[2] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment in
enterprise networks,” in USENIX ATC, 2014, pp. 333–345.

[3] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in SIGCOMM, 2015, pp. 43–56.

[4] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” SIGCOMM
CCR, vol. 44, no. 2, pp. 70–75, 2014.

[5] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in SIGCOMM, 2013.

[6] Brocade, “Migrating to SDN: planning for a smooth transition,” [Online:
https://goo.gl/cgPFTs], 2014.

[7] M. McNickle, “With hybrid SDN deployment, no need for network
forklift,” TechTarget SearchSDN, 2013.

[8] M. K. Mukerjee, D. Han, S. Seshan, and P. Steenkiste, “Understanding
tradeoffs in incremental deployment of new network architectures,” in
CoNEXT, 2013, pp. 271–282.

[9] I. Pepelnjak, “Q&A: Vendor Openflow Limitations,” http://blog.ipspace.
net/2016/12/q-vendor-openflow-limitations.html, Dec 2016.

[10] B. Pfaff et al., “The design and implementation of open vswitch,” in
NSDI, 2015.

[11] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
SDN flow tables,” in PAM, 2015, pp. 347–359.

[12] I. Pepelnjak, “Table Sizes in OpenFlow Switches,” http://blog.ipspace.
net/2016/03/table-sizes-in-openflow-switches.html, March 2016.

[13] M. Kuzniar et al., “A SOFT way for OpenFlow switch interoperability
testing,” in CoNEXT, 2012.

[14] A. Pavlidis et al., “Overview of SDN Pilots Description and Findings:
Part A,” Deliverable D7.1, 2017.

[15] L. Molnár et al., “Dataplane specialization for high-performance open-
flow software switching,” in Proceedings of ACM SIGCOMM, 2016, pp.
539–552.

[16] Intel, “Guide: Data plane development kit for linux,” Guide, April 2015.
[17] N. Egi et al., “Towards high performance virtual routers on commodity

hardware,” in CoNEXT, 2008, pp. 1–12.
[18] M. Dobrescu et al., “RouteBricks: Exploiting parallelism to scale

software routers,” in SOSP, 2009, pp. 15–28.
[19] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and

J. Rexford, “PISCES: A programmable, protocol-independent software
switch,” in SIGCOMM, 2016, pp. 525–538.

[20] M. Casado et al., “Rethinking packet forwarding hardware,” in HotNets,
2008.

[21] D. Moon et al., “Bridging the software/hardware forwarding divide,” uC
Berkeley.

[22] K. Argyraki et al., “Can software routers scale?” in PRESTO, 2008, pp.
21–26.

[23] G. Pongrácz, L. Molnár, Z. L. Kis, and Z. Turányi, “Cheap silicon:
A myth or reality? picking the right data plane hardware for software
defined networking,” in HotSDN, 2013, pp. 103–108.

[24] J. Gross, A. Lambeth, B. Pfaff, and M. Casado, “The rise of soft
switching, Part I, II, III,” Network Heresy, 2011.

[25] G. Ferro, “Soft switching fails at scale,” EtherealMind, 2011.
[26] N. Gaur, “Fundamentals of vlans: Router on a stick,” CCENT/CCNA

R&S Study Group, 2014.
[27] Cisco, “Network address translation on a stick,” Technical study, Doc-

ument ID: 6505, 2008.
[28] F. F. Andrew Lunn, Vivien Didelot, “Distributed switch architecture,”

Netdev Conf 2.1, 2017.
[29] IEEE, “Std 802.1ad - 2005 IEEE Standard for Local and metropolitan

area networks – virtual Bridged Local Area Networks, Amendment 4:
Provider Bridges”,” 2005.

[30] M. Szalay et al., “Harmless: Cost-effective transitioning to sdn,” in
Proceedings of the SIGCOMM Posters and Demos, 2017, pp. 91–93.

[31] Cisco, “Campus network for high availability design guide,” Design
Guide, 2008.

[32] Juniper, “Campus networks reference architecture,” 2010.
[33] N. Foster et al., “Frenetic: a network programming language,” in ICFP,

2011, pp. 279–291.
[34] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular

SDN programming with Pyretic,” USENIX Mag., vol. 38, no. 5, 2013.
[35] H. Hudson, “Extending access to the digital economy to rural and

developing regions,” The MIT Press, 2002.
[36] L. Csikor, M. Szalay, B. Sonkoly, and L. Toka, “NFPA: Network

function performance analyzer,” in Proc. of NFV-SDN, 2015.
[37] Microsoft, “MSDN: Introduction to Receive-Side Scaling,” [Online:

http://goo.gl/BpoErm, accessed 05-07-2016].
[38] S. Bradner et al., “Benchmarking methodology for network interconnect

devices,” RFC 2544, 1999.
[39] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”

in NSDI, 2014.
[40] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and

software,” in SIGCOMM, 2014, pp. 27–38.
[41] Intel, “Network function virtualization: Virtualized BRAS with Linux

and Intel architecture,” https://goo.gl/TVj8co.
[42] S. K. N. Rao, “SDN and its USE-CASES-NV and NFV,” White Paper,

NEC technologies India Limited, 2014.
[43] Cisco, “Cisco Data Center Infrastructure 2.5 Design Guide,” https://goo.

gl/kW78VM, Nov 2011.
[44] C. Kim et al., “Floodless in Seattle: a scalable Ethernet architecture for

large enterprises,” in SIGCOMM, 2008, pp. 3–14.
[45] Intel Corporation, “Intel Ethernet Converged Network Adapters XL710

10/40 GbE,” Datasheet, 2015.
[46] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,

“Towards programmable enterprise WLANS with Odin,” in HotSDN,
2012, pp. 115–120.

[47] N. Mysore et al., “PortLand: a scalable fault-tolerant Layer 2 data center
network fabric,” SIGCOMM CCR, vol. 39, no. 4, pp. 39–50, 2009.

[48] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in CoNEXT, 2013,
pp. 13–24.

[49] M. Chiesa, G. Rétvári, and M. Schapira, “Lying your way to better
traffic engineering,” in CoNEXT, 2016.

[50] A. Gupta et al., “SDX: a software defined Internet Exchange,” in
SIGCOMM, 2014, pp. 551–562.

216

I DPID It My Way!
A Covert Timing Channel in Software-Defined Networks

Robert Krösche∗ Kashyap Thimmaraju∗ Liron Schiff† Stefan Schmid‡§∗
∗TU Berlin †GuardiCore Labs ‡University of Vienna §Aalborg University

Abstract—Software-defined networking is considered a promis-
ing new paradigm, enabling more reliable and formally verifi-
able communication networks. However, this paper shows that
the separation of the control plane from the data plane, which
lies at the heart of Software-Defined Networks (SDNs), can
be exploited for covert channels based on SDN Teleportation,
even when the data planes are physically disconnected.

This paper describes the theoretical model and design of
our covert timing channel based on SDN Teleportation. We
implement our covert channel using a popular SDN switch,
Open vSwitch, and a popular SDN controller, ONOS. Our
evaluation of the prototype shows that even under load at the
controller, throughput rates of 20 bits per second are possible,
with a communication accuracy of approximately 90%. We
also discuss techniques to increase the throughput further.

1. Introduction

In the recent years computer networks have undergone
a transformation to overcome ossification [1]. Existing
communication protocols and architectures were unable to
meet the increasingly stringent requirements, e.g., in terms
of performance but also dependability, of growing networks
such as data center networks and wide area networks [2].

One of the answers to the ossification problem is what
is now known as Software-Defined Networks (SDN) which
is the separation (and consolidation) of the network control
plane from the data plane. SDNs promises innovation,
reduced cost and better manageability [3].

As of today, we witness an increasing interest in SDN
not only in academia and the industry but also by govern-
ments [4]. Several open-source SDN projects have gained
wide-spread adoption by the community, e.g., Open vSwitch
and OpenDayLight are a part of the Linux foundation.
Hardware vendors are also adopting the SDN paradigm and
shipping software programmable network cards [5].

While the literature has demonstrated well how an SDN
can overcome the shortcomings of traditional networks and
while SDNs are rapidly gaining traction, researchers have
also identified new security challenges they introduce. For
example, Hong et al. [6], and Dhawan et al. [7] identified
ways for an attacker to spoof the controller’s view of the
network topology. Jero et al. [8] identified a weakness in the
way controllers bind network identifiers allowing an attacker
to conduct a man-in-the-middle attack.

Those papers show that attacks on the controller can
easily occur from the data plane. The assumption that the
data plane can be compromised, e.g., via trojans, or software
exploits, is not far fetched. For example, Thimmaraju et
al. [9] demonstrated the simplicity of compromising the data
plane of an SDN-based cloud system.

The SDN controller may also be exploited for telepor-
tation, e.g., malicious switches or hosts can communicate
via the control plane and circumvent data plane security
mechanisms [10] to exfiltrate sensitive information. Tele-
portation can also be exploited by physically disconnected
switches, e.g., switches in different geographic locations.
More importantly, teleportation is inherent to an SDN.
Among the teleportation techniques identified [10], out-of-
band forwarding, flow reconfiguration and switch identifica-
tion, only out-of-band forwarding has been explored in the
literature [10]. Switch identification and flow reconfiguration
were described as a Rendezvous Protocol.

Hence in this paper, we go beyond the initial intention of
switch identification teleportation by describing how it can
also be used for covert communication: malicious switches
can transfer a 2048 byte RSA private key file in ∼13 minutes.
In particular, we design, develop and evaluate a time-based
covert channel using the switch identification teleportation.
Our Contributions: We describe the state machine of
switch identification and model it in terms of time delays.
We then design a covert timing channel using our model.
We prototype our design and evaluate its performance and
accuracy. Finally, our study of the OpenFlow handshake
leads us to the observation that it is currently insecure. The
vulnerability received CVE-2018-1000155 and mitigations
have been announced.
Novelty and Related Work: To the best of our knowledge,
this is the first paper that describes a covert timing channel in
an SDN, and OpenFlow-based network in particular. We are
only aware of one other paper dealing with covert channels
in SDN, which is however very different in nature: Hu et
al. [11] proposed to use SDN to improve the detection of
storage covert channels that use the TCP flags for covert
communication. More generally, the study of covert channels
dates back to the 80’s when Simmons [12] introduced the
“Prisoners Problem” and the subliminal channel. Network
based covert channels in local area networks were introduced
by Girling [13], wherein a covert channel based on the inter
frame delay was proposed. Handel et al. [14] conducted an
extensive study on viable covert channels within the OSI

ISBN 978-3-903176-08-9 c© 2018 IFIP

networking model. A covert channel based on sending an
IP packet or not in a time interval was demonstrated by
Cabuk et al. [15]. More recently, Tahir et al. [16], designed
and developed Sneak-Peek, a high speed covert channel in
data center networks. Their covert channel also utilizes a
delay mechanism wherein the sender’s flow introduces a
delay into the receivers flow over the same network link
thereby covertly communicating information based on the
delay measured by the receiver.
Paper Organization: Section 2 introduces our threat model
followed by a description of our covert channel in Section 3.
We describe the key challenges in Section 4 followed by our
evaluation in Section 5. After a brief discussion is Section 6,
we conclude in Section 7.

2. Threat Model

We consider a threat model where OpenFlow switches
can be malicious. For example, the attacker compromises
the switch by exploiting a (parsing) vulnerability [9], or
the attacker compromises the supply-chain and introduces
hardware trojans into the switches [17]. The objective of the
malicious switches is to covertly communicate information,
e.g., private keys, confidential meta-data, attack coordination,
even in the presence of security mechanisms, e.g., firewalls,
in the data and control plane. The attacker chooses covert
communication instead of overt to persist and remain unde-
tected in the network, e.g., an Advanced Persistent Threat
(APT).

We place no restrictions on what a malicious switch can
and cannot do. For instance, the switch can send fake Open-
Flow messages, it can arbitrarily deviate from the OpenFlow
specification, and it can even use multiple identifiers, all at the
risk of being detected. However, the position of the malicious
switches in the network is not under the control of the
attacker. For example, the malicious switches are separated
by a firewall that prevents bi-directional communication,
or the switches are physically disconnected (geographically
separated). However, the malicious switches are connected to
the same logically centralized controller. In order to covertly
communicate, the malicious switches have been programmed
to recognize some data and timing patterns.

The OpenFlow controller and its applications on the other
hand are trusted entities and are available to the switches,
e.g., they are based on static and dynamic program analyses.
The OpenFlow channel is reliable and may be encrypted.

3. A Covert Channel using Teleportation

Covert channels are communication channels that were
not designed with the intention for communication [18].
They can be used to bypass security policies, thereby
leading to unauthorized information disclosure [19]. A covert
timing channel is one wherein a sender and receiver “use
an ordering or temporal relationship among accesses to a
shared resource” [18] to covertly communicate with each
other. In the following we describe how switch identification

Switch
(s1)

Controller
(c0)

Switch
(s2)

TCP Handshake

TCP Handshake

OF Hello

OF Hello

OF Features-request

OF Features-request

Features-reply (DPID=x)

s1 has DPID x

Features-reply (DPID=x)

s2 has DPID x?
Disconnect s2!

TCP FIN

TCP FIN,ACK

s2 gets disconnected

Figure 1: Message sequence pattern for the OpenFlow
handshake and switch identification teleportation when the
controller denies the second switch a connection.

teleportation can be used as a covert timing channel in a
software-defined network using the OpenFlow protocol.
Switch Identification Teleportation: In an OpenFlow
network, the switch typically initiates a TCP connection with
the OpenFlow controller as shown in Fig. 1. If TLS/SSL
is configured, the connection is further authenticated and
subsequent messages exchanged are encrypted as well. Once
the transport connection is established, the switch sends
the controller an OpenFlow Hello message. The controller
responds with a Hello message. These messages are used
to negotiate the OpenFlow version to be used. Next, the
controller sends the switch a Features-Request message. The
switch replies with a Features-Reply message. The Features-
Reply message includes a Datapath ID (DPID) field that
uniquely identifies the switch to the controller. After process-
ing the Features-Reply message, the OpenFlow connection
is considered established, and ready for operation [20].

A fundamental requirement of an SDN is for the con-
troller to uniquely identify the switches in the network which
is achieved by the switch providing “identity” information,
e.g., DPID in the Features-Reply message, to the controller.
Switch identification teleportation is the outcome of two
switches connecting to the same logical controller using the
same DPID [10]. We have identified 4 possible outcomes
when this occurs in OpenFlow: i) The controller denies a
connection with the second switch; ii) The controller accepts
the connection with the second switch, and terminates the first
switch’s connection; iii) The controller accepts connections
for both switches; iv) The controller accepts connections
for both switches, however, each switch receives a different
Role-request message. Only in outcomes i, ii and iv can the
malicious switches infer if the DPID it used is already in
use by another switch. The message sequence pattern for
the OpenFlow handshake and outcome i is shown in Fig. 1.

218

3.1. Single Bit Transfer

From the message sequence pattern in Fig. 1, switch s2
can infer a binary value of 1 if it gets disconnected, and a
binary value of 0 if it is able to connect, thereby received
one bit of data. We can precisely describe the states and
transitions to transfer one bit value as state machines for
the sender and receiver resp. Additionally, we can precisely
describe a time-based model to transfer one bit value that
can be leveraged to design a channel to transfer multiple bits.
In the following we describe the state transition model and
time model to transfer one bit. Following that, we describe
our algorithms to transfer multiple bits.

3.1.1. State Transition Model. The state transition model
for switch identification involves a sender and receiver. As
the names imply, the sender sends a binary bit value by either
connecting to the controller or not. Similarly, the receiver
receives a binary bit value by detecting whether its OpenFlow
connection to the controller is allowed or denied.

In our model, we make the following assumptions. We
assume that the sender and receiver use an a priori agreed
upon DPID (one that is not used in the network), a time
to connect to the same OpenFlow controller and a time
interval ∆. ∆, is the total time the sender and receiver use
to send and receive resp. a bit value. The sender and receiver
have synchronized their clocks. We discuss synchronization
further in Sec. 4.1. The receiver in particular, is always able
to connect to the controller a short δoffset time after the
sender. The controller, behaves according to outcome i (see
Switch Identification Teleportation). The receiver infers a
binary bit value of 1, if its OpenFlow connection is denied,
i.e., the sender connected to the controller before the receiver.
The receiver infers a binary bit value of 0, if its OpenFlow
connection is accepted, i.e., the sender did not connect to
the controller.

The sending and receiving of bit information can be
described in more detail by defining a set of states and
transitions for the sender and receiver resp., as shown in
Fig. 2. The sender starts data transmission with an agreed
upon DPID, by entering into the Idle state. To send a 0, it
simply remains in the Idle state. To send a 1, it transitions
to the OpenFlow-established state via the Set-Controller
transition. Set-Controller involves initializing internal objects,
e.g., rconn and vconn data structures in Open vSwitch, in
order to initiate a transport (e.g., TCP) connection to the
controller at a specific IP and port address. It also involves
establishing the TCP and OpenFlow connection with the
controller. Once the OpenFlow connection is established,
the sender waits for a timeout δws, to move into the
Timeout-reached state. From there, the sender enters into the
OpenFlow-disconnected state by tearing down the TCP and
OpenFlow connection, and deleting its controller information.
From thereon, the sender completes a bit transfer by entering
back into the Idle state. The sender’s state diagram is depicted
in Fig. 2a.

The receiver also starts with the same DPID to enter into
the Idle state. Unlike the sender, the receiver must always at-

tempt to connect to the controller to receive a 0 or a 1. It waits
for δoffset time to enter the Offset-reached state before it sets
the controller to enter into the OpenFlow-established state,
similar to the sender. If the receiver’s OpenFlow connection
is denied, it will enter into the OpenFlow-disconnected state
resulting in its OpenFlow and transport connection being
terminated. If the receiver’s OpenFlow connection is accepted,
it will enter into the OpenFlow-accepted state resulting in
its OpenFlow connection being sustained. Regardless of the
outcome, the receiver waits δdelay time, thereby transitioning
to the Reached-check-status-timeout state. From there, the
receiver checks the OpenFlow connection status. It enters the
Got-1 state if it was disconnected, i.e., it got a 1. It enters
the Got-0 state if it was accepted, i.e., it got a 0. From there
on the receiver deletes its controller information, resulting
in the OpenFlow and transport connection being torn down
if it is still present. Depending on the value of ∆, there may
still be time left, hence the receiver waits δwr, till the end
of time interval, to enter the Timeout-reached state. It then
completes the reception by moving back into the Idle state.
The state diagram for the receiver is shown in Fig. 2b.

3.1.2. Transition Delays. To leverage switch identification
as a covert timing channel we must first establish the time
it takes for the sender to send a 1—as sending a 0 requires
the sender to remain in the Idle state—and the receiver to
receive a bit value. We define a time interval ∆, as the time
the sender and receiver use to send and receive resp. a binary
bit value.

∆ comprises of the several state transitions described
for the sender and receiver (Sec. 3.1.1). We can construct a
time-based model by considering the transitions as delays
or timeouts for the sender and receiver that can be used
to analyze the performance of our covert channel. In the
following we define the various delays and timeouts for the
sender and receiver state transitions.

1) δs: The time the sender takes to send a binary bit
value.

2) δr: The time the receiver takes to receive a binary
bit value.

3) δsc: The time to transition from the Idle state to the
OpenFlow-established state.

4) δdc: The time to move from the OpenFlow-
established state to OpenFlow-disconnected state.

5) δoffset: A timeout value the receiver waits before
it sets the controller.

6) δof -deny : The time to move from OpenFlow-
established to OpenFlow-disconnected when the
connection is denied.

7) δdelay: A timeout value the receiver waits before it
checks the OpenFlow connection status.

8) δchk-conn : The time the receiver takes to determine
a 0 or 1 by checking the OpenFlow connection
status.

9) δws = ∆ − δs: A timeout value the sender waits
before moving from the OpenFlow-established state
to OpenFlow-disconnected.

219

(a) Sender (b) Receiver

Figure 2: State diagram for the sender and receiver to send/receive one binary value.

10) δwr = ∆− δr: A timeout value the receiver waits
before moving from the OpenFlow-disconnected
state to the Idle state.

Using the above definitions, we can now compute the
time to send and receive a 0 or 1. The total time to send a 0
or 1 is shown in Eq. 1. As we can see, it takes more time to
send a 1 compared to a 0. In Eq. 2, we can see the time it
takes to receive a 0 or a 1. In particular, the different delay
is δof -deny for the 1. For the sender and receiver to operate
correctly, we require the inequality shown in Eq. 3 to hold,
i.e., the time interval ∆ must not be less than the total time
to send or receive a binary bit value.

Additionally, for the receiver to correctly detect a 0 and
1, we require the inequalities as shown in Eq. 4 and 5
to hold. The former equation states that δoffset must be
greater than the time it takes for the sender to enter the
OF-established state. This is to ensure that the receiver does
not connect before the sender when the sender wants to send
a 1. The latter equation states that the minimum amount of
time it can wait before checking the OpenFlow connection
status is 0, and the maximum time it can wait depends on
the time interval, the time elapsed so far, and the time for
the remaining transitions to complete. The δdelay gives the
receiver the flexibility of waiting for some amount of time
before checking the status of the OpenFlow connection. For
example, checking the connection status at ∆/2, i.e., at the
middle of the time interval, may be better than checking
it at ∆/4. Hence, the receiver can set δdelay such that, the
OpenFlow connection status is checked at a point where the
connection is most stable.

δs =

{
0, to send 0

δsc + δdc, to send 1
(1)

δr =

δoffset + δsc + δdelay
+δchk-conn + δdc, to get 0

δoffset + δsc + δof -deny
+δdelay + δchk-conn + δdc, to get 1

(2)

δs ≤ δr ≤ ∆ (3)

δoffset ≥ δsc (4)

0 ≤ δdelay ≤ ∆− (δoffset + δsc

+δof -deny + δchk-conn + δdc)
(5)

3.2. From One Bit to Multiple Bits

Until now, we have described how the sender can transmit
only a single bit value to the receiver. To receive the single
bit value, the sender and receiver need to be synchronized,
i.e., the sender and receiver must know the exact time at
which the time interval ∆ begins and ends. To this end,
we assume the sender and receiver synchronize their clocks
using the same network time protocol (NTP) time server.
Furthermore, we assume the sender and receiver a priori
agree upon specific times at which they will initiate their
covert communication.

In order to be useful, a covert channel should provide a
sender with the ability to transmit several kilobytes of data,
e.g., an RSA private key file. Accordingly, in the following,
we extend our discussion from a single bit transmission to
multiple bits. First, the sender and receiver must agree upon
an encoding/decoding scheme, e.g., ASCII. Second, they
must also agree upon a method to signal the start and end
of a message. To do so, we use a frame-based transmission
method. In particular, the sender encodes a message M into
into frames F , of length Fl, and transmits the frames. The
receiver, decodes each frame received to obtain the sent
message.

For simplicity, we consider a frame with at least one SoF
(Start of Frame) bit, and at least seven data bits (e.g., ASCII
characters can be represented in 7 bits). The SoF bit is used
by the sender to signal the receiver that a frame transmission
begins which is followed by data bits. We assume that the
SoF bit is a binary 1, and if the receiver gets this value at the

220

Algorithm 1 To send binary data as frames.
Require: Message M , Frame-length Fl, Frames F , Time-

interval ∆, Start-time t
1: initialize(sender)
2: for frame ∈ F do
3: set-controller . Send SoF bit
4: Wait δws

5: for bit ∈ frame do
6: if (bit==0) then
7: delete-controller . Send 0
8: else
9: set-controller . Send 1

10: Wait δws

11: delete-controller

agreed upon time and time interval, it will begin receiving
data bits. The data bits can be 0 or 1 depending on how the
message is encoded. To indicate the end of a message, the
sender sends a frame with all the data bits as 0. When the
receiver receives such a frame, it will terminate execution.
The above steps are specified as algorithms for the sender
and receiver in Alg. 1 and 2 resp.

The sender’s algorithm, accepts several inputs, e.g., M
is the message to be transmitted, Fl is the frame length, e.g.,
8, F is the list of frames that are to be sent, ∆ is the time
interval, and t is the transmission start-time. The input values
for the receiver are the same frame length, time interval and
start-time as the sender.

For every frame to be sent, the sender first sends a SoF bit
for that frame by connecting to the controller. Similarly the
receiver waits for δoffset time before attempting to receive
the SoF bit. If its connection is denied, it will begin receiving
data bits. After sending the SoF bit, the sender sends data
bits: if sending a 0, it disconnects from the controller, if
sending a 1, it connects to the controller. It then waits till the
end of the timing interval before sending the next data bit.
The receiver detects the data bits in a frame by connecting
to the controller, and waiting for δdelay time before checking
whether its OpenFlow connection was allowed or not. If
the connection was accepted, it will append a 0 to the data
bits received in the frame, otherwise it will append a 1. The
receiver then deletes the controller, and then waits δwr, i.e.,
till the end of the time interval before connecting to the
controller again.

Once the sender has sent the data bits of a frame, it will
wait δws time, i.e., for the next time interval to send the next
frame. The receiver detects the end of a message when it
has received a frame with all the data bits zeroed, thereby
terminating the while loop at the receiver. The receiver can
then decode the binary data to reveal the message sent.

4. Design and Performance Challenges

Our covert channel design requires us to overcome several
non-trivial challenges. Hence, we discuss the most important
challenges that affects our design in this section before
transitioning to our implementation. We also cast light on
factors that affect the performance of our design.

Algorithm 2 To receive binary data as frames.
Require: Frame-length Fl, Time-interval ∆, Start-time t

1: initialize(receiver)
2: while End of message not received do
3: Wait δoffset
4: set-controller . Receive SoF bit
5: Wait δdelay
6: Check OpenFlow connection state
7: if OpenFlow denied then . Got SoF bit
8: Wait δwr

9: for bit ∈ Fl do
10: set-controller . Get data bit
11: Wait δdelay
12: Check OpenFlow connection state
13: if OpenFlow accepted then
14: frame += “0” . Got 0
15: elseframe += “1” . Got 1

16: delete-controller
17: Wait δwr

18: if frame ==“0000000” then
19: End of message received
20: Break . Terminate reception
21: else
22: M+ = frame . Append frame to message

4.1. Synchronization

One of the main problems in designing a covert timing
channel is synchronization. Lack of synchronization can
lead to the receiver obtaining inaccurate information, thereby
reducing the accuracy of the channel. The sender and receiver
must share a reference clock to ensure that the the algorithms
start at the same time. To this end, we use NTP (as it easily
available for today’s popular operating systems) and the
same NTP server to synchronize the clocks of the sender
and receiver to achieve at least millisecond accuracy [21].
Since the sender and receiver clocks can slowly drift apart
their clocks must be periodically synchronized with the same
NTP server.

When the clocks are synchronized, the SoF bit(s) in each
frame sent synchronizes the receiver with the sender enabling
the receiver to obtain the data bits. During the transmission
of a frame, we introduce the δws and δwr times for the
sender and receiver resp. at the end of a time interval for
synchronization across time intervals in a frame. Furthermore,
between frames the sender and receiver can synchronize again
by waiting, for example for the next second. This inter frame
delay adds another layer of synchronization to enable the
sender and receiver to send and receive resp. the SoF bit(s)
accurately.

4.2. Determining the Time Interval ∆ and Delays

The time interval in which the sender and receiver send
and receive a bit leads to the achievable throughput of the
channel. As the time interval reduces, the probability of an
error occurring increases, e.g., the receiver may check the
connection status before receiving the TCP FIN from the
controller. Furthermore, system and network artefacts can

221

non-deterministically influence the state transitions resulting
in errors. Hence, the challenge here is to determine a time
interval as small as possible within an acceptable level of
accuracy (≥ 95%). We empirically identify suitable time
intervals in Sec. 5 based on our prototype implementation.
However, in the real-world, the channel would have to start
with a programmed value, e.g., 1s, and later be negotiated.

Recall Sec. 3.1.2, there are several delays involved in
our timing channel. The delays for one network system,
may not be applicable elsewhere. Delays such δsc, δdc,
δof -deny , and δchk-conn , depend on the system and network
conditions. Moreover, they are not under the control of the
sender/receiver. The timeouts δoffset and δdelay although
bounded (see Eq. 4 and 5 resp.) can be tuned by the receiver.
Hence, we evaluate 3 different δdelay values in Sec. 5.

4.3. Frame-based Transmission

Our design uses a frame-based method to transfer data
from the sender to the receiver. The smallest frame size
we consider is 8 bits long: 1 SoF bit and 7 data bits. The
size of this frame can change, e.g., we can send 14 or 28
data bits as well. Sending more data bits in a frame reduces
the overhead of sending the SoF bit. We can also increase
the number of SoF bits to ensure the receiver can get the
data bits. However, increasing the number of bits in a frame
increases the probability of errors within a frame. We do
not consider error correction in our design although it can
be introduced, e.g., using Hamming codes. However, we
do include a minimal set of error detections at the receiver
which we describe next.
Receiver misses the start bit of the frame: Several reasons
can affect the receiver from missing the SoF bit of a frame. In
such cases the receiver simply remains idle for the remainder
of the time that is necessary to transmit an entire frame.
End of Transmission: For simplicity, the sender indicates
the end of transmission via a special EoM (End of Message)
frame. This design choice comes with a couple of challenges
for the receiver to correctly terminate. First, if the receiver
misses the SoF bit of the EoM frame, then it will continue
to expect to receive frames. To address this problem, we
define a threshold number of consecutive frames, e.g., 5,
the receiver does not receive beyond which the receiver
terminates reception. Second, the receiver can incorrectly
detect a 1 as a 0 due to synchronization issues for example.
As a result, the receiver may detect the EoM prematurely
and stop receiving data even though the sender continues to
send data. We cannot address this case as it is a limitation
of our design to not include the length of the message to be
received.

4.4. Influence of the Controller

The OpenFlow controller that is used to covertly commu-
nicate is beyond the control of the sender and receiver. Hence,
the accuracy and performance of our channel is limited by
the controller that operates the OpenFlow network.

Load on the Controller: Typically, there are more switches
connected to the controller than just the sender and the
receiver of the covert channel. If the communication between
the benign switches and the controller is frequent and
voluminous, the sender and receiver will experience non-
deterministic delays in connecting/disconnecting (δsc, δdc and
δof -deny) to the controller, thereby reducing the performance
(throughput and accuracy) of the channel.
Controller Architecture: The system and software architec-
ture of the controller also influences our design. For example,
the controller could be single threaded or multi-threaded.
The former can lead to long delays, whereas the latter can
lead to non-determinism due to the scheduler.
Path to the Controller: Network paths not under the control
of the sender and receiver can influence the performance of
our channel. For example, buffers in switches can be filled
up by other network packets resulting in packet loss and
hence errors in the received bits.

5. Evaluation

To obtain deeper insights and validate our expectations
of our covert channel, we prototyped our design using Open
vSwitch [22] and ONOS [23]. Furthermore, we designed
a set of experiments based on the challenges described
in the previous section to characterize the performance
of our channel. We begin with a brief description of our
implementation, and then describe the experiments.

5.1. Implementation

We used Open vSwitch (OvS) as our sender and receiver
OpenFlow switches. We only modified the (OpenFlow)
connection handling of OvS so that after it disconnects
from the controller, it waits for 4 seconds to reconnect. To
set/delete controller information, and configure the DPID,
we used the ovs-vsctl tool that ships with OvS. We then
implemented the sender and receiver algorithms (Alg. 1 and
2) as python scripts. In doing so, we traded performance
for simplicity which we consider acceptable for the sake
of prototyping and evaluation. Our implementation is only
meant to demonstrate the feasibility of our attack.

We synchronized the system clocks of the sender and
receiver using our university’s NTP time server. To encode
and decode the messages, we used the ASCII scheme. We
implemented an adaptive inter-frame delay synchronization
scheme in which the sender sends a frame only at the start
of the next second.

5.2. Setup and Methodology

Our evaluation setup comprised of three (sender, receiver
and controller) Dell PowerEdge 2950 servers with 4 core
Intel(R) Xeon(TM) CPU 3.73GHz processors and 16 GB of
RAM each. The sender and receiver were directly connected
to the controller. For OpenFlow load generation, we used
a fourth server running directly connected to the controller.

222

All these servers used dedicated ports to connect to a
management switch that was used for orchestration from
a fifth server to conduct the evaluation. All systems ran
Ubuntu 14.04.5 LTS. For the sender and receiver, we used
Open vSwitch 2.7. For the controller, we used ONOS 1.10.2.

Based on our covert timing channel design the objectives
of the evaluation are the following. First, we want to establish
time intervals that achieve high accuracy and throughput.
Second, we want to determine the influence the frame length
has on the accuracy, e.g., do shorter frames have fewer errors
than longer frames? Third, we want to measure the influence
of δdelay on the accuracy and throughput of our channel e.g.,
is there a δdelay value for which the time interval can be
smaller? Finally, we want to measure the accuracy of our
channel when there is load on the controller.

The general methodology we undertake is the following.
The controller runs ONOS with the default applications
activated. We program the sender and receiver with a specific
start time t, time interval ∆, offset δoffset = 5 ms, check
the connection status at ∆/2 ms and frame length Fl. The
sender then sends a 64 byte message Ms and the receiver
receives a message Mr. We then restart ONOS and OvS, and
clean up the OvS database before we repeat the measurement.
We collect ten such measurements for the configured values.
We measure accuracy as the similarity between Mr and Ms

using the edit distance or Levenshtein distance [24].
For load on the controller, we use OFCProbe [25] as

our OpenFlow topology and packet generator. We configure
OFCProbe to emulate 20 switches that trigger Packet-Ins to
the controller following a Poisson distribution (λ=1). After
OFCProbe has started the Packet-in generation, we wait for
one minute before we start the sender and receiver, to avoid
any warm-up effects from OFCProbe and ONOS.

5.3. Experiments

Following the aforementioned methodology, we now
describe the experiments and their results.
Effect of Timing Interval ∆: We set the frame length
Fl = 7, and measure the accuracy for time intervals from
30 ms up to 100 ms. The results are shown in Fig. 3.

The results depict that our channel can achieve nearly
100% accuracy for time intervals greater than 60 ms when
there is no load on the controller. For ∆ = 60 ms, we have a
throughput of approximately 16.67 bps. What we can also see
is that as the time interval increases the accuracy increases,
which is what we expected. Another distinct observation is
that for the values configured, our channel cannot operate
below 40 ms because the receiver gets the EoM prematurely,
(it detects only 0 in the data bits).
Effect of Frame Length Fl: To measure the influence of
the frame length on the accuracy we chose the following
values: 7, 14 and 28. Note that these values represent the
number of data bits in the frame, i.e., 1, 2, and 4 ASCII
characters resp. We use only one SoF bit in the frame. We
repeat the measurements for time intervals from 30-100 ms.
The results from this experiment are depicted in Fig. 3.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100

Time Interval [ms]

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Figure 3: Channel accuracy for time intervals 30-100 ms,
and frame lengths 7, 14 and 28 when δoffset = 5ms,
OpenFlow status is checked at ∆/2, and there is no load on
the controller.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100

Time Interval [ms]

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Figure 4: Channel accuracy for time intervals 30-100 ms, and
frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow
status is checked at 2∆/3, and there is no load on the
controller.

Indeed, the frame lengths we used show us that as the
frame length increases the accuracy drops. Longer frame
lengths result in fewer frames but more data per frame
being sent. Hence, if the receiver misses the SoF bit for
Fl = 14, it misses twice as many characters compared to
Fl = 7. Moreover, the chance of incorrect bit detection (bit-
flips) increases with larger frames. We analyzed the errors
and observed that indeed as the frame length increases, the
number of bit-flips increase, and the number of missed SoF
bits also increase. To address the problem of missing the
start bit we can introduce redundant SoF bits.
Effect of δdelay in Checking Connection Status: We
now investigate how δdelay influences the throughput and
accuracy of our channel. Recall from Sec. 3.1.2 that this
value is the time the receiver waits before it checks the
status of the OpenFlow connection. Until now, we checked
the connection status at ∆/2. Hence, in this experiment we
check the connection status at 2∆/3 and ∆/3 for frame
lengths 7, 14 and 28, and time intervals 30-100 ms. The
results for 2∆/3 and ∆/3 are shown in Fig. 4 and 5 resp.

When we check the status at 2∆/3, the 40 ms time
interval operates at nearly 100 % accuracy. Moreover, the
accuracy for this δdelay value performs better compared to

223

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100

Time Interval [ms]

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Figure 5: Channel accuracy for time intervals 30-100 ms,
and frame lengths 7, 14 and 28 when δoffset = 5ms,
OpenFlow status is checked at ∆/3, and there is no load on
the controller.

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100

Time Interval [ms]

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Figure 6: Channel accuracy for time intervals 30-100 ms, and
frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow
status is checked at ∆/2, and there is load on the controller.

our baseline value of ∆/2. When we check the status at
∆/3, we observe a negative influence on the channel, i.e.,
time intervals 50-70 ms are not effective. In particular, we
note that the 70 ms time interval is the operational edge
when δdelay is at ∆/3. The reason for these marked changes
is the following: The time at which the receiver checks the
OpenFlow connection status is crucial. Done too soon, it
is likely to detect a zero, and done too late, it is likely to
detect a one.

Based on our design, detecting a 1 as a 0 reduces the
accuracy more than detecting a 0 as a 1: missing the SoF
bit (1) can lead to missing the entire frame, and detecting
zeros for all the data bits results in the EoM. Combining
the two can drastically bring down the accuracy which is
evidenced when we check the status at ∆/3.
Effect of Message Length |M |: To ensure that our channel
can sustain longer messages, we measured the accuracy of
sending 512 and 1024 byte messages with and without load.
The accuracy in each case was very close to the 64 byte
message, hence we chose not to show the results here.
Effect of Load on the Controller: Having determined
time intervals, frame lengths and δdelay values with close to
100 % accuracy, we compare them with measurements when
the controller is under load, as real OpenFlow network can

30 40 50 60 70 80 9010030 40 50 60 70 80 9010030 40 50 60 70 80 90100

Time Interval [ms]

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FL=7 FL=14 FL=28

Figure 7: Channel accuracy for time intervals 30-100 ms, and
frame lengths 7, 14 and 28 when δoffset = 5ms, OpenFlow
status is checked at 2∆/3, and there is load on the controller.

operate with more than two switches. Fig. 6 and 7 illustrate
the results from this experiment.

Naturally, load on the controller reduces the accuracy of
our channel. Other switches trigger events at the controller
which introduces queuing and processing delays for the
sender’s and receiver’s messages. This introduces errors for
time intervals that were previously highly accurate, e.g., 60
ms and checking the OpenFlow connection at ∆/2 (Fig. 6)
drops to roughly 10% when the controller is under load.
Although there is a drop in the accuracy when we check the
connection at 2∆/3 (Fig. 7), the smaller time intervals, e.g.,
50 ms can still operate at or above 90% accuracy.

6. Discussion

Our evaluation demonstrated that switch identification
teleportation can be a highly accurate channel for low
throughput covert communication in our setup. We also
showed that it depends on several factors, e.g., ∆, δdelay , and
the system and network conditions. Nonetheless, techniques
to detect teleportation in general, and a covert timing channel
such as the one presented in this paper are crucial for net-
works with high security demands. Hence, we briefly discuss
detection possibilities. We also describe some limitations and
possible improvements for our design and implementation.
Detection and Mitigation: To the best of our knowledge,
firewalls and intrusion detection systems do not monitor the
OpenFlow sessions. Even if they are, detecting teleportation
attacks are non-trivial as they follow the normal pattern of
(encrypted) OpenFlow sessions. Preventing switch identifica-
tion teleportation is exacerbated by the fundamental require-
ment that switches need to uniquely identify themselves to
the controller, and that the controller must allow only a single
DPID in the network. However, the attack can be deterred
if OpenFlow connections are secured via the following
hardened authentication scheme: unique TLS certificates for
switches, white-list of switch DPIDs at controllers [26] which
also includes the switches’ respective public-key certificate
identifier, and lastly a controller mechanism that verifies the
DPID announced in the OpenFlow handshake is over the
TLS connection with the associated (DPID) certificate.

224

Limitations and Improvements: Indeed, our prototype
implementation achieves throughput rates in the order of
tens of bits per second. However, it is reasonable to assume
that the throughput can be increased by, implementing our
algorithms in OvS which is programmed in ‘C’, or using
another controller. Consequently, the delays, e.g., δsc, will
be reduced as the response time to events will be faster, e.g.,
we will not have to rely on vsctl and ovsdb to set/delete the
controller. A novel approach to increase the throughput which
we have not measured is for the sender and receiver to initiate
several concurrent connections to the controller using unique
DPIDs for each connection. In this manner, the sender can
send as many bits as connections are made, thereby increasing
the throughput by the number of connections. Our channel
also comes with some system and network level limitations
that are difficult to overcome, e.g., time to establish a TCP
connection, packet loss along the path to the controller, etc.
Furthermore, our design is for uni-directional communication
and does not include error correction. A channel from the
receiver back to the sender where the receiver acknowledges,
e.g., every frame, can boost the accuracy of the channel.

7. Conclusions

In this paper, we described the design, implementation
and evaluation of a novel covert timing channel based on the
switch identification teleportation technique. Our prototype
implementation of our design can achieve throughput rates of
up-to 20 bits per second, with an accuracy of approximately
90% even when there is load at the controller. This means that
a 2048 byte RSA private key file can be transferred in nearly
13 minutes. Although our proof-of-concept implementation
is a low bandwidth channel, we discussed techniques to
increase the throughput.

Software-defined networks have become the standard
way of doing networking in large data centers, and service
provider networks are also moving towards such an architec-
ture and paradigm. With Advanced Persistent Threats (APTs)
becoming an increasing problem, covert channels such as
the one described in this paper become more relevant, e.g.,
private keys bought in the black market are used for phishing
and malware campaigns. Hence, we must design and develop
mechanisms to detect and prevent teleportation attacks that
gives APTs a way to covertly communicate or exfiltrate data
to a command and control center.

Acknowledgments

We thank the anonymous reviewers for their feedback,
Prof. Jean-Pierre Seifert and Dominik C. Maier from TU
Berlin for their constructive inputs, Brian O’Connor, Kurt
Seifried, and the OpenFlow and ONOS security teams.
Research (partially) supported by the Danish Villum project
ReNet and BMBF Grant KIS1DSD032 (Project Enzevalos).

References

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming
the internet impasse through virtualization,” IEEE Computer, vol. 38,
no. 4, pp. 34–41, April 2005.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, December 2013.

[3] D. Firestone, “Vfp: A virtual switch platform for host sdn in the
public cloud.” in Proc. NSDI, 2017, pp. 315–328.

[4] B. Mitchell, “Pentagon considering push to software-defined network-
ing,” https://www.fedscoop.com/pentagon-considering-push-software-
defined-networking/, 2017, accessed: 02-01-2018.

[5] Netronome, “Agilio CX 2x10GbE SmartNIC SMARTNIC FOR
HIGH-PERFORMANCE CLOUD, SDN AND NFV NETWORKING,”
Netronome, Tech. Rep., 2017.

[6] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures,” in
Proc. NDSS, 2015.

[7] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in Proc. NDSS, 2015.

[8] S. Jero et al., “Identifier binding attacks and defenses in software-
defined networks,” in Proc. Usenix Security Symp., 2017.

[9] K. Thimmaraju et al., “Taking control of sdn-based cloud systems
via the data plane,” in Proc. ACM Symposium on Software Defined
Networking Research (SOSR), 2018.

[10] K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network
security with sdn teleportation,” in Proc. IEEE European Security &
Privacy (S&P), 2017.

[11] Y. Hu, X. Li, and X. Mountrouidou, “Improving covert storage channel
analysis with sdn and experimentation on geni,” National Cyber
Summit, vol. 16, pp. 7–9, 2016.

[12] G. J. Simmons, “A secure subliminal channel (?),” in Advances in
Cryptology, 1986, pp. 33–41.

[13] C. G. Girling, “Covert channels in lan’s,” IEEE Trans. Software
Engineering, vol. 13, no. 2, p. 292, 1987.

[14] T. G. Handel and M. T. Sandford, “Hiding data in the osi network
model,” in Proc. Intl. Workshop on Information Hiding. Springer,
1996, pp. 23–38.

[15] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels:
design and detection,” in Proc. ACM Conference on Computer and
Communications Security (CCS), 2004, pp. 178–187.

[16] R. Tahir et al., “Sneak-peek: High speed covert channels in data center
networks,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[17] “Snowden: The NSA planted backdoors in Cisco
products,” 2014, accessed: 02-01-2018. [Online]. Avail-
able: http://www.infoworld.com/article/2608141/internet-privacy/
snowden--the-nsa-planted\\-backdoors-in-cisco-products.html

[18] M. A. Bishop, The art and science of computer security. Addison-
Wesley, 2002.

[19] B. W. Lampson, “A note on the confinement problem,” Communica-
tions of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[20] OpenFlow Switch Specification, Open Networking Foundation, 2013,
version 1.3.2 Wire Protocol 0x04.

[21] D. L. Mills, “On the accuracy and stablility of clocks synchronized
by the network time protocol in the internet system,” ACM Computer
Communication Review (CCR), vol. 20, no. 1, pp. 65–75, 1989.

[22] Open vSwitch, “Open vswitch,” http://openvswitch.org, 2018, accessed:
02-01-2018.

[23] “ONOS wiki home,” https://wiki.onosproject.org/display/ONOS/Wiki+
Home, 2017, accessed: 02-01-2018.

[24] M. Gilleland and Merriam Park Software, “Levenshtein Distance,
in Three Flavors,” https://people.cs.pitt.edu/∼kirk/cs1501/Pruhs/
Spring2006/assignments/editdistance/Levenshtein%20Distance.htm,
2017, accessed: 02-01-2018.

[25] M. Jarschel et al., “Ofcprobe: A platform-independent tool for
openflow controller analysis,” in Proc. IEEE International Conference
on Communications and Electronics. IEEE, 2014, pp. 182–187.

[26] N. Gray, T. Zinner, and P. Tran-Gia, “Enhancing sdn security by device
fingerprinting,” in In Proc. IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2017.

225

Blockage-Robust 5G mm-Wave Access Network
Planning

Mohammad Nourifar, Francesco Devoti, Ilario Filippini
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy
mohammad.nourifar@mail.polimi.it,{francesco.devoti, ilario.filippini}@polimi.it

Abstract—Mm-wave technologies are a promising solution to
provide ultra-high capacity in 5G wireless access networks. How-
ever, the potential of several-GHz bandwidths must coexist with a
harsh propagation environment. While high attenuations can be
compensated by advanced antenna systems, the severe obstacle
blockage effect can only be mitigated by more sophisticated
network management.

One of the most widely adopted techniques to guarantee
a reliable service in mm-wave access scenarios is to establish
multiple connections from mobile to different base stations.
However, the advantage of multiple mm-wave connections can be
fully exploited only if uncorrelated channels are available, thus
spatial diversity must be ensured. Although smart base-station
selections could be made once the network is deployed, much
better results are achievable if diversity-aware selection aspects
are already included in the network planning phase.

In this paper, we propose for the first time an mm-wave
access network planning framework which considers both spatial
diversity among potential base-station selection candidates and
user achievable throughput, according to channel conditions
and network congestion. The results show that our approach
allows to obtain much better spatial diversity conditions than
traditional k-coverage approaches, and this can indeed provide
higher robustness in presence of sudden obstacles.

I. INTRODUCTION

In recent years, millimeter-wave (mm-wave) technologies
have attracted a lot of interest as one of the main solutions to
deliver the multi-gigabit-per-second promise to wireless broad-
band access users. Although scientific and industrial research
has been focusing on the fundamental task of improving the
spectral efficiency of wireless links and increasing the network
density by deploying more devices, unlocking new spectrum
bands looks to be the answer to the need of a radical boost in
the achievable throughputs, as required in 5G networks.

The mm-wave spectrum band, only partially occupied, can
potentially accommodate several GHz of bandwidth for wire-
less access communications. However, this opportunity brings
in several technical challenges caused by the harsh propagation
environment at very high frequencies. The first challenge is to
overcome the strong attenuation over distance. This has been
tackled by the design of advanced antenna arrays systems,
which can concentrate many elements in small form factors
thanks to the short wavelength [1]. They allow to typically
reach a coverage of several hundreds of meters. A further
issue with mm-waves is related to their high penetration loss
and limited diffraction [2], which make every obstacle actually
opaque, and thus a cause of link blockage. In order to break

Fig. 1: Example of multi-connectivity architecture

this limit, we must resort to new network architectures and
smart resource management algorithms.

Although directional antennas allow to span several hun-
dreds of meters, it was immediately clear that the severe
blockage effects prevented considering a wide access network
entirely based on mm-wave technologies. Indeed, heteroge-
neous network architectures have been proposed to guarantee
a full coverage with a separated and reliable control-plane
delegated to legacy macro base stations, while a multi-gigabit
user plane is provided by the on-demand activation of mm-
wave small-cells in specific regions of the service area [3]–[5].
Each device can potentially establish a dual inter-technology
connection according to the current user, network, and appli-
cation contextual information. However, the ultra-high-speed
mm-wave service is still offered in an opportunistic manner,
as such an inter-technology dual-connectivity only guarantees
a reliable network signaling.

Intra-technology connectivity to multiple sites equipped
with the same radio interfaces has been used for many years
to facilitate multi-user and hand-over procedures [6]. In the
last few years, it has emerged as a solution to improve the
user throughput in LTE cellular systems via inter-site carrier
aggregation [7]. Finally, multi-connectivity as a solution to the
unreliability problem of the ultra-high-speed service has been
explicitly envisioned in 5G systems, particularly when dealing
with mm-wave access networks [4], [8], [9], an example of
mm-wave-technology multi-connectivity is provided in Fig. 1.

Intra-technology multi-connectivity clearly implicates
higher complexity, however, this is definitively
counterbalanced by many advantages for mm-wave
communications: i.e., i) in a scenario with very unstable links,
more alternatives ensure that the user can stay connectedISBN 978-3-903176-08-9 c© 2018 IFIP

to at least one mm-wave base station (BS) when obstacles
suddenly appear, ii) the establishment of multiple connections
avoid a full directional cell discovery phase [3] in case of a
single connection drop, iii) multiple simultaneous connections
allow to apply refinement techniques to precisely localize a
user and improve the efficiency of context-aware resource
allocation algorithms. However, in order to be effective, intra-
technology multi-connectivity requires selected mm-wave BSs
to experiment uncorrelated channel conditions. Therefore, we
need spatial diversity among selected mm-wave connections
[10].

Since mm-wave transmissions are highly directional, ensur-
ing an angular separation between two mm-wave BSs with
respect to every single user is a good way to provide spatial
diversity. Clearly, the larger angular separation between two
BSs, the higher channel uncorrelation between their channels,
thus better spatial diversity can be achieved. Smart spatially-
diverse BS selections can be made relying on the available
network layout. However, we believe (supported by the ob-
tained results) that much better angular separation can be
achieved if mm-wave BS locations are optimized by a planning
process that includes spatial diversity aspects. This cannot
be done by traditional k-coverage approaches, as they ensure
k-connectivity without considering spatially diversity, which
is potentially further reduced by the goal of minimizing the
number of installed BSs.

In this paper, we propose a new network planning approach
to provide intra-technology multi-connectivity in mm-wave
access networks by maximizing the angular separation, thus
the spatial diversity, in the group of BSs each user can
select. In order to provide a realistic network plan, which
includes capacity aspects, we also consider the achievable user
throughput, determined by both user-BS channel conditions
and congestion at the selected BSs. Finally, our approach
allows to dimension a residual capacity in each BS to serve as
a backup for user requests interrupted by unexpected obstacle
blockages.

To the best of our knowledge, this article considers, for the
first time, spatial-diversity in the design of mm-wave access
networks to provide robustness in front of sudden blockages.
In addition, we propose a viable approach that can address
realistically sized instances and provide a thorough evaluation
of the advantages with respect to traditional network planning
approaches based on k-coverage.

The remainder of the paper proceeds as follows. In Section
II, we describe the aforementioned problem and provide an
overview of our solution. Section III includes the mathematical
programming models used in our approach, while in Section
IV we show and comment the results of the numerical eval-
uation we performed. In Section V, we discuss the state-of-
the-art on mm-wave access network planning and directional
communications. Then, Section VI concludes the paper with
some final remarks.

II. THE MM-WAVE NETWORK PLANNING PROBLEM

Network planning is a key phase of the network deployment
process, which determines base-stations’ placement and con-

figuration while considering a number of aspects, including
signal propagation, traffic distribution, interference, deploy-
ment cost, etc. In this process, a discrete set of candidate sites
(CSs) describes the possible sites suitable for BS placement.
The traffic distribution is represented using a discrete set of
points, test points (TP), which are considered as centroids of
traffic. The adoption of mm-wave technologies in the mobile
radio access network implies a radical change in propagation
conditions and antenna technologies, which lead to specific
service features that must be taken into account to effectively
plan the network. To be more specific, mm-wave communica-
tions are characterized by strong path losses and are vulnerable
to strong fading, resulting in high signal-blockage probability,
which if not properly addressed, leads to an unreliable service.

Real environments are characterized by the presence of
objects (e.g. trees, vehicles, human bodies, etc.) that can lie
between transmitters and receivers. Due to the high frequency
characterizing mm-wave communications, almost every sin-
gle object is opaque to mm-wave propagation, leading to a
high probability of path obstruction that causes severe signal
attenuation and connectivity drop. Therefore, the presence of
objects should be carefully considered in the network planning
phase to enable the deployment of a reliable mm-wave access
service able to satisfy 5G QoS requirements.

As far as mm-wave radio planning is concerned, we can
distinguish two different categories of objects: static objects,
(e.g. buildings, walls, etc.), and nomadic objects (e.g. cars,
trucks, pedestrians, etc.). While the deterministic nature of
static objects’ position allows to easily take into account their
presence by means of propagation prediction tools, nomadic
objects can cause unpredictable connectivity drops, therefore,
they can strongly worsen ultra-high-speed reliability. In this
perspective, while static obstacles do not substantially change
the way in which radio network planning has been carried
out so far, the need of a reliable mm-wave service requires
to plan the network in such a way that a potential user can
be reached by multiple mm-wave BSs, providing users with
backup links to restore their connectivity in case of blockage
caused by nomadic obstacles. Effectively providing backup
links, however, does not translate in a mere densification of
the base-stations’ placement as their locations can strongly
impact on the final outcome, and if not properly managed,
can make additional base stations useless.

Fig. 2 shows a simple example by comparing two possible
multi-coverage solutions, where two BSs must be installed in
CSs covering TP0. The two solutions are represented in Fig.
2a and 2c and both are valid solutions of the problem, however,
the two are not equivalent in terms of robustness to obstacle
obstructions. Fig. 2b and 2d show the different behavior of
the two solutions in case an unexpected obstacle appears.
In Fig. 2b the random obstacle is completely obstructing all
possible TP connection alternatives. In terms of robustness,
this 2-coverage solution has almost the same quality as that
of a single coverage, causing the additional base station to be
useless. Instead, in Fig. 2d, thanks to the angular separation of
installed base stations, the TP can still maintain an mm-wave

227

(a) Solution 1 (b) Obstacle blockage in Solu-
tion 1

(c) Solution 2 (d) Obstacle blockage in Solu-
tion 2

Fig. 2: Obstruction examples in two different 2-coverage solutions

connection.
In this paper, we propose a network planning approach

based on mathematical programming models which can ef-
fectively improve the mm-wave service robustness against
sudden obstacle blockages. The rationale behind our approach
is to include spatial-diversity aspects in a k-coverage problem
in order to provide the required coverage while maximizing
the angular diversity from which multiple mm-wave BSs can
reach a potential user. The angular diversity will increase
the availability of independent backup connections in case of
obstacles obstruction, and consequently, it will improve the
mm-wave service reliability.

However, describing the problem just in geometrical terms
by considering the physical availability of backup connections
only ensures the mm-wave service coverage, but does not pro-
vide any guarantee on its quality. Indeed, radio resources are
shared among users associated with a BS. Each user occupies
a portion of radio resource according to its demand, achievable
modulation scheme, and network congestion. Therefore, mm-
wave BSs must provide enough throughput even in case
of link reconfigurations due to obstacle obstructions. This
must be reflected into the network planning process. To this
extent, we assume each user has a minimum traffic demand
to be guaranteed and it must be entirely served via one link
(primary link) of the multiple connections made available
in the network plan. Other links (secondary links) are kept
synchronized, but traffic is sent only in case the primary link
is blocked. This is a simplifying assumption, although in line
with current technology advancements, which allows to better
understand the trade-offs involved in this problem. However,
other solutions, like coordinated multipoint or cooperative
transmissions, can be easily captured in the proposed models
by simply making straightforward changes.

There are two opposite approaches to deal with demand
guarantees in case of link reconfigurations in this mm-wave

(a) Solution 1 w/o capacity reser-
vation

(b) Obstacle blockage in Solu-
tion 1

(c) Solution 2 w/ capacity reser-
vation

(d) Obstacle blockage in Solu-
tion 2

Fig. 3: Obstruction examples with different capacity reservation
strategies

scenario. The most conservative solution is to plan the network
in such a way that in each of the alternative connections (one
primary link and several secondary links) the required demand
is guaranteed. This ensures that the request is satisfied for any
obstacle obstruction that does not completely block all possible
connections. However, this implies high installation costs due
to the resource underutilization when obstacles impairments
are not severe. The opposite solution consists in just guarantee-
ing the demand through the primary link, with no reservation
on the others. This provides the minimum cost deployment,
however users may see a reduction of guaranteed throughput in
case of link reconfiguration. Clearly, an intermediate behavior
would provide the best trade-off: the whole demand can be
reserved on primary links, while only a fraction of it along
secondary links. This allows to mitigate the effects of the
reconfigurations leveraging link failure statistics.

Fig. 3 shows an example of two possible solutions apply-
ing the two opposite capacity reservation strategies. In the
example, the network planning has to provide 2-coverage (one
primary and one secondary link, respectively solid and dashed
lines) to TPs, and BS capacity, C, is such that only two user
demands, D, can be accommodated with no loss, i.e., C = 2D.
The figure shows a network snapshot: Fig. 3a is the solution
without capacity reservation on the secondary link, while Fig.
3c with full capacity reservation. Fig. 3b and 3d show the
effects of a random blockage in both solutions: despite being
equivalent in terms of connectivity, they are not in terms of
achievable throughput. Indeed, without capacity reservation,
Fig. 3b, TP2 secondary link is not a good backup because
CS4 resources are already completely saturated by TP1 and
TP3. Vice-versa, when full capacity reservation is guaranteed,
Fig. 3d, CS4 resources are totally reserved to TP0 and TP2

secondary links, therefore the link reconfiguration caused by
the obstacle does not impact on TP2 guaranteed throughput.

228

In the next section, we present two mathematical program-
ming models able to capture all above-mentioned aspects and
provide an obstacle-robust mm-wave network plan.

III. NETWORK PLANNING MODELS

This section describes the Mixed-Integer Linear Program-
ming (MILP) models we propose for blockage-robust 5G mm-
wave planning. We firstly present a basic optimization model
to include angular diversity aspects in multiple coverage,
with the aim of maximizing angular diversity among BSs
selected for the coverage. Then, we propose an extension of the
basic model to jointly plan coverage and guarantee expected
throughput. We include both the extra capacity needed to
manage backup connections in case of blockage and the effect
of rate adaptation techniques.

A. Maximizing Angular Diversity

Considering an area to be covered by an mm-wave service,
we denote by M the set of CSs where a BS can be installed
and by N the set of TPs. The objective of the proposed model
is the maximization of the angular diversity from which each
TP connects to the BSs selected for multi-connectivity, while
satisfying k-coverage and deployment cost constraints.

We start by introducing parameters and decision variables
used in our model to provide blockage-robust coverage. The
coverage matrix A = Ai,j summarizes propagation character-
istics in our model. Ai,j depends on physical properties, like
distance between TP i and CS j, transmitting power, receiver
sensitivity, and antenna gain, and it is equal to 1 if the CS j
can cover the TP i (when they reciprocally point their beams)
and 0 otherwise. These coverage maps are commonly adopted
in any radio network planning approach. Moreover, this is
flexible to any assumption on physical properties: a proper
matrix will be filled, and thus the model applied. Note that
even static obstacles can be considered in this formulation.
Indeed, the presence of a fixed obstruction will translate into
a set of 0s at specific (i, j) pairs, which would have been
1s otherwise. Finally, we accounted for highly directional
antennas by averaging the directivity function over the main
lobe in order to obtain a realistic value of the antenna gains
even in case of non-perfect transmitter-receiver alignment.

Angular diversity is evaluated through the matrix Θ =
Θi,j,k, which denotes the angular separation between two
different CSs j, k ∈ M, observed from the point of view
of a TP i ∈ N . This matrix can be automatically computed
a-priori, once TP locations and potential BS sites (CSs) are
known. Parameter K defines the minimum coverage level (K-
coverage), that is, the minimum number of installed mm-wave
BSs to cover each TP in a valid network plan. Parameter
B denotes the deployment budget limiting the number of
activated CSs.

The model considers two main types of decision variables:
• A binary installation variable yj , which defines the mm-

wave BS placement within available CSs, yj is equal to
1 if a BS must be installed in CS j, 0 otherwise.

• A binary association variable xi,j , which defines TP-CS
assignment. In the optimal solutions, xi,j = 1 means that

TABLE I: Decision variables, set and parameters used in the models

SETS
N Set of TPs
M Set of CSs
PARAMETERS
B Deployment budget
K Minimum coverage
Θijk Angular separation between

CSs j and k seen from TP i
Aij Coverage between TP i and CS j
Sj Installation cost of CS j
Di Demand of TP i
Cj Capacity of CS j
Rij Max rate between TP i and CS j
VARIABLES
xij Assignment between TP i and CS j
yj Installation of CS j
pij Definition of link between

TP i and CS j as primary link
δi Minimum BS angular diversity

seen by TP i

CS j is selected as one of the K alternative links for TP
i which provide the best BS angular separation.

The additional variable δi ∈ [0, 2π] is a support variable
denoting the minimum angular diversity achievable by TP i. In
order to simplify the description of the following models, the
definition of their variables and parameters are summarized in
Tab. I.

Given the above definitions and notation, we can describe
the Angular-Diversity-aware k-coverage Problem (ADkP) as
follows:

[ADkP] : max
1

|N |
∑
i∈N

δi (1)

s.t.
δi ≤ Θijk + 2π ∗ (2− xij − xik), ∀i ∈ N ,

∀j, k ∈M : j 6= k (2)∑
j∈M

xij ≥ K, ∀i ∈ N (3)

xij ≤ Aij · yj , ∀i ∈ N , j ∈M (4)∑
j∈M

Sjyj ≤ B, ∀j ∈M (5)

xij , yj ∈ {0, 1} , ∀i ∈ N , j ∈M (6)

The objective function (1) maximizes the average of the
minimum angular diversity values achievable at each TP
i ∈ N . 1

Constraint (2) is the key constraint for providing angular
diversity to the k-coverage framework. It holds only if CS j
and CS k are selected as CSs providing the best angular sep-
aration to TP i in the optimal solutions (thus xij = xjk = 1),

1Note that different objectives can be easily plugged into the model, we
selected this function as it allows to achieve a good balance between diversity
fairness and overall diversity maximization.

229

otherwise the constraint is inactivated via a big-M technique.
If CS j and CS k are selected and assigned to TP i, then
their angular separation Θijk must be taken into account.
This must be true also when k-coverage has k > 2. In this
case, we must evaluate the angular separation of every CS
pair in the set of selected CSs. The combination of objective
function and constraint (2) acts like a max-min function, which
forces variables δi to assume a value equal to the minimum
angular separation between every possible pair of CSs among
those selected to provide the best angular diversity to TP i.
Constraint (3) is the coverage constraint and ensures that the
required coverage level K is met per TP. Constraints (4) and
(5) respectively enforce that a TP can be assigned only to a
covering CS with a BS installed and that the installation cost
(Si is the cost of installing an mm-wave BS at CS i, including
backhauling costs) does not exceed a given budget B.

B. Advanced models considering user throughput

We now extend ADkP model to consider capacity planning
as well. In this scenario, the network plan must guarantee,
together with the desired coverage level, that the user traffic
demand is met2. Therefore, we include in our model the user
throughput demand associated with TP i through parameter
Di, and, through parameter Cj , the capacity associated with
the installation (backhauling included) of an mm-wave BS in
CS j.

We also introduce a further set of binary decision variables
pij . Variable pij is set to 1 if the link to CS j is selected to
be the primary link for TP i, i.e., the preferred link to convey
user traffic, the one with a full throughput guarantee. We refer
to other K − 1 links as secondary links. We would like to
remark that the model does not mandatorily imply any capacity
reservation mechanism. Considering a demand guarantee in
the network planning phase has just the goal of providing
a network configuration in which the potential throughput
available to each user can be above a given threshold.

Finally, we use parameter α ∈ [0, 1] to tune extra-capacity
reservation in order to deal with link reconfiguration. With
α = 1, throughput is guaranteed over all k alternative links,
reserving a full extra-capacity on secondary links. Vice versa,
α = 0 means that throughput is guaranteed only on primary
links (those defined by variables pij). Values between 0 and
1 provide a plan in which the entire throughput is guaranteed
only on primary links, while a fraction α of it is guaranteed
on secondary links, limiting the reserved extra-capacity.

The Joint Angular-Diversity-and-Capacity-aware k-
coverage Problem (JADCkP) is described as:

[JADCkP] : max
1

|N |
∑
i∈N

δi

s.t.
[ADkP] : constraints (3)-(5)
pij ≤ xij , ∀i ∈ N , j ∈M (7)

2The model can equally consider uplink traffic, downlink traffic, or their
sum.

∑
j∈M

pij = 1, ∀i ∈ N (8)

α
∑
i∈N :
Aij=1

Dixij + (1− α)
∑
i∈N :
Aij=1

Dipij ≤ Cjyj ,

∀j ∈M (9)
xij , yj , pj ∈ {0, 1} , ∀i ∈ N , j ∈M (10)

Three new constraints have been added to the previous model.
Constraints (7) and (8) guarantee that only one among CSs
assigned to TP i can be defined as primary link. Capacity
constraint (9) enables the throughput guarantee strategy de-
fined by the parameter α. Setting α = 0(α = 1) inactivates the
first(second) LHS term. For α ∈ (0, 1), the model enforces that
the sum of secondary links’ extra capacity and primary link’s
full demand does not exceed the site capacity Cj , if an mm-
wave BS is installed. Otherwise, no demand can be served. All
remaining constraints are the same as in the previous model.

Rate Adaptation: JADCkP model can be extended to deal
with link rate adaptation, which dynamically selects the proper
code and modulation scheme according to the channel quality.
In order to capture this behavior, we introduce the matrix
R = Rij , which defines for each potential TP i - CS j pair the
maximum achievable rate. Matrix R can be filled considering
physical link parameters like transmission power, antenna
patterns, propagation conditions, per-modulation receiver sen-
sitivity thresholds, transmission overheads, etc. Moreover,
given the very-high directivity of involved transmissions, we
can reasonably assume that achievable rates are only slightly
affected by concurrent transmissions, thus interference can be
modeled as a simple traffic demand overhead.

In order to enable rate adaptation features in JADCkP
model, we need to replace constraint (9) with the following:

α
∑
i∈N :
Aij=1

Di

Rij
xij + (1− α)

∑
i∈N :
Aij=1

Di

Rij
pij ≤ yj , ∀j ∈M (11)

Differently from (9), in which the simple user bitrate is
considered, constraint (11) models mm-wave BS resource
sharing as a time-sharing process (similarly to the indications
of IEEE 802.11ad frame specification).

The rationale behind constraint (11) is that an average rate
for user i equal to the maximum achievable rate Rij can be
obtained only if just user i is served for the entire duration of
the available time (i.e., time frame). The fraction Di

Rij
expresses

the time share at CS j to be assigned to TP i to get an average
rate equal to Di, given a Rij bit/s channel. The constraint
enforces that the sum of the time shares of TPs assigned to
CS j does not exceed the physical limit of 1, if a mm-wave
BS is installed in CS j.

IV. NUMERICAL RESULTS

In this section, we provide the results of a numerical
evaluation campaign on previously presented models. All the
following instances are modeled and solved by IBM ILOG
OPL and CPLEX Optimizer, and, wherever not differently
specified, each outcome is the result of an average over 100
different instances. In each instance, we consider a rectangular

230

service area with dimensions 800m × 600m, a number of
m candidate sites, in which to locate mm-wave BSs, and a
number of n TPs. Using a pseudo-random number generator
each CS and each TP is assigned a position with uniform
distribution in the service area. Without loss of generality, we
assumed that BS deployment cost is the same in all CSs and
equal to 1.

Although dealing with a NP-complete problem, as including
a set-covering problem as sub-problem, the solution of large
instances of 60 TPs and 100 CSs just took 10 minutes with
a 2% optimality gap on an Intel Xeon 2.4 GHz and 96GB
RAM 8-core machine. Considering the deployment process of
broadband wireless access networks, this is a very reasonable
time for an entire plan.

We set the CS transmission power at 30 [dBm]. The average
antenna gain over all possible main-lobe directions is found
by averaging the antenna model provided by [11] with fixed
elevation and azimuthal beam-width respectively set at 60
[deg] and 20 [deg], leading to an average gain of 9.45 [dB].
In order to fill the coverage matrix A, we considered the mm-
wave propagation model developed within MiWEBA project
[11].

When rate adaption has been considered, we set rates
and SINR thresholds as those used IEEE 802.11ad (WiGig)
specification [12]. While the maximum BS capacity is set to
4.6Gbps, which corresponds to the maximum achievable rate
in IEEE 802.11ad.

It is also important to introduce the performance figure
Average Angular Diversity (A-AD) in a way that it makes
the demonstration and comparison intuitive and easy to un-
derstand, therefore we use this simple formulation for A-AD
in our following plots:

A-AD:
favg min

(2π/K)

where favg min is the optimum value of the objective function
of the proposed models, that is, the average over the minimum
angular diversity values achievable at each TP and K refers to
the K-coverage parameter. A-AD can vary from 0 to maximum
of 1 in the case where the average angle between CSs covering
each TP is the maximum possible for all TPs. This is best
case scenario as all CSs are well positioned with respect to
TPs and there is a high Average Angular Diversity. In the case
of traditional k-coverage where the concept of A-AD does not
exist, having all the CSs selected by a standard min-cost k-
coverage model, we use another MILP model to compute the
best possible A-AD with those previously selected CSs.

Fig. 4 shows, with solid lines, the behavior of A-AD when
number of available CSs and deployment budget vary. In
addition, dotted lines show the percentage of available CSs
which are used to install an mm-wave BSs. Given a fixed
budget B, A-AD is increasing as the number of CSs increases
in the service area. This clearly demonstrates that having more
potential candidate sites provides better choices to the network
planning. Similarly, as budget B increases, higher A-AD can
be achieved. The comparison with the results of a traditional k-

Fig. 4: A-AD behavior varying the number of available CSs and
deployment budget in the proposed model (ADkP) and in traditional
k-coverage (K-COV). The scenario considers 15 TPs and K = 2.

Fig. 5: A-AD behavior varying the number of available CSs and
dropped TPs. The scenario considers a budget equal to half of the

number of available CSs and K = 2.

coverage approach that minimizes the total number of selected
BSs shows two interesting aspects: i) when the number of CSs
is limited or the budget is low, the number of deployable BSs is
so limited that coverage is the main focus and little can be done
in terms of angular diversity; ii) when budget increases, our
model can achieve much better A-AD values and better exploit
available degrees of freedom. The latter is also confirmed by
dotted lines in the picture, which show that the number of
installed CSs for B = 12 is similar to that of the k-coverage.
In addition, differently from the traditional k-coverage, our
model allows to exploit high budget values, by substantially
increasing the number of installed CSs. The decrease in the
number of installed CSs when more CSs are available is due
to the considered objective function: when more and better
choices can be made (more CSs), the same performance (A-
AD) can be obtained with less resources (installed CSs).

Fig 5 explores the cases with a higher number of TPs and
its impact on A-AD. Increasing the number of TPs in the

231

Fig. 6: A-AD behavior varying the number of available CSs and
coverage parameter k. The scenario considers a budget equal to half

of the number of available CSs and 15 TPs.

Fig. 7: Coverage Comparison between the proposed model (ADkP)
and a classical k-coverage (K-COV) varying the deployment budget

and the number of obstacles in the service area. The scenario
considers 15 TPs and 100 available CSs.

service area with a fixed budget, a slight decrease in A-AD is
observed. This is due to the fact that more TPs are scattered
all over the service area and more mm-wave BSs are needed
to provide a given angular diversity to each of them.

Besides the impact of higher number of TPs, Fig 6 shows
the effect of having higher K as coverage constraint. Higher K
means more CSs should cover each TP, which in turn means
the coverage constraint (3) will be tighter, therefore, we will
see the impact as an increase in the minimum number of
needed CSs. Similarly, A-AD will be relatively lower at fixed
budgets.

Previous figures describe and summarize the behavior of the
proposed model, showing a remarkable advantage in terms
of achievable angular diversity with respect to a traditional
k-coverage approach. We show now how a better angular
diversity translates in higher robustness in front of random
obstacle blockages.

To prove the blockage robustness of the proposed mm-
wave access network planning approach, we consider some
line segments randomly dropped in the service area with
a random orientation. Each 20m segment behaves like an
obstacle surface by blocking the mm-wave propagation, so
that a CS-TP link is interrupted if the link and an obstacle
segment intersect. Adding each of these obstacles, we check
blockages in both traditional k-coverage and proposed model
with fixed budgets, where k-coverage model randomly selects
CSs to fill the excess budget.

In Fig 7 we show the network robustness once the network
is planned (according to either the proposed model or a k-
coverage approach) with different budget values and random
obstacles are dropped into the service area. The robustness in
front of sudden obstacles is measured as percentage of TPs that
can still get connected to a mm-wave BS after the appearance
of a given number of obstacles. We clearly notice the coverage
and robustness difference between the proposed approach and
the traditional approach by increasing the budget. There are
three important points to be considered:

1) In the worst case scenario, when budget B is very low
(in our case 10), as it is clear also on Fig 4, there is no
much degree of freedom to increase A-AD, as a result,
the proposed model and the k-coverage mostly select
similar CSs with some minor changes. The reason is
budget B is so tight that our proposed model has no way
but a solution very close to the k-coverage case, so in
cases with low budget, a small increase in the coverage
is observed.

2) As we provide our model with more budget, we have a
higher chance to increase the amount of A-AD, which
gives the opportunity to improve the total coverage
after the obstacles drop. The difference in coverage
is remarkable in Fig 7 with 200-300 obstacles in the
service area.

3) The other important message that Fig 7 conveys is that
it is not true that by haphazardly adding the excess CSs
we can get the same coverage as by positioning them
with high A-AD using the proposed model. The increase
in A-AD will always result in lower blockages caused
by obstacles.

This summarizes the general behavior of the proposed plan-
ning model by mentioning all trade-offs we have, and finally
proves its advantages with respect to traditional k-coverage.

In the following part, we investigate the performance of the
advanced model, which jointly considers coverage, capacity
reservation and user throughput via rate adaptation. Fig. 8
shows a typical effect caused by the addition of user demand
and rate adaptation features: as the demand increases, the av-
erage distance between CSs and their assigned TPs decreases.
Since we need higher data rates for each TP, they can be
delivered only in good channels conditions, like those nearby
mm-wave BSs. By increasing user demands, A-AD decreases
as well, as it can be seen in Fig 9. Indeed, requesting high data
rate results in a lower number of CSs close enough to provide
that throughput, so the model has less freedom to position
mm-wave BSs and A-AD decreases, as a result.

232

Fig. 8: Average primary link length varying per-user demand. The
scenario considers 15 TPs, 200 CSs, B = 30, and α = 0.5.

Fig. 9: A-AD trend varying the number of available CSs and user
demands. The scenario considers 15 TPs, 200 CSs, B is equal to

half of the number of available CSs, and α = 0.5.

One feature which plays an important role in this model is
α, which can increase the amount of extra capacity reserved
on secondary links. As we add obstacles into the service area,
the average throughput is plotted in Fig. 10 for different values
of budget and α. Reported values are obtained by solving
a throughput-maximization assignment model over the links
that are still available once obstacles are dropped. The figure
clearly shows the effects of modifying parameter α: in the case
of α = 1, the average throughput is higher as we have higher
reserved capacity in our secondary (backup) links. Moreover,
high-budget values reduce the difference between cases with
A = 0 and A = 1, as the total network capacity is much higher
than the total demand in the service area. This, together with a
network plan with high A-AD, helps to provide higher average
throughput in case of sudden blockages, even if no capacity
reservation is prearranged.

Fig. 10: Available throughput with JADCkP when obstacles
appear. Comparison for different values of α and budget. The
scenario considers 15 TPs, 200 CSs, and Di = 1000 Mbps.

V. RELATED WORKS

Within the 30-year-old literature on wireless network plan-
ning, directional transmissions have been addressed in a big set
of works dealing with different network topologies. In wireless
ad-hoc networks, the availability of directional antennas in-
creases the degrees of freedom in which the common medium
can be shared; advanced medium access [13], scheduling [14],
and topology control [15] problems have been investigated.
Models for the joint optimization of routing and transmission
scheduling in wireless mesh networks [16] have been proposed
to fully exploit the potential of directional transmissions in
order to improve the capacity of those networks. Finally, di-
rectional sensors have been considered in models for planning
Wireless Sensor Networks (WSNs) [17]. However, despite
inspiring 5G network approaches, these models do not capture
all specific aspects of mm-wave communications.

In the context of Wireless Personal Area Networks
(WPANs), mm-wave directional transmissions were intro-
duced more than 10 years ago. This has led to several
optimization papers investigating many different aspects re-
lated to the use of mm-waves for transmissions among mo-
bile users: spatial multiplexing exploitation via transmission
scheduling [18], optimal admission control for domestic high-
definition video streams [19], best relay identification in multi-
hop communications [20]. Unfortunately, WPAN scenarios
are radically different from those characterizing 5G mm-
wave access networks. The very short WPAN range makes
the use of omnidirectional transmission still viable in some
communication phases and reduces the probability of LOS
obstacle blockage. In addition, WPANs are typically designed
according to traffic requirements very different from those of
mm-wave 5G networks. Therefore, we need new models and
methods to deal with the specific aspects of such networks.

When mm-wave technologies are involved, obstacles’ shad-
owing and blockage effects become one of the major issues
during network operations: access [3], resource management

233

[21], [22], transport layer [23], etc. Different solutions have
been proposed to mitigate these effects, multi-connectivity
is the most common in the mm-wave context, where the
management of these multiple connections is the main focus
[4], [8], [9].

The standard way to guarantee multi(k)-connectivity in a
wireless access network is to adopt planning methods with k-
coverage constraints. The literature on k-coverage, mostly for
WSNs [24], is huge, indeed many objectives and characteris-
tics can be requested to the obtained network layout. In the
field of Visual Sensor Networks, the problem of how to place
cameras in order to avoid obstacles has been largely studied
[25]. The goal is to plan their fields of view in order to provide
the best visibility of a given area. Although sharing some
similarities with our problem, different technological domain
and lack of throughput constraints make these approaches
unsuitable for our purposes.

To the best of our knowledge, this is the first paper that
investigates angular diversity for connection reliability and
capacity aspects in a wireless multi-connectivity context.

VI. CONCLUSION

In this paper, we have proposed a network planning ap-
proach for 5G mm-wave access networks that allows to fully
exploit multi-connectivity by providing spatial diversity among
BSs. This produces network layouts with better BS alternatives
for mm-wave users. In addition, QoS aspects related to user
throughput guarantees and rate adaptation have been included
as well.

Our approach has been tested on different instances, show-
ing it is indeed effective in providing an angular separation
between BSs remarkably larger than that achievable with
traditional k-coverage approaches. This leads to networks that
are much more robust to unexpected obstacles. In addition,
results have shown that capacity reservation strategies and
rate adaptation play a main role in defining the final network
design.

We believe multi-connectivity will be a fundamental feature
of 5G mm-wave networks and our contribution can help to
provide the required level of reliability to such promising but
challenging technology.

REFERENCES

[1] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular
wireless networks: Potentials and challenges,” Proceedings of the IEEE,
vol. 102, no. 3, pp. 366–385, 2014.

[2] A. Maltsev, A. Pudeyev, I. Karls, I. Bolotin, G. Morozov, R. Weiler,
M. Peter, and W. Keusgen, “Quasi-deterministic approach to mmwave
channel modeling in a non-stationary environment,” in Globecom Work-
shops (GC Wkshps), 2014. IEEE, 2014, pp. 966–971.

[3] I. Filippini, V. Sciancalepore, F. Devoti, and A. Capone, “Fast cell
discovery in mm-wave 5g networks with context information,” IEEE
Transactions on Mobile Computing, vol. PP, no. 99, pp. 1–1, 2017.

[4] D. Aziz, J. Gebert, A. Ambrosy, H. Bakker, and H. Halbauer, “Architec-
ture approaches for 5g millimetre wave access assisted by 5g low-band
using multi-connectivity,” in Globecom Workshops (GC Wkshps), 2016
IEEE. IEEE, 2016, pp. 1–6.

[5] C. Dehos, J. L. González, A. De Domenico, D. Ktenas, and L. Dussopt,
“Millimeter-wave access and backhauling: the solution to the exponential
data traffic increase in 5g mobile communications systems?” IEEE
Communications Magazine, vol. 52, no. 9, pp. 88–95, 2014.

[6] A. Tolli, M. Codreanu, and M. Juntti, “Cooperative mimo-ofdm cellular
system with soft handover between distributed base station antennas,”
IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp. 1428–
1440, 2008.

[7] H. Wang, C. Rosa, and K. Pedersen, “Performance analysis of downlink
inter-band carrier aggregation in lte-advanced,” in Vehicular Technology
Conference (VTC Fall), 2011 IEEE. IEEE, 2011, pp. 1–5.

[8] M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi, “Multi-
connectivity in 5g mmwave cellular networks,” in Ad Hoc Networking
Workshop (Med-Hoc-Net), 2016 Mediterranean. IEEE, 2016, pp. 1–7.

[9] M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Improved handover through dual connectivity in 5g mmwave mobile
networks,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 9, pp. 2069–2084, 2017.

[10] A. Ghosh, T. A. Thomas, M. C. Cudak, R. Ratasuk, P. Moorut,
F. W. Vook, T. S. Rappaport, G. R. MacCartney, S. Sun, and S. Nie,
“Millimeter-wave enhanced local area systems: A high-data-rate ap-
proach for future wireless networks,” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 6, pp. 1152–1163, 2014.

[11] A. Maltsev, “Channel Modeling and Characterization - MiWEBA, Deliv-
erable 5.1 EU Contract No. FP7-ICT-608637,” https://www.miweba.eu,
Tech. Rep., 2014.

[12] S. Sur, V. Venkateswaran, X. Zhang, and P. Ramanathan, “60 ghz indoor
networking through flexible beams: A link-level profiling,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 43, no. 1. ACM,
2015, pp. 71–84.

[13] K. Sundaresan, R. Sivakumar, M. A. Ingram, and T.-Y. Chang, “Medium
access control in ad hoc networks with mimo links: optimization con-
siderations and algorithms,” IEEE Transactions on Mobile Computing,
vol. 3, no. 4, pp. 350–365, 2004.

[14] A. Spyropoulos and C. S. Raghavendra, “Energy efficient communi-
cations in ad hoc networks using directional antennas,” in INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 1. IEEE, 2002, pp.
220–228.

[15] Z. Huang, C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Topology
control for ad hoc networks with directional antennas,” in Computer
Communications and Networks, 2002. Proceedings. Eleventh Interna-
tional Conference on. IEEE, 2002, pp. 16–21.

[16] A. Capone, I. Filippini, and F. Martignon, “Joint routing and scheduling
optimization in wireless mesh networks with directional antennas,” in
Communications, 2008. ICC’08. IEEE International Conference on.
IEEE, 2008, pp. 2951–2957.

[17] M. A. Guvensan and A. G. Yavuz, “On coverage issues in directional
sensor networks: A survey,” Ad Hoc Networks, vol. 9, no. 7, pp. 1238–
1255, 2011.

[18] L. X. Cai, L. Cai, X. Shen, and J. W. Mark, “Rex: A randomized
exclusive region based scheduling scheme for mmwave wpans with
directional antenna,” IEEE Transactions on Wireless Communications,
vol. 9, no. 1, 2010.

[19] L. X. Cai, L. Cai, X. S. Shen, and J. W. Mark, “Resource management
and qos provisioning for iptv over mmwave-based wpans with direc-
tional antenna,” Mobile Networks and Applications, vol. 14, no. 2, pp.
210–219, 2009.

[20] L. X. Cai, H. Hwang, X. Shen, J. W. Mark, and L. Cai, “Optimizing ge-
ographic routing for millimeter-wave wireless networks with directional
antenna,” in Broadband Communications, Networks, and Systems, 2009.
BROADNETS 2009. International Conference on. IEEE, 2009, pp. 1–8.

[21] Y. Niu, Y. Li, D. Jin, L. Su, and D. Wu, “Blockage robust and
efficient scheduling for directional mmwave wpans,” IEEE Transactions
on Vehicular Technology, vol. 64, no. 2, pp. 728–742, 2015.

[22] S. Singh, F. Ziliotto, U. Madhow, E. Belding, and M. Rodwell, “Block-
age and directivity in 60 ghz wireless personal area networks: From
cross-layer model to multihop mac design,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 8, 2009.

[23] M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, and S. Panwar, “Tcp dy-
namics over mmwave links,” in 2017 IEEE 18th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC),
July 2017, pp. 1–6.

[24] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on coverage and
connectivity issues in wireless sensor networks,” Journal of Network
and Computer Applications, vol. 35, no. 2, pp. 619–632, 2012.

[25] J. Zhao and S. C. Sen-ching, “Optimal visual sensor planning,” in
Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium
on. IEEE, 2009, pp. 165–168.

234

Rethinking Service Chain Embedding
for Cellular Network Slicing

Chrysa Papagianni
Institute for Systems Research

University of Maryland
College Park, Maryland, USA

chrisap@isr.umd.edu

Panagiotis Papadimitriou
Department of Applied Informatics
University of Macedonia, Greece

papadimitriou@uom.edu.gr

John S. Baras
Department of Electrical

and Computer Engineering
University of Maryland

College Park, Maryland, USA
baras@isr.umd.edu

Abstract—5G is set out to address the business contexts of 2020
and beyond, by enabling new network and service capabilities.
The industry consensus is that 5G will facilitate ubiquitous
connectivity, seamlessly integrating wireless technologies and
complementary communication networks, while operators will
be capable of providing networks on a need-for-service basis.
Furthermore, there is a need for operators to exploit new revenue
sources and break the traditional business model of a single
network infrastructure ownership, by supporting multi-tenancy.
Network slicing can provide a solution towards this end; it is
considered a key for meeting 5G’s diverse requirements, including
future-proof scalability and flexibility.

Provisioning and management of network slices in the tran-
sition from Long Term Evolution (LTE) to the emerging 5G
systems poses the need for the mapping of service chains that
express traffic and processing requirements of LTE slices. In
this respect, we follow a different approach to the service chain
mapping problem, promoting virtualized network function (NF)
sharing among multiple service chains that are associated with a
certain network slice. Using mixed-integer linear programming
formulations, we show that our approach leads to reduced NF
state and management overhead, compared to the common re-
source allocation practice in virtualized Radio Access Networks.

I. INTRODUCTION

Next-generation cellular networks will cater to a wide range
of new business opportunities, such as network slice provi-
sioning on a lease basis, in order to support multi-tenancy and
meet diverse application requirements. Network Function Vir-
tualization (NFV) and Software-Defined Networking (SDN)
have been seen as key enablers towards 5G network slicing,
as they allow the creation of customisable network elements
which can be subsequently chained together programmatically.
These network elements and functions can be easily configured
and reused in each network slice to meet certain performance
requirements, enabling new business opportunities by facili-
tating flexible and agile support for multi-service and multi-
tenancy.

While the vision is very compelling from an infrastructure,
operation and business perspective, the deployment of network
slices poses various challenges, inherent to the enabling tech-
nologies, specific to the shared physical medium or associated
to the application context. Focusing on Software Defined
Mobile Networks (SDMN), different tenants issue requests to

a mobile network provider for leasing network slices, where
each slice as a logical end-to-end construct is self-contained,
using network function chains for delivering services to a given
group of devices.

Long Term Evolution (LTE) network slicing [1] commonly
encompasses the following: (i) virtualizing the mobile core,
deploying mobile core elements as virtualized network func-
tions (vNF), and sharing the corresponding physical resources
among tenants; (ii) sharing the base station (also termed as
eNodeB) resources, where different scenarios can be supported
for sharing physical resource blocks in the frequency/time/s-
pace domain at Layer 2; and (iii) sharing spectrum resources
between different operators.

Considering the deployment of LTE elements as vNFs over
virtualized infrastructures, authors in [2] introduce LTE as
a Service framework, where both the mobile core services
and eNodeB are deployed in a virtualized environment, using
Openstack and Linux Containers. Authors in [1] describe the
deployment of LTE Components as vNFs with OpenAirInter-
face (OAI) and the JUJU Framework, including mobile core
network elements and 3GPP compliant eNodeBs, decomposed
to the baseband unit (BBU) and remote radio head (RRH).
Following the principles of the aforementioned approaches,
we consider network slicing from the mobile core (termed as
Evolved Packet Core - EPC) to the Radio Access Network
(RAN), where virtualized eNodeBs are deployed, without,
however, looking into aspects of slicing and apportioning the
radio spectrum. Baseband processing functions are deployed
on the virtualized eNodeBs, which are hosted on general-
purpose hardware, supporting the dedicated RRHs imple-
mented using software-defined radio (SDR) technology.

To ensure that network slices can deliver the desired
benefits for each tenant, mobile network operators need to
employ advanced techniques, which will optimize resource
allocation for slice provisioning and also facilitate closed-
loop performance maintenance. To this end, new algorithms
and solutions need to be devised for allocating network and
computing resources among different slices with the objective
of meeting the performance and other functional requirements
of applications/services, while, at the same time, maximizing
the overall utility for the provider. In this respect, we consider
a LTE slice composed of a group of service chains (SFC),ISBN 978-3-903176-08-9 c© 2018 IFIP

e.g., each one handling a set of traffic classes, such as voice,
media streaming etc. Hence, we tackle this resource allocation
problem at the granularity of a service chain, and, thereby,
seek to optimize the assignment of service chains onto the
virtualized RAN infrastructure. This essentially consists in
the placement of virtulized LTE/EPC1 elements (which are
assumed to be implemented as vNFs) and the selection of the
corresponding paths between these vNFs.

In most existing approaches (e.g., [3], [4]), separate vNFs
are allocated for each service chain, which means that each
vNF instance is associated with a single chain. This approach
yields: (i) increased overheads associated with vNF provision-
ing and management, (ii) potentially larger amount of NF
state, if the state required by a LTE element is replicated
among all the vNF instances in the slice, (iii) inefficient
resource utilisation, since certain vNFs may have the required
capacity to serve additional service chains, due to the statistical
multiplexing of traffic, and (iv) fragmentation of resources,
due to the larger number of vNF instances. To alleviate these
inefficiencies, we promote the sharing of vNFs among the
service chains of a LTE slice, aiming at lower provisioning and
management costs as well as NF state reduction. To this end,
we present mixed-integer linear programming (MILP) formu-
lations for: (i) LTE service chain mapping with vNF sharing,
and (ii) a baseline LTE service mapping that corresponds to
the common resource allocation practice in virtualized RANs
(i.e., each service chain has its own dedicated vNFs).

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of the LTE network infrastructure.
Section III describes the service chain mapping problem. In
Section IV, we present our MILP formulations. In Section V,
we compare the efficiency of our proposed method against the
baseline using simulations. Section VI provides an overview
of related work. Finally, in Section VII, we highlight our
conclusions and discuss directions for future work.

II. BACKGROUND

The term LTE encompasses the evolution of the UMTS
radio access to the Evolved-UTRAN (E-UTRAN). This is
accompanied by the evolution in the GPRS Core Network,
under the name System Architecture Evolution (SAE), which
includes the EPC network. LTE and SAE together constitute
the Evolved Packet System.

E-UTRAN. The E-UTRAN consists of a network of base
stations (termed as eNodeBs – eNBs) that provide radio
access to the User Equipment (UE). eNBs provide user and
control plane protocol terminations toward the UEs. They
communicate with each other by means of the X2 interface.
The eNBs are also connected via the S1 interface to the
EPC. RANs are usually provisioned for peak loads, leading
to inefficient resource utilisation, i.e., up to 80% of CAPEX
and 60% of OPEX in mobile networks is spent on RANs [5].

Centralised Radio Access Network (C-RAN) architecture
splits the eNB to: (i) the BBU responsible for L1 digital

1We refer to LTE/EPC as LTE in the rest of the paper.

processing of the baseband signal (i.e., radio function) along
with performing upper layer functions and interfacing with
the backhaul; and (ii) the RRH performing functions such as
amplification of RF signals, filtering, and AD/DA conversion.
Following the C-RAN approach RRHs, installed close to the
antenna, are connected to a centralized BBU pool at macro cell
sites or central office locations, using the fronthaul transport
network. Different protocols have been standardized for the
fronthaul such as the common public radio interface (CPRI)
[6]. Virtual RAN extends this flexibility further, through the
virtualization of the execution environment [7], where radio
functions is a network service running in a virtualized envi-
ronment (Cloud RAN), potentially delivered as a cloud service
(RAN as a service – RANaaS). Advances in the direction of
leveraging NFV principles for C-RAN (also known as NFV
C-RAN,vRAN) are currently emerging via proof of concept
implementations [8].

EPC. The EPC contains user and control plane elements
for routing, session establishment, mobility management, and
billing. The user plane mainly consists of the Serving Gateway
(S-GW) and the Packet Data Network Gateway (P-GW), used
for UE traffic forwarding and tunnelling. More specifically,
S-GW serves as a mobility anchor, whereas the P-GW routes
UE traffic to external Packet Data Networks (PDNs). Mobility
Management Entity (MME) is the main control plane element,
responsible for UE authentication and authorization, session
establishment and mobility management. The QoS level for
each transmission path (termed as EPS bearer) between the
UE and the P-GW is determined by the P-GW. When a
UE is attached to the LTE, a default bearer is established
supporting best-effort QoS. The EPS bearer consists of the
radio data bearer (i.e. between UE and eNB), the S1 data
bearer (i.e. between eNB and S-GW) and the S5 data bearer
(i.e. between the SG-W and the P-GW). The GPRS tunneling
protocol (GTP) is used for setting up the user plane data-
paths between the eNB, S-GW and P-GW. In many cases,
application-specific traffic (e.g. voice, video) is enforced to
traverse a set of NFs, used by operators to differentiate their
services [9]. Such NFs are traditionally deployed as specialized
network devices, known as middleboxes. The SGi interface
signifies the demarcation point between the EPC (P-GW) and
the PDN. SGi-LAN refers to the NFs (e.g., NATs, firewalls,
caches) deployed by mobile operators on this reference point.

III. PROBLEM DESCRIPTION

In order to create an LTE network slice, we should dy-
namically allocate, install, program and configure all the LTE
network-specific elements. This requires the deployment of
virtualized data and control plane functional entities (i.e.,
BBU in RAN and MME, S/P-GW at the EPC) at the mobile
operator’s NFV Infrastructure (NFVI), which may span mul-
tiple NFVI Points-of-Presence (PoPs), i.e., datacenters (DCs).
NFVI-PoPs extend to the operator’s WAN infrastructure, such
as local or regional PoPs for small or larger-scale NFVI
deployments. LTE network slicing further raises the need

236

Fig. 1: LTE service chain.

for service chaining (i.e., steering the traffic through a se-
quence of vNFs that implement the LTE user and control
plane elements). Service chaining can be configured using
flow tagging or tunneling to overcome the implications of
“mangling” middleboxes, as exemplified in recent work [10],
[11]. Fig. 1 illustrates such a service chain2, whose end-points
express different levels of abstraction at the mobile fronthaul
(e.g., Aggregation Point for RRHs using appropriate equipment
such as CPRI2Ethernet Gateway and CPRI mux). Based on
this description, for a single LTE network slice, we need to
efficiently place a set of LTE service chains, defined by the
corresponding end-points (e.g., one service chain per RRH
aggregation point or RRH/cell).

The optimization problem at hand is the minimization of the
resource provisioning cost for the LTE network operator, while
allocating CPU and bandwidth for the LTE service chains. The
problem is similar to service mapping (e.g., [12]), since LTE
service chains can be seen as bi-directional graphs that need
to be embedded onto a substrate network [13]. This approach
has been followed by recent work on NF placement in a
virtualized EPC [4], [14]. However, in this way, the set of
vNF forwarding graphs are mapped independently, leading to
a potentially large number of vNFs, which in turn yields a
substantial management cost for the LTE operator, especially
during dynamic re-provisioning. Another downside of this
approach is that the state required for each LTE element has
to be replicated across a large number of NF instances, which
essentially increases the total amount of state that has to be
maintained.

In contrast to this common practice and inline with [15],
we promote NF sharing across LTE service chains in order
to reduce the number of NF instances and, consequently,
the provisioning and management cost incurred by network
slicing. In particular, we consider that flows from different
cells (RRHs or Aggregation Points) can share and reuse NFs.
For example, Fig. 2 illustrates two LTE service chains that
share common vNFs (P-GW and S-GW). In this respect,
we decompose the problem of resource allocation for LTE
network slicing into the following steps:
• Slice dimensioning, which generates the number of NF

instances (for each LTE data or control plane element)
required to handle the expected traffic load. For example,
a typical LTE system at a national level is composed of
10s of PGW, 100s of SGWs, and 1000s of eNBs [16].
The load is defined by the inbound traffic rate and the

2For the sake of readability, traffic flow direction in the uplink and the
downlink is not depicted.

resource profile for each virtualized EPC functions (i.e.
CPU cycles / packet).

• NF placement, which computes the optimized assign-
ment of the generated NF instances onto the servers of
the operator’s NFVI.

• Binding, which associates the assigned NF instances with
the LTE service chains, according to their computational
and bandwidth requirements.

• Path Selection, which refers to the selection of the data
paths through the LTE vNFs placed and bound to the
service chains.

Following this approach, we present a MILP formulation for
near-optimal LTE service chain mappings, by sharing vNFs
among multiple LTE service chains. More specifically, vNF
sharing is applicable, e.g., for a set of LTE service chains on
the same Tracking Area (TA), which is the logical grouping of
neighbour eNBs in LTE networks, or the Tracking Area List
(TAL), which is a group of Tracking Areas. TAs manage and
locate UEs in a LTE network, when the UE is in CONNECTED
state. However, in IDLE state the UE location is only known at
TAL level. Therefore, at any point in time, the corresponding
number of UEs in the TAL can provide an estimate of the
expected load, which is required for slice dimensioning.

In Section IV, we present a baseline MILP formulation
which corresponds to the common practice for LTE service
chain mapping, i.e., each LTE service chain is associated
with its own individual vNFs. Section V provides a detailed
comparison between the two methods and discusses the gains
achieved by the MILP that promotes NF sharing.

IV. PROBLEM FORMULATIONS FOR LTE SLICING

In this section, we discuss (i) the MILP formulation that
shares NFs among service chains, and (ii) the baseline MILP
formulation that allocates separate NFs per chain.

A. Service Mapping with NF Sharing

1) Network and Request Model: In the following, we intro-
duce the network and request model for the MILP formulation
with NF sharing.

Network Model. The operator has a number of |A| avail-
able NFVI-PoPs interconnected via the provider’s net-
work. Each site’s infrastructure is represented as a directed
weighted graph Ga = (Na,Ea), where Na represents the set
of all nodes (i.e., routers/switches, and servers) that be-
long to the operator’s NFVI a and Ea the correspond-
ing substrate links. Inter-DC links are denoted as {Eaa′ =
(ua,va′)|∀ua ∈ Na,va′ ∈ Na′∀a,a′ ∈ A,a 6= a′}. We consider a
network-wide view of the operator’s network; the overall
substrate topology is denoted as GS′ = (NS′ ,ES′), where NS′ =

∪A
a=1Na and ES′ =

(
∪
∀a∈A

Ea

)⋃(
∪

∀a,a′∈A,
a 6=a′

Eaa′
)

.

We consider a set of I RRHs that belong to the same TAL.
The length of the fronthaul link between the RRH and the
BBU vNF can not exceed a given value; this guarantees the

237

Fig. 2: LTE SFC(s) placed on physical infrastructure.

signal synchronization between RRH and BBU [17]. In this
case, this is set to 20km [7]. We consider that there is at least
one existing link from an RRH to an NFVI-PoP that meets
this requirement. We augment the substrate graph node set
with I pseudo nodes NS = N′S ∪ I, (zero capacity). Network
links between RRHs and PoPs are added to the link set, thus
ES = ES′ ∪{(u, i)|u∈NS′ , i∈ I} ∪{(i,u)|u∈NS′ , i∈ I} forming
the directed substrate graph GS = (NS,ES). Node sets of
specific type are denoted as Nx

S (i.e., routers, switches, RRHs,
Internet Exchange Points (IXPs) and servers). Thus, the overall
set of physical servers for the substrate is Nser

S = ∪A
a=1Nser

a .
Every node n ∈ Nx

S and link (u,v) ∈ ES is associated with
its residual capacity, denoted by rn and ruv, respectively. The
residual capacity for substrate routers, switches and RRHs is
set to zero.

Virtual Network Functions. The set NV represents possible
vNFs (e.g., BBU, MME, P-GW, S-GW) that can be deployed
at the NFVI-PoPs. Each NF instance is associated with a
given amount of computing resources di, i ∈ NV , used by the
service chains assigned to that instance. Thus, inline with [15]
we have NF instances of the same type (e.g., set NMME

V of
MME instances) with different sizes. Each vNF i ∈ NV can
be instantiated at a substrate node of type Nser

S at most Ui
times (e.g., depending on the number of purchased licenses).
We extend the set NV with two additional pseudo vNFs, RRH
and IXP, assuming they can be instantiated only at NRRH

S and
Nrouter

S , respectively, utilizing minimal computing resources.

Service Chain Model. We use a directed weighted graph G f =
(N f ,E f), f ∈ F to express each service chain request, where F
represents the set of SFCs. The set of vertices N f includes two
sets: (i) NV

f : the set of vNFs that belong to either the RAN or
the EPC, as well as any NFs (e.g., NAT, firewall) that the traffic
has to traverse; and (ii) NS

f : the set of service chain end-points
(RRH and IXP, in this case). Each vertex k ∈ N f is associated
with a computing demand g f ,k, which we estimate based on
the inbound traffic rate and the resource profile of the LTE
element (i.e., CPU cycles / packet), apart from the endpoints
(NS

f) where the computing resources are minimal. The edges
are denoted by (k,m)∈ E f while their bandwidth demands are

expressed by g f ,km for SFC f ∈ F . We further introduce l f ,k
u

which represents the distance between the preferred location
of a function k∈NS

f , f ∈F and the location of the server where
this will be hosted, with u ∈ NS.

2) Problem Formulation: In the MILP formulation, the
binary variable xi, j

u expresses the placement of instance j of
vNF i ∈ NV on the substrate node u ∈ NS. Furthermore, the
binary variable z f ,k

u indicates the assignment of vNF k ∈ N f
required by service chain f ∈ F to the substrate node u ∈ NS.
The real variable f f ,km

uv expresses the amount of bandwidth
assigned to link (u,v) ∈ ES for graph edge (k,m) in the vNF
forwarding graph of service chain f ∈ F .

Objective:

Min. ∑
i∈NV

∑
j∈Ui

∑
u∈NS

dixi, j
u + ∑

f∈F
∑

(k,m)∈E f

∑
(u,v)∈ES
(u 6=v)

f f ,km
uv (1)

Capacity related Constraints:

∑
∀i∈NV

∑
j∈Ui

dixi, j
u ≤ ru ∀u ∈ NS (2)

∑
f∈F

∑
(k,m)∈E f

f f ,km
uv ≤ ruv ∀(u,v) ∈ ES (3)

Placement and Assignment related Constraints:

∑
∀i∈Nx′

V

∑
j∈Ui

xi, j
u = 0 ∀u ∈ Nx

S ,x
′ 6= x (4)

∑
∀u∈Nx

S

xi, j
u ≤ 1 ∀i ∈ Nx

V , j ∈Ui (5)

∑
∀ f∈F

k∈N f :k=i

g f ,kz f ,k
u ≤ ∑

i′∈NV :i′=i
∑
j∈U ′i

di′xi′, j
u ∀u ∈ NS, i ∈ NV (6)

z f ,k
u ≤ ∑

j∈Ui
i∈NV :i=k

xi, j
u ∀k ∈ N f , f ∈ F,u ∈ NS (7)

∑
u∈NS

z f ,k
u = 1 ∀k ∈ NF , f ∈ F (8)

l f ,k
u z f ,k

u = 0 ∀k ∈ NS
f ⊂ N f , f ∈ F,∀u ∈ NS (9)

238

Flow related Constraints:

∑
v∈NS
(u 6=v)

(f f ,km
uv − f f ,km

vu) = g f ,km(z f ,k
u − z f ,m

u)

m 6= k,∀(m,k) ∈ E f , f ∈ F,u ∈ NS (10)

Domain Constraints:

xi, j
u ∈ {0,1} ∀i ∈ NV , j ∈Ui,u ∈ NS (11)

z f ,k
u ∈ {0,1} ∀k ∈ N f , f ∈ F,u ∈ NS (12)

f f ,km
uv ≥ 0 ∀(u,v) ∈ ES,(k,m) ∈ E f , f ∈ F (13)

The optimization objective of the MILP is expressed by the
objective function (1). The first term of this function represents
the CPU requirements, based on the vNF instances mapped to
the infrastructure. The second term of the objective function
expresses the accumulated bandwidth assigned to substrate
links. Constraint (2) ensures that the sum of CPU required by
the vNF instances mapped to substrate node u does not exceed
the residucal processing power. Constraint (3) ensures that
the allocated bandwidth does not exceed the residual capacity
of links. Condition (4) enforces the placement of vNF (and
pseudo vNF) instances on substrate nodes that meet the vNF’s
functional requirements. Constraint (5) ensures that each vNF
instance is placed at a single substrate node. Constraint (6)
ensures that the sum of processing demands of service chain
elements does not exceed the amount of virtual resources
provided by vNFs of type i mapped to substrate node u.
Constraint (7) ensures that, if a vNF requested by an service
chain is assigned to substrate node u, then at least one instance
should be placed on u. Constraint (8) ensures that every
required service chain (and its respective vNFs) is mapped to
the infrastructure. Condition (9) enforces location constraints
for the service chain endpoints. Constraint (10) enforces flow
conservation, i.e., the sum of all inbound and outbound traffic
in switches, routers, and servers that do not host vNFs should
be zero. More precisely, this condition ensures that for a given
pair of assigned nodes k,m (i.e., vNFs or end-points), there is
a path in the network graph where the edge (k,m) has been
mapped. Finally, conditions (11), (12) and (13) express the
domain constraints for the three variables.

We note that the complexity of the proposed MILP can be
reduced by: (i) relaxing the integer domain constraints, and (ii)
using a rounding algorithm to extract feasible solutions from
non-integer values. Rounding can be performed by employing
existing deterministic and randomized techniques used in
service mapping [18], [4], [12]. Due to space limitations, we
leave this for future work.

B. Baseline Service Mapping

In the following, we discuss the MILP formulation for the
baseline service mapping without NF sharing.

1) Request Model: As the Network Model is similar to
the one described above, we hereby present only the Request
Model.

Request Model. We use a directed graph GF = (NF ,EF) to
express a service chain request. The set of vertices NF includes
two sets: (i) NV

F : the set of vNFs that belong to either the RAN
or the EPC, and any other vNFs for additional processing; and
(ii) NS

F : the set of service chain end-points. Each vNF i ∈ NV
F

can be instantiated at a substrate node of type Nser
S , while

RRH and IXP can be instantiated only at the corresponding
NRRH

S and Nrouter
S , respectively. Each vertex NV

F in the graph is
associated with a computing demand gi. The edges are denoted
by (i, j) ∈ EF while their bandwidth demands are expressed
by gi j. We also use li

u, as defined in the service chain model
in Section IV-A.

2) Problem Formulation: In the following MILP formula-
tion, we use the binary variable xi

u to express the placement of
vNF i ∈ NF of the service chain request GF on the substrate
node u ∈ NS. The real variable f i j

uv expresses the amount of
bandwidth assigned to link (u,v)∈ ES for the vNF graph edge
(i, j).

Objective:

Min. ∑
i∈NF

∑
u∈NS

xi
u +

1
∑

(i, j)∈EF

gi j ∑
(i, j)∈EF

∑
(u,v)∈ES
(u 6=v)

f i j
uv (14)

Capacity related Constraints:

∑
∀i∈NF

gixi
u ≤ ru ∀u ∈ NS (15)

∑
∀(i, j)∈EF

f i j
uv ≤ ruv ∀(u,v) ∈ ES (16)

Placement related Constraints:

∑
∀i∈Nx′

F

xi
u = 0 ∀u ∈ Nx

S ,x
′ 6= x (17)

∑
∀u∈Nx

S

xi
u = 1 ∀i ∈ Nx

F (18)

li
uxi

u = 0 ∀i ∈ NS
F ⊂ NF ,∀u ∈ NS (19)

Flow related Constraints:

∑
v∈NS
(u 6=v)

(f i j
uv− f i j

vu) = gi j(xi
u− x j

u) i 6= j,∀(i, j) ∈ EF ,u ∈ NS

(20)

Domain Constraints:

xi
u ∈ {0,1} ∀i ∈ NF ,u ∈ NS (21)

f i j
uv ≥ 0 ∀(u,v) ∈ ES,(i, j) ∈ EF (22)

The optimization objective of the MILP is expressed by
the objective function (14). The first term of this function
represents the number of assigned servers. The second term
of the objective function expresses the accumulated bandwidth
assigned to substrate links divided by the total bandwidth
demand. Constraint (15) ensures that the sum of processing
demands of the vNFs mapped to substrate node u does not
exceed the residual computing capacity. Constraint (16) en-
sures that the allocated bandwidth resources do not exceed the

239

residual link capacity. Condition (17) enforces the placement
of vNFs (and pseudo vNFs) on substrate node types that meet
the vNF’s functional requirements. Constraint (18) ensures
that a vNF is placed at most on a substrate node. Condi-
tion (19) enforces location constraints for the service chain
endpoints. Constraint (20) enforces flow conservation. Finally,
conditions (21) and (22) express the domain constraints for the
variables. Similar to the previous MILP formulation, relaxation
and rounding techniques can be employed to reduce the time
complexity.

V. EVALUATION

In this section, we evaluate the efficiency and discuss the
feasibility of the proposed MILP model, denoted as NF-
Sharing. The model is compared against the Baseline service
mapping model without NF sharing. In the following we dis-
cuss the evaluation environment (Section V-A), the evaluation
metrics (Section V-B) and the evaluation results (Section V-C).

A. Evaluation Environment

We have implemented an evaluation environment in Java
including a service chain generator and a cellular network
topology generator. We use CPLEX for our MILP models
using the branch-and-cut method. Our tests are carried out
on a server with one Intel Xeon four-core CPU at 3.5 GHz
and 6 GB of allocated main memory.

Given the time complexity of the mixed-integer linear
programs, we use a small-scale LTE scenario for the vali-
dation/evaluation of the proposed models, based on the real-
world scenario presented in [19] that was created using real
statistics from a region in Paris, while LTE SFCs are jointly
mapped at the Tracking Area List level considering however
a single TA per TAL.

NFV Infrastructure. Similar to [4], we have generated a
PoP-level network topology with homogeneous NFVI PoPs.
Each PoP is essentially a micro-DC with a two-level fat-tree
network topology. Table I shows additional NFVI parameters.
Regarding the vNF instances for NF-Sharing, we consider
three distinct levels of LTE vNFs that can support up to 500,
750 and 1000 UEs respectively.

E-UTRAN. We rely on a multi-cell scenario for the RAN.
Table II presents the E-UTRAN design parameters. Consider-
ing uniform circular cells with an overlapping factor γ of 1.2,
the cell radius is r = γ

√
At/Cπ (approximately 0.64 km for the

above-mentioned settings). In our case, we consider varying
user density (up to rho= 385UEs/km2), so that the number of
active UEs per eNB ranges from 200 to 500. We also provide
the number of RRHs at Tracking Area level and the Tracking
Area size. The maximum length for the RRH-BBU link is
limited to 20 km [8].

Traffic Classes. Similar to [4], traffic is classified into three
types, i.e., voice, media streaming, and background traffic,
with their busy-hour parameters shown in Table III [19] [4].
Pr{O} is the probability that a session of a specific application
type is originated by a UE.

LTE vNF profiles. The CPU demand for each vNF can be
derived based on the inbound traffic rate and the resource
profile of the vNF (i.e., CPU cycles per packet). Resource
profiles are available for a wide range of NFs (e.g., IPv4
forwarding [20], [21]), while existing profiling techniques
(e.g., [22]) can be applied to any flow processing workloads
whose computational requirements are not known. We derive
the CPU demands for each NF from resource profiles, similar
to [12] [4]. We extract the resource profile of the MME using
the study on the latency evaluation of a virtualized MME
[23]. The BBU processing budget of a GPP platform was
based on the study by Nikain on OAI implementation [8]
that considers three functions as the main contributors to the
BBU processing budget namely; iFFT/FFT, (de)modulation,
and (de)coding. The proposed model computes the total BBU
uplink and downlink processing time for different physical
resource blocks, modulation and coding scheme (MCS) and
virtualization environment. We use the particular model con-
sidering an Intel SandyBridge architecture with a CPU fre-
quency of 3.2GHz, a channel bandwidth of 20 MHz assuming
64 quadrature amplitude modulation (QAM) in the downlink
and 16 QAM in the uplink and Linux Containers platform.
This leads to a total processing time of 723.5 us per subframe
in the downlink and 1062.4 us per subframe in the uplink.

Service Chains. We generate vNF-forwarding graphs per cell
according to Fig. 1 class based on service chain templates. In
particular, each service chain contains the main LTE elements
(i.e., BBU, S/P-GW, MME) using the aforementioned NF
profiles.

Signalling Load and Traffic. We quantify the processing
load and the uplink/downlink traffic generated by LTE/EPC
data management procedures, using the aforementioned traffic
profile based on the analysis provided in [19] and 3GPP
LTE/EPC signalling messages and their sizes provided in [24].
In this respect, applications are modelled as ON-OFF state
machines, while we assume that each UE is registered in the
LTE/EPC network (EMM-registered) and alternates between
Connected (ECM-Connected) and Idle (ECM-Idle) states. In
other words, only Service Request/Release procedures are
taken into account. The RRC inactivity timer defines the
inactivity period required for the UE to switch to IDLE state.
This timer is adjusted to 40 sec, which is a widely used setting
in cellular networks [19].

B. Evaluation Metrics

We use the following metrics for the evaluation of the two
service chain mapping methods:
• vNF Instances expresses the number of vNF instances

that need to be instantiated (which is strongly correlated
with the amount of vNF state) in order to support the
embedded SFCs.

• Hop Count of the vNF forwarding graph edge expresses
the length of the physical path where the edge is mapped.

• Load Balancing Level (LBL) is defined as the maximum
over the average load. We report the (moving average)

240

TABLE I: NFVI Parameters
NFVI PoPs 2
Servers per DC 20 in 2 racks
Server Capacity 24 · 3.2 GHz
ToR-to-Server link capacity 8 Gbps
Inter-rack link capacity 32 Gbps
Inter-DC link capacity 100 Gbps

TABLE II: User Modeling Parameters

Area Size (At) 180 km2

Total Number of eNBs in the area (C) 200
Active UEs per eNB 200 . . . 500
Tracking Area Size 9 km2

Total Number of eNBs in TA 10

TABLE III: Session Parameters
Application Type Arrival

Rate
(1/hour)

Duration
(sec-
onds)

Nominal
Rate
(Kbps)

Pr(0)

Voice 0.67 180 23.85 0.5
Streaming 5 180 2500 1
Background traffic 40 10 1500 0.8

LBL for DCs based on server load. Lower values of LBL
represent better load balancing, while LBL = 1 designates
optimal load balancing.

• Request Acceptance Rate is the ratio of successfully
embedded requests over the total number of requests.

• Revenue per Request is the amount of CPU and
bandwidth units specified in the request. In this case
we present the aggregated revenue of the successfully
embedded SFC requests.

C. Evaluation Results

Fig. 3 illustrates the number of LTE vNF instances used
to serve the incoming requests, Fig. 4 depicts the CDF of
the hop count of vNF graph edges mapped to physical paths
(when all the vNFs of a service chain are collocated we
consider the hop count to be 0), whereas Fig. 5 plots the load
balancing level across DCs. The NF-Sharing approach reduces
significantly (approximately by 4̃7%) the number of vNFs
assigned at the NFVI, reducing as a result the corresponding
management overhead and provisioning costs associated with
vNF instances. According to Fig. 4, the baseline approach
employs distinct NF instances per service chain and collocates
the vNFs of a service chain in the same host more often
than the NF-sharing approach, as means to decrease the cost
of the objective function. The behavior of the NF-Sharing
approach is consistent with its formulation, attempting at every
opportunity to minimize the number of vNF instances used
by the incoming batch of service chain requests. However,
consolidation leads to a slightly larger number of service
chains assigned to vNFs that are placed on different servers;
hence, the difference among the hop count CDFs. Therefore,
embedding with NF-sharing increases the number of hops
onto which vNF graph edges are mapped, although a larger
instance of the problem would provide more insight on the
particular aspect. At the same time, the NF-sharing approach

yields better load balancing, comparing the corresponding load
balancing levels for DC1 and DC2 with the baseline.

Fig 6 and 7 illustrate the request acceptance rate of the two
approaches, and the corresponding revenue from embedding
the service chains, respectively. The baseline leads to an
increased acceptance rate and corresponding revenue, due to
its intrinsic flexibility, placing independently vNFs per chain.
When the DC utilization level increases significantly, the NF-
Sharing approach cannot map the corresponding set of service
chains per TAL, as opposed to the baseline that embeds chains
with finer granularity (approximately 10% higher than NF-
Sharing). However, flexibility comes at the cost of a larger
number of vNF instances. NF-Sharing results in a trade-off
by reducing the number of vNFs assigned at the NFVI, with
a proportionally quite smaller reduction at the acceptance
rate and revenue. Certainly, a high request acceptance rate is
important for the infrastructure provider, since he can increase
his revenue by meeting the requirements of multiple Mobile
Virtual Network Operators (MVNO) that lease network slices.
However, in the process of providing LTE as a Service,
operational costs (e.g., slice provisioning/configuration, as the
NF state is significantly less with the NF-Sharing approach)
need also to be taken into consideration.

Our goal is to decompose the LTE network elements into
vNF instances that are easily instantiated based on capacity
requirements, but without over-fragmentation that increases
the overheads associated with provisioning and NF state
management; that is exactly what the NF-sharing approach
achieves. Furthermore, optimizing NF placement is particu-
larly important in a dynamic environment where resources
become fragmented over time, and it might not be possible
for all VNFs in a service chain to be placed in proximity.
Based on our results, we believe that the enforced policy
on NF placement can potentially change over time in order
to reap the benefits of both solutions. More precisely, the
NF-Sharing approach is deemed more appropriate for low
and medium utilization levels in order to reduce vNF state,
while the baseling can be employed under high utilization to
exploit its flexible NF placement that eventually leads to higher
acceptance rate and revenue.

VI. RELATED WORK

In this section, we discuss related work on EPC and RAN
virtualization.

EPC. Research has been conducted on the instantiation of LTE
mobile core gateways (S-GW and/or PGW) as vNFs [25], [26],
[27]. Alternative approaches in the same direction take into
consideration data-plane delay constraints [28], [29]. However,
the aforementioned methods optimize the placement only of
data-plane functions for various objectives (e.g., minimizing
the EPC resource provisioning cost, load balancing). Recently,
control-plane EPC NF placement (e.g., MME, PCRF, HSS)
along S/P-GWs has been also considered towards a 3GPP-
compliant elastic cellular core [3], [14]. In addition, [30], [4]
propose MILP formulations for the joint embedding of core

241

20 40 60 80 100 120 140 160 180 200

SFC requests

0

100

200

300

400

500

600

V
N

F
 I

n
s
ta

n
c
e

s

NF-Sharing

Baseline

Fig. 3: Number of vNF Instances.

0 1 2 3 4 5

Hop Count

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
D

F

NF-Sharing

Baseline

Fig. 4: CDF of hop count

20 40 60 80 100 120 140 160 180 200

SFC requests

0

2

4

6

8

10

12

14

L
o

a
d

 B
a

la
n

c
in

g
 L

e
v
e

l NF-Sharing-DC1

NF-Sharing-DC2

Baseline-DC1

Baseline-DC2

Fig. 5: DC load balancing level.

20 40 60 80 100 120 140 160 180 200

SFC requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

NF-Sharing

Baseline

Fig. 6: Request Acceptance Rate.

20 40 60 80 100 120 140 160 180 200

SFC requests

0.5

1

1.5

2

2.5

3

3.5

S
F

C
 R

e
v
e

n
u

e

10
9

NF-Sharing

Baseline

Fig. 7: Aggregated Revenue.

network service chains, taking into account latency budgets
between communicating EPC elements, according to 3GPP.

KLEIN [3] presents a orchestration platform for EPC vir-
tualization aiming at load balancing across the operator’s
datacenters. In terms of NF placement on the virtualized EPC,
KLEIN decomposes the placement optimization into three
steps (i.e., region, datacenter, and server selection) to cope
with the problem complexity at large scale.

RAN. There has been comprehensive research over the past
years on minimizing energy consumption in RAN. The prob-
lem has been formulated as a joint optimization of RRH
selection and power-minimization beamforming [31], [32] or
joint optimization of RRH selection and precoding design [33],
[34]. Shifting the focus towards the fronthaul and efficient
resource usage of the BBU pool, BBU placement has been
jointly optimized with the fronthaul transport network [35],
[36], [37]. However, these studies are not focused on the
placement of virtualized RAN elements.

Following a technology-agnostic approach the problem of
BBU placement and RRH assignment in the RAN has been
recently investigated. Authors in [38] address the problem in
the context of a virtualized RAN, where functions from an
eNB (e.g., BBU) are implemented in a shared infrastructure
located at either a DC or distributed in network nodes. Specif-
ically this work attempts to minimize (i) the deployment cost
of a BBU server, (ii) the cost of setting up the fronthaul links
required between the BBUs and RRHs, and (iii) the deviation
between the desired and actual latency in the fronthaul links,
subject to constraints related to the resource capacities of
the physical resources and a corresponding budget for the
maximum number of BBU servers. The ILP formulation

can be reduced to the maximal covering location problem
that is known to be NP-hard. The authors propose a cost-
aware greedy algorithm, reaching potentially a suboptimal
placement and assignment solution, through a ranking and
selection procedure. Authors in [17] strive to minimize the
cost of deploying a BBU pool increased by the cost of the
corresponding fronthaul links required, while respecting the
resource capacities of the physical resources and ensuring that
the length of the optical link between the BBU pool and
RRHs for signal synchronization can not exceed a predefined
maximum value. The problem is formulated as an ILP and
solved using a local search heuristic.

In contrast to the aforementioned studies, we provide opti-
mization methods for the joint placement of E-UTRAN and
EPC elements onto virtualized infrastructures, as an enabler
for 5G network slicing. Our approach is also different, as we
enable NF sharing among service chains in order to reduce
the number of NF instances and, consequently, the associated
provisioning and management cost for cellular network oper-
ators.

VII. CONCLUSIONS

Towards the delivery of LTE as a service, we tackled the
challenging problem of LTE service chain assignment onto the
operator’s NFV infrastructure, from a different perspective.
In this respect, we proposed a MILP formulation for near-
optimal LTE service chain mappings, by sharing vNFs among
multiple service chains in a network slice, as means to reduce
the provisioning and management cost (which is strongly
correlated with the number of vNF instances), as well as
the fragmentation of resources. To identify potential gains

242

stemming from vNF sharing, we compared our proposed MILP
against a baseline MILP which assigns separate vNFs for each
service chain.

Our evaluation results corroborate the smaller number of
vNF instances allocated with the proposed MILP. This es-
sentially leads to lower overheads with respect to vNF pro-
visioning and management. Additional gains brought by NF
sharing include the reduction in the path length and better
load balancing in the operator’s DCs. Our evaluation further
indicates that these gains diminish at high utilization levels,
at which the flexibility afforded by a larger number of vNF
instances may be preferable by the operator, as it can lead to
higher request acceptance rates, and thereby, larger generated
revenue. Our evaluation can be used to drive the development
of a hybrid LTE service chain mapping approach, at which
NF sharing can be enabled depending on the DC load.

In future work, we plan to conduct an experimental evalu-
ation of NF sharing in virtualized RANs in order to quantify
the provisioning and management cost savings for the operator.
We will further investigate whether NF sharing introduces any
implications on resource isolation among the different service
chains.

ACKNOWLEDGMENTS

This work is partially supported by the EU-BRA Horizon
2020 NECOS Project (Grant Agreement No. 777067).

REFERENCES

[1] K. Katsalis et al, ”Network slices toward 5G communications: Slicing the
LTE network,” IEEE Communications Magazine, vol. 55, no. 8, 2017,
pp.146-154.

[2] N. Nikaein et al., ”Network Store: Exploring Slicing in Future 5G
Networks,” ACM MobiArch, Paris, France, Sep. 2015.

[3] Z. Qazi et al., ”KLEIN: A Minimally Disruptive Design for an Elastic
Cellular Core,” ACM SOSR ’16, Santa Clara, CA, USA, March, 2016.

[4] D. Dietrich et al., ”Network Function Placement on Virtualized Cellular
Cores,” IEEE COMSNETS, Bangalore, India, January 2017.

[5] China Mobile Research Institute,”C-RAN The Road To-
wards Green RAN,” White Paper. Version 2.5. [Online].
Available: http://labs.chinamobile.com/cran/wpcontent/uploads/
CRAN white paper v2 5 EN.pdf

[6] FUJITSU, ”The Benefits of Cloud-RAN Architecture
in Mobile Network Expansion”, [Online]. Available:
http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/
CloudRANwp.pdf.1 [Accessed: Dec. 8, 2017].

[7] N. Nikaein. ”Processing Radio Access Network Functions in the Cloud:
Critical Issues and Modeling,” ACM MCS ’15, Paris, France, Sept. 2015.

[8] N. Nikaein, et al., ”Demo: Closer to Cloud-RAN: RAN as a Service,”
ACM MobiCom ’15, Paris, France, Sept. 2015.

[9] IETF Service Function Chaining Use Cases in Mobile Networks. [On-
line]. Available: https:tools.ietf.orghtmldraft-ietf-sfc-use-case-mobility-02
[Accessed: Dec. 8, 2017].

[10] S. Fayazbakhsh et al., Enforcing Network-Wide Policies in the Presence
of Dynamic Middlebox Actions using FlowTags, ACM SIGCOMM
HotSDN ’13, Hong Kong, China, August 2013.

[11] Z. Qazi et al., ”SIMPLE-fying middlebox policy enforcement using
SDN,” ACM SIGCOMM ’13, Hong Kong, China, August 2013.

[12] D. Dietrich et al., ”Multi-Provider Service Chain Embedding with
Nestor,” IEEE Transactions on Network and Service Management, vol.
14, no. 1, March 2017, pp. 91-105.

[13] S. Mehraghdam, M. Keller, and H.Karl, ”Specifying and placing chains
of virtual network functions,” CloudNet, London, UK, Oct. 2014.

[14] A. Baumgartner, V.S. Reddy, and T. Bauschert, ”Mobile core network
virtualization: A model for combined virtual core network function
placement and topology optimization,” IEEE NetSoft, London, UK, June
2015.

[15] M. C. Luizelli et al., ”Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,” IFIP/IEEE
IM, Ottawa, Canada, July 2015.

[16] SONATA D2.1 Use Cases and Requirements. [Online]. Available:
http://www.sonata-nfv.eu/content/d21-use-cases-and-requirements
[Accessed: Dec. 8, 2017].

[17] S. Xu and S. Wang, ”Efficient Algorithm for Baseband Unit Pool
Planning in Cloud Radio Access Networks,” VTC 2016, Nanjing, China,
May 2016.

[18] M. Chowdhury, M. Rahman, and R. Boutaba, ”Virtual Network Embed-
ding with Coordinated Node and Link Mapping,” IEEE/ACM Transac-
tions on Networking, vol. 20, no. 1, Feb. 2012, pp. 206-219.

[19] W. Diego, I. Hamchaoui, and X. Lagrange, ”The Cost of QoS in
LTE/EPC Mobile Networks Evaluation of Processing Load,” VTC2015,
Boston, MA, USA, Sep. 2015.

[20] A. Abujoda, and P. Papadimitriou, ”Profiling packet processing work-
loads on commodity servers”, IFIP WWIC 2013, St. Petersburg, Russia,
June 2013.

[21] M. Dobrescu, K. Argyarki, and S. Ratnasamy, ”Toward Predictable
Performance in Software Packet-Processing Platforms,” USENIX NSDI,
San Jose, CA, USA, March 2016.

[22] Q. Wu and T. Wolf, ”Runtime Task Allocation in Multi-Core Packet
Processing Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 10, Oct. 2012, pp. 1934–1943.

[23] J. Prados-Garzon et al., ”Latency evaluation of a virtualized MME,”
IEEE Wireless Days, Toulouse, France, March 2016.

[24] M. R. Sama et al., ”Enabling network programmability in LTE/EPC
architecture using OpenFlow,” IEEE WiOpt, Hammamet, Tunisia, May
2014.

[25] T. Taleb and A. Ksentini, ”Gateway relocation avoidance-aware network
function placement in carrier cloud,” ACM MSWiM ’13, Barcelona,
Spain, Nov. 2013.

[26] M. Bagaa, T. Taleb, and A. Ksentini, ”Service-Aware Network Function
Placement for Efficient Traffic Handling in Carrier Cloud,” IEEE WCNC,
Istanbul, Turkey, Nov. 2014.

[27] F. Yousaf et al., ”SoftEPC: Dynamic instantiation of mobile core network
entities for efficient resource utilization,” IEEE ICC, Budapest, Hungary,
June 2013.

[28] A. Basta et al., ”Applying NFV and SDN to LTE mobile core gateways,
the functions placement problem,” ACM AllThingsCellular, Chicago ,IL,
USA, August 2014.

[29] T. Taleb, M. Bagaa, and A. Ksentini, ”User mobility-aware virtual
network function placement for virtual 5G network infrastructure,” IEEE
ICC, London, UK, June 2015.

[30] A. Baumgartner, V.S. Reddy, and T. Bauschert, ”Combined Virtual
Mobile Core Network Function Placement and Topology Optimization
with Latency Bounds,” IEEE EWSDN, Bilbao, Spain, Sept. 2015.

[31] Y. Shi, J. Zhang, and K.B. Letaief, ”Group sparse beamforming for green
Cloud-RAN,” IEEE/ACM Transactions on Wireless Communications, vol.
13, no. 5, May 2014, pp. 2809-2823.

[32] J. Tang, W.P. Tay, and T.Q. Quek, ”Cross-layer resource allocation
with elastic service scaling in cloud radio access network,” IEEE/ACM
Transactions on Wireless Communications, vol. 14, no. 9, Sept. 2015, pp.
5068-5081.

[33] V.N. Ha, L.B. Le, and Ngo. c-Dung Dao, ”Cooperative transmission
in cloud RAN considering fronthaul capacity and cloud processing
constraints,” IEEE WCNC, Istanbul, Turkey, Nov. 2014.

[34] V.N. Ha and L.B. Le, ”Computation capacity constrained joint transmis-
sion design for CRANs,” IEEE WCNC, Doha, Qatar, April 2016.

[35] F. Musumeci et al., ”Optimal BBU placement for 5G C-RAN deploy-
ment over WDM aggregation networks,” Journal of Lightwave Technol-
ogy, vol. 34, no. 8, April 2016, pp. 1963-1970.

[36] A. Asensio et al., ”Study of the Centralization Level of Optical Network-
Supported Cloud RAN,” IEEE ONDM, Cartagena, Spain, May 2016.

[37] K. Sundaresan et al., ”Fluidnet: A flexible cloud-based radio access
network for small cells,” IEEE/ACM Transactions on Networking, vol.
24, no. 2, April 2016, pp. 915-928.

[38] R. Mijumbi et al, ”Server placement and assignment in virtualized radio
access networks,” IEEE CNSM 2015, Barcelona, Spain, Nov. 2015.

243

D2D Multihop Energy-Efficient Routing and
OFDMA Resource Allocation in 5G Networks

Safwan Alwan∗, Ilhem Fajjari† and Nadjib Aitsaadi‡
∗University Paris-Est, LiSSi EA 3956, UPEC, F94400, Vitry-sur-Seine, France

†Orange Labs, F92320, Chatillon, France
‡University Paris-Est, LIGM-CNRS UMR 8049, ESIEE Paris, F93160, Noisy-le-Grand, France

Emails: safwan.alwan@univ-paris-est.fr, ilhem.fajjari@orange.com, nadjib.aitsaadi@esiee.fr

Abstract—In face of the rapidly increasing cellular traffic,
5G will employ offloading techniques to relieve the cellular
infrastructure. The idea is to carry the traffic locally by User-
Equipment (UE) relays or by other coexisting radio access
technologies such as WiFi, Bluetooth, etc. To this end, in this
paper, we propose an offloading scheme using multi-hop LTE-
D2D communications and assisted by the operator. LTE-D2D
UEs cooperate to carry intra-cell unicast/multicast traffic from
sources to destinations by exploiting i) sidelink interfaces and
ii) multi-hop paths. To increase the lifetime of the offloading
system and to reduce the impact of the relaying process on
the battery-limited UEs, we propose our energy-aware approach,
named JRRA-EE, to solve jointly the routing and the OFDMA
resource block allocation. We formulate our problem as a 0-1
Integer Linear Programming (ILP) model which is elaborated
to take into consideration the realistic LTE-D2D capabilities
and constraints. To gauge the effectiveness of our proposal, we
implement the whole 3GPP LTE-D2D protocol stack in the NS-3
network simulator to simulate our approach. Based on extensive
simulations, the obtained performances of JRRA-EE are better
compared to other one-sided optimal strategies, including an
energy non-aware variant, in terms of i) the network lifetime, ii)
the packet loss and iii) the service interruption rate.

Index Terms—LTE-D2D, Routing, OFDMA resource block
allocation, Energy-aware offloading, Optimization.

I. INTRODUCTION
In recent years, the Device-to-Device (D2D) communication
paradigm has received much attention of the academic and
industrial communities. Relying on the physical proximity
of user terminals, D2D offers low-energy cost and short-
distance communications. Furthermore, D2D allows reusing
the existing of classical cellular hardware as well as the same
frequency resources leading to improve the overall network
and spectral efficiency. Apart from these advantages, D2D
communication also enables many new applications such as
proximity-based safety and commercial services, cooperative
content sharing and relaying.

In this paper, we tackle both the routing and OFDMA
resource block allocation for an energy-efficient offloading
mechanism within the LTE networks for multicast and/or
unicast flow-oriented application. Note that, from a formu-
lation point of view, a unicast flow is a special case of a
multicast (i.e., one destination). Specifically, within a single
LTE eNodeB cell, our system utilizes the sub-network of
LTE-D2D-enabled User Equipments (UEs) to route flows that
originates from and terminates in the same macro-cell. As a
matter of fact, while the data plane offloading rests with the
UEs themselves, the whole operation is controlled by the base-
station (the eNodeB/eNB). Many crowded-platform scenarios
fit in the above description. Examples include content-sharing
applications in stadium, train stations and airports. In fact, in
such scenarios, we have a high density of quasi-stationary UEs
during the event or the waiting period. As a consequence, the
need to relieve the macro-cell and micro/femto-cells is really
vital.

The offloading operation entails both routing and OFDMA

Resource Block (RB) allocation of the D2D communications
over the SideLinks (SLs) interfaces of UEs . Note that the SL
makes use of the same hardware transceiver and frequency
spectrum employed by the UpLink (UL) interface. Conse-
quently, any UE cannot simultaneously communicate in both
interfaces UL and SL. Moreover, the SL communication is
half-duplex [1]. In other words, the UE cannot simultaneously
send and receive on SL.

Our objective is to solve jointly the two sub-problems
where the routing decision considers the i) available OFDMA
RBs, ii) interferences, and iii) dynamic state of network.
However, a practical LTE-D2D-based offloading should not
be agnostic to the fact that UEs are usually battery-limited
devices. Therefore, to increase utility and lifetime of the
offloading sub-network, we formulate an energy-aware joint
scheme, for the OFDMA RB allocation and the routing, as
a 0-1 Integer Linear Problem (ILP). It is worth noting that
our formulation includes realistic constraints related to the
LTE-D2D such as the half-duplex of SLs, the contiguity of
RB allocations, the total power consumption due to the i) the
baseband processing, ii) the RF transmission/reception of the
D2D sidelink interface. Solving ILP problems, in general, has
been proven to be NP-hard and the optimal solution is unlikely
to be found in polynomial time [2].

To cope with the potentially-exponential complexity, we
propose a new scheme named Joint Routing and Resource
Allocation Energy Efficient (JRRA-EE). Our proposal is a
centralized strategy hosted in the eNodeB. This means that
the D2D communications are under the supervision of the
telecommunication operator. Indeed, only the data plane is
offloaded and the control plane is still under the control
of the operator. JRRA-EE is a two-stage scheme. First, a
pre-routing stage is performed in order to reduce the space
of solutions. Then, the ILP is solved making use of the
Branch-and-Cut approach while considering only the reduced
space of candidates. The LTE-D2D offloading mechanism
aims to help the eNodeB under heavy traffic conditions. Note
that our proposed offloading mechanism is presented as a
complementary method to deliver multicast and/or unicast
flows. In other words, the purpose of LTE-D2D offloading
is to complement, not to compete with, the LTE macro/femto-
cells conventional delivery methods. If the LTE-D2D path
does not exist, the communication will be ensured over the
traditional macro/femto-cells. To gauge the effectiveness of
JRRA-EE, we implemented the whole LTE-D2D SL protocol
stack in UEs in the NS-3 network simulator. Using extensive
simulations, we compared our proposal JRRA-EE to other
one-sided optimal strategies and a non-energy aware variant.
One-sided optimal strategy is one which is optimal only in one
sense either in resource block allocation or in routing. Based
on simulation results, we establish that our proposal JRRA-EE
outperforms the other strategies in terms of i) the network
lifetime, ii) the packet loss and iii) the service interruptionISBN 978-3-903176-08-9 c© 2018 IFIP

rate.
The remainder of the paper is organized as follows. Sec-

tion II will summarize the related strategies addressing energy-
aware multihop D2D communications. In Section III, we will
formulate the problem. Then, in Section IV, the proposal will
be detailed. The simulation environment and the performance
evaluation will be presented in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK
In this section, we summarize the most relevant related
strategies found in the literature dealing with energy-aware
routing the context of D2D communications. Note that D2D
is employed as an umbrella term for technologies that include,
amongst others, LTE-D2D and WiFi Direct.

In [3], the authors show that LTE-D2D cooperative relays
save significant amounts of energy when compared to conven-
tional Base Station (BS) to UE communications. In addition,
the authors present a cooperative relaying scheme to improve
the UE’s battery life. The idea consists in maximizing of use of
UEs with high battery levels to deliver the traffic of UEs with
low energy. Numerical simulations show that the approach
reduces the outage probability of the cellular cooperating UEs.

In [4], the authors present a scheme to deliver BS-to-
UE video content delivery via a cooperative D2D multihop
routing. The proposed scheme employs a generic framework to
avoid disruption caused by the depletion of D2D UE’s energy
budget. Seeking to optimize the budget utility, the algorithm
described jointly schedules the routes and traffic workloads
depending on the energy efficiency of each D2D wireless link.

In [5], the authors design an energy efficient routing proto-
col in Wi-Fi Direct cluster-based networks. The designed pro-
tocol adopts ideas from LEACH and HEED protocols which are
well-known in wireless sensor networks. Through numerical
simulations, the authors demonstrate that the scheme consider-
ably saves network’s energy as compared to the conventional
peer-to-peer mode of Wi-Fi Direct.

In [6], the authors propose a heuristic algorithm energy-
efficient multi-hop routing algorithm for UE-UE unicast traf-
fic. Both channel reusing and power allocation are jointly
addressed to obtain a satisfactory solution. The simulations
show that significantly improvements in energy-efficiency of
the multi-hop D2D communication system.

In relation to our paper, [3] considers only UE-to-BS traffic
where high-battery UEs help low-battery ones to relay their
traffic to the BS. On the other hand, our work focuses on
offloading UE-UE multicast and/or unicast traffic to alleviate
the base-station. Similarly, [4] also tackles the BS-to-UEs
multicast video traffic where UEs employ a distributed multi-
path routing and caching technique. In comparison, despite
being energy-budget aware like [4], our work focuses on
central algorithms and flow-centric applications where the
employed on-demand cluster formation and caching, in [4],
cannot be used. In the same manner, the protocol in [5] cannot
be adapted into LTE-D2D to serve our purpose, since the traffic
model in WSN is multiple-sources-one-sink and the clustering
technique is useless in our case. The closest work to ours is [6]
despite its focus on unicasting UE-UE traffic. However, the
authors assume generic assumptions about wireless technology
where the medium is abstracted as whole channels not in terms
of resource blocks. They also consider an analytical power
consumption model for each D2D link while no energy-budget
limitation is considered. On the other hand, we consider a
model of multicasting UE-to-UEs traffic where the unicast
model can be treated as a special case. Furthermore, we
incorporate LTE-D2D specificities with an empirical power

τ-1 τ τ+1
Time

Frequency

TSL

BSL

One SL Resource Block

One SL Frame

Flows arrived
during this SL frame are
evaluated for scheduling
on the next one

Fig. 1. Sidelink frame structure and scheduling.

consumption model to cater for the efficient utilization of the
allocated energy budget for the cooperative relaying process.

III. NETWORK AND PROBLEM FORMULATION
In this section, we will first provide a detailed model of our
LTE-D2D system. Then, we will formulate our energy-aware
routing and resource block allocation problem in LTE-D2D
offloading networks.
A. System model
We consider N LTE-D2D enabled UEs who are located inside
the LTE-A eNB’s macro-cell. UEs are assumed to be quasi-
stationary (e.g., located in the stadium) and are willing to
offload the data plane of only intra-cell D2D traffic when it is
expedient. The control plane is deployed in the eNB. The latter
handles the offloading operations, over the D2D subnetwork,
by continuously allocating OFDMA resource blocks during
each sidelink (i.e., SL) frame. As depicted in Fig. 1, these
operations are triggered each instant T where:

T = τ × TSL ∀τ ∈ N
where TSL and τ represent the duration of a SL frame and
the frame index respectively. It is worth noting that the SL
frame corresponds to the scheduling time unit in SL, which
spans multiple one-millisecond time slots (i.e., multiple TTIs).
Besides, it is characterized by a BSL which corresponds to the
total bandwidth of the SL communication, and is composed
of Ω contiguous OFDMA resource blocks.

We model the D2D network as a symmetric directed graph
G = (V, E). Each node vi ∈ V corresponds to one UE. An
edge (i.e., sidelink) eij ∈ E between two nodes vi and vj
exists if and only if the Signal to Noise Ratio (SNR), γij , is
greater than a predefined threshold, γTOPO. Formally,

γij =
gijPt,i
Pσ

≥ γTOPO (1)

where i) Pt,i is the power emitted by vi, ii) Pσ corresponds
to the thermal noise power, and iii) gij is the channel gain
between the pair vi and vj which depends on the used channel
model.

During each SL frame, the system’s flows set, denoted by
F , is the union of two subsets FS and FC defined as follows:
• FS: set of scheduled flows. It corresponds to the on-going

flows which are circulating on the LTE-D2D system.
Hence, RBs need to be allocated for them in order to
maintain their offloading operation.

• FC: set of candidate flows. It encompasses the flows
which are waiting to be admitted during the next SL
frame. Candidate flows are dynamically selected among
those residing in the waiting queue, FW, based on the
current availability of idle nodes VD.

Each multicast flow fk ∈ F is characterized by a source
node sk ∈ V , a destination group Dk ⊆ V and a constant
bit rate, Rk. Note that the unicast flow is a special case of
the multicast flow in which |Dk| = 1 (i.e., one destination).
In this paper, we address only the Constant Bit-Rate (CBR)

245

TABLE I
NOTATION - SYSTEM MODEL

Symbol(s) Meaning
vn, eij , f

k The nth node, the link from the ith to the jth
node and the kth flow

sk,Dk,Tk The source, the destinations and the routing
tree of fk

Rk, Dk The bit rate and the requested number of RBs
of fk

δyx Kronecker delta function which equals to 1
only when x = y and 0 otherwise.

1
Y
x Set Y ’s indicator function which equals to 1

only when x ∈ Y and 0 otherwise.
O (vn) , T (vn) Sets of outgoing (originating) links from

vn and terminating (incoming) links in vn
respectively

xh,kij Essential 0-1 decision variable that indicates
whether the link eij is used to offload the
flow fk at the hop (tree level) number h

tkn Auxiliary 0-1 variable indicating whether vn
acts as a (re-)transmitter for fk . Note that at
the source node, tksk also indicates whether
the flow is admitted or not.

Hn Essential 0-1 decision variable that indicates
the node vn is scheduled to transmit during
SL frames whose p = τ mod 2 = Hn

yu,n Essential 0-1 decision variable that indicates
that the RB pattern is allocated to the node
vn.

Rij Auxiliary 0-1 variable that indicates if the
link eij is active.

Rω
n Auxiliary 0-1 variable indicates if the RB ω

is allocated to vn.
Rω,p

n Auxiliary 0-1 variable indicates if the RB ω
is allocated to vn transmitting in the half
duplex set p.

Rω,p
ij Auxiliary 0-1 variable indicates if the RB ω

is allocated to vi transmitting to vj in the
half duplex set p.

φω,p
n,ij Auxiliary 0-1 variable indicates that vn

transmitting in the half duplex set p on the
RB ω is interfering with the (active) link eij .

flows. Once admitted, fk is carried throughout a routing tree
Tk delivering its packets from sk to Dk. Note that if fk
is unicast flow, Tk is reduced to one branch (i.e., path).
Tk is characterized by hmax levels which corresponds to the
maximum number of hops from the root to the leaves.

Each UE is handled in an exclusive manner. This means
that a given node can relay at most one flow at a time. Conse-
quently, the routing trees (i.e., multicast) and/or branches (i.e.,
unicast) are mutually disjoint for concurrent flows.
B. Problem formulation
We address, in this paper, the energy-aware joint routing and
OFDMA resource block allocation problem in LTE-D2D. The
objective is to compute, for a given multicast flow fk ∈ F ,
the optimal routing tree while i) limiting the interferences
between forwarding UEs, ii) minimizing the number of hops,
iii) minimizing the communication energy consumption.

Conceptually, this problem can be decomposed into two
sub-problems: i) routing and ii) resource allocation. However,
following a cross-layer design, we propose to coordinate the
resolution of the two sub-problems. In doing so, we aim to
maximize the QoS and the efficiency of the system respec-
tively from the point view of end-users and telecommunication
operator. By such a joint treatment, enhanced results are
obtained since the routing solution takes also in consideration,
the induced wireless interferences in OFDMA RBs and the
energy consumed in the transmission/reception operations.

In light of our adopted formalism shown in TABLE I, the
routing problem can be formulated as following. Let xh,kij
indicates whether the corresponding link eij is selected or not

to be a part of a routing tree Tk for the flow fk at the tree
level (hop) h for h = 0, 1, . . . , hmax. To ensure a consistent
tree structure, we introduce the following constraint which
stipulates that a node vn has at most one parent:∑∑∑

eij∈T (vn)

0≤h≤hmax,f
k∈F

xh,kij ≤ 1 ∀vn∈V (2)

Note that T (vn) corresponds to the set of incoming links to
vn. It is straightforward to see that this constraint ensures that
a link cannot appear in more than one flow at a time.
Besides, we must ensure that only outgoing links from source
are allowed at a tree’s root (i.e., at h = 0). Formally,

xh,kij ≤ δ
h
0 · δs

k

vi + (1− δh0)(1− δs
k

vi − δ
sk

vj)
∀eij∈E
∀0≤h≤hmax

∀fk∈F
(3)

We recall that δxy corresponds to the Kronecker delta function
which equals to 1 only when x = y and 0 otherwise.
Also, we must guarantee that an outgoing link in the tree from
a node vn is possible at the level h if and only if an incoming
link exists at the level h− 1. Formally,

xh,knm ≤
∑

eij∈T (vn)

xh−1,k
ij

∀enm∈E
∀1≤h≤hmax

∀fk∈F
(4)

It is worth noting that constraints (2)–(4), also imply that a
tree is a non-circular graph.
Besides, to prevent the addition of a needless branch stopping
at a non-destination node, we require that only destination
nodes are possible as leaves in a tree. Formally:∑∑

eij∈T (vn)
0≤h≤hmax

xh,kij −
∑∑
eij∈O(vn)
0≤h≤hmax

xh,kij ≤ 1
Dk

vn
∀vn∈V
∀fk∈F (5)

where 1Yx corresponds to a set Y ’s indicator function, which
equals to 1 only when x ∈ Y and 0 otherwise, and
O (vn) , T (vn) are the sets of outgoing links from vn and
terminating links in vn respectively.
To ensure that the tree is formed only when it provides a
complete delivery to all destinations, we add the following
constraints: ∑∑

eij∈T (vn)
0≤h≤hmax

xh,kij ≥ 1
Dk

vn · t
k
sk

∀vn∈V
∀fk∈F (6)

tkn ≥
∑

0≤h≤hmax

xh,knm
∀enm∈E
∀fk∈F (7)

tkn ≤
∑∑
eij∈O(vn)
0≤h≤hmax

xh,kij
∀vn∈V
∀fk∈F (8)

where tkn is a 0-1 auxiliary variable which is fixed by con-
straints (7) and (8) to indicate whether vn acts as a relay node
(i.e., a non-leaf node for flow fk).
In addition, to ensure that the concurrently-admitted flows have
non overlapping relay nodes, a node vn is required to transmit
at most one flow. Formally,∑

fk∈F

tkn ≤ 1 ∀vn∈V (9)

However, a node vn may act, at once, as a source and a
destination for two distinct flows. This case is not permitted.
Formally, ∑

fk∈F

(
δs

k

vn + 1
Dk

vn

)
· tksk ≤ 1 ∀vn∈V (10)

Fig. 2 illustrates an example of a routing tree generated
according to the above constraints.

In line with the LTE-D2D standard [1], UEs are char-
acterized by half-duplex D2D transmission in the side-link

246

h = 0

h = 1

h = 2

h = 3

h = 4

R2R1

S

D4

R4

D3D2

D1

R3

R2R1

S

D4

R5
R4

D3

R6

D2

D1

Fig. 2. Example of a constructed routing tree.

interface. Therefore, during a given SL, a node can act as a
transmitter or a receiver but not both simultaneously. To cope
with this hardware limitation, while reducing total end-to-end
delay, we propose to schedule active links in an alternating
fashion. To do so, we divide the set of active nodes VG ⊆ V
into two half-duplex sets: V0

G and V1
G. During a SL frame,

the eNB scheduler addresses the RB allocations of one given
set VpG depending on the parity p of the frame index τ (i.e.,
p = τ mod 2). Nodes belonging to the second set act as
receivers. During the next frame, half-duplex sets switch their
roles. As a result of this strategy, nodes in routing trees are
scheduled according to the parity of their hop index in the
routing tree (i.e., tree level). In other words, a parent node
must belong to a different half-duplex set than its children.
The node half-duplex allocation decision is embodied by the
following constraint using the notations defined in TABLE I:∑∑

fk∈F
0≤h≤hmax

xh,kij ≤ Hi +Hj ≤ 2−
∑∑
fk∈F

0≤h≤hmax

xh,kij ∀eij∈E (11)

We assign a bandwidth BSL, composed of Ω contiguous
RBs, to the SL operation. Note that only contiguous RB
allocations are feasible within this bandwidth because the SL
has the same communication proprieties as the UL [7]. To
do that, we enumerate all these allocations in the SL using a
matrix ZΩ×U = [zω,u] in which columns represent the whole
set contiguous patterns. The number of columns is given as
U = 1

2Ω(Ω + 1). Fo instance, all contiguous allocations for
Ω = 4 RBs are listed as columns in the following matrix:

Z4×10 =

1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1

For example: the seventh column represents two RBs are
allocated, namely the 3rd and 4th ones.
Furthermore, we model the RB allocation decision, for an
active node vn, as a set of respective 0-1 variables yu,n∀u ∈ U
which indicates the selected allocated pattern (i.e., column) u
of the matrix Z . This decision is constrained by:

U∑
u=1

yu,n ≤
∑
fk∈F

tkn ∀vn∈V (12)

stipulating that only one allocation is possible for a node when
it is acting as a (re-)transmitter for a flow.
To continue the formulation, additional auxiliary variables,
whose definition are in TABLE I, are derived from the decision
variables Hn and yu,n as detailed hereafter.
To indicate whether a RB ω is used by vn, we introduce the
0-1 variable Rωn whose value is deduced from the respective
variables yu,n by the following constraint:

Rωn ,
U∑
u=1

yu,nzω,u
∀vn∈V
∀1≤ω≤Ω (13)

Furthermore, additional variables Rω,0n and Rω,1n are defined

to indicate whether the RB ω is used by vn in V0
G or V1

G, i.e.
half-duplex set of frames, respectively. Formally,

Rω,0n , Rωn −Rω,1n
∀vn∈V
∀1≤ω≤Ω (14)

Rω,1n , Hn ·Rωn ∀vn∈V
∀1≤ω≤Ω (15)

Bn is the number of RB used by vn and it is equal to:

Bn ,
Ω∑
ω=1

Rωn ∀vn∈V (16)

An additional set of link-level auxiliary 0-1 variables are
introduced as follows:

Rij ,
∑∑
0≤h≤hmax

fk∈F

xh,kij ∀eij∈E (17)

Rω,pij , Rω,pi ·Rij
∀eij∈E
∀1≤ω≤Ω
∀p∈{ 0,1 }

(18)

φω,pn,ij , Rω,pn ·Rω,pij
∀vn∈V,∀eij∈E
∀1≤ω≤Ω
∀p∈{ 0,1 }

(19)

where Rij indicates if eij is used for some flow. Rω,pij indicates
if the RB ω is used for the scheduled link eij during the pth

half duplex set. φω,pn,ij is an interference indicator between node
vn and link eij on the RB ω.
To adhere to a linear formulation, a further step is needed to
linearize Constraints (15), (18) and (19), which contain prod-
uct terms. We make use of standard technique by introducing
for each term x · y an additional auxiliary 0-1 variable λxy
add three more linear constraints as follows:

(λxy ≤ x) ∧ (λxy ≤ y) ∧ (λxy ≥ x+ y − 1) (20)

To increase the RB reutilization and reduce power consump-
tion, we require that UEs cannot allocate RBs more than the
flows’ requests. Formally,

Bn ≤ Ω + (Dk − Ω) · tkn
∀vn∈V
∀fk∈F (21)

Note that the relation between flow bit-rate Rk and the
respective demand for RBs Dk is defined by [7] as:

Rk =
TBS

(
MCS, Dk

)
C

[Mbps] (22)
where TBS is the MAC transport block size function in bits as
defined in [7] considering a baseline modulation and coding
scheme (MCS) for the SL. C is a constant equal to 1000.

In our model, we adopt a fixed power density scheme for the
D2D emission power. In this scheme, the total emission power
Stx,n of a node is proportional to the number of allocated RBs
Bn. Formally,

Stx,n = Ψt,n ·Bn [mW] (23)
Furthermore, we assume a common emission power density
for the D2D nodes (i.e., Ψt,n = Ψt, ∀vn ∈ V).
Following the same per-RB treatment and assuming flat block-
fading channel model, the overall Signal-to-Interference-plus-
Noise Ratio (SINR) on the link eij is equal to:

γij =
gijΨt,i∑

vn∈V
gnjΨt,n + Ψσ

(24)

where Ψσ and Ψt,n represent the spectral densities (per RB)
of the thermal noise and the transmission from vn, and gij is
the channel gain between the node pair (vi, vj).

In face of the reutilization of RBs, system performance is
limited by interference caused by nodes transmitting using
the same RB. To optimize the performances by minimizing
interferences, SINR must be upper-bounded by a common
threshold γ. To formulate this constraint on RB allocations,
we translate this limit (i.e., SINR ≤ γ) into the inequality

247

TABLE II
UE POWER CONSUMPTION MODEL PARAMETERS.

Parameter Value
P const

tx 883.52 mW
P const

rx 878.1 mW
stx
1 0.2 dBm
stx
2 11.4 dBm
srx
1 52.5 dBm
atx
1 23.6 mW
atx
2 45.4 mW

Parameter Value
arx
1 24.8 mW
arx
2 7.86 mW
aR 8.16 mW
bR 0.97 mW/Mbps
btx
1 0.78 mW/dBm
btx
2 17 mW/dBm
brx
1 0.04 mW/dBm
brx
2 0.11 mW/dBm

N +I ≤ Pr/γ where Pr is the received power. Consequently,

ΨσR
ω,p
ij +

∑
n 6=i

gnjΨt · φω,pn,ij ≤
gijΨt

γ
Rω,pij

∀eij∈E
∀1≤ω≤Ω
∀p∈{ 0,1 }

(25)

where constraint (25) ensures that the SINR is below the
threshold γ considering RB allocations and active nodes
interfering in the same half-duplex set VpG. The auxiliary
0-1 variable Rω,pij indicates that the link eij is scheduled to
transmit together with half-duplex set VpG on the RB ω.

To evaluate the effect of energy consumption, similar to [8],
we make use of the following empirical model defined in [9],
to calculate the total communication consumed power due to
the D2D operations at both ends. At the transmitting end, the
total consumed power is given by:

PD2D
tx = P const

tx + PRF
tx (Stx) (26)

PRF
tx (Stx) =

{
btx
1 · Stx + atx

1 ifStx ≤ stx
1

btx
2 · Stx + atx

2 if stx
1 < Stx ≤ stx

2

where PD2D
tx includes the constant term P const

tx related to the
baseband circuit consumption when the D2D transmitter is
active. PRF

tx is the total RF block consumption in terms of the
power emitted Stx from the antenna in dBm. Hence, the power
consumed by a node vn, due to the transmission of the flow
fk, can be estimated as:

Πk
tx,n = P const

tx + PRF
tx

(
Sktx,n

)
[mW] (27)

Sktx,n = dBm
(
Ψt,nD

k
)

(28)
Similarly, at the receiving end of an active link, the total
consumed power is equal to:

PD2D
rx = P const

rx + PRF
rx (Srx) + PBB

rx (R) (29)

PRF
rx (Srx) =

{
−brx

1 · Srx + arx
1 ifSrx ≤ −srx

1

−brx
2 · Srx + arx

2 ifSrx > −srx
1

PBB
rx (R) = bR ·R+ aR

where PD2D
rx includes the constant term P const

rx , related to the
receiving circuit being active, and PRF

rx , which gives the total
RF block consumption in terms of the power received Srx at
the antenna in dBm. The additional term PBB

rx gives the rate-
dependent power consumption in the base-band block of the
device. Therefore, the power consumption at the receiver of an
active link eij , due to the reception of the flow fk, is estimated
by:

Πk
rx,ij = P const

rx + PRF
rx

(
Skrx,ij

)
+ PBB

rx

(
Rk
)

[mW] (30)

Skrx,ij = dBm
(
gij ·Ψt,iD

k
)

(31)
where Rk is the respective flow bit-rate defined in equa-
tion (22).
TABLE II illustrates the parameters values of the above power
consumption model.

We model the impact of node participation in routing on its
residual energy by proposing a ranking method that takes into
consideration the current distribution of residual energy in the
system. For each non-dead node vn, we assign a fractional

rank Λn ∈ (0, 1] as following:

Λn(τ) =
1

1 +
⌊
En(τ)−Emin(τ)

σE(τ)

⌋ (32)

where En(τ), Emin(τ) and σE(τ) respectively represents i)
node’s residual energy, ii) minimum residual energy in the net-
work, and iii) standard deviation of residual energy distribution
at the beginning of the SL frame τ . Note that high fractional
rank means high impact on the node’s residual energy.

The time evolution of the residual energy is estimated at the
eNodeB as detailed hereafter:
En(τ) = En(τ − 1)− PD2D · TSL (33)

PD2D =

PD2D

tx if vn was transmitting in frame τ − 1
PD2D

rx if vn was receiving in frame τ − 1
0 if vn was idle in frame τ − 1

assuming that each node has initial energy budget En(0).
Above, we have defined all the variables and constraints (2)

– (19) addressing i) routing, ii) OFDMA RB allocation and iii)
energy consumption. Now, we can complete the formulation
by defining the objective function:

max
xh,k
ij ,Hn,···

1

ℵB

∑
vn∈V

Bn +
1

ℵA

∑
fk∈F

tksk −
1

ℵR

∑∑
vn∈V
fk∈F

Λnt
k
n

− 1

ℵtx

∑∑
vn∈V
fk∈F

Πk
tx,nt

k
n −

1

ℵrx

∑∑∑
eij∈E

0≤h≤hmax,f
k∈F

Πk
rx,ijx

h,k
ij

(34)
where the normalizing factors defined by:

ℵB , Ω · |V| ,ℵA , |FC| ,ℵR ,
∑
vn∈V

Λn,

ℵtx ,
∑∑
vn∈V
fk∈F

Πk
tx,n,ℵrx ,

∑∑
eij∈E,fk∈F

Πk
rx,ij (35)

The terms in the objective function in (34), represent respec-
tively a normalized equal-weight multi-objective formulation
of eNodeB goal to achieve the following objectives: i) increas-
ing the number of RB allocated for each flow, ii) increasing
the number of admitted flows in the system, iii) lowering the
routing impact on nodes’ residual energy, iv) lowering the
power consumption in the relaying process at the transmitting
side, v) lowering the power consumption in the relaying
process at the receiving side.

To quantify the ILP model’s size complexity, we cite
its column-size, i.e., number of variables, and its row-
size, i.e., number of constraints. As for our model,
an asymptotic analysis shows that, in terms of G,
F , Ω and hmax, the ILP model has column-size of
O
(
|V|Ω2 + |V| |E|Ω + |V| |F|+ |E| |F|hmax

)
and a row-size

of O (|V| |E|Ω + |V| |F|+ |E| |F|hmax).
IV. PROPOSAL: JRRA-EE

To solve our energy-aware joint routing and OFDMA resource
block allocation problem, formulated in the above section as
an ILP model, we propose a two-stage heuristic algorithm,
based on the branch-and-cut method, named Joint Routing and
Resource Allocation Energy Efficient (JRRA-EE). It is worth
noting that our scheme is centralized and is handled by the
eNodeB.
JRRA-EE adopts an online bulk strategy by considering for

the SL frame τ resolution, all active scheduled flows and the
waiting flows up to the previous SL frame. However, instead
of considering all the waiting flows FW for admittance, it
proceeds by an initial stage of pre-routing to filter the waiting

248

Algorithm 1 JRRA-EE pseudo-code
1: for each SL frame τ do
2: for each fk ∈ FA do . Arriving Flows
3: FW ← FW ∪ { fk }
4: end for
5: for each fk ∈ FFIN do . Finished Flows
6: VD ← VD ∪ NodesOF

(
Tk
)

7: end for
8: Execute Algorithm 2 . Pre-routing
9: Construct the ILP model as in formula (34)

10: Solve the ILP model using branch-and-cut
11: for each fk ∈ FC do
12: if tksk = 1 then . Flow is admitted
13: Configure Tk according to xh,kij
14: end if
15: end for
16: p← τ mod 2
17: for each vn ∈ VpG do
18: Allocate RBs for vn according to yu,n
19: end for
20: end for

R1

S

D3

R4

D1 D2

R4

R2

R1

D3
D2

D1

S

R6

R3

R5

R7

S

R6

D3

D1 D2

R5

R Busy (active) relay

R Idle relay

R4

R3

Fig. 3. Pre-routing tree formation and its deviation.

flows down to a set of candidate flows FC. The rational behind
this initial stage is to reduce the size complexity of the ILP
model by reducing the number of considered flows F and also
by setting the model parameter hmax to a reasonable value. It
is worth noting that high values for hmax implies more possible
routing trees to discover while low values few routing trees
and hence few admitted flow into the system. The pseudo-code
of JRRA-EE illustrated in Algorithm 1.

The pre-routing stage proceeds as follows. For each waiting
flow fk, the eNodeB checks if it is possible to construct a
routing tree from the source node to all destinations using
breadth-first-traversal and considering only the currently idle
nodes. We recall that each node cannot handle more than
one flow. Note that such tree construction stops once all
destinations are reached. If such pre-routing tree T̃k exists then
the flow fk is added to the set of candidate flows FC. In the
other case, the flow is kept waiting for upcoming opportunities
in subsequent frames. Thanks to the breadth-first-traversal,
pre-routing trees are well-balanced as they tend to be short
one-to-many routing trees. However, due to the dynamic state
(e.g., end of current flows, low battery, etc.) of nodes, pre-
routing trees also tend to deviate from this preferred condition
as illustrated in Fig. 3. The pseudo-code of the pre-routing
trees construction is illustrated in Algorithm 2.

Taking advantage of the dynamic nature of pre-routing trees
construction stage, the latter goes one step further to set the
parameter value hmax of the current ILP model based on the
reported trees heights and those of the routing trees of active

Algorithm 2 Pre-routing of routing trees pseudo-code
Inputs: VD ,Tk ∀fk ∈ FS , FW
Outputs: FC, hmax

1: FC ← ∅, h← 0, h̃← 0
2: for each fk ∈ FS do . Trees of active flows
3: if HeightOF

(
Tk
)
> h then

4: h← HeightOF
(
Tk
)

5: end if
6: end for
7: for each fk ∈ FW do
8: if {vsk} ∪ Dk * VD then go to 30
9: end if

10: Q← ∅ . New empty queue
11: push vsk into Q
12: S ← {vsk}
13: LevelOF(vsk)← 0
14: while Q 6= ∅ ∧ Dk * S do . Breadth-first traversal
15: vi ← Q.pop()
16: if LevelOF(vi) > h̃ then
17: h̃← LevelOF(vi)
18: end if
19: for each eij ∈ O (vi) do
20: if vj /∈ S ∧ vj ∈ VD then
21: push vj into Q
22: S ← S ∪ { vj }
23: LevelOF(vj)← LevelOF(vi) + 1
24: end if
25: end for
26: end while
27: if Dk ⊆ S then . Add fk to candidates
28: FC ← FC ∪ {fk}
29: end if
30: end for
31: hmax ← max

{
h, β · h̃

}
. Update hmax

scheduled flows as follows:
hmax = max

{
max
fk∈FS

H
(
Tk
)
, β max

fk∈FC

H
(
T̃k
)}

(36)

where i) H (·) denotes the height-of-tree operator and ii) β ≥ 1
is a “tradeoff-margin” factor to allow for longer routing trees
to be explored and more flows to be admitted into the system
when solving the current ILP model. After this initial stage, we
drastically reduce the size of the solutions, hence the eNodeB
can solve the resulted ILP model using the branch-and-cut
method and the convergence time is tiny.

V. PERFORMANCE EVALUATION
In this section, we report the performance of our proposal
JRRA-EE by performing a series of detailed simulations. We
start by describing the network simulation environment setup.
Afterwards, we define the performance metrics to evaluate
our strategy. Finally, we analyze the results and discuss the
effectiveness of our proposal JRRA-EE based on multiple-run
simulations which invoke confidence-interval analysis with a
confidence level of 95%.
A. Network simulation environment
We make use of NS-3 network simulator based on C++
language and widely used by the network research community.
NS-3 supports a variety of conventional 3GPP LTE simulation
scenarios through the module NS-3/LTE [10]. To realize the
LTE-D2D standard, we integrate new features to NS-3 in order
to support LTE-D2D protocol stack (side-link interface). In
this context, we developed the necessary LTE-D2D proce-
dures for the layers: PHY, MAC and PDCP/RLC. We also

249

TABLE III
SIMULATION PARAMETERS

Parameter Value
Cell Radius Rcell 1 km

UL/SL Frequency fUL 1930 MHz
UL/SL (Reference) Bandwidth BUL 5 MHz (25 LTE RBs)

SL RBs Used Actually Ω 14 LTE RBs
SL frame (LTE-D2D SC-Period) 40 subframes (40 ms)

Data Part in SL frame 32 subframes
UE SL Power Transmit Density Ψt -4 dBm/RB

Noise Spectral Density Ψn -121.45 dBm/RB
LTE MCS Index used in SL 9 (QPSK)

UE Density λUE
{ 10, 15, 20, 25,
30, 35, 40 } per km2

UE-UE SNR Threshold γTOPO 10 dB
Scheduling SINR Threshold γ 6 dB

UE Initial Energy Budget En(0) 3.856 Joules
Flow Simulation Period 10 seconds

Flow Arrival Process Poisson Process
Flow Arrival Rates λFL { 10, 20 } flows/second

Flow Duration Random Variable Exponential
Flow Duration Mean λDUR 1 second

Flow Bit Rate Classes { 25, 50, 75, 100,
125, 150, 175, 200 } kbps

Node-Flow Interest Probability ρ 0.1
hmax update factor β 1.5

implemented the signaling necessary to: i) configure the SL
parameters, ii) establish SL Radio Bearers (SLRBs), and iii)
exchange SL reports and grants.

In line with our formulation in Section III, we deploy one
LTE macro-cell with radius Rcell = 1 km. The deployed UEs
follow a Poisson Point Process distribution with a density λUE
nodes per km2 for values from { 10, 15, 20, 25, 30, 35, 40 }.
The LTE macro-cell is configured to work with an UL/SL
frequency of 1930 MHz (i.e., band 1) and a bandwidth of 5
MHz (i.e., 25 RBs). However, we assign only Ω = 14 RBs
for the actual SL bandwidth of D2D offloading operation.
All UEs transmit on SL with a common power density of
Ψt = −4dBm/RB which is equivalent to a maximum of 10
dBm over the whole 5 MHz. To model the SL path-loss (i.e.,
link gains gij), we make use of WINNER II B2-LOS channel
model [11]. The SL frame duration is fixed to 40 milliseconds
which corresponds to 40 LTE subframes. Note that only 32
subframes are actually used for data transmission while the
initial 8 ones are used for SL control information. The eNodeB
builds the D2D network topology making using of SNR
reports and estimations (i.e., CQI metric). A communication
link exists between two nodes if and only if the respective
SNR is greater than a threshold γTOPO = 10 dB.

Simulated flows are generated following a Poisson process
with an arrival rate equals to λFL ∈ { 10, 20 } flows per second.
Flow bit-rates are randomly selected from predefined Constant
Bit Rate (CBR) classes. Flow duration distribution is simulated
to follow an exponential random variable with a mean duration
of λDUR = 1 second. Flows sources are selected according
a random uniform distribution. As for destinations, they are
selected for a given source assuming a node-flow interest
probability of ρ = 0.1. In other words, once a flow source
is selected, other nodes are evaluated for being interested
in receiving the flow using Bernoulli trials with a success
probability equals to ρ. TABLE III summarizes the main
parameters used in simulations.
B. Performance metrics
As described in TABLE IV, we consider various metrics
to evaluate purposes in our experiments. These metrics are
grouped with respect to the following interests: i) I1: overall
utility of offloading system, ii) I2: end-users’ quality of service
per flow, and iii) I3: energy consumption.

Unfortunately, the related strategies described in Section II
cannot be compared with our proposal. The main reason

TABLE IV
PERFORMANCE METRICS

Metric Definition Interest
S ratio of the flows offloaded by the D2D

subnetwork
I1

I ratio of interrupted flows (to the admit-
ted ones) due to topology disruption by
death of relays

I1,I3

L average of flow’s packet loss in each
simulation run

I2

En average network life time as n con-
nected components

I3

H average height (hops) of trees in each
simulation run

I2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 10 15 20 25 30 35 40 45

S
 (

ra
ti

o
)

λUE

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

(a) λFL = 10

0.04

0.06

0.08

0.1

0.12

0.14

5 10 15 20 25 30 35 40 45

S
 (

ra
ti

o
)

λUE

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

(b) λFL = 20
Fig. 4. S w.r.t node density λUE.

behind this is that the full optimization model considered in
our paper (Section III) is not addressed at all in the related
papers. Hence, we propose to compare JRRA-EE with the
following variants:

1) DJK-RRB: is a pure path strategy that aims to find
the optimal routing trees using the one-to-many version
Dijkstra algorithm and then, allocates RB randomly.

2) RRT-ORB: is a pure resource block oriented strategy that
finds the routing trees randomly using random walk on
the topology graph, and allocates RB optimally.

3) JRRA-EN: is an energy non-aware variant of the origi-
nal JRRA-EE. It relies, hence, on a modified objective
function as described below:

max
xh,k
ij ,Hn,···

1

ℵB

∑
vn∈V

Bn +
1

ℵA

∑
fk∈F

tksk −
1

ℵN

∑∑
vn∈V
fk∈F

tkn

with ℵB , Ω · |V| ,ℵA , |FC| ,ℵN , |V| (37)
where the new normalized term − 1

ℵN
[· · ·] represents the

eNodeB’s attempt to minimize the number of involved
nodes in the offloading route.

250

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45

I
 (

ra
ti

o
)

λUE

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

(a) λFL = 10

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45

I
 (

ra
ti

o
)

λUE

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

(b) λFL = 20
Fig. 5. I w.r.t node density λUE.

C. Simulation results
First, we evaluate the offloading capability of our approach
compared with the related strategies. To do so, we measure
the ratio of the flows offloaded by the D2D subnetwork. Fig. 4
illustrates S with respect to the density of UEs and under two
traffic conditions λFL = 10 and λFL = 20 flows per second. We
note that DJK-RRB generally outperforms the other strategies.
This is expected since DJK-RRB routes flows over the fewest
possible nodes (i.e., the smallest possible trees). Hence, it
allows for more flows to be admitted. Taking DJK-RRB as
a baseline, we note that our proposal JRRA-EE accepts, in
average, around S = 12% of the flows with λFL = 10 which
is ∆S = 4% less than DJK-RRB as illustrated in Fig. 4a. On
the other hand, Fig. 4b depicts S’s variation under a higher
traffic load. We notice that, for λFL = 20, the performance
of JRRA-EE drops to around S = 9%. However, the most
advantageous DJK-RRB also drops making the performance
gap of JRRA-EE within ∆S = 3%. It is straightforward to
see that, even though JRRA-EE is outperformed by DJK-RRB
and RRT-ORB, our proposal performs better than its energy
non-aware variant JRRA-EN in terms of offloading capacity.

Fig. 5 depicts the ratio of interrupted flows according to
the UEs’ density for respectively λFL = 10 and λFL = 20
scenarios. From flows perspective, the admission rate (i.e.,
as illustrated in Fig. 4) alone is not sufficient and we have
to ensure that the path is valid until the reception of all the
packets. It is worth pointing out that our proposal achieves
the lowest service interruption probability compared with the
related strategies. Fig. 5a and Fig. 5b clearly demonstrate that
JRRA-EE resists well to the traffic increase. In fact, it is
able to maintain the service interruption rate I below 15%
under both traffic conditions λFL = 10 and λFL = 20 flow
per seconds. On the other hand, DJK-RRB which is able to
maximize the offloading rate, struggles to resist to such an

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45

L
 (

ra
ti

o
)

λUE

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

(a) λFL = 10

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45

L
 (

ra
ti

o
)

λUE

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

(b) λFL = 20
Fig. 6. L w.r.t node density λUE.

increase and may crash more than 40%.
Besides, to quantify the QoS in terms of packet error rate

at the IP level, Fig. 6 illustrates the average flow’s packet loss
(L) according to the UEs’ density for respectively λFL = 10
and λFL = 20 scenarios. We recall that the packet loss does not
come only from transmission error due to noise interference
but may also be caused by the service interruption. Indeed, a
flow may be disrupted because a relaying node has exhausted
all its energy budget and consequently declared itself as dead.
In Fig. 6, it is straightforward to see that JRRA-EE and
JRRA-EN both outperform DJK-RRB and RRT-ORB thanks
to their capability to take into consideration interference in
OFDMA RB blocks allocation. However, RRT-ORB performs
badly in general which may seems paradoxical. The rational
behind this is RRT-ORB handles RBs allocation once the
routes are randomly selected leaving few possibilities to al-
locate sufficient RBs to flows. It is straightforward to see that
such a behaviour will lead to higher transmission delays. As a
consequence, longer transmission delays paired with energy-
agnostic node selection for routing is resulting in high packet
loss due to the service disruption.
Being energy-aware makes JRRA-EE more robust against
the packet loss. In fact, the latter succeeds to maintain L
below 0.15 and 0.18 for both traffic conditions λFL = 10 and
λFL = 20 flow per seconds respectively as depicted in Fig. 6a
and Fig. 6b.

To highlight the energy efficiency of our proposal
JRRA-EE, we make use of the metric En which measures
the average lifetime of the D2D offloading system as a n
connected components (i.e., evolution of network connectiv-
ity). Disruptions caused by nodes’ energy shortage lead to the
topology disconnection which, in its turn, degrades the overall
utility of the D2D offloading system. In this regard, Fig. 7
highlights how JRRA-EE succeeds to keep the D2D topology

251

0

1

2

3

4

5

E1 E2 E3 E4 E5

E
n
 (

se
c)

JRRA-EE

DJK-RRB

RRT-ORB

JRRA-EN

Fig. 7. Network connectivity lifetime En for λFL = 20.

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45

H
 (

h
o

p
s)

λUE

JRRA-EA
DJK-RRB
RRT-ORB
JRRA-EN

(a) λFL = 10

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45

H
 (

h
o

p
s)

λUE

JRRA-EE
DJK-RRB
RRT-ORB
JRRA-EN

(b) λFL = 20
Fig. 8. H w.r.t node density λUE

as few components as possible for longer times compared to
the related schemes. It is worth noting that RRT-ORB and
DJK-RRB achieve good performance in terms of network
lifetime. The obtained results corroborate the previous ones
depicted in Fig. 5 and Fig. 6. Indeed, the aforementioned
strategies handle less traffic over the D2D sub-network due
to their high service interruption level and packet loss rate.
Consequently, nodes lifetime will be longer.

Fig. 8 illustrates the performance in terms of H metric
which reflects the number of hops in the routing trees. This
metric gives indication on the QoS presented to flows in terms
of latencies where shorter is better. Specifically, the end-to-
end and the average packet delays are in proportion to the
product H×TSL. Fig. 8a and Fig. 8b point out that the average
number of hops increases almost linearly in accordance with
the density of nodes λUE. As expected, DJK-RRB always
yields the shortest number of hops by virtue of its strategy. We
note that, in general, DJK-RRB and RRT-ORB lead to shorter

paths and lower latencies compared with JRRA-EE. We
recall, as illustrated above, that both DJK-RRB and RRT-ORB
deteriorate service interruption and packet error rate metrics.
In return, our proposal JRRA-EE outperforms its energy non-
aware variant JRRA-EN.

In summary, network simulations show that JRRA-EE
outperforms the variants in terms of network lifetime, packet
loss and service interruption at the expense of small perfor-
mance gaps with respect to latency and offloading capacity.
Furthermore, JRRA-EE always outperforms its energy non-
aware variant JRRA-EN.

VI. CONCLUSION
In this paper, we studied the LTE-D2D-based multihop of-
floading scheme for the intra-cell UE-to-UEs multicast/unicast
flows. We proposed an energy-efficient offloading scheme to
jointly solve the problem of multicast/unicast routing and the
OFDMA resource block allocation. To increase the utility
of the offloading system, the proposed scheme took into
account the battery-limitation by defining an energy-budget for
each cooperating UE. We also considered LTE-D2D-specific
constraints: half-duplex operation and the contiguous resource
block allocations. We formulated the problem as an ILP and
we proposed a novel heuristic, named JRRA-EE, composed
of a two-stage algorithm to solve it. We validated our proposal
using the NS-3 simulator after implementing the whole LTE-
D2D protocol stack. Through extensive simulations, we have
shown that our proposed strategy JRRA-EE outperformed the
related strategies. Performance gains manifested themselves as
i) increased lifetime of the offloading network, ii) low packet
loss and iii) low service interruption rates at the expense of
small performance gaps in latency and offloading capacity.

REFERENCES
[1] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); User

Equipment (UE) radio transmission and reception (Release 14),” 3rd
Generation Partnership Project (3GPP), TS 36.101, Sep. 2017. [Online].
Available: http://www.3gpp.org/DynaReport/36101.htm

[2] G. Nemhauser and L. Wolsey, “Computational complexity,”
in Integer and Combinatorial Optimization. John Wiley
& Sons, Inc., 1988, pp. 114–145. [Online]. Available:
http://dx.doi.org/10.1002/9781118627372.ch5

[3] T. Ta, J. S. Baras, and C. Zhu, “Improving smartphone battery life
utilizing device-to-device cooperative relays underlaying lte networks,”
in 2014 IEEE International Conference on Communications (ICC), June
2014, pp. 5263–5268.

[4] B. Liu, Y. Cao, W. Wang, and T. Jiang, “Energy budget aware device-
to-device cooperation for mobile videos,” in 2015 IEEE Global Com-
munications Conference (GLOBECOM), Dec 2015, pp. 1–7.

[5] A. Laha, X. Cao, W. Shen, X. Tian, and Y. Cheng, “An energy effi-
cient routing protocol for device-to-device based multihop smartphone
networks,” in 2015 IEEE International Conference on Communications
(ICC), June 2015, pp. 5448–5453.

[6] Z. Jingyi, L. Xi, and X. Quansheng, “Multi-hop routing for
energy-efficiency enhancement in relay-assisted device-to-device
communication,” The Journal of China Universities of Posts and
Telecommunications, vol. 22, no. 2, pp. 1–51, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S100588851560632X

[7] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer procedures (Release 14),” 3rd Generation Partnership
Project (3GPP), TS 36.213, Sep. 2017. [Online]. Available:
http://www.3gpp.org/DynaReport/36213.htm

[8] M. Hoeyhtyae, A. Maemmelae, U. Celentano, and J. Roening, “Power-
efficiency in social-aware d2d communications,” in European Wireless
2016; 22th European Wireless Conference, May 2016, pp. 1–6.

[9] M. Lauridsen, L. Noël, T. B. Sørensen, and P. Mogensen, “An empirical
lte smartphone power model with a view to energy efficiency evolution,”
Intel Technology Journal, vol. 18, no. 1, pp. 172–193, 2014.

[10] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An
open source product-oriented LTE network simulator based on ns-3,”
in Proceedings of the 14th ACM international conference on Modeling,
analysis and simulation of wireless and mobile systems. ACM, 2011,
pp. 293–298.

[11] Y. d. J. Bultitude and T. Rautiainen, “IST-4-027756 WINNER II D1.
1.2 V1. 2 WINNER II Channel Models,” 2007.

252

Dynamic load balancing in 5G HetNets for optimal
performance-energy tradeoff

Misikir Eyob Gebrehiwot, Pasi Lassila and Samuli Aalto
Department of Communications and Networking

Aalto University, Finland
Email: {misikir.gebrehiwot, pasi.lassila, samuli.aalto}@aalto.fi

Abstract—We consider optimal energy-aware load balancing
of elastic downlink data traffic inside a macrocell with multiple
small cells within its coverage area. The model for the problem
corresponds to a system of parallel M/M/1-PS queues, where
the macrocell is represented by a multiclass M/M/1-PS queue
and each small cell is an energy-aware M/M/1-PS queue with
additional states for the idle timer and the so-called setup delay.
We apply the theory of MDPs to develop a near-optimal state-
dependent policy, both for a weighted sum of the performance
and energy as well as for the constrained formulation, where
energy is minimized subject to a constraint on the performance.
Specifically, we utilize the first step of the well-known policy
iteration method under which the routing decision for each
arrival requires evaluating the marginal future cost of adding
the arrival in the small cell or the macrocell. As our main
contribution, we derive the associated value functions and the
explicit form of the near-optimal FPI policy. The performance of
the policy is illustrated through numerical examples.

I. INTRODUCTION

Heterogeneous networks (HetNets) is one of the key en-
abling technologies for realizing the future 5G networks.
Specifically, HetNets address the problem of spatially het-
erogeneous distribution of the traffic load within a cell by
introducing inside the coverage region of the macrocell so-
called small cells, sometimes also referred to as pico- or
femtocells, with low-power base stations that are operating
under the control of the macrocell. The small cells can offer
at a traffic hot spot a high transmission rate to nearby users
and thus some of the traffic can be off loaded away from the
macrocell to the respective small cell. Such load balancing
clearly can benefit the performance of the users, for example,
by minimizing the delay. However, in modern systems it also
important to consider the energy consumption of the system.

Such energy-aware load balancing in HetNets has been
studied considerably recently. Typically, the approaches con-
sider a fixed set of users or the optimization only takes into
account average traffic parameters, see, e.g., [1], [2], [3], [4],
[5]. However, such approaches do not take into account the
randomly varying user population and the delay performance
of the users. Our focus is to take these aspects explicitly into
account by using a queueing theoretic approach.

In more detail, we study the following scenario. We consider
a single macrocell with many small cells inside its coverage
region serving downlink traffic. The user traffic consists of

elastic flows, roughly corresponding to file transfers controlled
by TCP, that are downloaded through the base stations. New
flows arrive according to a Poisson process. Thus, the number
of active flows varies randomly over time and the flow-level
performance is represented by the mean flow-level delay, i.e.,
the mean file transfer delay. Upon the arrival of a new flow,
a load balancing policy will decide whether to serve the flow
through the local small cell or the macrocell. From the energy
point of view, the macrocell is always on in order to provide
coverage in the whole cell area. However, the small cells can
be switched off to save energy during low load. Activating
again a sleeping small cell incurs a performance cost in the
form of a setup delay, thus giving rise to a performance-energy
trade-off in the system. Our objective is to develop energy- and
delay-aware load balancing algorithms.

In our flow-level model, the macrocell is represented by
a multiclass M/M/1-PS queue, where the classes represent
flows that arrived in a given small cell but are served by
the macrocell. The small cells are modelled as a single-class
M/M/1-PS queues with a setup delay, and we additionally
allow another control parameter, the so-called idle timer, which
defines how long a small cell waits before it falls into sleep
mode after the small cell becomes idle (i.e., becomes empty
of flows). Thus, the system consists of a set of parallel queues
and the load balancing policy decides whether the arrival is
routed to the small cell or the macrocell.

To characterize the performance-energy trade-off, we repre-
sent the system cost as a weighted sum of the delay and energy.
To optimize the cost, we consider dynamic state-dependent
policies and apply the theory of Markov Decision Processes
(MDP). MDPs have been applied for the load balancing
problem in HetNets in [6], [7], [8], [9], but they do not contain
any explicit forms of the resulting policies, i.e., value iteration
method is used to numerically solve the problem. Also, the
system models are different to ours in these papers, or energy
aspects are not considered. Note that in our earlier paper [10],
we have applied the so-called FPI approach, to be discussed
below, but the policy is obtained numerically and, in addition,
the system model is slightly different (no idle timer in small
cells and macrocell energy model is simpler).

As our main analytical contribution, we are able to define
explicitly the (near) optimal policy. Specifically, we utilize the
first step of the policy iteration algorithm [11], which gives
the so-called FPI (First Policy Iteration) policy. By using aISBN 978-3-903176-08-9 c© 2018 IFIP

static probabilistic policy as an initial policy, the cost under
the FPI policy becomes separable and the routing decision
depends only on the state of the local small cell and the state
of the macrocell. The FPI policy is characterized by the so-
called value functions of the macrocell and the small cells.
We derive the explicit form of the value functions of the
delay and power for the small cells represented by an M/M/1-
PS queue with setup delay and idle timer. This extends our
earlier analytical results for the M/M/1 queue with setup delay
but no idle timer in [12]. Also, for the multiclass M/M/1-PS
queue, we derive the value function of the power part, while
the general form of the performance part is known, see [13],
[14]. The resulting policy is still scalable as it only involves
comparing the additional cost of allocating the flow in the
macrocell or the small cell. The policy is near optimal since
typically in policy iteration the largest gain over the initial
policy is already obtained with the first iteration step.

Due to the explicit form of the value functions, insights can
also be obtained from how the (near) optimal policy behaves.
The marginal cost for the performance part in small cells
has a weighted JSQ-like (Join-the-Shortest-Queue) structure
with an additional constant factor that reflects the state of the
server (setup or busy), while the marginal energy cost is just
a constant independent of the setup/busy. In the macro cell,
the marginal performance cost also has a similar linear form
(JSQ-like) and the marginal energy cost is a constant.

In addition to formulating the optimization problem as a
minimization problem of the weighted sum, we formulate the
problem as a constrained optimization problem. We apply
the theory of constrained MDPs [15], [16] and consider
minimizing the mean power subject to a constraint on the mean
delay. This formulation is often more natural than the weighted
sum variant, where the weight is arbitrary. We observe that,
by Lagrangian relaxation of the constraint, the constrained
problem can be interpreted as the minimization of the weighted
sum of the power and delay, where the weight must be
determined to satisfy the constraint. Thus, we can apply our
results for the FPI policy and we give an iterative algorithm
to obtain the optimal weight parameter that defines the (near)
optimal policy and solves the constrained problem.

We highlight the properties of the dynamic policies through
numerical examples. In particular, we are interested in the
impact of the idle timer, which has not been studied previously
in this context. We have shown already in our earlier paper
that with a single energy-aware M/G/1-PS queue the optimal
value of the idle timer is always either zero or infinity for
the weighted sum cost function, see [17]. Our numerical
results indicate that the same remains true also in this much
more complex scenario with parallel queues and non-Poisson
arrivals. However, in the case of the constrained optimization
formulation, if the setup delay is short enough, a strictly
positive and finite optimal choice for the idle timer exists.

The paper is organized as follows. The system model is
given in Section II. The optimal load balancing problem
is defined in Section III, where also our main analytical
contributions are derived. Section IV considers the load bal-

ancing problem as a constrained MDP. Numerical results and
conclusions are in Sections V and VI, respectively.

II. MODEL

We consider a heterogeneous wireless system consisting of
a single macrocell and K separate small cells located inside
the coverage area of the macrocell. The macrocell is indexed
by 0 and the small cells by k = 1, . . . ,K. We assume that the
small cells operate in an outband mode, i.e., they have their
own radio resources and do not interfere with the macrocell.
In addition, we assume that the small cells are far enough from
each other so that they do not interfere with each other either.

Traffic consists of elastic downlink data flows (such as TCP
file transfers). Let λk denote the arrival rate of new flows
within the area of small cell k. Each such a flow can be served
either by the small cell itself or the macrocell (but not by the
other small cells). Upon the arrival, a routing decision must
be made whether the flow is attached to the small cell or
the macrocell. In addition, let λ0 denote the arrival rate of
those flows (outside the “hotspot” areas covered by the small
cells) that can only be served by the macrocell. All the arrival
processes are assumed to be independent Poisson processes.

Each small cell k is modeled by a single server PS queue,
which implies that flows are scheduled in each time slot so that
all resources are given to one flow at a time and the flows are
served in a round-robin manner. We assume that the service
time Sk of an arbitrary flow in small cell k is exponentially
distributed with mean E[Sk] = 1/µk. The mean service time
E[Sk] is the average time needed to complete the transfer
of a random flow if there were no other flows to be carried
by the same cell. We note that the service time is affected
at least by the size of the original flow, the location of the
corresponding mobile terminal (within the small cell), and the
radio channel conditions during the flow transfer. However,
since the scheduler of the small cell does not utilize these
features, we do not model them separately.

For each small cell, we apply the DELAYEDOFF sleep state
control (according to the terminology of [18]). As long as there
are flows in the small cell to be served, the state of the server
is said to be BUSY, but as soon as the system becomes empty,
the state changes to IDLE. The server remains IDLE as long
as one of the following events take place. Either a new flow
arrives, in which case the server becomes again BUSY and
starts serving the new flow, or the idle timer (associated with
the idle server) expires, in which case the server is immediately
switched OFF. In our model, the length Ik of the idle timer of
small cell k is assumed to be independently and exponentially
distributed with mean E[Ik] = 1/ωk. In the latter case, the
server remains OFF until a new flow is routed to small cell k
and the server is put to the SETUP state. After a setup delay
Dk, which in our model is assumed to be independently and
exponentially distributed with mean E[Dk] = 1/δk, the server
becomes again BUSY and starts serving the waiting flows.

The state of small cell k at time t is described by the pair
(Xk(t), Bk(t)), where Xk(t) refers to the number of flows

254

and Bk(t) to the state of the server. Note that server k is

BUSY, if Xk(t) > 0 and Bk(t) = 1;
IDLE, if Xk(t) = 0 and Bk(t) = 1;
OFF, if Xk(t) = 0 and Bk(t) = 0;
SETUP, if Xk(t) > 0 and Bk(t) = 0.

We denote the power consumption in these energy states of
small cell k by PE−STATE

k , and we assume that

0 = P o
k < P i

k ≤ min{P s
k, P

b
k },

where superscripts o, i, s, and b refer to OFF, IDLE, SETUP,
and BUSY states, respectively.

The macrocell (0) serves K + 1 different classes of flows.
Class 0 refers to those flows that can only be served by the
macrocell and class k to those flows that arrive in the area
of small cell k but are routed to the macrocell. The macrocell
itself is modeled by a single server multiclass PS queue, which
again implies that flows are scheduled in each time slot so that
all resources are given to one flow at a time and the flows are
served in a round-robin manner. We assume that the service
time S0,k of an arbitrary flow in class k ∈ {0, 1, . . . ,K} is
exponentially distributed with mean 1/µ0,k.

For the macrocell, we do not apply any sleep state control,
but it is a NEVEROFF server (according to the terminology
of [18]). Thus, the state of the macrocell at time t is described
by the vector X0(t) = (X0,0(t), X0,1(t), . . . , X0,K(t)), where
X0,k(t) refers to the number of flows in class k. Note that
server 0 is

BUSY, if |X0(t)| > 0;
IDLE, if |X0(t)| = 0,

where

|X0(t)| = X0,0(t) +X0,1(t) + . . .+X0,K(t)

denotes the total number of flows in macrocell. The power
consumption of macrocell is denoted by PE−STATE

0 , and we
assume that

0 < P i
0 ≤ P b

0 .

III. OPTIMAL LOAD BALANCING PROBLEM

Our objective is to develop dynamic, state-dependent load
balancing policies that simultaneously take into account both
the power consumption and the delay of the flows. The load
balancing policy decides for each arriving flow in the small
cells, whether the arrival is served by the local small cell or the
macrocell. For our model, optimal policies can be developed
in the framework of MDPs [11].

Before discussing the optimization, we state a necessary
condition for the stability of the system. As in [10], the
macrocell is the bottleneck in the system, because it serves
as an overflow system for the arrivals in the small cells, and
thus, the maximal stability condition for any load balancing
policy is given by

λ0
µ0,0

+

K∑
k=1

(λk − µk)+

µ0,k
< 1. (1)

For the optimization, the cost rates with respect to the
performance (delay) and the energy need to be defined first.
Let the vector x0 = (x0,0, . . . , x0,K) denote a given state of
the macrocell. Similarly, we denote by x = (x1, . . . , xK) and
b = (b1, . . . , bK) vectors for the number of flows and the
state of the server in each small cell. Given that there are
(xo, x) flows in the system, the instantaneous cost rate for the
performance, cp(x0, x), is given by

cp(x0, x) =

K∑
k=0

x0,k +

K∑
k=1

xk, (2)

i.e., it is the total number of flows in the system. For the
energy, the instantaneous cost rate, ce(x0, x, b), is the total
instantaneous power in the given state and it equals

ce(x0, x, b) = 1|x0|=0P
i
0 + 1|x0|>0P

b
0 + (3)

K∑
k=1

(1xk>0,bk=1P
b
k + 1xk=0,bk=1P

i
k + 1xk>0,bk=0P

s
k),

where 1A denotes the indicator function of the event A. To
characterize the trade-off between performance and energy, the
total instantaneous cost rate in state (x0, x, b), c(x0, x, b), is
defined as the weighted sum of performance and energy,

c(x0, x, b) = w1c
p(x0, x) + w2c

e(x0, x, b),

where w1, w2 ≥ 0 are the weight parameters.
We denote by π the set of all possible load balancing

policies that are stable under the condition (1). For a given
policy π, let E[Xπ] and E[Pπ] denote the mean total number
of flows in the system and the resulting mean power consump-
tion, respectively. Our objective is to consider the following
optimization problem,

min
π
w1E[Xπ] + w2E[Pπ]. (4)

Note that by dividing (4) with the total arrival rate
∑
k λk, the

objective is, by Little’s law, equal to to the weighted sum of
the mean flow delay and the mean energy per flow.

A. Optimal dynamic policy

The optimization problem (4) is an MDP and can be solved
numerically iteratively with the policy iteration method [11], as
follows. Let y denote a vector of the entire state of the system,
i.e., y = (x0, x, b). In the load balancing policy, associated
with each state (x0, x, b) there is a set of actions A(y) relating
to the decisions where the arrivals are routed. Let πn denote
the policy at the nth iteration step. The iterated policy policy
at the next step, πn+1, is obtained by solving in each state y
the following optimality equation

πn+1(y) =

arg min
a∈A(y)

c(y)− c̄πn +
∑
y′

qy,y′(a)vπn(y′)

 ,∀y, (5)

where c̄πn is the mean cost under policy πn, qy,y′(a) is the
transition rate from state y to state y′ when action a is taken

255

and vπn(y′) is the so-called value function of state y′ for policy
πn.

The value function of each state under given policy π
gives the mean difference in the cost when starting initially
the process from the state y and the long term average cost
c̄π . The value function of each state are, on the other hand,
characterized by the following set of linear equations

c(y)− c̄π +
∑
y′

qy,y′(a
π(y))(vπ(y′)− vπ(y)) = 0, ∀y, (6)

where aπ(y) is the action taken in state y under policy π.
The policy iteration algorithm can be started from any stable

initial policy π0, for which the value functions are first solved
from (6). Then the iterated policy π1 is obtained from (5),
and the process repeats. The policy iteration is guaranteed to
converge to the optimal policy in a finite number of iterations
[11]. Unfortunately, for the state space consists of (3K + 1)
dimensions which makes it impossible to solve the optimal
policy numerically.

B. Near-optimal FPI policy

In the FPI (First Policy Iteration) approach, the idea is that
by selecting the initial policy appropriately the first step of
the optimization (5) can be carried out explicitly. Typically
this first step already gives the largest improvement, which
makes the FPI policy near optimal.

Consider now a probabilistic policy determined by the
vector p = (p1, . . . , pK), where each component pk gives the
probability to route the incoming class-k flow to the small
cell k and with probability (1− pk) the flow is routed to the
macrocell. By using a probabilistic policy as the initial policy
renders the stochastic behavior of the macrocell and the small
cells independent of each other. Thus, the relative value of the
state y = (x0, x, b) can be expressed as

v(x0, x, b) = v0(x0) +

K∑
k=1

vk(xk, bk), (7)

where v0(x0) and vk(xk, bk) are the value functions of the
macrocell and small cell k, respectively.

A reasonable selection for the initial probabilistic policy
is to balance the load in all the cells, as much as possible.
We denote this policy by pLB. Assume that the classes of the
small cells, k = 1, . . . ,K, are ordered in a descending order
according to the cell loads, i.e., λ1/µ1 > · · · > λK/µK . Note
that for all those small cells where the load is already less
than the load of the macrocell when serving its own traffic, no
traffic can be moved to the macrocell, i.e., the corresponding
pLBk = 1. Thus, let k∗ denote the index value of the last small
cell from which traffic can be moved to the macrocell, i.e.,

k∗ = {max k = 1, . . . ,K : λk/µk > λ0/µ0,0}.

It is easy to see that the load is then equalized by setting pLBk = µk
λk
·

λ0
µ0,0

+
∑k∗
k=1

λk
µ0,k

1+
∑k∗
k=1

µk
µ0,k

, k = 1, . . . , k∗,

pLBk = 1, k = k∗ + 1, . . . ,K.

The optimization (5) only concerns the arrival events. Thus,
the decision to serve the arrival in small cell k or route it to
the macrocell simply consists of evaluating the additional cost
of adding the arrival to the small cell or to the macrocell. Due
to the separable form of the value function (7), the action to
serve the arrival in the macrocell or the small cell k in state
(x0, x, b) is given by

aFPI
k (x0, x, b) = (8)

macrocell, if v0(x0,0, . . . , x0,k + 1, . . . , x0,K)−
v0(x0,0, . . . , x0,K) <
vk(xk + 1, bk)− vk(xk, bk)

small cell , otherwise.

In summary, the main advantage in the FPI approach is that
it allows us to systematically construct an optimized dynamic
policy, which is near optimal and (almost) fully explicit, as
will be seen in the following section. Note that through our
results, the FPI policy is also fully specified in the entire state
space of the system, i.e., there is no need for any truncation
to evaluate the mean cost under the FPI policy by simulation.

C. Value functions

Here we present the main analytical results of the paper:
explicit value functions for the performance and energy for the
M/M/1-PS DELAYDOFF and multiclass M/M/1-PS models.

1) M/M/1-PS DELAYEDOFF: Consider a generic M/M/1-
PS DELAYEDOFF queue with arrival rate λ, mean service
time E[S] = 1/µ, mean idle timer E[I] = 1/ω, and mean
setup delay E[D] = 1/δ. Assume that the system is stable,
i.e., ρ < 1, where load ρ = λE[S]. In addition, let P o, P i,
P s, and P b denote the power consumption in energy states
OFF, IDLE, SETUP, and BUSY, respectively.

Proposition 1: For a stable M/M/1-PS DELAYEDOFF
queue, the relative value function with respect to performance
in state (n, b) is given by

vp(n, 1)− vp(0, 0) =
E[S]n(n+ 1)

2(1− ρ)

− E[D]nρ(1 + λE[D])

(1− ρ)(1 + λE[D] + λE[I])

− E[I]λE[D]

(1− ρ)(1 + λE[D] + λE[I])
;

vp(n, 0)− vp(0, 0) =
E[S]n(n+ 1)

2(1− ρ)

+
E[D]n(1 + λE[D])

1 + λE[D] + λE[I]

+
E[I](n− 1)λE[D]

(1− ρ)(1 + λE[D] + λE[I])
.

Proof: The Howard equations for the system are:

− c̄p + λ(vp(1, 0)− vp(0, 0)) = 0,

n− c̄p + λ(vp(n+ 1, 0)− vp(n, 0)) +

δ(vp(n, 1)− vp(n, 0)) = 0, n ≥ 1,

256

n− c̄p + λ(vp(n+ 1, 1)− vp(n, 1)) +

µ(vp(n− 1, 1)− vp(n, 1)) = 0, n ≥ 1,

− c̄p + λ(vp(1, 1)− vp(0, 1)) +

ω(vp(0, 0)− vp(0, 1)) = 0,

where c̄p denotes the mean number of flows given by

c̄p = E[X] = λE[T] =
ρ

1− ρ
+
λE[D](1 + λE[D])

1 + λE[D] + λE[I]
.

Now it is a straightforward task to verify that these equations
are satisfied by the proposed relative value function.

Corollary 1: For a stable M/M/1-PS DELAYEDOFF queue,
the marginal performance cost in state (n, b) is given by

vp(n+ 1, 1)− vp(n, 1) =
E[S](n+ 1)

1− ρ

− E[D]ρ(1 + λE[D])

(1− ρ)(1 + λE[D] + λE[I])
, n ≥ 0;

vp(1, 0)− vp(0, 0) =
E[S]

1− ρ

+
E[D](1 + λE[D])

1 + λE[D] + λE[I]
;

vp(n+ 1, 0)− vp(n, 0) =
E[S](n+ 1)

1− ρ

+
E[D](1 + λE[D])

1 + λE[D] + λE[I]

+
E[I]λE[D]

(1− ρ)(1 + λE[D] + λE[I])
, n ≥ 1.

Proposition 2: For a stable M/M/1-PS DELAYEDOFF
queue, the relative value function with respect to the energy
in state (n, b) is given by

ve(n, 1)− ve(0, 0) = n · γ

+
E[I]((P i − P o) + λE[D](P i − P s))

1 + λE[D] + λE[I]
,

ve(n, 0)− ve(0, 0) = n · γ

+
E[D]((P s − P o) + E[I](P i − P o))

1 + λE[D] + λE[I]
,

γ =
E[S]((P b − P o) + λE[D](P b − P s))

1 + λE[D] + λE[I]

+
E[S]λE[I](P b − P i)

1 + λE[D] + λE[I]
.

Proof: The Howard equations for the system are:

P o − c̄e + λ(ve(1, 0)− ve(0, 0)) = 0,

P s − c̄e + λ(ve(n+ 1, 0)− ve(n, 0)) +

δ(ve(n, 1)− ve(n, 0)) = 0, n ≥ 1,

P b − c̄e + λ(ve(n+ 1, 1)− ve(n, 1)) +

µ(ve(n− 1, 1)− ve(n, 1)) = 0, n ≥ 1,

P i − c̄e + λ(ve(1, 1)− ve(0, 1)) +

ω(ve(0, 0)− ve(0, 1)) = 0,

where c̄e denotes the mean power consumption given by

c̄e = E[P] = ρP b + (1− ρ)
P o + λE[D]P s + λE[I]P i

1 + λE[D] + λE[I]
.

It is again a straightforward task to verify that these equations
are satisfied by the proposed relative value function.

Corollary 2: For a stable M/M/1-PS DELAYEDOFF queue,
the marginal energy cost in state (n, b) is given by

ve(n+ 1, 1)− ve(n, 1) = γ, n ≥ 0;

ve(1, 0)− ve(0, 0) = γ

+
E[D]((P s − P o) + E[I]((P i − P o)

1 + λE[D] + λE[I]
,

ve(n+ 1, 0)− ve(n, 0) = γ, n ≥ 1,

where γ is defined in Proposition 2.
The explicit value functions for the M/M/1-PS DELAYED-

OFF model are novel results and not available in the literature.
The results in Corollary 1 and 2 are used when evaluating the
marginal cost of serving the flow in small cell k, in (8). In
the marginal cost expressions of Corollary 1 and 2, the arrival
rate in small cell k after the initial policy is λk = pLBk λ.

Also, observe that in Corollary 1, the marginal cost with
respect ot the performance has a linear cost with respect to
the number of jobs, i.e., similarly to the JSQ rule (Join-
the-Shortest-Queue), but in addition there is a positive or
negative constant factor depending on whether the server is
in sleep/setup state or busy state. Thus, it is from the future
cost better to keep an already busy server busy than to wake it
up, which is also logical. On the other hand, by Corollary 2,
the marginal energy cost is interestingly constant and does not
depend on busy/setup state, unless the server is switched off.

2) MULTICLASS M/M/1-PS NEVEROFF: Consider a
generic multiclass M/M/1-PS NEVEROFF queue with K + 1
classes of customers indexed by k = 0, 1, . . . ,K. Let λk
and E[Sk] = 1/µk denote the arrival rate and the mean
service time for class k, respectively. In addition, let λ =
λ0 + λ1 + . . .+ λK denote the total arrival rate and

E[S] =
1

λ
(λ0E[S0] + λ1E[S1] + . . .+ λKE[SK])

refer to the mean service time over all the customers. Assume
that the system is stable, i.e., ρ < 1, where load ρ = λE[S].
Finally, let P i and P b denote the power consumption in energy
states IDLE and BUSY, respectively.

Proposition 3: For a stable multiclass M/M/1-PS
NEVEROFF queue, the relative value function with respect
to performance in state n = (n0, n1, . . . , nK) is given by

vp(n)− vp(0) =

K∑
k=0

ak(n2k + nk) +

K−1∑
k=0

K∑
`=k+1

2ak,`nkn`,

257

where the coefficients ak and ak,` (k < `) are solved from the
following system of linear equations:

1 + 2

K∑
i=0

λiak,i − 2µkak = 0, 0 ≤ k ≤ K;

1 +

K∑
i=0

λi(ak,i + a`,i)− (µk + µ`)ak,` = 0,

0 ≤ k < ` ≤ K,

with notations ak,k = ak and ak,` = a`,k for any k, `.
Proof: The general result for a multiclass M/M/1-PS

NEVEROFF queue was proved in [13].
Proposition 4: For a stable multiclass M/M/1-PS

NEVEROFF queue, the relative value function with respect
to energy in state n = (n0, n1, . . . , nK) is given by

ve(n)− ve(0) =

K∑
k=0

E[Sk]nk(P b − P i),

where 0 = (0, 0, . . . , 0) is the null vector.
Proof: The Howard equations for the system read as

follows:

P i − c̄e +

K∑
k=0

λk(ve(ek)− ve(0)) = 0,

P b − c̄e +

K∑
k=0

nkµk
n0 + . . .+ nK

(ve(n− ek)− ve(n)) +

K∑
k=0

λk(ve(n + ek)− ve(n)) = 0, n 6= 0,

where ek is a unit vector into direction k and c̄e denotes the
mean power consumption given by

c̄e = E[P] = ρP b + (1− ρ)P i.

It is again a straightforward task to verify that these equations
are satisfied by the proposed relative value function.

Corollary 3: For a stable multiclass M/M/1-PS NEVEROFF
queue, the marginal cost with respect to energy in state n =
(n0, n1, . . . , nK) is given by

ve(n + ek)− ve(n) = E[Sk](P b − P i),

where ek is the unit vector into direction k.
The explicit form of the value function for the energy part

in the multiclass M/M/1-PS model is a again novel result and
not available in the literature. The results in Proposition 3
and Corollary 3 are used when evaluating the additional cost
of serving the flow in the macrocell in (8). Note that after
the initial policy each class k = 1, . . . ,K has arrival rate
λk = (1− pLBk)λ.

As the value function for the performance has a quadratic
form, see Proposition 3, it is clear that the marginal perfor-
mance cost vp(n + ek)− vp(n) has in general a linear form.
On the other hand, by Corollary 3, the marginal energy cost
is constant.

IV. CONSTRAINED OPTIMIZATION PROBLEM

In Section III the performance-energy tradeoff was char-
acterized by a weighted sum of the performance and the
energy (4). In this formulation, defining appropriate weights
in a given setting may be difficult. Instead, a more natural
characterization of the tradeoff can be to consider the follow-
ing constrained optimization formulation: the objective is to
determine the policy π that minimizes the energy consumption
subject to a constraint of the maximum mean delay Tmax,

min
π
E[Pπ] (9)

s.t.
1∑
k λk

E[Xπ] ≤ Tmax,

where the instantaneous costs for the performance and energy
are given by (2) and (3), respectively. Note that above again
Little’s result has been applied in the delay consraint.

The optimization problem (9) can be analyzed as a con-
strained MDP [15], [16] by applying standard Langrangian
techniques. The idea is to introduce the so-called Lagrange
parameter β ≥ 0, and consider the following form for the
immediate costs

c(x0, x, b;β) = cp(x0, x) + βce(x0, x, b).

In this way, for any given fixed value of β, the problem is in
fact a standard unconstrained MDP with a weighted objective
function (4) as defined in Section III, and the optimal policy
π∗(β) can be obtained by using, e.g., the policy iteration
algorithm. Assuming that a feasible solution to (9) exists, there
exists an optimal β∗ such that the resulting policy π∗(β∗) is
also the optimal solution to (9), or it may be that to satisfy
the constraint in (9) as an equality, the optimal policy is an
appropriately randomized policy between two policies associ-
ated with β∗L and β∗H, such that E[Xπ∗(β∗L)]/

∑
k λk < Tmax

and E[Xπ∗(β∗H)]/
∑
k λk > Tmax, respectively, see [16], [15].

We have applied the following simple iterative algorithm
to determine β∗, similarly as in [19]. Let n here denote the
iteration round. Given the current value βn at the nth iteration,
the next value βn+1 is obtained from

βn+1 = βn +
1

n
·
(
E[Xπ(βn)]∑

k λk
− Tmax

)
. (10)

The iteration is stopped after a given number of iterations.
Additionally, for each value of βn, due to the high dimension-
ality of the state space in our problem, the policy iteration can
not be iterated until the optimal policy is found. Instead, we
apply only the FPI policy for which the explicit expressions
have been given in Section III for the weighted cost. Also due
to the enormous size of the state space, the performance and
energy costs are obtained through simulation. This gives us
finally the near optimal policy and the simulated solution to
the original constrained optimization problem (9).

To illustrate the constrained optimization approach, we con-
sider the simple model with one small cell with the following
parameters: E[I] = 1, E[D] = 0.1, λ1 = 12.6, µ1 = 18.73,
P b
1 = P s

1 = 100, P i
1 = 70 and P o

1 = 0. In the macrocell, there

258

●
● ● ●

■

■ ■ ■ ■

◆

◆ ◆ ◆ ◆ ◆

1

3

2

0 1 2 3 4 5
0

5

10

15

Iterations

T
ot
al
co
st

Fig. 1. Illustration of the convergence of the cost in the policy iteration
as a function of the iterations (x-axis) and the convergence of the Lagrange
parameter β for first three β-iterations (labeled as 1,2 and 3) in the constrained
MDP.

are thus two classes with following parameters: λ0 = 2, µ0,0 =
12.34, µ0,1 = 6.37, P b

0 = 1000 and P i
0 = 700. Figure 1

illustrates the policy iteration and the iteration with respect
to β. In the figure, we show the result of the convergence of
the policy iteration for the first three values of β. The initial
value of β corresponds to the curve labeled 1 and on the x-
axis the policy iteration convergence is shown as a function of
the iteration count. In this case, the policy converged with 3
iterations. Then β is adapted according to (10) and the policy
iteration is applied until convergence, see curve labeled 2, etc.
In this small example, the policy iteration can be numerically
evaluated until convergence. Later in our numerical results this
is not possible due to the enormous state space and we apply
the FPI policy only, which is then simulated to obtain the
cost. However, observe that the largest improvement is always
obtained with the first step of the policy iteration, i.e., the FPI
policy, and the reduction in cost after that is marginal. Thus,
we can argue that the FPI policy is indeed near optimal.

V. NUMERICAL RESULTS

Here, we study the performance of proposed policies
through simulation runs. We consider a system consisting of
one macro and four small cells. Small cells can be in a sleep
state where they do not consume power. Otherwise, power
consumption of small cell k in the busy, setup and idle states
are P b

k = P s
k = 100 and P i

k = 70 W, respectively. The macro
cell consumes 1000 W when it is busy and 700 W when idle.

Service rate for a request originating from within a small
cell is µk = 18.73 s−1 if it is served by the small cell, and
µ0,k = 6.37 s−1 if offloaded to the macro. Additionally, the
macro cell also serves users that are outside the coverage area
of the small cells with a rate µ0 = 12.34 s−1, obtained by
assuming file sizes of 5 Mb and typical measured mean chan-
nel qualities, see [10] for more detailed justifications. In the
entire simulation study we set arrival rate in the macro cell to
λ0 = 2 s−1, and systematically choose small cell arrival rates
so that the load on the small cell is 0.05, 0.2, 0.32, and 0.5.

We study the impact of mean idle timer (E[I]) and mean
setup delay (E[D]) on the performance of the proposed FPI
policy. We start by considering unconstrained minimization of

Fig. 2. Energy response time weighted sum cost for E[D] = 1 (upper figure)
and E[D] = 0.05 (lower figure). Mean idle timer (x-axis) is shown in base-2
logarithmic scale.

the weighed sum cost in the following section and then the
constrained problem.

A. Weighted sum cost

Figure 2 shows the weighted sum cost of mean response
time and mean power consumption as a function of idle timer
for two mean setup delay values, E[D] = 1 (upper figure) and
E[D] = 0.05 (lower figure), and weight β = 0.01, i.e., w1 = 1
and w2 = 0.01. That is, the employed policy is πFPI(0.01).
The FPI policy is guaranteed to decrease the cost relative to
the initial policy, which is the static load balancing policy. In
this setting, the reduction in the cost is typically approximately
10%, e.g., with E[D] = 1 and E[I] = 0 at load ρ = 0.5 the
corresponding static LB cost is 50.5, while the cost of the FPI
policy is 46. However, the gain can be significantly affected by
the choice of weight parameter β; decreasing β would increase
the gain.

A more important aspect here is the impact of the mean idle
timer. When setup delay is long, weighted sum cost decreases
as a function of idle timer except at low load. Similarly in the
short setup delay case, weighted sum cost remains monotonous
as a function of idle timer, and whether it is an increasing
or decreasing function depends on the load. Even though the
unit on the x-axis in Figure 2 is the mean interarrival time
(in log-2 base), these properties remain the same even if the
curves would be shown as a function of the absolute value of
the mean idle timer. Thus, in this scenario with FPI policy,
the optimal configuration (with respect to idle timer) is either

259

Fig. 3. Performance of FPI(β∗) policy as a function of mean idle timer with
E[D] = 1 s. Mean idle timer (x-axis) is shown in base-2 logarithmic scale.

NEVEROFF or INSTANTOFF, with low load and short setup
delay favoring INSTANTOFF. The results indicate that the
general theoretical result that in a single energy-aware M/G/1-
PS queue the optimal value of the idle timer is always either
zero or infinity, see [17], applies also in this more complex
setting without Poisson arrivals (FPI policy makes arrivals at
each queue non-Poisson) for the ERWS cost function.

B. Constrained optimization

Figure 3 illustrates mean response time and mean power
consumption of the system under πFPI(β∗) policy as a func-
tion of average idle timer on small cells with E[D] = 1. The
system behaves more intuitively with respect to mean response
time, that is, the longer the cells are allowed to wait in idle
state the shorter the response time will be on average. We
also observe that largest improvements in mean response time
are acheived for average idle timer values between 0.5 and 3
times the mean inter-arrival time. However, for a very light
load (0.05 in the figure), longer idle timer has no effect as the
policy puts all the traffic in the macro cell.

For points above the delay constraint (red solid line), the
policy selects β = 0, as this is the best we can do to force
mean response time as close as possible to the delay constraint
under the given idle timer value. However, as soon as idle
timer value is high enough so that the constraint is met, the
policy starts to minimize mean power by selecting a β∗ value
different from zero, which explains the less steep decrease in
mean response time near the constraint.

Now we focus on the power consumption plot in Figure
3. For the smallest load value of 0.05, the policy uses the

Fig. 4. Performance of FPI(β∗) policy as a function of mean idle timer with
E[D] = 0.05. Mean idle timer (x-axis) is shown in base-2 logarithmic scale.

macro cell only. In this case, mean power consumption is not
affected by the choice of idle timer value, as long as it is finite,
i.e., they are not configured as NEVEROFF. For load values
0.2, 0.32, and 0.5, the average power consumption decreases
as idle timer increases. This looks counter-intuitive as shorter
idle timers should enable the small cells to go to sleep more
frequently, which should result in reduced average power.
However, all three load values are too large to be handled
by the macro cell alone, which means sleeping small cells
will need to be started frequently. Idle power is avoided by
putting cells to sleep, only to be followed by a higher power
consumption in the setup state. The effect is amplified by the
fact that setup delay is much longer than the average inter-
arrival time (and hence the idle timer) resulting in a system
that consumes more power than its energy-aware counterpart.

Therefore, for the given setup delay value, the optimal
configuration is either INSTANTOFF or NEVEROFF. IN-
STANTOFF is optimal when load is low enough so that small
cells can be switched off completely, whereas NEVEROFF is
optimal in all other cases.

We further investigate the impact of setup delay by keeping
all other parameters and considering a very short mean setup
delay value of E[D] = 0.05, which is in the same order as the
service time in the small cells. Figure 4 shows mean response
time and mean power of such as system.

The mean response time curve roughly exhibits the same
behavior as discussed above. However, mean power increases
as a function of idle timer except for some discontinuities
(explained below). With the setup delay being very short,
the high setup power has less impact on the mean power

260

compared to the idle power, which makes the INSTANTOFF
configuration of small cells an optimal choice for minimizing
energy. However, looking back at the mean response time plot,
the response time constraint enforces a non-zero idle timer
for most of the load values. In this case, a DELAYEDOFF
configuration will be optimal with the idle timer set to the
smallest value that satisfies the response time constraint.

Notice the discontinuities in the mean power curves. When
idle timer is too small, the mean response time does not meet
the constraint, which leads to β = 0. But when the idle timer
is long enough, so that the constraint is met with something to
spare we start optimizing with respect to mean power, which
explains the discontinuities. Note also that for the lowest load
scenario, all idle timer values give feasible mean response
times resulting in a smooth mean power curve.

VI. CONCLUSIONS

We have considered energy efficient load balancing in a
system consisting of a macrocell with several small cells
inside its coverage area. The system is modeled as a set of
parallel queues consisting of a multiclass M/M/1-PS queue,
representing the always-on macrocell, and each small cell is
characterized by an energy-aware M/M/1-PS queue with a
sleep state and setup delay. As an additional control feature,
the model of the small cells included an idle timer, which is
used for controlling how long the small cell waits after the
end of a busy period until it falls into sleep state.

By applying the theory of MDPs and the first step of the
policy iteration method, we developed a near optimal policy
for the performance-energy trade-off. Our main contribution
was the derivation of the explicit forms of the value functions
for the energy and performance, which yields the FPI policy.
The explicit form of the FPI policy yielded insights to the
general propertied of the (near) optimal policy: the marginal
performance cost has a JSQ-like linear dependence on the
number of flows in the macrocell and small cell models and
an additional constant cost in the small cell model reflecting
the server state, while the marginal energy cost is constant
both in the macrocell and small cell models. The FPI policy
was initially derived by characterizing the performance-energy
tradeoff as the weighted sum of performance and energy. We
also showed how the same FPI policy can be applied through
Lagrangian techniques in a constrained MDP setting, as well,
where the objective is to minimize the energy subject to a
performance constraint. In our numerical studies, we focused
on the impact of the idle timer. In the case of the weighted sum
objective function, the optimal timer value appears to be either
zero or infinite. However, in the constrained optimization a
finite idle timer can be optimal when the setup delay is short
enough relative to the service times.

Possibilities for future research are many. On the algorith-
mic side, one research direction can be to seek for simple
heuristic policies that achieve nearly the same performance
as the FPI policy. Generalizations worth investigating include
analyzing the impact of non-exponential service time distri-
butions as well as interference between the base stations.

However, these extensions are analytically very difficult to
handle but simulations can be used to this end.

ACKNOWLEDGEMENTS

This research has been partially supported by EIT Digital
under the HII ACTIVE project and by the Academy of Finland
under the ITTECH5G project (Grant No. 284735).

REFERENCES

[1] M. F. Hossain, K. S. Munasinghe, and A. Jamalipour, “Distributed
inter-BS cooperation aided energy efficient load balancing for cellular
networks,” IEEE Transactions on Wireless Communications, vol. 12,
no. 11, pp. 5929–5939, 2013.

[2] E. Oh, K. Son, and B. Krishnamachari, “Dynamic base station switching-
on/off strategies for green cellular networks,” IEEE Transactions on
Wireless Communications, vol. 12, no. 5, pp. 2126–2136, 2013.

[3] J. Zheng, Y. Cai, X. Chen, R. Li, and H. Zhang, “Optimal base station
sleeping in green cellular networks: A distributed cooperative framework
based on game theory,” IEEE Transactions on Wireless Communications,
vol. 14, no. 8, pp. 4391–4406, 2015.

[4] S. Cai, Y. Che, L. Duan, J. Wang, S. Zhou, and R. Zhang, “Green
5G Heterogeneous Networks Through Dynamic Small-Cell Operation,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp.
1103–1115, 2016.

[5] A. Rangisetti, T. Pasca, and B. R. Tamma, “QoS Aware load balance in
software defined LTE networks,” Computer Communications, vol. 97,
pp. 52–71, 2017.

[6] G. Carvalho, I. Woungang, A. Anpalagan, and E. Hossain, “QoS-
aware energy-efficient joint radio resource management in Multi-RAT
heterogeneous networks,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 8, pp. 6343–6365, 2016.

[7] E. Khloussy, X. Gelabert, and Y. Jiang, “Investigation on MDP-based
radio access technology selection in heterogeneous wireless networks,”
Computer Networks, vol. 91, pp. 57–67, 2015.

[8] A. Roy and A. Karandikar, “Optimal radio access technology selection
policy for LTE-WiFi network,” in Proc. of WiOpt, May 2015, pp. 291–
298.

[9] Y. Song, P. Y. Kong, and Y. Han, “Potential of network energy saving
through handover in HetNets,” IEEE Transactions on Vehicular Tech-
nology, vol. 65, no. 12, pp. 10 198–10 204, 2016.

[10] I. Taboada, S. Aalto, P. Lassila, and F. Liberal, “Delay- and energy-aware
load balancing in ultra-dense heterogeneous 5G networks,” Transactions
on Emerging Telecommunications Technologies, vol. 28:e3170, 2017.

[11] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, 2005.

[12] M. Gebrehiwot, S. Aalto, and P. Lassila, “Near-optimal policies for
energy-aware task assignment in server farms,” in Proc. of CCGrid,
May 2017, pp. 1017–1026.

[13] J. Leino and J. Virtamo, “Determining the moments of queue-length
distribution of discriminatory processor-sharing systems with phase-type
service requirements,” in Proc. of NGI, May 2007, pp. 205–208.

[14] P. Osti, P. Lassila, and S. Aalto, “Optimal intercell coordination for
multiple user classes with elastic traffic,” in Proc. of NGI, June 2012,
pp. 25–32.

[15] E. Altman, Constrained Markov Decision Processes. Chapman and
Hall/CRC, 1999.

[16] F. J. Beutler and K. W. Ross, “Optimal policies for controlled Markov
chains with a constraint,” Journal of Mathematical Analysis and Appli-
cation, vol. 112, pp. 236–252, 1985.

[17] M. E. Gebrehiwot, S. Aalto, and P. Lassila, “Energy-performance trade-
off for processor sharing queues with setup delay,” Operations Research
Letters, vol. 44, no. 1, pp. 101–106, 2016.

[18] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch, “Optimality
analysis of energy-performance trade-off for server farm management,”
Performance Evaluation, vol. 67, pp. 1155–1171, 2010.

[19] C. Sun, E. Stevens-Navarro, V. Shah-Mansouri, and V. W. Wong, “A
constrained MDP-based vertical handoff decision algorithm for 4G
heterogeneous wireless networks,” Wireless Networks, vol. 17, no. 4,
pp. 1063–1081, May 2011.

261

Making Name-Based Content Routing More
Efficient than Link-State Routing

Ehsan Hemmati∗ and J.J. Garcia-Luna-Aceves∗,†
∗Computer Engineering Department, UC Santa Cruz, Santa Cruz, CA 95064

†PARC, Palo Alto, CA 94304
{ ehsan, jj }@soe.ucsc.edu

Abstract—The Diffusive Name-based Routing Protocol (DNRP)
is introduced for efficient name-based routing in information-
centric networks (ICN). DNRP establishes and maintains multiple
loop-free routes to the nearest instances of a name prefix using
only distance information. DNRP eliminates the need for periodic
updates, maintaining topology information, storing complete
paths to content replicas, or knowing about all the sites storing
replicas of named content. DNRP is suitable for large ICNs with
large numbers of prefixes stored at multiple sites. It is shown that
DNRP provides loop-free routes to content independently of the
state of the topology, and that it converges within a finite time
to correct routes to name prefixes after arbitrary changes in the
network topology or the placement of prefix instances. The result
of simulation experiments illustrate that DNRP is more efficient
than link-state routing approaches.

I. INTRODUCTION

Several Information-Centric Networking (ICN) architectures
have been introduced to address the increasing demand of
user-generated content [1], [3]. The goal of these architectures
is to provide a cost-efficient, scalable, and mobile access to
content and services by adopting a content-based model of
communication. ICN architectures seek to dissociate content
and services from their producers in such a way that the
content can be retrieved independently of its original location
or the location of consumers. The most prominent ICN archi-
tectures can be characterized as Interest-based architectures,
in which location-independent, self-defined, unique naming is
used to retrieve data. In this approach, messages flow from
producers to consumers based on the name of the content
rather than the address of the senders or receivers exchanging
such content. Content providers or producers create named
data objects (NDOs), and advertise routable name prefixes
associated with the content objects whose own names are part
of the name prefixes. The only identifier of an NDO is its
name. A consumer requests a piece of content by sending an
Interest (a request for the NDO) that is routed along content
routers toward the producer(s).

Clearly, an efficient name-based content routing protocol
must be used for any ICN architecture to succeed using name-
based forwarding of Interests and requested content. Section II
summarizes recent prior work in name-based content routing,
and this review reveals that all prior proposals for name-based
content routing rely on periodic transmissions of update mes-
sages. This paper focuses on an approach that avoids the need

for periodic messaging by means of diffusing computations
[5].

Section III presents DNRP (Diffusive Name-based Routing
Protocol), a name-based content routing protocol for ICNs.
DNRP provides multiple loop-free routes to the nearest in-
stances of a named prefix or to all instances of a named prefix
using only distance information and without requiring periodic
updates, knowledge of the network topology, or the exchange
of path information.

Section IV shows that DNRP prevents routing-table loops
even in the presence of topology changes as well as changes
in the hosting of prefixes, and converges within a finite time
to correct multi-paths to name prefixes. Section V presents
the results of simulation experiments comparing DNRP with
an efficient link-state approach similar to NLSR [13]. The
results show that DNRP produces less communication and
computation overhead in the case of topology changes as well
as the addition of prefixes.

II. RELATED WORK

Name-based content routing has been used in the past in
content-delivery networks (CDN) operating as overlay net-
works running on top of the Internet routing infrastructure
(e.g., [7], [16]). However, it has become more well known
in the context of ICN architectures, where it has been done
typically by adapting traditional routing algorithms designed
for networks in which a destination has a single instance [8].
Distributed Hash Tables (DHT) are used in several architec-
tures as the name resolution tool [11], [15], [18]. MobilityFirst
[14] rely on an external and fast name resolution system called
Global Name Resolution Service (GNRS) that maps the data
object names to network addresses.

Some ICN architectures use name resolution mechanisms
to map the name of the content to the content provider. Data
Oriented Network Architecture (DONA) [12] replaces DNS
names with “flat, self-certifying names” and uses name reso-
lution to map those flat names to corresponding IP addresses.
DONA supports host mobility and multihoming, and improves
service access and data retrieval.

The Named-data Link State Routing protocol (NLSR) [13]
uses link state routing to rank the neighbors of a router
for each name prefix. ”Adjacency LSA” and ”Prefix LSA”,
propagate topology and publisher information in the network
respectively. Each router uses topology information and runsISBN 978-3-903176-08-9 c© 2018 IFIP

an extension of Dijkstra’s shortest-path first (SPF) algorithm
to rank next hops for each router, then maps the prefix to the
name of the publisher and creates routing table for each name
prefix. Like most prior routing approaches based on complete
or partial topology information (e.g., [2], [6], [17]), NLSR
uses sequence numbers to allow routers to determine whether
the updates they receive have more recent information than the
data they currently store. As a consequence, these approaches
require the use of periodic updates to percolate throughout
the network to ensure that all routers converge to consistent
topology information within a finite time.

The Distance-based Content Routing (DCR) [10] was the
first name-based content routing approach for ICNs based
on distances to named content. DCR does not require any
information about the network topology or knowledge about
all the instances of the same content. It enables routing to the
nearest router announcing content from a name prefix being
stored locally (called anchor), all anchors of a name prefix,
and subsets of anchors. This is attained by means of multi-
instantiated destination spanning trees (MIDST). Furthermore,
DCR provides loop-free routes to reach any piece of named
content even if different content objects in the same prefix
are stored at different sites. The limitation of DCR is that
it requires periodic updates to be disseminated through the
network.

III. DNRP

DNRP finds the shortest path(s) to the nearest replica(s) of
name prefixes. To ensure that loop-free routes to named pre-
fixes are maintained at every instant independently of the state
of the network or prefixes, DNRP establishes a lexicographic
ordering among the routes to prefixes reported and maintained
by routers. The lexicographic ordering of routes is based on
two sufficient conditions for loop freedom with respect to a
given prefix that allow for multiple next hops to prefixes along
loop-free routes. DNRP diffuses the computation of new loop-
free routes when the loop-free conditions are not satisfied.
The approach used in DNRP is an extrapolation to the use of
diffusing computations in [5].

Every piece of data in the network is a Named-Data Object
(NDO), represented by a name that belongs to a name prefix or
simply a prefix advertised by one or more producer(s). Name
prefixes can be simple and human-readable or more compli-
cated and self certifying, or may even be a cryptographic hash
of the content. Content names can be flat or hierarchical. The
naming schema depends on the system that runs DNRP and
it is out of scope of this paper.

A router attached to a producer of content that advertises
a name prefix is called an anchor of that prefix. At each
router, DNRP calculates routes to the nearest anchor(s) of
known name prefixes, if there is any, and selects a subset
of the neighbors of the router as valid next hops to reach
name prefixes, such that no routing-table loop is created at any
router for any name prefix. Caching sites are not considered
content producers and hence routes to cached content are
not advertised in DNRP. Our description assumes that routers

process, store, and transfer information correctly and that they
process routing messages one at a time within a finite time.
Every router has a unique identifier or a name that can be
flat or hierarchical. The naming schema and name assignment
mechanism is out of scope of this paper.

A. Messages and Data Structures

Each router i stores the list of all active neighbor routers
(N i), and the cost of the link from the router to each such
neighbor. The cost of the link from router i to its neighbor n
is denoted by lin. Link costs can vary in time but are always
positive. The link cost assignment and metric determination
mechanisms are beyond the scope of this paper.

The routing information reported by each of the neighbors
of router i is stored in its neighbor table (NT i). The entry of
NT i regarding neighbor n for prefix p is denoted by NT i

pn

and consists of the name prefix (p), the distance to prefix p
reported by neighbor n (dipn), and the anchor of that prefix
reported by neighbor n (aipn). If router i is the anchor of
prefix p itself, then dipi = 0.

Router i stores routing information for each known prefix
in its routing table (RT i). The entry in RT i for prefix p
(RT i

p) specifies: the name of the prefix (p); the distance to
the nearest instance of that prefix (dip); the feasible distance to
the prefix (fdip); the neighbor that offers the shortest distance
to the prefix (sip), which we call the successor of the prefix;
the closest anchor to the prefix (aip); the state mode (mf i

p)
regarding prefix p, which can be PASSIVE or ACTIVE; the
origin state (oip) indicating whether router i or a neighbor is
the origin of query in which the router is active; the update
flag list (FLi

p); and the list of all valid next hops (V i
p).

FLi
p consists of four flags for each neighbor n. An update

flag (uf i
pn) denotes whether or not the routing message should

be sent to that neighbor. A type flag (tf i
pn) indicates the type of

routing message the router has to send to neighbor n regarding
prefix p (i.e., whether it is an UPDATE, QUERY, or REPLY).
A pending-reply flag (rf i

pn) denotes whether the router has
sent a QUERY to that neighbor and is waiting for REPLY.
A pending-query flag (qf i

pn) is set if the router received a
QUERY from its neighbor n and has not responded to that
QUERY yet.

Router i sends a routing message to each of its neighbors
containing updates made to RT i since the time it sent its last
update message. A routing message from router i to neighbor
n consists of one or more updates, each of which carries
information regarding one prefix that needs updating. The
update information for prefix p is denoted by U i

p and states:
(a) the name of the prefix (p); (b) the message type (utip) that
indicates if the message is an UPDATE, QUERY, or REPLY;
(c) the distance to p; and (d) the name of the closest anchor.

The routing update received by router i from neighbor n is
denoted by U i

n. The update information of U i
n for prefix p,

ui
pn, specifies the prefix name (p), the distance from n to that

prefix (udipn), the name of the anchor of that prefix (uaipn),
and a message type (utipn).

263

B. Sufficient Conditions for Loop Freedom

The conditions for loop-free routing in DNRP are based
on the feasible distance maintained at each router and the
distances reported by its neighbors for a name prefix. One
condition is used to determine the new shortest distance
through a loop-free path to a name prefix. The other is used
to select a subset of neighbors as next hops to a name prefix.

Source Router Condition (SRC): Router i can select
neighbor n ∈ N i as a new successor sip for prefix p if:

(dipn <∞) ∧ (dipn < fdip ∨ [dipn = fdip ∧ |n| < |i|]) ∧
(dipn + lin = Min{dipv + liv|v ∈ N i}). �

SRC simply states that router i can select neighbor n as its
successor to prefix p if n reports a finite distance to that prefix,
offers the smallest distance to prefix p among all neighbors,
and either its distance to prefix p is less than the feasible
distance of router i or its distance is equal to the feasible
distance of i but |n| < |i|. If two or more neighbors satisfy
SRC, the neighbor that satisfies SRC and has the smallest
identifier is selected. If none of the neighbors satisfies SRC the
router keeps the current successor, if it has any. The distance
of router i to prefix, dip, is defined by the distance of the path
through the selected successor.

A router that has a finite feasible distance (fdip <∞) selects
a subset of neighbors as valid next hops at time t if they have
a finite distance to destination and are closer to destination.
The following condition is used for this purpose.

Next-hop Selection Condition (NSC): Router i with fdip <
∞ adds neighbor n ∈ N i to the set of valid next hops if:
(dipn <∞) ∧ (dipn < fdip ∨ [dipn = fdip ∧ |n| < |i|]). �

NSC states that router i can select neighbor n as a next
hop to prefix p if either the distance from n to prefix p is
smaller than the feasible distance of i or its distance is equal
to the feasible distance and |n| < |i|. NSC orders next hops
lexicographically based on their distance to a prefix and their
names. It is shown that no routing-table loops can be formed if
NSC is used to select the next hops to prefixes at each router.
Note that the successor is also a valid next hop. The successor
to a prefix is a valid next hop that offers the smallest cost.

SRC and NSC are sufficient conditions that, as we show
subsequently, ensure loop-freedom at every instance but do
not guarantee shortest paths to destinations. DNRP integrates
these sufficient conditions with inter-nodal synchronization
signaling to achieve both loop freedom at every instant and
shortest paths for each destination.

C. DNRP Operation

A change in the network, such as a link-cost change, the
addition or failure of a link, the addition or failure of a router,
the addition or deletion of a prefix, or the addition or deletion
of a replica of a prefix can cause one or more computations
at each router for one or more prefixes. A computation can
be either a local computation or a diffusing computation. In a
local computation a router updates its successor, distance, next

hops, and feasible distance independently of other routers in
the network. On the other hand, in a diffusing computation a
router originating the computation must coordinate with other
routers before making any changes in its routing-table entry
for a given prefix. DNRP allows a router to participate in at
most one diffusing computation per prefix at any given time.

A router can be in PASSIVE or ACTIVE mode with respect
to a given prefix independently of other prefixes. A router
is PASSIVE with respect to prefix p if it is not engaged
in any diffusing computation regarding that prefix. A router
initializes itself in PASSIVE mode and with a zero distance to
all the prefixes for which the router itself serves as an anchor.
An infinite distance is assumed to any non-local (and hence
unknown) name prefix.

Initially, no router is engaged in a diffusing computation
(oip = 0). When a PASSIVE router detects a change in a link
or receives a QUERY or UPDATE from its neighbor that does
not affect the current successor or can find a feasible successor,
it remains in PASSIVE mode. On the other hand, if the router
cannot find a feasible successor then it enters the ACTIVE
mode and keeps the current successor, updates its distance, and
sends QUERY to all its neighbors. Table I shows the transit
from one state to another. Neighbor k is a neighbor other than
the successor s.

TABLE I
STATE TRANSIT IN DNRP

Mode State Event
Next
State

Passive 0
Events from a neighbor k, SRC satisfied 0
Events from a neighbor k, SRC not satisfied 1
QUERY from the Successor 3

Active

1
Receives last REPLY 0
Change in distance to Successor 2
QUERY from the Successor 4

2
Receives last REPLY, SRC satisfied 0
Receives last REPLY, SRC not satisfied 1
QUERY from the Successor 4

3
Receives last REPLY 0
Change in distance to the Successor 4

4
Receives last REPLY, SRC satisfied 0
Receives last REPLY, SRC not satisfied 3

Algorithm 1 shows the processing of messages by a router in
PASSIVE mode. Algorithm 2 shows the steps taken in ACTIVE
mode. Algorithm 3 shows the steps taken to process a routing
update.

Handling A Single Diffusing Computation: Routers are
initialized in PASSIVE mode. Each router continuously moni-
tors its links and processes the routing messages received from
its neighbors. When router i detects a change in the cost or
state of a link, or a change in its neighbor table that causes
a change in its distance to prefix p (dip), it first tries to select
a new successor that satisfies SRC. If such a successor exists,
the router carries out a local computation, updates its distance,
successor, and closest anchor, and exits the computation. In a
local computation, router i computes the minimum cost to
reach the destination and updates dip = min{dipn + lin|n ∈

264

N i}. If its distance changes, router i sends a routing message
with utip = UPDATE . Router i also updates its feasible
distance to equal the smaller of its value and the new distance
value, i.e., fdip(new) = min{fdip(old), dip}.

An UPDATE message from a neighbor is processed using
the same approach stated above. If a router receives a QUERY
from its neighbor other than its successor while it is in
PASSIVE mode, it updates the neighbor table, checks for a
feasible successor according to SRC and replies with dip, if it
succeeds. If router i cannot find a neighbor that satisfies SRC
after a change in a link or neighbor-table entry, then it starts
out a diffusing computation by setting the new distance as
the distance through its current successor, enters the ACTIVE
mode (mf i

j = ACTIVE) and sets the corresponding flag (rf i
pn)

for each neighbor n. After entering the ACTIVE mode, router i
sets the new distance as the cost of the path through the current
successor (dip = dipsip

+ lisip
) and sends a routing message

with utip = QUERY. Router i uses the pending reply flag
(rf i

pn) to keep track of the neighbors from which a REPLY
has not been received. When a router becomes ACTIVE it
sets the update flag (uf i

pn = 1), and also sets the type flags
(tf i

pn = QUERY |∀n ∈ N i) and sends the routing messages
to all its neighbors.

Algorithm 1 Processing routing messages in PASSIVE mode

INPUT: RT i, NT i, lin, ui
pn;

[o] verify ui
pn;

dipn = udipn; dmin =∞;
for each k ∈ N i − {i} do

if (dipk+ lik < dmin)∨(dipk+ lik = dmin∧|k| < |snew|) then
snew = k; dmin = dipk + lik;

end if
end for
if (dipsnew

< fdip ∨ [dipsnew
= fdip ∧ |snew| < |i|]) then

if sip 6= snew then sip = snew; aip = aipsnew

if dip 6= dmin then
dip = dmin; fd

i
p = min{fdip, dip};V i

p = φ;
for each k ∈ N i − {i} do
uf i

pk = 1; tf i
pk =UPDATE;

if (dikp < fdip ∨ [dipk = fdip ∧ |k| < |i|]) then
V i
p = V i

p ∪ k;
end if

end for
if utipn = QUERY then tf i

pn =REPLY;
end if

else
mf i

p = ACTIVE; dip = dipsip
+ lisip

;

if (n = sip ∧ utipn = QUERY) then oip = 3; else oip = 1;
for each k ∈ N i − {i} do uf i

pn = 1; tf i
pn =QUERY;

end if

When a router is in ACTIVE mode, it cannot change its
successor or fdip until it receives the replies to its QUERY
from all its neighbors. After receiving all replies (i.e. rf i

pn =
0|∀n ∈ N i), router i becomes PASSIVE by resetting its
feasible distance. The router then selects the new successor
and sends UPDATE messages to its neighbors. More specif-
ically, router i sets fdip = ∞ which insures that the router

can find a new successor that satisfies SRC and then sets
fdip = dip = min{dipn + lin|n ∈ N i} and becomes PASSIVE.

Algorithm 2 Processing routing messages in ACTIVE mode

INPUT: RT i, NT i, ui
pn;

[o] verify ui
pn;

dipn = udipn;
if utipn = REPLY then
rf i

pn = 0; lastReply = true;
for each k ∈ N i − {i} do

if rf i
pk = 0 then lastReply = false;

end for
if lastReply = true then

if oip = 1 ∨ oip = 3 then fdip =∞
Execute Algorithm 3

end if
else if utipn = QUERY then

if (oip = 1 ∨ oip = 2) then
if n 6= sip then uf i

pn = 1; tf i
pn =REPLY; else oip = 4;

end if
if (oip = 3 ∨ oip = 4) then uf i

pn = 1; tf i
pn =REPLY;

end if

Algorithm 3 Update RT i
p

INPUT: RT i, NT i, lin, ui
pn;

dmin =∞;
for each k ∈ N i − {i} do

if (dipk+ lik < dmin)∨(dipk+ lik = dmin∧|k| < |snew|) then
snew = k; dmin = dipk + lik;

end if
end for
if (dipsnew

< fdip ∨ [dipsnew
= fdip ∧ |snew| < |i|]) then

oip = 0;mf i
p = PASSIV E;

if sip 6= snew then sip = snew;
if dip 6= dmin then
dip = dmin; fd

i
p = min{fdip, dip};V i

p = φ;
for each k ∈ N i − {i} do
uf i

pk = 1; tf i
pk =UPDATE;

if (dipk < fdip ∨ [dipk = fdip ∧ |k| < |i|]) then
V i
p = V i

p ∪ k;
end if

end for
if qf i

psip
(old) = 1 then tf i

pn =REPLY;
end if

else
if oip = 2 then oip = 1 else oip = 3;
for each k ∈ N i − {i} do uf i

pn = 1; tf i
pn =QUERY;

end if

If router i receives a QUERY from a neighbor other than its
successor while it is ACTIVE, it simply replies to its neighbor
with a REPLY message stating the current distance to the
destination. The case of a router receiving a QUERY from
its successor while it is ACTIVE is described subsequently
in the context of multiple diffusing computations. UPDATE
messages are processed and neighbor tables are updated, but
the successor or distance is not changed until the router
receives all the replies it needs to transition to the PASSIVE
mode. While a router is in ACTIVE mode, neither a QUERY
nor an UPDATE can be sent.

265

Fig. 1. DNRP Operation Example

Handling Multiple Diffusing Computations: Given that
a router executes each local computation to completion, it
handles multiple local computations for the same prefix one at
a time. Similarly, a router handles multiple diffusing compu-
tation for the same prefix by processing one computation at a
time. An ACTIVE router i can be in one of the following four
states: (1) router i originated a diffusing computation (oip = 1),
(2) metric increase detected during ACTIVE mode (oip = 2),
(3) diffusing computation is relayed (oip = 3), or (4) successor
metric changed during ACTIVE mode (oip = 4). If the router
is in PASSIVE mode then its state is 0 (i.e., oip = 0).

Consider the case that a router i is ACTIVE and in State 1
(oip = 1). If the router receives the last REPLY to its query,
then it resets its feasible distance to infinity, checks SRC to find
the new successor, and sends an UPDATE to all its neighbors.
On the other hand, if router i detects a change in the link to its
successor then it updates its neighbor table and sets oip = 2.

If router i is in State 2, receives the last REPLY, and can
find a feasible successor using SRC with the current feasible
distance, then it becomes PASSIVE and sends an UPDATE to
all its neighbors(oip = 0). Otherwise, it sends a QUERY with
the current distance and sets oip = 1.

Router i uses the pending query flag (qf i
pn) to keep track of

the replies that have been received for its QUERY regarding
prefix p. If router i is in either State 1 or 2 and receives a
QUERY from its current successor to the prefix, then it sets
qf i

psip=1 and transitions to State 4 (i.e., it sets oip = 4).
If a router in PASSIVE mode receives a QUERY from its

successor, it searches for a new successor that satisfies SRC.
If it cannot find such a successor then it keeps the current
successor, updates its distance, and becomes ACTIVE. Then,
the router sends QUERY to all of its neighbors and sets oip = 3.

When router i in state 3 receives REPLY from all of its
neighbors, it resets its feasible distance, fdip = ∞, selects
a new successor, updates the V i

p and sends UPDATE to its
neighbors and REPLY to its the previous successor. If the
router detects a link failure or a cost increase in the link to
its current successor, the router sets oip = 4 to indicate that
a topology change occurred while the router is in ACTIVE
mode. A router handles the case of the failure of the link with
its successor as if it had received a REPLY from its successor

with dipsip
=∞.

If router i is in State 4, (oip = 4) and it receives replies from
all its neighbors, then it tries to find a feasible successor that
satisfies SRC with the current value of fdip. If such a successor
exists, the router updates its successor, distance, and next hops
for prefix p, and sends an UPDATE message to its neighbors
as well as REPLY to the previous successor. Otherwise, it sets
oip = 3 and sends a QUERY with the new distance.

While router i is in ACTIVE mode regarding a prefix, if
a QUERY is received for the prefix from a neighbor other
than the current successor, the router updates the neighbor
table and sends a REPLY to that neighbor. If a router in
PASSIVE mode receives a QUERY from a neighbor other than
the current successor, the router updates its neighbor table. If
the feasibility condition is not satisfied anymore, the router
sends a REPLY to the neighbor that provides the current value
dip before it starts its own computation.

D. Example of DNRP Operation

Figure 1 illustrates the operation of DNRP with a simple
example. The figure shows the routing information used for
a single prefix when routers a and z advertise that prefix
and each link has unit cost. The tuple next to each router
states the distance and the feasible distance of the router
for that prefix. The red, blue, and green arrows represent the
QUERY, REPLY, and UPDATE messages respectively and the
number next to the arrow shows the time sequence in which
that message is sent. Figure 1 (a) shows the change in the
cost of link (r, a). Router r detects this change and becomes
ACTIVE and sends QUERY to its neighbors.

Router q receives the QUERY from its successor and cannot
find a feasible successor (Figure 1(b)). Therefore, it becomes
ACTIVE and sends a QUERY to its neighbors. Router r
receives REPLY from a and t, and a QUERY from q. Given
that q is not a successor for router r, r sends REPLY to
q. After receiving REPLY from routers r, s and t, router q
becomes PASSIVE again and sends its REPLY to its previous
successor, r. In turn, this means that r receives all the replies it
needs, becomes PASSIVE, and resets its feasible distance. The
operation of DNRP is such that only a portion of the routers
are affected by the topology change.

266

E. Routing to all instances of a prefix

DNRP enables routers to maintain multiple loop-free routes
to the nearest anchor of a name prefix. In some ICN archi-
tectures, such as NDN and CCNx, an anchor of a name-
prefix may have some but not necessarily all the content
corresponding to a given prefix. Therefore, simply routing to
nearest replica may cause some data to be unreachable, and
the ability to contact all anchors of a prefix is needed. To
address this case, a multi-instantiated destination spanning tree
(MIDST) can be used alongside DNRP to support routing to
all anchors of the same prefix. A MIDST is established in a
distributed manner. Routers that are aware of multiple anchors
for the same prefix exchange routing updates to establish the
spanning tree between all anchors of a prefix. Once the MIDST
is formed for a given prefix, the first router in the MIDST that
receives a packet forwards it over the MIDST to all of the
anchors. The details of how a MIDST can be established in
DNRP are omitted for brevity; however, the approach is very
much the same as that described in [9].

IV. CORRECTNESS OF DNRP

The following theorems prove that DNRP is loop-free at
every instant and considers each computation individually and
in the proper sequence. From these results, the proof that
DNRP converges to shortest paths to prefixes is similar to the
proof presented in [4] and due to space limitation is omitted.
We assume that each router receives and processes all routing
messages correctly. This implies that each router processes
messages from each of its neighbors in the correct order.

Theorem 1: No routing-table loops can form in a network
in which routers use NSC to select their next hops to prefixes.

Proof: Assume for the sake of contradiction that all
routing tables are loop-free before time tl but a routing-table
loop is formed for prefix p at time tl when router q adds
its neighbor n1 to its valid next-hop set V q

p . Because the
successor is also a valid next hop, router q must either choose
a new successor or add a new neighbor other than its current
successor to its valid next-hop set at time tl. We must show
that the existence of a routing-table loop is a contradiction in
either case.

Let Lp be the routing-table loop consisting of h hops
starting at router q, (Lp = {q = n0,new, n1,new, n2,new, . . . ,
nh,new}) where nh,new = q, ni+1,new ∈ V ni

p for 0 ≤ i ≤ h.
The time router ni updates its valid next-hop set to include

ni+1,new is denoted by tinew. Assume that the last time router
ni sent an UPDATE that was processed by its neighbor ni−1,
is tiold. Router ni revisits valid next hops after any changes in
its successor, distance, or feasible distance; therefore, tiold ≤
tinew ≤ tl and dni

pni+1
(tl) = dni

pni+1
(told). Also, by definition,

at any time ti, fdip(ti) ≤ dip(ti), and fdip(t2) ≤ fdip(t1) if
t1 < t2. Therefore,

fdip(t2) ≤ dip(t1) such that t1 < t2 (1)

If router ni selects a new successor at time tinew then:

dni−1
pni

(tl) = dni
p (told) ≥ fdni

p (told) ≥ fdni
p (tnew) (2)

Using NSC ensures that

(fdni
p (tnew) > dni

pni+1
(tl))

∨(fdni
p (tnew) = dni

pni+1
(tl) ∧ |ni| > |ni+1|)

(3)

From Eqs. (2) and (3) we have:

(dni−1
pni

(tl) > dni
pni+1

(tl))

∨(dni−1
pni

(tl) = dni
pni+1

(tl) ∧ |ni| > |ni+1|)
(4)

Therefore, for 0 ≤ k ≤ h in Lp it is true that:

(dn0
pn1

(tl) > dnk
pnk+1

(tl))

∨(dn0
pn1

(tl) = dnk
pnk+1

(tl) ∧ |n0| > |nk|)
(5)

If d
ni−1
pni (tl) > dni

pni+1
(tl) in at least one hop in Lp

then it must be true that, for any given k ∈ {1, 2, . . . , h},
dnk
pnk+1

(tl) > dnk
pnk+1

(tl), which is a contradiction. If at any
hop in the Lp it is true that d

ni−1
pni (tl) = dni

pni+1
(tl), then

|k| > |k|, which is also a contradiction. Therefore, no routing-
table loop can be formed when routers use NSC to select their
next hops to prefix p.

Lemma 2: A router that is not the origin of a diffusing
computation sends a REPLY to its successor when it becomes
PASSIVE.

Proof: A router that runs DNRP can be in either PASSIVE
or ACTIVE mode for a prefix p when it receives a QUERY
from its successor regarding the prefix. Assume that router
i is in PASSIVE mode when it receives a QUERY from its
successor. If router i finds a neighbor that satisfies SRC,
then it sets its new successor and sends a REPLY to its old
successor. Otherwise, it becomes ACTIVE, sets oip = 3, and
sends a QUERY to all its neighbors. Router i cannot receive
a subsequent QUERY from its successor regarding the same
prefix, until it sends a REPLY back to its successor. If the
distance does not increase while router i is ACTIVE then oip
remains the same (i.e. oip = 3). Otherwise, router i must set
oip = 4. In both cases router i must send a REPLY when it
becomes PASSIVE.

Assume that router i is in ACTIVE mode when it receives
a QUERY from its successor s. Router s cannot send another
QUERY until it receives a REPLY from all its neighbors to its
query, including router i. Hence, router i must be the origin
of the diffusing computation for which it is ACTIVE when
it receives the QUERY from s, which means that oip = 1 or
oip = 2. In both cases router i sets oip = 4 when it receives
a QUERY form its successor s and s must send a REPLY in
response to the QUERY from i because, i is not the successor
for s. After receiving the last REPLY from its neighbors, either
router i finds a feasible successor and sends a REPLY to s
(oip = 0) or it propagates the diffusing computation forwarded
by s by sending a QUERY to its neighbors and setting oip = 3.
Router i then must send a REPLY to s when it receives the
last REPLY for the QUERY it forwarded from s.

267

Hence, independently of its current mode, router i must send
a REPLY to a QUERY it receives from its successor when it
becomes PASSIVE.

Lemma 3: Consider a network that is loop free before an
arbitrary time t and in which a single diffusing computation
takes place. If node ni is PASSIVE for prefix p at that time,
then it must be true that (dni−1

pni (t) > dni
pni+1

(t))∨ (dni−1
pni (t) =

dni
pni+1

(t) ∧ |ni| > |ni+1|) independently of the state of other
routers in the chain of valid next hops {ni−1, ni, ni+1} for
prefix p.

Proof: Assume that router ni is PASSIVE and selects
router ni+1 as a valid next hop. According to NSC it must
be true that:

(dni
pni+1

(t) < fdni
p (t) ≤ dni

p (t))∨
(dni

pni+1
(t) = fdni

p (t) ≤ dni
p (t) ∧ |ni+1| < |ni|)

(6)

Assume that ni did not reset fdni
p the last time tnew < t

when ni became PASSIVE and selected its successor snew
and updated its distance dni

p (tnew) = dni
p (t). If router ni−1

processed the message that router ni sent after updating
its distance, then: d

ni−1
pni (t) = dni

p (tnew). Substituting this
equation in 6 renders the result of this lemma.

On the other hand, If router ni−1 did not process the
message that router ni sent after updating its distance and
before t, then d

ni−1
pni (t) = dni

p (told). Based on the facts that
router ni did not reset its feasible distance and Eq. 1 holds
for this case. Therefore:

dni−1
pni

(t) = dni−1
pni

(told) > fdni
p (t) (7)

Now consider the case that ni becomes PASSIVE at time
tnew and changes its successor from sold to snew by reseting
its feasible distance. The case that ni−1 processed the message
that router ni sent after becoming PASSIVE is the same as
before. Assume that ni−1 did not process the message that ni

sent at time tnew. Furthermore, assume that router ni becomes
ACTIVE at time told, with a distance dni

p (told) = dni
psold

+
lni
sold

. Router ni cannot change its successor or experience any
increment in its distance through sold; hence, dni

p (tnew) ≤
dni
p (told). On the other hand, the distance through the new

successor must be the shortest and so dni
p (tnew) = dni

psnew
+

lni
snew

≤ dni
p (told). Router ni becomes PASSIVE if it receives a

REPLY from each of its neighbors including ni−1. Therefore,
ni−1 must be notified about dni

p (told) . Therefore:

dni−1
pni

(t) = dni
p (told) ≥ dni

p (tnew) = dni
p (t). (8)

Substituting this equation in 6 renders the result of this lemma.
Therefore, the lemma is true in all cases.

Lemma 4: Consider a network that is loop free before an
arbitrary time t and in which a single diffusing computation
takes place. Let two network nodes ni and ni+1 be such that
ni+1 ∈ V ni

p . Independently of the state of these two nodes, it
must be true that:

(fdni
p (t) > fdni+1

p (t))∨
(fdni

p (t) = fdni+1
p (t) ∧ |ni| > |ni+1|)

(9)

Proof: Consider the case that router ni is PASSIVE, then
from Lemma 3 and the fact that routers select their next hops
based on NSC, it must be true that:

(fdni
p > dni

pni+1
(t))∨

(fdni
p = dni

pni+1
(t) ∧ |ni| > |ni+1|)

(10)

Consider the case that router ni+1 is ACTIVE. Router ni+1

cannot change its successor or increase its feasible distance.
If router ni processed the last message that router ni+1 sent
before time t, then: dni

pni+1
(t) = fd

ni+1
p (t) and the lemma is

true. Assume router ni did not process the last message that
router ni+1 sent before time t. Router ni must send a REPLY
to ni+1 the last time that router ni+1 became PASSIVE at time
tp reporting a distance d

ni+1
p (told) = d

ni+1
psold + l

ni+1
sold .

If router ni+1 did not reset its feasible distance since the last
time it became passive, fdni+1 , then, dni+1

p (told) ≥ fd
ni+1
p (t).

Consider the case that router ni+1 resets fdni+1 the last
time before t that it becomes PASSIVE. Router ni+1 cannot
change its successor or experience any increment in its dis-
tance through its old successor, sold. Hence, dni+1

p (tnew) ≤
d
ni+1
p (told). On the other hand, the distance through the new

successor must be the smallest among all neighbors including
the old successor and so d

ni+1
p (tnew) = (d

ni+1
psnew + l

ni+1
snew) ≤

d
ni+1
p (told). Router ni+1 becomes PASSIVE if it receives a

REPLY from each of its neighbors, including ni. Therefore,
ni must be notified about dni+1

p (told) . Therefore,

dni
pni+1

(t) = dni+1
p (told) ≥ dni+1

p (tnew) ≥ fdni+1
p (tnew)

(11)

The feasible distance fd
ni+1
p (tnew) with tnew < t can-

not increase until router ni+1 becomes PASSIVE again;
therefore,fdni+1

p (tnew) ≥ fdni
p (t). The result of the lemma

follows in this case by substituting this result in Eqs. (11) and
Eq. (10).

Now consider the case that router ni+1 is PASSIVE. If router
ni processed the last message that router ni+1 sent before time
t, then dni

pni+1
(t) = d

ni+1
p (t) ≥ fd

ni+1
p (t) and the lemma is

true. Now consider the case that router ni did not process the
last message router ni+1 sent before time t. If router ni+1 did
not reset fdni+1 then d

ni+1
p (told) ≥ fd

ni+1
p (t). On the other

hand, if router ni+1 resets fdni+1 then we can conclude that
fd

ni+1
p (tnew) ≥ fdni

p (t) and |ni| > |ni+1| using an argument
similar to one we used for the ACTIVE mode. Hence, the
lemma is true for all cases.

NSC and SRC guarantees loop-freedom at every time in-
stant. If we consider the link form router i to its valid next
hop with respect to a specific prefix as a directed edge,
then the graph containing all this directed links is a directed
acyclic graph (DAG) with respect to that specific prefix. The
DAG representing the relationship of valid next hops regarding
prefix p is denoted by Dp.

Lemma 5: If routers are involved in a single diffusing
computation then Dp is loop-free at every instant.

Proof: Assume for the sake of contradiction that Dp is
loop-free before an arbitrary time t and a loop Lp consisting of
h hops is created at time tl > t when router q updates V q

p after

268

1 2 3 4

num. of replicas
(a)

0

500

1000

1500

n
u

m
.

m
e

s
s
a

g
e

s

Add Prefix

DNRP
LS

1 2 3 4

num. of replicas
(e)

10
0

10
1

10
2

10
3

10
4

n
u

m
.

o
p

e
ra

ti
o

n
s

Add Prefix

DNRP
LS

1 2 3 4

num. of replicas
(b)

0

200

400

600

800

1000

1200

n
u

m
.

m
e

s
s
a

g
e

s

Delete Prefix

DNRP
LS

1 2 3 4

num. of replicas
(f)

10
0

10
1

10
2

10
3

10
4

n
u

m
.

o
p

e
ra

ti
o

n
s

Delete Prefix

DNRP
LS

1 2 3 4

num. of replicas
(c)

0

200

400

600

800

1000

1200

n
u

m
.

m
e

s
s
a

g
e

s

Link Failure

DNRP
LS

1 2 3 4

num. of replicas
(g)

10
0

10
5

n
u

m
.

o
p

e
ra

ti
o

n
s

Link Failure

DNRP
LS

1 2 3 4

num. of replicas
(d)

0

200

400

600

800

1000

1200

n
u

m
.

m
e

s
s
a

g
e

s

Link Recovery

DNRP
LS

1 2 3 4

num. of replicas
(h)

10
0

10
5

n
u

m
.

o
p

e
ra

ti
o

n
s

Link Recovery

DNRP
LS

Fig. 2. Simulation results showing average number of messages and average number of operations vs number of replicas

processing an input event. Assume that Lp = {n1, n2, . . . , nh

} is the loop created, where ni+1 ∈ V ni
p for 1 ≤ i ≤ h and

n1 ∈ V nh
p . If router n1 changes its next hop as a result of

changing its successor, it must be in PASSIVE mode at time
tl because an ACTIVE router cannot change its successor or
update its next-hop set.

If all routers in Lp are PASSIVE at time tl, either all of
them have always been PASSIVE at every instant before tl,
or at least one of them was ACTIVE for a while and became
PASSIVE before tl. If no router was ever ACTIVE before time
tl, it follows from Theorem 1 that updating V n

p cannot create
loop. Therefore, for router n1 to create a loop, at least one of
the routers must have been ACTIVE before time t.

If all routers are in PASSIVE mode at time t, traversing Lp

and applying Theorem 10 leads to the erroneous conclusion
that either dn1

p > dn1
p or |n1| > |n1|. Therefore updating V n1

p

cannot create a loop if all routers in the Lp are PASSIVE at
time t.

Assume that only one diffusing computation is taking place
at time tl. Based on Lemma 4 traversing loop Lp leads to the
conclusion that either fdni > fdni or |ni| > |ni|, which is a
contradiction. Therefore, if only a single diffusing computation
takes place, then Lp cannot be formed when routers use SRC
and NSC along with difusing computations to select next hops
to reach the destination prefix.

At steady state, the graph containing the successors and
connected links between them, must create a tree. The tree
containing successors that are ACTIVE regarding prefix p and
participating in a diffusion computation started form router i
at time t are called diffusing tree (Tpi(t)).

Theorem 6: DNRP considers each computation individually
and in the proper sequence.

Proof: Assume router i is the only router that has started
a diffusing computation up to time t. If router i generates a
single diffusion computation, the proof is immediate. Consider
the case that router i generates multiple diffusing computa-
tions. Any router that is already participating in the current

diffusing computation (routers in the Tpi, including the router
i) cannot send a new QUERY until it receives all the replies to
the QUERY of the current computation and becomes PASSIVE.
Note that each router processes each event in order. Also,
when a router becomes PASSIVE, it must send a REPLY to
its successor, if it has any. Therefore, all the routers in Tpi

must process each diffusing computation individually and in
the proper sequence.

Consider the case that multiple sources of diffusing compu-
tations exist regarding prefix p in the network. Assume router
i is ACTIVE at time t. Then either router i is the originator of
the diffusing computation (oip = 1 or 2), or received a QUERY
from its successor (oip = 3 or 4). If oip = 1 or 3, the router
must become PASSIVE before it can send another QUERY.
If the router is the originator of the computation (oip = 1 or
2) and receives a QUERY form its successor, it holds that
QUERY and sets oip =4. Therefore, all the routers in the Tpi

remain in the same computation. Router i can forward the new
QUERY and become the part of the larger Tps only after it
receives a REPLY form each of its neighbors for the current
diffusing computation. If router a is ACTIVE and receives a
QUERY from its neighbor k 6= sap, then it sends a REPLY to
its neighbor before creating a diffusing computation, which
means that Tpa is not part of the ACTIVE Tp to which k
belongs. Therefore, any two ACTIVE Tpi and Tpj have an
empty intersection at any given time, it thus follows from the
previous case that the Theorem is true.

V. PERFORMANCE COMPARISON

We compare DNRP with a link-state routing protocol given
that NLSR [13] is based on link states and is the routing
protocol advocated in NDN, one of the leading ICN archi-
tectures. We implemented DNRP and an idealized version of
NLSR, which we simply call ILS (for ideal link-state), in
ns-3 using the needed extensions to support content-centric
networking [19]. In the simulations, ILS propagates update
messages using the intelligent flooding mechanism. There are
two types of Link State Advertisements (LSA): An adjacency

269

LSA carries information regarding a router, its neighbors, and
connected links; and a prefix LSA advertises name prefixes,
as specified in [13]. For convenience, DNRP sends HELLO
messages between neighbors to detect changes in the sate of
nodes and links. However, HELLO’s can be omitted in a real
implementation and detecting node adjacencies can be done
my monitoring packet forwarding success in the data plane.

The AT&T topology [20] is used because it is a realistic
topology for simulations that mimic part of the Internet
topology. It has 154 nodes and 184 links. A node has 2.4
neighbors on average. In the simulations, the cost of a link
is set to one unit, and 30 nodes are selected as anchors that
advertise 1200 unique name prefixes. We generated test cases
consisting of single link failure and recovery, and a single
prefix addition and deletion.

To compare the computation and communication overhead
of DNRP and ILS, we measured the number of routing
messages transmitted over the network and the number of
operations executed by each routing protocol. The number of
messages for ILS includes the number of HELLO messages,
Adjacency LSAs, and Prefix LSAs. For DNRP, this measure-
ment indicates the total number of all the routing messages
transmitted as a result of any changes. The operation count is
incremented whenever an event occurs, and statements within
a loop are executed.

The simulation results comparing DNRP with ILS are
depicted in Figure 2. In each graph, the horizontal axes is
the average number of anchors per prefix, i.e., the number
of anchors that advertise the same prefix to the network. We
considered four scenarios: adding a new prefix to the network;
deleting one prefix from one of the replicas; a single link
failure; and a single link recovery. Hence, ILS incurs the
same signaling overhead independently of how many LSA’s
are carried in an update. Figures (2a - 2d) showthe number of
messages transmitted in the whole network while Figures (2e
- 2h) show the number of operations each protocol executed
after the change. The number of operations in the figure is in
logarithmic scale.

ILS advertises prefixes from each of the replicas to the
whole network. As the number of replicas increases, the
number of messages increases, because each replica advertises
its own Prefix LSA. In DNRP, adding a new prefix affects
nodes in small regions and hence the number of messages
and operations are fewer than in ILS. Deleting a prefix from
one of the replicas results in several diffusing computations in
DNRP, which results in more signaling. However, the number
of messages decreases as the number of replicas increases,
because the event affect fewer routers. In ILS one Prefix
LSA will be advertised for each deletion. The computation of
prefix deletion is comparable; however, DNRP imposes less
computation overhead when the number of replicas reach 4.

DNRP has less communication overhead compared to ILS
after a link recovery or a link failure. The need to execute
Dijkstra’s shortest-path first for each neighbor results in ILS
requiring more computations than DNRP. DNRP outperforms
NLSR for topology changes as well as adding a new prefix.

VI. CONCLUSION

We introduced the first name-based content routing protocol
based on diffusing computations (DNRP) and proved that
it provides loop-free multi-path routes to multi-homed name
prefixes at every instant. Routers that run DNRP do not require
to have knowledge about the network topology, use complete
paths to content replicas, know about all the sites storing
replicas of named content, or use periodic updates. DNRP has
better performance compared to link-state routing protocols
when topology changes occur or new prefixes are introduced
to the network. A real implementation of DNRP would not
require the use of HELLO’s used in our simulations, and hence
its overhead is far less than routing protocols that rely on
LSA’s validated by sequence numbers, which require periodic
updates to work correctly.

VII. ACKNOWLEDGMENTS

This work was supported in part by the Baskin Chair of
Computer Engineering at UCSC.

REFERENCES
[1] M. Bari et al., “A Survey of Naming and Routing in Information-Centric

Networks,” IEEE Communications Magazine, vol. 50, no. 12, pp. 44–53,
Dec. 2012.

[2] J. Behrens and J.J. Garcia-Luna-Aceves, “Hierarchical Routing Using
Link Vectors,” Proc. IEEE INFOCOM ’98, March 1998.

[3] J. Choi et al., “A Survey on Content-Oriented Networking for Efficient
Content Delivery,” IEEE Communications Magazine, March 2011.

[4] J. J. Garcia-Luna-Aceves, “A Distributed, Loop-Free, Shortest-Path
Routing Algorithm,” Proc. IEEE INFOCOM ‘88, Mar 1988.

[5] J. J. Garcia-Luna-Aceves, “Loop-Free Routing Using Diffusing Compu-
tations,” IEEE/ACM Transactions on Networking, 1993.

[6] J.J. Garcia-Luna-Aceves and M. Spohn, “Scalable Link-State Internet
Routing,” Proc. ICNP ‘98, Oct. 1998.

[7] J.J. Garcia-Luna-Aceves, “System and Method for Discovering In-
formation Objects and Information Object Repositories in Computer
Networks,” U.S. Patent 8,572,214, October 29, 2013.

[8] J. J. Garcia-Luna-Aceves, “Name-Based Content Routing in Information
Centric Networks Using Distance Information,” in Proc. ACM ICN ‘14,
2014.

[9] J. J. Garcia-Luna-Aceves, “Routing to Multi-Instantiated Destinations:
Principles and Applications,” Proc. IEEE ICNP 2014, 2014.

[10] J. J. Garcia-Luna-Aceves, “A Fault-Tolerant Forwarding Strategy for
Interest-Based Information Centric Networks,” Proc. IFIP Networking
‘15, 2015.

[11] K. V. Katsaros et al., “On Inter-Domain Name Resolution for
Information-Centric Networks,” Proc. Networking 2012, May 2012.

[12] T. Koponen et al., “A Data-Oriented (and Beyond) Network Architec-
ture,” Proc. ACM SIGCOMM ‘07, 2007.

[13] V. Lehman et al., “A Secure Link State Routing Protocol for NDN,”
IEEE Access, Jan. 2018

[14] Mobility first project. [Online]. Available: http://mobilityfirst.winlab.
rutgers.edu/

[15] Publish subscribe internet technology (PURSUIT) project. [Online].
Available: http://www.fp7-pursuit.eu/PursuitWeb/

[16] J. Raju et al., “System and Method for Information Object Routing in
Computer Networks,” U.S. Patent 7,552,233, June 23, 2009

[17] M. Spohn and J.J. Garcia-Luna-Aceves, “Neighborhood Aware Source
Routing,” Proc. ACM MobiHoc 2001, Oct. 2001.

[18] Scalable and adaptive internet solutions (SAIL) project. [Online]. Avail-
able: http://www.sail-project.eu/

[19] J. Mathewson et al., “Sconet : Simulator content networking,” CCNxCon,
2015.

[20] O. Heckmann et al., “On realistic network topologies for simulation”
MoMeTools ’03 , 2003.

270

PopNetCod: A Popularity-based Caching Policy for
Network Coding enabled Named Data Networking

Jonnahtan Saltarin∗, Torsten Braun∗, Eirina Bourtsoulatze† and Nikolaos Thomos‡
∗University of Bern, Bern, Switzerland

†Imperial College London, London, United Kingdom
‡University of Essex, Colchester, United Kingdom

saltarinj@gmail.com, braun@inf.unibe.ch, e.bourtsoulatze@imperial.ac.uk, nthomos@essex.ac.uk

Abstract—In this paper, we propose PopNetCod, a popularity-
based caching policy for network coding enabled Named Data
Networking. PopNetCod is a distributed caching policy, in which
each router measures the local popularity of the content objects
by analyzing the requests that it receives. It then uses this
information to decide which Data packets to cache or evict from
its content store. Since network coding is used, partial caching of
content objects is supported, which facilitates the management of
the content store. The routers decide the Data packets that they
cache or evict in an online manner when they receive requests for
Data packets. This allows the most popular Data packets to be
cached closer to the network edges. The evaluation of PopNetCod
shows an improved cache-hit rate compared to the widely used
Leave Copy Everywhere placement policy and the Least Recently
Used eviction policy. The improved cache-hit rate helps the clients
to achieve higher goodput, while it also reduces the load on the
source servers.

I. INTRODUCTION

Data intensive applications, e.g., video streaming, software
updates, etc., are the major sources of data traffic in the Internet,
and their predominance is expected to further increase in the
near future [1]. Moreover, nowadays Internet users are more
concerned about what data they request, rather than where that
data is located. To address the increased data traffic and the
shift in interest from location to data, technologies like Content
Delivery Networks (CDN) have been proposed. However, these
solutions cannot fully exploit the network resources and deal
effectively with the increasing amount of data traffic, since
they work on top of the current Internet architecture, which is
based on host-to-host communication. To address this issue, the
Named Data Networking (NDN) architecture [2], [3] has been
proposed, which replaces the addresses of the communicating
hosts (i.e., IP addresses) with the name of the data being
communicated. In the NDN architecture, clients request data
by sending an Interest that contains the name of the requested
data. Any network node that receives the Interest and holds
a copy of the requested data can satisfy it by sending a Data
packet back to the client.

Two of the main advantages that the NDN architecture
has over the traditional host-to-host architectures are: (i)
the inherent use of in-network caching, and (ii) the built-
in support for multipath communications. The pervasive in-
network caching concept proposed by NDN reduces the number

of hops that Interests and Data packets need to travel in the
network. This reduces the delay perceived by the application
retrieving the requested data. However, having caches in all
the routers is not always necessary to yield the full benefits
that caching brings to the data delivery process. Previous
works [4]–[6] have shown that enabling caches only at the
edge of the network may achieve performance improvements
similar to those obtained when every router is equipped with a
cache. Furthermore, NDN provides natural multipath support
by allowing clients to distribute the Interests that they need to
send to retrieve content objects over all their network interfaces
(e.g., LTE, Wi-Fi), which enables the applications to better use
the clients’ network resources. However, in the presence of
multiple clients and/or multiple data sources, the optimal use
of multiple paths requires the nodes to coordinate where they
forward each Interest in order to reduce the number of Data
packet transmissions and the network load.

To optimally exploit the benefits brought by in-network
caching and multipath communication, previous works [7], [8]
had proposed the use of network coding [9]. In a network
coding enabled NDN architecture, the network routers code
Data packets by combining the Data packets available at their
caches prior to forwarding them. The use of network coding (i)
increases Data packet diversity in the network, hence, the use
of in-network caches is optimized, and (ii) in multi-client and
multi-source scenarios it removes the need for coordinating the
faces where the nodes forward each Interest, which enables
efficient multipath communication. Although there are works
that consider the use of network coding in NDN, they do not
consider that caching capacity is limited [7], [8], [10], [11] or
they assume that a centralized node coordinates the caching
decisions [12], [13], which is unrealistic or difficult to deploy.

In this paper, our goal is to develop a distributed caching
policy that preserves the benefits that network coding brings
to NDN for the realistic case when the caches have limited
capacity. We propose PopNetCod, a popularity-based caching
policy for network coding enabled NDN architectures. PopNet-
Cod is a caching policy in which routers distributedly estimate
the popularity of the content objects based on the received
Interest. Based on this information, each router decides which
Data packets to insert or evict from its cache. The decision to
cache a particular Data packet is taken before the Data packet
arrives at the router, i.e., while processing the correspondingISBN 978-3-903176-08-9 c© 2018 IFIP

Interest. Since the first routers to process Interests in their
path to the source are the edge routers, this helps to cache the
most popular Data packets closer to the network edges, which
reduces the data delivery delay [4]–[6]. To avoid caching the
same Data packet in multiple routers over the same path, routers
communicate the Data packets that they decide to cache by
setting a binary flag in the Interests to be forwarded upstream.
This increases the Data packet diversity in the caches. When
the cache of a router is full and a Data packet should be cached,
the router decides which Data packet should be evicted from
its cache based on the popularity information.

We implement the proposed caching policy on top of
ndnSIM [14], based on the NetCodNDN codebase [8], [10].
We evaluate the performance of PopNetCod in a Netflix-like
video streaming scenario, designed using parameters available
in the literature [15]–[17]. In comparison with a caching policy
that uses the NDN’s default Leave Copy Everywhere (LCE)
placement policy and the Least Recently Used (LRU) eviction
policy, PopNetCod achieves a higher cache-hit rate, which
translates into higher video quality at the clients and reduced
load at the sources.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the related works. Section III
describes the system architecture. Section IV introduces the
problem of caching in network coding enabled NDN for
data intensive applications. Then, Section V presents our
caching policy, PopNetCod. A practical implementation of
the PopNetCod caching policy is described in Section VI.
Section VII presents the evaluation of the PopNetCod caching
policy.

II. RELATED WORK

Caching policies are needed to deal with caches that have
limited capacity. Caching policies decide which Data packets
are placed into the cache (placement), as well as which data
packets are evicted from the cache when the cache is full
and a new Data packet should be cached (eviction). There
are placement algorithms that consider content popularity to
decide which Data packets routers allow in their caches [18]–
[21]. Specifically, VIP [18] is a framework for joint Interest
forwarding and Data packet caching. This scheme uses a
“virtual control plane” that operates on the Interest rate and
a “real plane” which handles Interests and Data packets. It
is shown that the design of joint algorithms for routing and
caching is important for NDN. Thus, this scheme proposes
distributed control algorithms that operate in the virtual control
plane with the aim of increasing the number of Interests
satisfied by in-network caches. PopCaching [19] is a popularity-
based caching policy in which the popularity is computed
online, without the need for a training phase. This makes
PopCaching robust in dynamic popularity settings. However,
PopCaching is designed for caching systems with a single cache
in the path, while in this paper we are interested in networks of
caches. WAVE [20] is a placement algorithm that determines the
number of Data packets that should be cached for a given file
with the help of an access counter. The number of Data packets

to cache increases exponentially with the value of the access
counter. The main idea of WAVE, which partially caches a
content object according to the local popularity, is also adopted
by the caching policy that we propose in this paper. However,
WAVE does not facilitate edge caching, since the most popular
data is cached closer to the source and slowly moves towards
the edges as the number of requests increase. Progressive [21]
is another partial caching algorithm, which exploits the content
popularity to decide how many Data packets should be cached
for each name prefix. The cache placement decision is taken
when the Interests are received, which helps to cache the most
popular content at the network edge. However, this approach
lacks an eviction algorithm, and hence it cannot be deployed
when the cache capacity is limited.

None of the approaches above consider the use of network
coding [9], and all are evaluated in single-path scenarios.
Given the benefits that network coding brings to multipath
communications in NDN [7], [8], [10], [11], some approaches
have been proposed to improve the benefits of caching in
network coding enabled NDN architectures [12], [13], [22].
NCCAM [12] and NCCM [13] propose optimal solutions to the
problem of efficiently caching in network coding enabled NDN.
However, both approaches need a central entity that is aware
of the network topology and the Interests, which does not scale
well with the number of network nodes. CodingCache [22]
is an eviction policy in which routers, before evicting a Data
packet, apply network coding to the Data packet by means
of combining it with other Data packets with the same name
prefix that will remain in the cache. Due to the increased Data
packet diversity in the network, the cache-hit rate is improved.
However, in CodingCache Interest aggregation and Interest
pipelining are problematic, limiting the benefits that network
coding brings to the NDN architecture.

III. OVERVIEW OF NETWORK CODING ENABLED NDN

A. Data Model

We consider a set of content objects P that is made available
by a content provider to a set of end users. Each content object
is uniquely identified by a name n. Clients use this name to
request that particular content object. Each content object is
divided into a set of Data packets Pn, such that the size of
each Data packet does not exceed the Maximum Transmission
Unit (MTU) of the network. The set of Data packets Pn that
compose a content object is divided into smaller sets of Data
packets, which are known as generations [23]. The size of
each generation g is a design parameter chosen to enable
network coding at scale. The set of Data packets that form
the generation g is denoted as P̂n,g and a network coded Data
packet belonging to generation g is represented by p̂n,g .

B. Router Model

The routers have three main tables: a Content Store (CS),
where they cache Data packets to reply to future Interests, a
Pending Interest Table (PIT), where they keep track of the
Interests that have been received and forwarded, to know
where to send the Data packets backward to the clients, and a

272

Forwarding Information Base (FIB), which associates upstream
faces with name prefixes, to route the Interests towards the
sources. In order to enable the use of caching policies in the
NetCodNDN architecture, we extend its design by adding a
new module called Content Store Manager (CSM). The CSM
manages the content store by enforcing a determined caching
policy.

Whenever a router receives an Interest în,g, it first verifies
if it can reply to this Interest with the Data packets available
in the CS. The router replies to the Interest if it is able to
generate a network coded Data packet that has high probability
of being innovative when forwarded on the path where the
Interest arrived, i.e., if the generated Data packet is linearly
independent with respect to all the Data packets that have been
sent over the face where the Interest arrived. In this case, the
router generates a new Data packet by randomly combining the
Data packets in its CS and then sends it downstream over the
face where the Interest arrived. Otherwise, the router forwards
the Interest to its upstream neighbors to receive a new Data
packet that enables it to satisfy this Interest. However, if the
router has already forwarded one or multiple Interests with the
same name prefix (n, g) and it expects to receive enough Data
packets to reply to all the pending Interests stored in the PIT,
the router simply aggregates this Interest in the PIT, and waits
for enough innovative Data packets to arrive before replying
to the Interest.

Whenever a router receives a Data packet p̂n,g, it first
determines if the Data packet is innovative or not. A Data
packet p̂n,g is innovative if it is linearly independent with
respect to all the Data packets in the CS of the router, i.e.,
if it increases the rank of P̂rn,g. Non-innovative Data packets
are discarded. If the Data packet p̂n,g is innovative, the router
sends the Data packet to the CSM, which decides to cache
it or not according to the caching policy. Finally, the router
generates a new network coded Data packet and sends it over
every face that has a pending Interest to be satisfied.

C. Content Store Model

The Content Store (CS) is a temporary storage space in
which a router r can cache Data packets that it has received
and considers useful to reply to future Interests. The maximum
number of Data packets that can be cached in the CS is given
by M , while the set of Data packets that are cached in the CS
is denoted as P̂r. Thus, |P̂r| ≤M .

Data packets in the CS are organized in CS entries. Each CS
entry contains a set of network coded Data packets, P̂rn,g , that
belong to the same generation g. Since the CS has a limited
capacity of M Data packets, then

∑
n,g |P̂rn,g| ≤M . The Data

packets that compose a CS entry are stored in a matrix P̂rn,g ,
where each row is a vector p̂n,g that represents the network
coded Data packet p̂n,g .

Router r generates a network coded Data packet p̂n,g by
randomly combining the Data packets P̂rn,g in its CS. Thus,

p̂n,g =
∑|P̂r

n,g|
j=1 aj · p̂(j)

n,g, where aj is a randomly selected
coding coefficient and p̂

(j)
n,g is the jth Data packet in P̂rn,g .

Additionally to the matrix P̂rn,g , each CS entry also stores a
counter σfn,g for each face f of router r. This counter measures
the number of Data packets generated by applying network
coding to the Data packets stored in matrix P̂rn,g that have
already been sent over face f , i.e., it measures the amount
of information from matrix P̂rn,g that has been transmitted
from router r to its neighboring node connected over face f .
The counter σfn,g is used to compute the number of network
coded Data packets with name prefix (n, g) that the router
can generate with the Data packets cached in its CS and have
high probability of being innovative to its neighboring node
connected over face f . This number is denoted as ξfn,g and is
computed as follows:

ξfn,g = rank(P̂rn,g)− σfn,g . (1)

When a Data packet with name prefix (n, g) is evicted from
the CS of router r, the amount of information in the matrix
P̂rn,g is reduced by 1. Correspondingly, the value of σfn,g is
decreased by 1 for all faces.

IV. CACHING IN NETWORK CODING ENABLED NDN

Whenever a router r receives an Interest în,g over face f , it
either (i) replies with a Data packet p̂n,g, if it can generate a
network coded Data packet that has high probability of being
innovative to its neighboring node connected over face f , i.e.,
ξfn,g > 0, or, otherwise, (ii) forwards the Interest în,g upstream.

If at time t router r receives the Interest în,g , a cache-hit is
defined as:

hfn,g(t) =

{
1, if ξfn,g > 0

0, otherwise.
(2)

Let us now assume that during a time period [t, t+T] router
r receives a set of Interests I(t, T). The cache-hit rate during
this time period is defined as follows:

H(t, T) =
1

T

t+T∑
t′=t

hfn,g(t
′). (3)

The overall cache-hit rate seen by router r at time t can be
computed as follows:

H(t) = lim
T→∞

H(t, T) = lim
T→∞

1

T

t+T∑
t′=t

hfn,g(t
′). (4)

To make optimal use of the limited CS capacity, the objective
of each router is to maximize the number of Interests that it can
satisfy with the Data packets available in its CS, i.e., maximize
its overall cache-hit rate. Achieving a high cache-hit rate at
the routers is beneficial for both clients and sources. For the
sources, an increased cache-hit rate reduces their processing
load and bandwidth needs, since the number of Interests that
they receive is reduced. For the clients, the delivery delay is
reduced, since the Interests are satisfied with Data packets
cached at routers closer to them.

It is clear from (2), (3), and (4) that in order to maximize
the overall cache-hit rate, routers should maintain the value
of ξfn,g high enough so that most of the Interests received can

273

Popularity of (n,g)

9:30AM 9:31AM 9:32AM 9:33AM 9:34AM 9:35AM

t t+Tt-τ

Received Interests Expected Interests

Fig. 1. Popularity prediction for the name prefix (n, g).

be satisfied with the Data packets in their CS. However, since
in this paper we consider that the routers’ CS have limited
capacity, it is unfeasible for a router to cache all the Data
packets that it receives [7], [8], [10], [11]. Optimal solutions
to this issue have been proposed in previous works [12], [13],
which consider a central controller that knows the network
topology and is aware of all the Interests received by the routers.
However, these solutions do not scale well with the size of
the network, since they require a high number of signaling
messages and a powerful enough controller. Hence, in this work
we consider that each router decides online and independently
from other routers if a Data packet should be cached or not,
and which Data packet should be evicted from the CS when it
is full. This is achieved by using a distributed caching policy π
that maximizes the overall cache-hit rate H(t) of each router,

max
π

H(t). (5)

The optimal caching policy π predicts which Interests will
be received in the future, so that the router caches the Data
packets that will be useful to satisfy those Interests.

V. THE POPNETCOD CACHING POLICY

In this section, we present our popularity-based caching
policy for network coding enabled NDN, called PopNetCod.
To increase the overall cache-hit rate, the PopNetCod caching
policy exploits real-time data popularity measurements to
determine the number of Data packets that each router should
cache for each name prefix. In order to determine which Data
packets to cache in and/or evict from the CS, such that the
overall cache-hit rate is maximized, PopNetCod performs the
following steps. First, it measures the popularity of the different
name prefixes contained in the Interests that pass through it.
Then, it uses this popularity to predict the Interests that it will
receive. Finally, it uses this prediction to determine in an online
manner the Data packets that should be cached and the ones
that should be evicted from the CS.

A. Popularity Prediction

The popularity prediction in PopNetCod is based on the fact
that the rate λfn,g(t) at which Interests for a particular content
object arrive at a router r over face f at time t tends to vary
smoothly, as shown in Fig. 1. Thus, router r can predict the
rate of the Interests that it will receive in the near future by
observing the Interests that it recently received. Let us denote

Ifn,g(τ, t) as the set of Interests for the name prefix (n, g) that
router r has received over face f in the past period [t− τ, t],
where t is the current time and τ is the observation period.
Let us also denote If (τ, t) as the total set of Interests for all
name prefixes received over face f during the period [t− τ, t].
Using the sets Ifn,g(τ, t) and If (τ, t), router r can compute
the average Interest rate for the name prefix (n, g) over face
f as follows:

λfn,g(τ, t) =
|Ifn,g(τ, t)|
|If (τ, t)|

, (6)

Note that since the average Interest rate does not vary
abruptly, the average Interest rate λfn,g(τ, t) of the recent
period [t − τ, t] will be very close to that expected in the
near future, i.e., in the period [t, t+ T] where T is the length
of the prediction period. Thus, λfn,g(τ, t) = λfn,g(t, T), which
hereafter we denote as λfn,g(t). The PopNetCod caching policy
uses λfn,g(t) to predict the number of Interests with name prefix
(n, g) that will be received over face f in the near future, and
hence, to allocate more storage space in the CS to Data packets
with higher cache-hit probability.

In order to prepare the CS for the Interests that the router
may receive, the PopNetCod caching policy maps the received
Interest rate to the capacity of the CS, such that name prefixes
with high rate are allocated more space in the CS. The number
of network coded Data packets with name prefix (n, g) that the
router should cache in its CS at time t to satisfy the Interests
expected over face f is denoted as Mf

n,g(t) and computed as:

Mf
n,g(t) =

{
λfn,g(t) ·M, if λfn,g(t) ·M < |P̂n,g|
|P̂n,g|, otherwise.

(7)

B. PopNetCod Placement

In the PopNetCod caching policy, the placement decision is
taken following the reception of an Interest. Whenever a router
decides to cache the Data packet that is expected as a reply
to the received Interest, it sets a flag on the Interest signaling
upstream routers about its decision. In the case of a set flag, the
upstream nodes do not consider this Interest for caching. Since
the edge routers (i.e., the routers that are directly connected
to the clients) are the first ones that have the possibility to
decide whether they will cache a Data packet, the PopNetCod
caching policy naturally enables edge caching. This is inline
with recent works [4]–[6] arguing that most of the gains from
caching in NDN networks come from edge caches, and thus,
it is natural to cache the most popular content at edge routers.

Whenever a router receives an Interest în,g over face ft at
time t, the PopNetCod caching policy follows the next steps
to decide if the Data packet p̂n,g should be cached. First, it
uses popularity prediction to compute Mf

n,g(t), i.e., the total
number of Data packets that it aims to cache for name prefix
(n, g), as defined in (7). Then, it computes the number of Data
packets that it should cache in order to satisfy the expected
Interests as:

δfn,g(t) = Mf
n,g(t)− ξfn,g(t) ∀f ∈ F . (8)

274

Finally, the caching policy decides to cache the Data packet
p̂n,g that is expected as reply to the received Interest if the
average number of Data packets needed by all the faces is
greater than 0. However, it should be noted that the Data
packet p̂n,g will not be useful to the node connected over the
downstream face ft over which the Interest arrived. This is
because when the Data packet p̂n,g arrives at the router, it is
sent to face ft in order to satisfy the received Interest. Then,
replying with the same Data packet to a subsequent Interest
received over the same face ft does not add any innovative
information, i.e., the Data packet is considered as duplicated.
Instead, the expected Data packet p̂n,g is potentially useful for
all the nodes connected over all the other downstream faces of
the router. For this reason, the average number of Data packets
needed is measured only over the downstream faces different
to the one over which the Interest arrived. It is computed as:

∆+
n,g(t) =

1

|Fr| − 1

∑
f∈F
f 6=ft

δfn,g(t) > 0, (9)

where Fr denotes the downstream faces of router r.

C. PopNetCod Eviction

The steps followed by the PopNetCod caching policy to
decide how many Data packets with name prefix (n, g) can
be evicted from the router’s CS are the following. Similarly
to the placement case, first, the caching policy uses popularity
prediction to compute Mf

n,g(t), i.e., the number of Data packets
that it aims to cache for name prefix (n, g). Then, it computes
the number of Data packets that it can evict from its CS and
still satisfy the expected Interests as:

δ̃fn,g(t) = rank(P̂rn,g)−Mf
n,g(t)∀f ∈ F . (10)

Finally, the number of Data packets the router can evict from
a particular name prefix (n, g) is computed as the minimum
number of Data packets that it can evict over all the faces:

∆−n,g(t) = min
f∈F

δ̃fn,g(t). (11)

VI. PRACTICAL IMPLEMENTATION OF POPNETCOD

In this section, we describe a practical implementation of the
PopNetCod caching policy in the NetCodNDN architecture [10].
First, we describe the signaling between routers, which is used
to prevent routers of the same path to cache duplicate Data
packets. Next, we present the Interest processing algorithm,
where placement decisions are made. Finally, we describe the
Data packet processing algorithm for placement enforcement,
eviction decision, and eviction enforcement.

A. Signaling Between Routers

The PopNetCod caching policy is distributed and requires
very limited signaling between routers. The only signaling that
exists between routers to implement the PopNetCod caching
policy is a binary flag added to the Interest and Data packets
that is used to inform neighbor routers that an expected Data
packet will be cached or that a received Data packet has been
cached. Distributed caching policy decisions help to keep the

complexity of the system low and to make our system scalable
to a large number of routers.

Each Interest în,g carries a flag CachingDown, which is
set to 1 by a router when it decides to cache the Data packet
p̂n,g that is expected to come as reply to the Interest. This
flag informs upstream routers that another router downstream
has already decided to cache the Data packet that is expected
to come as reply to this Interest. The routers receiving an
Interest with the CachingDown flag set to 1 do not consider
to cache the Data packet that is expected to come as reply to
this Interest, therefore reducing the number of duplicated Data
packets in the path and the processing load in the nodes.

Since Interests for network coded data do not request
particular Data packets, but rather any network coded Data
packet with the requested name prefix, the routers need a way
to know that a Data packet has been already cached by another
router, so that they avoid caching duplicated Data packets.
For this reason, each Data packet p̂n,g has a flag CachedUp,
which is set to 1 by a router when it caches this Data packet in
its CS. This flag informs the downstream routers that another
router has already cached this Data packet. A router receiving
a network coded Data packet with the flag set to 1 does not
consider it for caching. Instead, it waits for another Data packet
with the same name prefix that has not been cached upstream.
This ensures that a Data packet is cached by only one router
on its way to the client.

B. Status Information at Routers

Each router implementing the PopNetCod caching policy
should store information that assists to identify the Data packets
that should be cached or evicted. In particular, the router
needs to keep the Recently received Interests information
to compute the popularity prediction. Moreover, since the
placement decision takes place when the Interest is received,
the router needs to remember the Names to be cached, such
that the selected Data packets are cached when they arrive.
Finally, since the popularity information can vary over time,
the routers should keep a list with the Names to consider for
eviction, which is used when they decide about eviction. Below,
we describe the data structures used to store this information.
• Recently received Interests — The router maintains a list

Lf for each face f of the router, where it stores the names of
the Interests If (τ, t) received over face f during the period
[τ, t]. The parameter τ controls how much into the past is
observed by the router to compute the popularity prediction.
Together with the name prefix, each element in Lf also stores
the time ti at which the Interest was received, such that it can
be removed from Lf at time ti + τ .
• Names to be cached — The router maintains a table A,

where it stores the name prefixes (i.e., the content object name
appended with the generation ID) and the number of the Data
packets that should be cached. When the router receives an
Interest în,g and the PopNetCod caching policy decides that
the network coded Data packet that is expected as reply should
be cached, the router adds its name prefix (n, g) to the list
A. Then, whenever a network coded Data packet arrives, the

275

PopNetCod CSM

Recently received Interests (L)

Query CS

Update Popularity

Names to consider for eviction (E)

Names to be cached (A)

Content Store

Placement

UpstreamDownstream

Forwarder

Fig. 2. Access to the CS and the Status Information during the Interest
processing in a CSM configured with the PopNetCod caching policy.

Algorithm 1 Interest processing at the CSM

Require: în,g , f
1: t← current time
2: if Flag CachingDown in în,g is set to 1 then
3: if ξfn,g > 0 then (̂in,g can be satisfied from the CS)
4: Generate a Data packet p̂n,g from the CS
5: Return p̂n,g
6: else
7: Return în,g
8: end if
9: else

10: Add (n, g) to Lf

11: if ξfn,g > 0 then (̂in,g can be satisfied from the CS)
12: Generate a Data packet p̂n,g from the CS
13: Return p̂n,g
14: else if în,g will be aggregated by the PIT then
15: Return în,g
16: else
17: Update L. (Algorithm 2)
18: if ∆+

n,g(t) > 0 then (p̂n,g should be cached)
19: Insert (n, g) into A
20: Set the flag CachingDown of în,g to 1
21: Return în,g
22: else
23: Return în,g
24: end if
25: end if
26: end if

router looks for the name prefix of the Data packet in the list
A. If it finds a match, it caches the Data packet.
• Names to consider for eviction — The router also

maintains a queue E, where it stores the name prefixes of
the CS entries that can be considered for Data packet eviction.
When a name prefix (n, g) is removed from the list Lf , the
popularity of this name prefix decreases, i.e., it is a good
candidate to consider for eviction. Thus, each time a name
prefix is removed from Lf , it is added to E.

C. Interest Processing

As depicted in Fig. 2, when a CSM configured with the
PopNetCod caching policy receives an Interest în,g from

Algorithm 2 Update L

1: for all f ∈ Fr do
2: for all expired entries (nl, gl) in Lf do
3: Remove (nl, gl) from Lf

4: Add (nl, gl) to E
5: end for
6: end for

downstream, it (i) determines if the Interest can be replied from
the CS. Then, if the CSM could not reply to the Interest with
the content of its CS, it (ii) updates the popularity information,
and, (iii) determines if the Data packet that is expected as reply
to this Interest should be cached. The CSM should provide the
NetCodNDN forwarder with either a Data packet that should
be sent as reply to the Interest, or an Interest that should be
forwarded upstream. Below we describe the details of this
procedure, which is summarized in Algorithm 1.

After receiving an Interest în,g , the CSM first checks the flag
CachingDown to see if any previous node downstream in the
path has decided to cache the Data packet that is expected as
reply to this Interest (lines 2 to 8). If the flag CachingDown
is set to 1, then the CSM only checks its CS to determine if
the Interest can be satisfied from the CS. If this is possible,
i.e., if ξfn,g is greater than 0, it generates a network coded
Data packet from the CS and provides it to the NetCodNDN
forwarder, which sends it over face f . If the Interest can not
be satisfied from the CS, the CSM provides the same Interest
to the NetCodNDN forwarder, which forwards it upstream.

If the flag CachingDown is set to 0, the CSM first inserts
name (n, g) of the Interest into the list Lf (line 10). Then,
the CSM checks if it can satisfy the Interest with the content
of the CS (lines 11 to 13). If this is possible, i.e., if ξfn,g is
greater than 0, it generates a network coded Data packet from
the CS and provides it to the NetCodNDN forwarder which
sends it over face f . Otherwise, the node needs to forward the
Interest to its neighbor nodes. If the router does not send the
Interest upstream, but aggregates it in the PIT with a previously
received Interest, the CSM does not need to do anything else
and provides the Interest to the NetCodNDN forwarder, which
aggregates it (line 15). If the Interest will not be aggregated,
then the CSM determines if it will cache the Data packet with
name prefix (n, g) that is expected as reply to this Interest, by
computing ∆−n,g(t) using Eq. (9).

In order to obtain an accurate value of ∆−n,g(t), the CSM first
updates the popularity information, removing all the expired
elements from Lf and adding their name prefix to the list
E of name prefixes to be considered for eviction (line 17).
This procedure is summarized in Algorithm 2. Then, the CSM
computes the value of ∆+

n,g(t). If ∆+
n,g(t) > 0, it means

that the Data packet should be cached. In this case, the
CSM inserts name prefix (n, g) into the list A, sets the flag
CachingDown on the Interest în,g to 1 and, finally, provides
the modified Interest to the NetCodNDN forwarder, which
forwards it upstream (lines 18 to 21). If ∆+

n,g(t) ≤ 0, then the
CSM provides the same Interest to the NetCodNDN forwarder,

276

PopNetCod CSM

Recently received Interests (L)

Query A

Update Popularity

Names to be cached (A)

Content Store

Replacement

DownstreamUpstream

Names to consider for eviction (E)

Insert in CS

Generate Data packet

Forwarder

Fig. 3. Access to the CS and the Status Information during the Data packet
processing in a CSM configured with the PopNetCod caching policy.

Algorithm 3 Data packet processing at the CSM
Require: p̂n,g

1: if Flag CachingUp in p̂n,g is set to 1 then
2: Return p̂n,g
3: else if (n, g) /∈ A then
4: Return p̂n,g
5: else
6: Update A
7: if |Pr| == M then (The CS is full)
8: Update L (Algorithm 2)
9: while |Pr| == M do

10: Select an element (ne, ge) from E
11: if ∆−ne,ge(t) > 0 then
12: Evict ∆−ne,ge(t) Data packets with name prefix

(ne, ge) from the CS
13: end if
14: end while
15: end if
16: Insert p̂n,g into the CS
17: Generate a Data packet p̂∗n,g from the CS
18: Set the flag CachingDown of p̂∗n,g to 1
19: Return p̂∗n,g
20: end if

which forwards it upstream (line 23).

D. Data Packet Processing

As depicted in Fig. 3, when a CSM configured with the
PopNetCod caching policy receives a network coded Data
packet p̂n,g from upstream, it (i) determines if the Data packet
should be cached in the CS, by consulting A. If the Data
packet should be cached, the CSM ensures that there is enough
free space in the CS, (ii) updating the popularity information
and (iii) executing the cache replacement procedure if needed.
Finally, the CSM (iv) inserts the received Data packet into the
CS, and (v) generates a new network coded Data packet that
should be forwarded downstream. This procedure is detailed
below and summarized in Algorithm 3.

After receiving a Data packet p̂n,g, the CSM first checks
the flag CachedUp to determine if any router upstream has
already cached this Data packet. If the flag CachedUp has
been set to 1, then, the CSM understands that another router
upstream has already cached this Data packet. In this case, the
CSM returns the Data packet to the NetCodNDN forwarder,
which replies to any matching pending Interest (line 1).

When the flag CachedUp is set to 0, then the CSM first
verifies if any entry in A matches name prefix (n, g). If there
is no matching entry, the CSM returns the Data packet to the
NetCodNDN forwarder (line 3). If there is a match, the Data
packet should be cached, and A is updated by increasing the
counter of the matching entry by one (line 6). However, if
the CS is full, the CSM first needs to release some space in
the CS (lines 7 to 15). To evict Data packets, the CSM goes
through the list E, each time selecting a name prefix (ne, ge)
and computing the number of Data packets that can be evicted
for the name prefix using Eq. (11). If this number is greater
than 0, then the CSM evicts the corresponding number of Data
packets from the CS and interrupts the scan of the list. Note
that, since the cached Data packets are network coded, the
CSM does not need to decide which particular Data packets
from the CS entry P̂n,g it should evict from the CS, but it can
select randomly network coded Data packets from the CS entry
and evict them. After evicting at least one Data packet, the
CSM caches the received Data packet p̂n,g. Then, the router
generates a new Data packet p̂∗n,g by applying network coding
to the cached Data packets with name prefix (n, g). Since the
new Data packet p̂∗n,g contains the cached Data packet p̂n,g,
the router sets the flag CachedUp of p̂∗n,g to 1. Finally, the
CSM provides Data packet p̂∗n,g to the NetCodNDN forwarder,
which uses it to reply to pending Interests with name prefix
(n, g).

VII. EVALUATION

In this section, we evaluate the performance of the PopNet-
Cod caching policy in an adaptive video streaming architecture
based on NetCodNDN [10]. First, we describe the evaluation
setup. Then, we present the caching policies with which we
compare the PopNetCod caching policy. Finally, we show the
performance evaluation results.

A. Evaluation Setup

We consider a layered topology consisting of 1 source, 123
clients, and 45 routers connecting the clients and the sources.
The routers are arranged in a two-tier topology, with 10 routers
directly connected to the source and 35 edge routers directly
connected to the clients. The links connecting the routers
between them and the links connecting the routers to the source
have a bandwidth of 20Mbps. The bandwidth of the links
connecting the clients to the routers follow a normal distribution,
with mean 4Mbps and standard deviation 1.5. These values are
chosen based on the Netflix ISP Speed Index [17]. Each client
is connected with two routers, considering that nowadays most
end-user devices have multiple interfaces, e.g., LTE, Wi-Fi.

277

For the evaluation, we consider that the source offers 5
videos for streaming, each one composed of 50 video segments
with a duration of 2 seconds each, i.e., in total, each video has
a duration of 100 seconds. The video segments are available
in three different representations, Q = {480p, 720p, 1080p}
with bitrates {1750kbps, 3000kbps, 5800kbps}, respectively.
These values for the representations and bitrates are according
to the values that had been used by Netflix [15]. As presented
in Section III-A, the content objects (i.e., the video segments
in our evaluation scenario) are divided into Data packets and
generations, in order to implement network coding. In particular,
for the representations Q = {480p, 720p, 1080p}, each video
segment is divided into {359, 615, 1188} Data packets of 1250
bytes each, and {4, 7, 12} generations, respectively. Thus, in
total, the source stores 540, 500 Data packets. All the routers
are equipped with content stores able to cache between 0.9%
and 2.3% of the total Data packets available at the source.

The clients randomly choose a video to request and start the
adaptive video retrieval process at a random time during the first
5 seconds of the simulation. The network coding operations are
performed in a finite field of size 28. The clients use the dash.js
adaptation logic [24] to choose the representation that better
adapts to the current conditions, i.e., the measured goodput
and the number of buffered video segments.

B. Benchmarks

We compare the performance of our caching algorithm with
the following benchmarks:
• LCE-NoLimit — The placement policy is Leave Copy

Everywhere (LCE). We assume that the CSs of the routers
have enough space to store all the videos.
• LCE+LRU — The placement policy is LCE, while the

eviction policy is Least Recently Used (LRU), which evicts
Data packets with the least recently requested name.
• NoCache — In this setting, the routers do not have a CS,

i.e., all the Data packets should be retrieved from the source.

C. Evaluation Results

We first evaluate the average cache-hit rate at the routers. In
Fig. 4, we can see that by using the PopNetCod caching policy,
the routers achieve a higher cache-hit rate than with LCE-
LRU. This is because with PopNetCod the number of Data
packets cached for a certain name prefix increases smoothly,
according to the popularity. In comparison, with LCE+LRU
all Data packets received by the router are cached, and the
least recently used are evicted from the CS when the capacity
is exceeded. Thus, if a router receives Data packets that are
requested by a single client, the router still caches them, wasting
storage capacity that could be used to cache more popular Data
packets that are requested by multiple clients. We can also
see that the LCE+NoLimit caching policy defines an upper
bound to the cache-hit rate at the routers, since caching all the
Data packets with unlimited CS capacity represents the best
caching scenario. On the contrary, the NoCache case, where
the routers do not have CS capacity, defines a lower bound to
the cache-hit rate. Note that in our evaluation the NoCache

policy has a non-zero cache-hit rate because our measurement
of cache-hit rate also includes Interest aggregations, which is
what is being measured in this case.

The increased cache-hit rate that the PopNetCod caching
policy brings to the routers has two major consequences: (i) the
goodput at the clients increases, which enables the adaptation
logic to choose higher quality representations when bandwidth
is sufficient, and (ii) the source receives less Interests, meaning
that its processing and network load is reduced.

Let us first evaluate the impact that the increased cache-
hit rate at the routers has for the clients. In Fig. 5, it is
shown that by using PopNetCod, the clients benefit from an
increased goodput, compared to the LCE+LRU policy. This
is a consequence not only of the increased cache-hit rate in
the network, but also because PopNetCod caches the most
popular content in the network edge, which reduces the content
retrieval delay. The percentage of video segments delivered to
the clients for each of the available representations (i.e., 480p,
720p, and 1080p) with the PopNetCod and LCE+LRU caching
policies is shown in Figs. 6 and 7, respectively. We can see
that, compared to the LCE+LRU policy, with the PopNetCod
caching policy a higher percentage of video segments are
delivered in the highest representation available, i.e., 1080p.
This happens because the Data packet retrieval delay is reduced,
since more Interests are being satisfied from the routers’ content
stores, which increases the goodput measured by the clients.
The percentage of video segments delivered to the clients in
each of the available representations with the upper bound
LCE+NoLimit caching policy can be seen in Fig. 8.

Finally, we analyze the impact that the increased cache-hit
rate in the routers has for the sources by measuring the load
reduction at the source. This metric measures the percentage of
Data packets received at the clients that have not been directly
provided by the source. It is computed as 1−Nsent

S /Nrcvd
C ,

where Nsent
S denotes the total number of Data packets sent

by the source, and Nrcvd
C denotes the total number of Data

packets received by all the clients. In Fig. 9, we can see that
by using the PopNetCod caching policy, the source load is
reduced by up to 10% more than by using LCE+LRU, when
the CS size is 12.5K Data packets. Note that the load reduction
on the source in the NoCache scenario is larger than 0, even if
no Data packet is being served from the CSs. This is because
the Interest aggregation at the routers makes it possible to
serve multiple Interests with the same Data packet, reducing
the number of Data packets delivered by the source.

VIII. CONCLUSIONS

In this paper, we have presented PopNetCod, a popularity-
based caching policy for data intensive applications commu-
nicating over network coding enabled NDN. PopNetCod is a
distributed caching policy, where each router aims at increasing
its local cache-hit rate, by measuring the popularity of each
content object and using it to determine the number of Data
packets for each content object that it caches in its content store.
PopNetCod takes cache placement decisions when Interests
arrive at the routers, which naturally enables edge caching. The

278

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100
C

ac
he

-h
it

ra
te

[%
]

LCE+NoLimit
LCE+LRU
PopNetCod
NoCache

Fig. 4. Average cache-hit rate in the routers.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

2

3

4

5

6

7

A
ve

ra
ge

G
oo

dp
ut

[M
bp

s]

LCE+NoLimit
LCE+LRU
PopNetCod
NoCache

Fig. 5. Average goodput perceived by the clients.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

] 480p
720p
1080p

Fig. 6. Percentage of video segments delivered in
each of the representations, with PopNetCod.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

]

480p
720p
1080p

Fig. 7. Percentage of video segments delivered in
each of the representations, with LCE+LRU.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

] 480p
720p
1080p

Fig. 8. Percentage of video segments delivered in
each of the representations, with LCE+NoLimit.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

20

30

40

50

60

70

80

90

L
oa

d
re

du
ct

io
n

on
th

e
so

ur
ce

[%
]

LCE+NoLimit
LCE+LRU
PopNetCod
NoCache

Fig. 9. Load reduction in the source, measured as
the percentage of Data packets provided by caches.

evaluation of the PopNetCod caching policy is performed in a
Netflix-like video streaming scenario. The results show that, in
comparison with a caching policy that uses the LCE placement
policy and the LRU eviction policy, PopNetCod achieves a
higher cache-hit rate. The increased cache-hit rate reduces the
number of Interests that the source should satisfy, and also
increases the goodput seen by the clients. Thus, our caching
policy presents benefits for the content providers, by reducing
the load of its servers and hence its operative costs, and for
the end-users, who are able to watch higher quality videos.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2016-2021,”
White Paper, Cisco Systems Inc., Jun. 2016.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comp. Comm. Review, vol. 44, no. 3, pp. 66–73, Jul. 2014.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” in Proc. ACM CoNEXT’09,
Dec. 2009.

[4] A. Dabirmoghaddam, M. Mirzazad-Barijough, and J. J. Garcia-Luna-
Aceves, “Understanding Optimal Caching and Opportunistic Caching
at the Edge of Information-Centric Networks,” in Proc. ACM ICN’14,
2014.

[5] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
incrementally deployable ICN,” in Proc. ACM SIGCOMM’13, 2013.

[6] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig,
“Trace-driven analysis of ICN caching algorithms on video-on-demand
workloads,” in Proc. ACM CoNEXT’14, 2014.

[7] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets
information-centric networking: an architectural case for information
dispersion through native network coding,” in Proc. ACM NoM Workshop,
Jun. 2012.

[8] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “NetCodCCN: a
network coding approach for content-centric networks,” in Proc. IEEE
INFOCOM’16, Apr. 2016.

[9] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[10] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “Adaptive video
streaming with network coding enabled named data networking,” IEEE
Trans. on Multimedia, vol. 19, no. 10, Oct. 2017.

[11] A. Ramakrishnan, C. Westphal, and J. Saltarin, “Adaptive video streaming
over ccn with network coding for seamless mobility,” in Proc. IEEE
ISM’16, Dec. 2016.

[12] J. Llorca, A. Tulino, K. Guan, and D. Kilper, “Network-coded caching-
aided multicast for efficient content delivery,” in Proc. ICC’13, 2013.

[13] J. Wang, J. Ren, K. Lu, J. Wang, S. Liu, and C. Westphal, “An optimal
cache management framework for information-centric networks with
network coding,” in Proc. IFIP Networking’14, Jun. 2014, pp. 1–9.

[14] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2:
an updated NDN simulator for NS-3,” NDN, Tech. Rep. 28, Nov. 2016.

[15] A. Aaron, Z. Li, M. Manohara, J. D. Cock, and D. Ronca, “The Netflix
tech blog: Per-title encode optimization,” https://medium.com/netflix-
techblog/per-title-encode-optimization-7e99442b62a2, Dec. 2015.

[16] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “Open connect
everywhere: a glimpse at the internet ecosystem through the lens of the
netflix cdn,” arXiv preprint arXiv:1606.05519, Jun. 2016.

[17] “The Netflix ISP Speed Index,” Netflix Inc., Dec. 2016. [Online].
Available: https://ispspeedindex.netflix.com/

[18] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP: A Framework
for Joint Dynamic Forwarding and Caching in Named Data Networks,”
in Proc. ACM ICN’14, 2014.

[19] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. IEEE INFOCOM’16, Apr. 2016.

[20] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in Proc. IEEE INFOCOM’13 Workshops, Mar. 2012.

[21] N. Abani, G. Farhadi, A. Ito, and M. Gerla, “Popularity-based partial
caching for information centric networks,” in Proc. MedHocNet’16, 2016.

[22] Q. Wu, Z. Li, and G. Xie, “CodingCache: multipath-aware CCN cache
with network coding,” in Proc. ACM ICN’13 Workshop, Aug. 2013.

[23] P. Chou and Y. Wu, “Network coding for the Internet and wireless
networks,” IEEE Sig. Proc. Mag., vol. 24, no. 5, pp. 77–85, Sep. 2007.

[24] C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic? An
objective and subjective performance evaluation of http-based adaptive
media streaming systems,” arXiv preprint arXiv:1606.00341, Jun. 2016.

279

NEST: Efficient Transport of Data Summaries over
Named Data Networks

Karim Khalil, Azeem Aqil,
Srikanth V. Krishnamurthy

University of California Riverside
{karimk, aaqil001, krish}@cs.ucr.edu

Tarek Abdelzaher
University of Illinois at Urbana Champaign

zaher@illinois.edu

Lance Kaplan
Army Research Lab

lance.m.kaplan.civ@mail.mil

Abstract—In many emerging data retrieval applications, in
response to queries, consumers are interested in getting a
summarized version of content quickly rather than retrieving
all available data. Recently, Named Data Networks (NDN) have
been considered for efficient transfer of summarized informa-
tion, but the research is still in its infancy. In this paper,
we propose NEST, a novel transport protocol for delivering
extractive summaries of a dataset distributed across multiple
producers over NDN. The goal is to exploit diversity in network
conditions between a consumer and different producers towards
delivering the consumer-specified summary while minimizing
latency. NEST first creates a unified hierarchical representation of
the available distributed content using state-of-the-art distributed
clustering. Then, using this representation of the dataset, the
protocol creates interest messages based on which consumers can
opportunistically retrieve representative data objects from the
best producers while adapting to dynamic network conditions by
capitalizing on the flexibility offered by the NDN infrastructure.
We implement NEST on the Mini-NDN network emulator and
evaluate its performance using datasets collected from Twitter.
Our experimental results show that NEST takes advantage of
producer diversity achieving large latency reduction gains of up
to 50% compared to baseline protocols.

I. INTRODUCTION

With the emergence of Internet of Things (IoT) and dis-
semination of online social content, sources of various kinds
continuously generate streams of data. The number of such
sources is growing continuously, leading to an exponential
growth in the available data for a consumer [1], [2]. In
fact, consumers may experience a data deluge leading to
information overload if they get all the data pertaining to
a subject of interest [3]. One way to cope with this data
deluge, is via data summarization services which enable clients
(whether humans or computer systems) to retrieve summaries
with user-specified granularity. These summaries can then be
used in analysis and decision making processes.

To exemplify the above, consider a smart city scenario
[4] wherein sensors continuously gather data about traffic
conditions. On their path to the destination, smart cars contact
road infrastructure hot-spots for updates. In this scenario,
collected data may have significant redundancy, local data
at different repositories have semantic overlap, and network
conditions are diverse. Consumers are likely to be interested in
receiving content with varying granularity of detail as quickly
as possible. As a second example, consumers interested in
getting a summary of top stories from a variety of news media
may be interested in quickly retrieving only an overview, based

on which they may then choose to get more details only on
certain stories. Data summarization can be an effective solution
in delivering the right level of detail to consumers. In general,
summaries can either be processed content that provide a
synopsis of the data, or a set of representative samples that
sufficiently satisfy the consumer’s need. In this paper, we focus
on the latter.

There is a set of challenges that will need to be ad-
dressed in order to deliver summaries from a set of produc-
ers to consumers. First, retrieving summaries from different
producers independently will create redundant content, thus
wasting communication resources and defying the purpose
of summarization. Solving this problem requires the efficient
creation of a global representation of the content available
at the different producers. Furthermore, the network must be
able to match a consumer’s request with what is available
at the various producers and retrieve the proper summary.
In many applications, consumers are not interested in the
source of the content or where it is, but rather the content
itself and how fast it can be retrieved. Finally, since the
network conditions between the consumer and the plurality
of producers can be diverse (e.g., varying bandwidth and link
delay), the transport framework has to be intelligent to retrieve
the content from the “best” producer, i.e., the content that
fulfills the consumer’s requirement with the best performance
(e.g., minimum latency).

In this paper, we develop NDN-based Efficient Summary
Transport (NEST), a transport protocol which efficiently trans-
fers an extractive summary of a dataset distributed across
multiple connected producers to the requesting consumers,
with low latency. Our framework is developed on top of the
Named Data Networks (NDN) infrastructure, an implemen-
tation of the Information Centric Networks (ICN) paradigm.
NDN is a pull-based network architecture which supports the
forwarding of content from producers to consumers using
hierarchical names. It offers a way to seamlessly map content
to interests and thus, we argue that it is natural to leverage its
abilities towards achieving the efficient transport of content
summaries from a diverse set of producers to consumers.
NEST allows producers to converge to a common namespace,
wherein objects that are very similar are named similarly,
linking the summarization problem to NDN’s name-based
forwarding. NEST is designed as an end-to-end protocol that
runs at the hosts and does not require changes to the underlying
NDN infrastructure.

ISBN 978-3-903176-08-9 2018 IFIP

NEST first creates a global hierarchical representation of the
dataset by synchronizing the producers’ local datasets with
minimal overhead. Subsequently, this representation is used
to generate an ordered list of names that is sent to interested
consumers to guide them in retrieving content summaries of
varying granularity. In this list, object names are “constructed”
such that, from a set of similar objects at different producers,
an object is seamlessly returned from the producer with the
most favorable network conditions for each request based
on the ordered list, thereby achieving minimum latency. In
building NEST we make the following key contributions:
• We develop a distributed synchronization algorithm that

capitalizes on recent advances in distributed clustering
to create a global view of the shared dataset, towards
realizing summaries of varying granularity.

• We develop interest-name design rules that automatically
and opportunistically adapt to varying network condi-
tions to minimize latency in delivering summaries to
consumers over the underlying NDN.

• We implement NEST on Mini-NDN, a network emulator
for NDN. We then perform extensive evaluations using
datasets collected from Twitter. Our results show that
NEST exploits producer diversity to reduce latency by
up to 50% compared to baseline summary transport
strategies that retrieve specific data objects.

II. BACKGROUND

ICN has become popular recently for presenting an alter-
native and future architecture for the Internet as it becomes
more content-centric rather than host-centric, and NDN [5] is
one typical implementation. In NDN, consumers send interest
messages requesting specific content using hierarchical names,
where one data message is returned for each interest message.
The interest is generated by a consumer to indicate that she
seeks to retrieve a matching object. Partial prefix matching
is used when checking whether a named object matches an
interest name. In addition, intermediate routers employ multi-
path forwarding rules to pass interest messages to the next
hop until it reaches producers of the named content. Producers
then return data messages where the payload is the data object
with a matching name. Data messages are forwarded along
the reverse paths corresponding to that taken by the interest
message. Whenever a router receives a data message, the entry
for the corresponding interest is removed from its Pending
Interest Table (PIT) after it is forwarded. Any subsequent
data messages for the satisfied interest are suppressed (i.e.,
not forwarded). If caching is enabled, intermediate routers
keep a copy of the data messages for a specified period of
time, and return it for subsequent matching interests from any
consumer. A key feature of the interest message format is the
exclusion option; consumers use this optional field to specify
object name suffixes that they do not want to retrieve for the
given name prefix in the interest message.

In our work, we consider the problem of efficient transport
of data summaries. For a given dataset P , a summary is a
data subset of P such that each data point in the summary
represents a set of similar (we formally define similarity in
Section III-A) data points in P . Recent work [6] proposed

b

a

c

consumer

main: 47.5

state: 34.2

division: 26.8

main: 47.3
pine: 29.6

division: 26.7

Fig. 1: An example network with three producers a, b and c.
Shown are average speed measurements at each producer.

a summary transport protocol for NDN in which an ordered
“names list” is created from a hierarchical tree representation
of a dataset. The structure of the tree is such that data objects
sharing a longer name prefix have more semantic overlap.
Thus, when a summary of the content under the tree is
requested, returning objects in a shortest-shared-prefix-first
order minimizes information loss (relative to retrieving all
data) over all different orders of a given summary size by
reducing semantic redundancy. Here, as more data objects are
transported according to this order, finer granularity details
about the data are retrieved. However, only one producer
was considered. In data summarization applications in which
clients are interested in a summary of the dataset distributed
across multiple repositories (producers), dynamic network
conditions cause clients to experience very different network
delays relative to the different producers from which the
summaries are transferred. In addition, redundant content
from different producers might be retrieved thereby causing
the summaries to be of poor quality (unnecessary redundant
content). Thus, when multiple data producers share similar
data objects, opportunities to improve latency performance by
retrieving any object from a set of similar objects are available.
However, to exploit these opportunities, a flexible and adaptive
data transport protocol is needed. The novelty of NEST is
that it allows consumers to realize the advantage of producer
diversity to retrieve summaries with minimum latency while
requiring no changes to the underlying NDN architecture.

To illustrate producer diversity, consider an example in
which a consumer is interested in a summary of average
vehicle speeds in certain section of a city in a given period of
time. Measurements are collected from various sensors into
a set of three repositories (i.e., producers), named a, b and
c, which are connected to the consumer as shown in Fig.
1. In this example, consider data from four streets: main,
state, division and pine. Due to varying network conditions
(e.g., varying wireless channel quality, network congestion,
etc.), the delay in retrieval of data from different producers
will be different. In particular, the connection to producer b
is experiencing longer delays compared to other producers.
Thus, to get a summary of the measurements quickly, the best
strategy is to retrieve “main” and “state” from producer a,
“division” from producer c and only “pine” from producer b.
In other words, the consumer would better retrieve it from
the producer with lower delay. The challenge, however, is to
figure out which data objects to retrieve from which producer

281

in order to minimize latency while still fulfilling a notion
of completeness of the collected summary. NEST offers an
efficient solution for this problem be leveraging NDN.

III. SYSTEM DESIGN

NEST comprises two main functional components viz., (a)
Producer Synchronization (ProdSync) and (b) Producer Diver-
sity guided Summary Transport (PDST). The first component
creates a hierarchical representation of the dataset shared by
multiple producers, while the second component manages the
transport of data objects between producers and consumers on
the NDN. In the following, we discuss the design details of
each of the two components.

A. Producer Synchronization

In many applications, data is collected from sensors and
cached at a connected set of repositories (i.e., producers)
for further processing and dissemination to consumers. Since,
transporting objects from individual producers to consumers
independently can result in performance penalties and wasteful
transfers (e.g., duplicate or redundant data), summarization in-
herently requires co-ordination or more precisely synchroniza-
tion between producers. Thus, the first challenge in efficiently
delivering summaries from the set of producers (which is typi-
cally the order of tens) to consumers is to derive a global view
of the available data. This global view necessarily describes
the different groups of similar data points (i.e., clusters) as
well as the relationship between them. For example, in Fig. 1,
measurements from the same street are considered similar and
thus are clustered together. Also data from all streets in each
neighborhood can be grouped together when only information
at a more abstract level is needed by the consumer. When such
hierarchical clustering representation is available, it suffices to
retrieve a representative of each cluster at the required level of
detail to get a summary of the available data. This hierarchical
representation naturally leads to hierarchical names for each
data object based on which cluster it belongs to (similar to
naming in Unix-like file systems).

For large datasets, it is not practical to transmit local datasets
or large samples thereof to a centralized location to construct
such a global hierarchical representation of the available
data. In this context, the producer synchronization problem
is how to efficiently create a unified view of the hierarchical
names of data objects at all the producers. To this end, we
develop ProdSync, an iterative distributed clustering algorithm
in which producers exchange meta-data of local clusters and
samples from their local datasets while incurring minimal
communication overhead. This enables the construction of a
global tree representation in which each producer maintains
information about the position of their local data points in the
tree.

To optimize the amount of data exchanged between pro-
ducers (i.e., overhead) in each iteration of ProdSync, we
employ a recently developed distributed clustering algorithm
[7], which is based on the construction of ε-coresets [8]. This
algorithm guarantees a bounded clustering cost relative to
a centralized solution, at the minimum communication cost.
It was later shown to be communication-optimal [9], where

Algorithm 1 ProdSync
Input: Similarity threshold τ , set of producers N

1: Initialize: L = r,N r = N
2: repeat
3: Pick an unprocessed tree node l ∈ L
4: Select coordinator nl ∈ N l

5: Each producer i ∈ N l solves local clustering problem on P l
i

6: Producers exchange local clustering costs cli
7: Coordinator collects samples Sl

i from all producers i ∈ N l

8: if maxp,q∈∪Sl
i
d(p, q) < τ then

9: Coordinator solves global clustering on ∪iSl
i

10: else
11: l is a leaf node
12: end if
13: Coordinator delivers solutions Gl to all producers in N l

14: Producers send coordinator local tree info ul
i

15: Update T ,N l,L: L ← g ∀g ∈ Gl
16: until all l ∈ L are processed
Output: Hierarchical tree representation T

the communication-optimality metric used is the number of
data points exchanged between the producers in the network.
This metric is also correlated to the convergence time of
the ProdSync algorithm; the more the messages exchanged
between producers, the more time it takes for ProdSync to
converge.

Notation: In the following, we introduce notation that will
help in the description of ProdSync. Suppose we have a set
of connected producers (repositories) N , of size N . Let the
global dataset be denoted by P , where Pi ⊂ P is the local
subset corresponding to producer i ∈ N . Let the distance
measure between any pair of data points p, q ∈ P be given by
d(p, q).1

Let tree T be a hierarchical representation for the dataset
P , capturing similarities between data points in a hierarchical
form. Suppose L is the set of tree nodes on T , and let r ∈ L be
the root node. Let P l be a data subset of P holding data under
subtree rooted at node l. We also define P l

i = Pi ∩ P l and
N l = {i ∈ N : P l

i 6= φ}. Note that N r = N and Pr = P .
In each iteration l of ProdSync, each producer i solves an
instance of k-means clustering and sends local information Sli
(to be made precise) to a designated coordinator nl, where
the coordinator for tree node r (i.e., nr), is called the root
coordinator. In a clustering problem, the clustering cost is the
sum of squared distances between each point in the dataset
and its corresponding cluster center. We say that p and q are
similar if d(p, q) < τ , for a given threshold τ .

ProdSync details: The details of ProdSync are presented in
Alg. 1. The algorithm iteratively clusters the dataset P shared
across all producers N to generate the tree T . To process a
node l ∈ L, a coordinator nl is first selected2 which later
collects information about local clustering solutions from all
producers in N l. In each iteration, the goal is to find a set of

1Vector space representation of data as well as similarity measures vary
depending on application and data type. While we use specific representation
and similarity measures in Section V, the effect of these on the clustering
quality is of separate interest and is beyond the scope of this paper.

2We defer a discussion of how we implement coordinator selection to
Section IV.

282

k cluster centers Gl at the coordinator, representing all data
subsets P l

i , i ∈ Nl. This is achieved by using an efficient
distributed clustering algorithm [7], described briefly in the
following.

Each producer first solves a k-means clustering problem on
the local dataset P l

i and then non-uniformly samples P l
i based

on the clustering costs cli collected from all other producers
i ∈ N l. In this sampling, a point with higher cost is sampled
with higher probability. Each producer constructs its local
portion of the ε-coreset, Sli , which consists of the samples
and their corresponding weights. Then, Sli are collected at the
coordinator. A weighted k-means clustering problem is solved
on the weighted samples ∪iSli . The solution of the global
clustering problem is then shared with producers in N l.

In ProdSync, a global clustering is solution is computed
for a node l only when l is not a leaf node. We reach a leaf
node in T (and hence stop further iterations of clustering on
that node) when the diameter of the cluster is less than the
threshold τ (condition on Line 8). In this case, each producer
then updates the coordinator with cluster membership counts
ul
i, which is a vector of size k. This information helps in

creating the tree representation of the dataset as well as names
for objects. Then, new nodes are added to the tree T , one node
representing each cluster in Gl. Iteration stops when all nodes
in L are processed.

Complexity analysis: At each iteration l ∈ L, three rounds
of message exchanges between the coordinator and other pro-
ducers are required. First, the costs of local clustering solutions
are collected by the coordinator and the sum cost is shared with
all producers. Then, samples are sent to the coordinator and
the solution Gl is returned to each producer. Finally, updates
ul
i are sent to the coordinator. The communication overhead

is thus O(N) per iteration.
To process a node l ∈ L, each producer i solves an instance

of the k-means clustering problem on the local dataset Pi

(Steps 5 and 9). This problem is NP-hard [10]. However, there
exist efficient approximations such as the Lloyd’s algorithm
[11], with time complexity O(|Pi|ksw), where s is the di-
mensionality of vectors representing the data points and w is
the number of iterations needed for convergence. It was shown
that, in practice, k-means converges in linear time with respect
to the number of data points [12]. The number of nodes on
the tree (i.e., |L|), can vary between O(logk |P|) to O(|P|).
In practice, we pipeline and parallelize the processing of tree
nodes such that communication delay does not contribute a
purely additive component to the total processing time. We
study this in detail in Section V.

B. Producer Diversity guided Summary Transport

Given the hierarchical cluster representation of the data (as
computed in Section III-A), we now need to decide the order
in which data objects must be requested from these clusters.
The intuition is that, in constructing a summary, we first
want to have at least one representative of each cluster (e.g.,
a measurement of speed on each street), then get a second
representative of each cluster (a second measurement from
that street), and so on. If clusters are hierarchical, then we
need one representative of each big cluster (say, street) before

getting a representative of each sub-cluster (say city block on
a street). As illustrated in the example in Section II, the choice
of representative to retrieve entails a choice of producer, some
being more accessible (better network conditions) than others.
We want to retrieve representatives from more accessible
producers. A challenge is thus to decide on a retrieval plan
that minimizes latency.

In this section, we develop an efficient transport protocol,
called Producer Diversity guided Summary Transport (PDST)
that takes the output tree T from ProdSync, transforms it to a
List of Ordered Names (LON) that is delivered to interested
consumers. To construct the LON, T is parsed such that leaves
are visited in certain order and a data point is chosen from
visited leaf and then added to LON. The tree is traversed
such that the marginal utility of retrieved data objects is
maximized. Thus, as more items are retrieved as per the LON,
a more fine-grained summary is obtained by the consumer.
Consumers request summary data objects based on the LON,
and PDST delivers data objects from producers to consumers
with minimum transport latency, defined as follows.

Definition 1. The transport latency T (j) corresponding to
a given interest message j is the total time delay between
sending the interest message and the reception of a data
message.

Fix an interest message j and let N (j) ⊂ N be the set of
producers with data objects that can satisfy interest message
j. Let Ti(j) be the transport latency when data is returned
from producer i. The objective of PDST is to minimize the
latency in retrieving data objects, whenever matching data
objects are available at multiple producers. In other words,
PDST aims to achieve T ∗(j) = mini∈N (j) Ti(j). While doing
so, the protocol must adapt to dynamic network conditions,
and specifically varying link delays.

Satisfying the minimum transport latency and adaptability
to dynamic network conditions, are challenging problems
for multiple reasons. First, it is undesirable that consumers
maintain state information for all available producers (e.g.,
by keeping the history of received data). Moreover, explicitly
and continuously measuring transport latency for objects from
different producers will incur non-negligible overhead. The
novelty of PDST is that it achieves the aforementioned goals
by crafting interest messages in a format that capitalizes
on the features of NDN. Specifically, PDST exploits NDN’s
forwarding characteristics viz., multi-path and partial prefix
match forwarding. It also leverages the fact that intermediate
routers suppress multiple data messages retrieved in response
to a single interest message and only forward the first match.
The main observation is that if N (j) always reflects producers
that have similar data objects that satisfy j, NDN operations
will automatically help achieve T ∗(j) without the need to
explicitly measure network conditions. To this end, PDST does
not require any modifications to NDN and is only run at the
producers and consumers as an application.

PDST achieves minimum transport latency and adapt to
varying network conditions using three different processing
steps at the different participating network entities. Below,
we discuss the different steps of PDST in detail before we

283

formalize our result.
1) Root-coordinator-side PDST: The root coordinator is

tasked with generating the LON from T . First, names for all
objects are created. These names are then processed to identify
producer diversity opportunities. Finally, the tree is traversed
to generate the ordered list of names.

First, names of all data objects at the leaves of T are
automatically created. In particular, during clustering, tree
nodes are given labels (e.g., ’0’ for the left branch and ’1’ for
the right branch when k = 2), and data objects at the leaves
are named by concatenating label names from the root node
to the leaf, similar to the work in [13], thereby constructing
a name prefix. However, unlike the work in [13], the root
coordinator nr does not have actual data points from all other
producers; rather, it has the counts of data objects under each
leaf from each producer. This information is collected in Step
14 of Alg. 1. Thus, nr can now generate names for all data
objects at the leafs of T .

Consider a tree T created using ProdSync with k = 2
for data at two producers a and b. Under some tree leaf l′

with a name prefix p = /t/0/0/1/0/1, suppose producer a
and producer b have two and three data objects, respectively.
Here, t represents the topic at the root of the tree. Now, the
root coordinator can simply name data objects under this leaf
as /t/0/0/1/0/1/a0, /t/0/0/1/0/1/a1, /t/0/0/1/0/1/b0,
/t/0/0/1/0/1/b1, /t/0/0/1/0/1/b2. Based on the user-
specified and application-dependent similarity measure, ob-
jects under l′ are deemed similar. At the same time, each of
the producers a and b will fix some order for their local data
objects, based on user-specified weights corresponding to each
data object (e.g., content popularity, freshness, etc). Note that
while each producer can rank order similar local data objects
using user-specified weights, the relative ordering between
similar data objects at different producers is not needed at
the root coordinator. This is because our design gives priority
to improving transport latency by retrieving the next (highest
weight) data object (based on local ranking) from the producer
with the best network conditions.

Denote any leaf of T with objects from multiple producers,
as an opportunity leaf. The next step for the root coordinator is
to process the data object names such that a special symbol (˜)
is concatenated at the end of all object names under any tree
leaf where data objects belonging to multiple producers exist.
Thus, for leaf l′, the object names will be processed to be
/t/0/0/1/0/1/a0˜, /t/0/0/1/0/1/a1˜, /t/0/0/1/0/1/b0˜,
/t/0/0/1/0/1/b1˜, /t/0/0/1/0/1/b2˜. This special symbol
in the object names will later be used by the consumer to
construct interest messages that allow retrieval of data objects
from the producer with the minimum transport latency.

Given the hierarchical tree representation T created using
ProdSync as described in Section III-A, the root coordinator
can now transform T into an LON by traversing T from
the root to the leaves and returning the name of the object
at the leaf. During traversal the branches are selected such
that an object with the shortest-shared-prefix, with respect to
previously returned object names, is returned.

Finally, this processed list is sent to the consumers upon
request. In particular, when a consumer requests a summary

of a dataset under the prefix /t, the root coordinator will send
a data message carrying the LON for data objects under the
corresponding tree. Note that the LON is generally of much
smaller size compared to data objects (e.g., in social media, a
tweet could have an image or video object embedded in it).

2) Consumer-side PDST: Each consumer running the NEST
application will first request the LON under some tree root
/t. The consumer then sends interests for items in the LON
in the given order. However, the interest names used will vary
depending on whether the object belongs to an opportunity
leaf. For such objects, a producer diversity opportunity exists
and thus the consumer can take advantage of it. In particular,
for any object name in the LON ending in ˜, the consumer
sends the interest message with the partial name up to the
prefix of the corresponding leaf in T . For example, if the
next data object name in the LON is /t/0/0/1/0/1/b0˜, the
consumer sends the interest message /t/0/0/1/0/1/ instead.

This interest will be forwarded by the underlying NDN
to all producers with data objects under the corresponding
opportunity leaf. Thus, all producers will respond with data
objects under the given leaf, and only one data message
will be forwarded to the requesting consumer while other
messages will not be forwarded. To avoid retrieving duplicate
objects that were retrieved previously using the same partial
name, the consumer employs the exclude option in the interest
message. In particular, it includes the last component in the
name of the objects retrieved previously under same leaf. For
example, when an interest message is sent with the partial
name /t/0/0/1/0/1/ and data object /t/0/0/1/0/1/b0 is
retrieved, the next interest message for an object belonging
to the same opportunity leaf will be /t/0/0/1/0/1/(−b0).

One of the main advantages of crafting the interest messages
as described above is that the framework automatically adapts
to changing link delays. Thus, two consumers sending the
same interest message will get potentially different (but se-
mantically similar) data objects from different producers. Fur-
thermore, as network conditions change over time, a consumer
may get data objects from other producers because of latency
advantages. Since PDST capitalizes on NDN forwarding rules,
it also works when caching at intermediate routers is enabled
without the need to modify the software they run. Specifically,
caches will also use partial prefix matching and return objects
with matching names. If no matches are found in the cache,
the interest will be further forwarded.

3) Producer-side PDST: On the producer side, each pro-
ducer maintains an ordering of the local data points based
on user-specified and application-dependent weights. For ex-
ample, in a social media application, the popularity of the
content could be used as the weight. In a sensor network
application, more recent events or measurements could be
weighted highly if freshness is desired. Whenever the producer
receives an interest message with a partial name, it responds
with a data object from the subtree specified by the name
prefix, returning the first object in order after the excluded
objects. For example, if the interest message received by
producer b is /t/0/0/1/0/1/(−b0), then it returns object
/t/0/0/1/0/1/b1. Note that the object name b1 might not
be the actual object name at producer b, but rather a pointer

284

b
b

b
b b b
b

b b

t

0
1

0 1

a5

a4c1
c0

a3

a2b0
a1

a0

NDN

a

b

c

consumer

Fig. 2: Example network and tree with three producers (a,b,c)
and a consumer.

NEST’s LON Interest name sent Data name received

1 /t/0/a0˜ /t/0/ /t/0/b0
2 /t/1/0/a0˜ /t/1/0/ /t/1/0/c0
3 /t/0/a1˜ /t/0/(−b0) /t/0/a0
4 /t/1/1/a4 /t/1/1/a4 /t/1/1/a4
5 /t/0/b0˜ /t/0/(−b0,−a0) /t/0/a1
6 /t/1/0/a3˜ /t/1/0/(−c0) /t/1/0/c1
7 /t/1/1/a5 /t/1/1/a5/ /t/1/1/a5
8 /t/1/0/c0˜ /t/1/0/(−c1) /t/1/0/a2
9 /t/1/0/c1˜ /t/1/0/(−c1,−a1) /t/1/0/a3

TABLE I: Example of PDST operation.

to a data object under the given prefix which is second in order
based on the weights. This order is maintained only locally by
each producer.

In Table I, an example LON is shown. The corresponding
network with one consumer and three producers, as well as
the hierarchical data representation T are shown in Fig. 2. In
the example network, the transport latency to producer c is
the lowest, then to producer b, and then to producer a. The
second column is generated by the root coordinator in NEST
and represents the LON delivered to consumers requesting a
summary of content under the prefix /t. In the third column,
the interest names that the consumer uses in interest messages
are shown. The names of the data objects received by the
consumer in response, are shown in the last column. Note
that the interest names in the third column are adapted based
on names of data objects received so far (i.e., from previous
rows), as listed in the last column. For example, consider row
number 6. Here, the interest sent is for a data object that
is under the prefix /t/1/0/. Since the consumer previously
received the object /t/1/0/c0 (in row 2), it now includes
c0 in the exclude field of the interest message. The NDN
forwarding will pass the interest message /t/1/0/(−c0) to
all producers, but it will reach producer c first since it has the
best network conditions with respect to the consumer. Now,
producer c will check its local dataset for data objects under
prefix /t/1/0/ and with rank order subsequent to object c0,
returning object /t/1/0/c1. Data objects returned from other
producers will then be suppressed by intermediate routers
since the interest message would have been already satisfied
by object /t/1/0/c1.

In the following, we formalize our main result. The proof
is omitted for brevity.

Proposition 1. Fix an interest message j. PDST achieves
minimum latency T ∗(j).

We note that Proposition 1 implies that PDST minimizes

latency even if the link delay varies while the interest or data
message has not been received at the destination.

Pipelining interests: PDST uses an adaptive pipelining win-
dow, which controls how many pending interests are allowed
at any given time. In addition to being limited to a maximum
size W , the window size is adapted based on the LON and
the progress made thus far in processing the list. In particular,
the consumer can send interests from the LON until a new
entry requires sending a partial name which is already in use
in a pending interest, or until the maximum window size is
reached, whichever is smaller. This design prevents retrieval of
duplicate objects, since names of previously retrieved objects
are added to the exclude fields of subsequent interests, with
the same partial names. We evaluate the choice of W in
Section V. We also note that loss management is handled by
the underlying NDN mechanisms through the use of timeout
timers and retransmissions.

Caching: Before we conclude this section, we discuss
how caching affects the performance of our system. As the
number of consumers increase, it is expected that caches
at intermediate routers will return data objects more often,
improving latency performance with respect to a scenario
wherein caching is disabled. This in turn could reduce the
producer diversity opportunities that NEST tries to exploit to
improve performance; the data is already cached en route.
However, as will be shown in Section V, the marginal gain
in latency reduction is large even when caching is enabled. In
addition, the combined gain is substantial.

IV. IMPLEMENTATION

We implement NEST on Mini-NDN [14], an NDN network
emulator based on the popular Mininet [15] virtual network
environment. In Mini-NDN, a network topology is specified
in which nodes are connected via links parameterized by link
delay, bandwidth as well as loss percentage. Each node in the
network is capable of running NDN applications, forwarding
NDN packets according to the specified routing policy, as well
as caching forwarded content.

Mini-NDN accomplishes these NDN functionalities by run-
ning an instance of Named Data Link State Routing Protocol
(NLSR) [16] and NDN Forwarding Daemon (NFD) [17] on
each instantiated node in the network. NLSR is a routing
protocol responsible for populating NDN’s Forwarding Infor-
mation Base (FIB) while NFD is a network forwarder that
is fully capable of forwarding NDN packets according to a
diverse set of routing strategies.

Since Mini-NDN emulates the actual operations of NDN
networks, one primary advantage is that the applications
developed and tested on Mini-NDN can be readily operational
on the NDN testbed [18] or other actual NDN networks.

A depiction of NEST’s different components is shown in
Fig. 3. Each producer in the network runs the two functional
components of NEST (ProdSync and PDST) simultaneously
while the consumer runs PDST. First, producers in NEST
run the “NEST Sync” application, which is responsible for
implementing ProdSync and creating “NEST tree”. In our
implementation, we use k-means clustering with k = 2. The
NEST tree is then passed to the “NEST Prod” application. In

285

NDN

NEST Sync NEST Prod
NEST
tree

Prod. a

NEST Sync NEST Prod
NEST
tree

Prod. b

NEST Sync NEST Prod
NEST
tree

Prod. c
NEST Consum

Consumer

data data

data

control messages

control messages

control messagesdata messages

data messages

data messages

data messages

Fig. 3: A Network with three producers and a consumer
running NEST. Each box represents an application running
on producers or consumers.

this application, the tree is transformed to an LON which is
then used to guide the transport of data items. Finally, the third
application is the “NEST Consum” application running at each
consumer. This component is responsible for sending interest
messages that are responded to by the NEST Prod application
running at each producer.

We implemented all the applications in Python. In the NEST
Sync application, clustering information of every tree node is
kept in a data structure that holds the state of the computa-
tions and data exchanged between the coordinator and non-
coordinator producers. State and data are encoded into control
messages, where an interest control message requests the start
of computation or delivers the notification that a computation
is completed, while the corresponding data control message
delivers an acknowledgment or the requested data. On the
other hand, in the NEST Consum application, the consumer
implements a pipelining window of pending interests and a
method to transform the LON to interest messages with partial
names. NEST Prod implements a partial interest name match
function to select messages to be sent to the consumers.

V. EVALUATION RESULTS

Setup: Our evaluations are based on a dataset collected from
Twitter over a period of time from Dec 2016 to Mar 2017
using Twitter’s streaming API and a set of search keywords for
trending topics in politics, sports, and entertainment. Overall,
we use a dataset of about 80K tweets in our evaluations.

In each experiment, we randomly distribute a sample of the
dataset uniformly across the set of producers. We first pre-
process the collected tweets to remove stop words, special
characters, links and attachments, producing tokens. These
tokens are then transformed to a high dimensional vector
representation by computing the product of term frequency and
inverse document frequency (tf-idf) [19], a popular method for
text vectorization. We use the sklearn library [20] vectorizer
to achieve this task.

TABLE II: ProdSync convergence time.

N 3 5 7 9
Time(s) 34 38 83 122

In Mini-Net, links connecting the producers and consumers
are characterized by the link delay, the bandwidth, and the
message loss rate. In our experiments, we fix the bandwidth
and loss rates, and vary the link delays. We note that in Mini-
Net, each host in the network runs the NDN stack and thus can
be used as a producer, a consumer, and a forwarding switch,
simultaneously. In addition, hosts have content stores and thus
can cache data objects. In our experiments, we use a network
topology similar to that used in the NDN testbed [18] and we
have a varying number of producers consumers for different
experiments as will be discussed in the following.

In the following, we define terms that we use in our
evaluations. Let the summary block with size B be the number
of data objects the consumer has to fetch in order to have
a satisfactory summary. The block latency tB is the delay
from sending the interest message for the first data object in
the block, until the successful reception of the data message
corresponding to the last data object in the summary block.
This quantity is directly proportional to the per interest latency
defined in Section III-B.

We divide the evaluation results into two parts. In the first,
we evaluate the performance of the ProdSync algorithm and
quantify performance in terms of the convergence time. In the
second, we focus on the latency performance of PDST and
compare it to a baseline summary transport protocol with no
producer diversity (i.e., a system in which the LON is used
to retrieve data objects from specific producers, similar to the
protocol in [6]).

A. Producer Sync

We consider networks with different numbers of producers
and distribute a dataset of 4000N tweets uniformly at random
over the N producers. We use Euclidean distance to measure
similarity between different vectors representing tweets, and
use a similarity threshold τ = 0.9 as the stopping criterion for
ProdSync. For the coordinator selection, in each iteration, we
let the producer with the smallest ID perform the coordination
tasks for the corresponding tree node. Producers are connected
with link delays of 10 milliseconds.

We first evaluate ProdSync’s convergence time. For sce-
narios with N = 3, 5, 7, 9 producers, we repeat the exper-
iment 10 times and report the average convergence time in
each case. Table II outlines the results. It can be seen that
ProdSync’s convergence time is approximately linear in the
number of producers and the dataset size for N > 3. In
many applications (such as traffic monitoring, news stories
updates), major dataset changes happen on the order of hours.
Thus, ProdSync provides a practical means for constructing
the global representation of the distributed dataset as it can be
run periodically at a rate that is faster than the rate of data
evolution.

286

20 30 40 50 60 70 80 90
Link Delay Standard Deviation (msec)

0

500

1000

1500

2000

2500

3000

La
te
n
cy

 (
m
se

c)

Block Latency

Baseline B=100

NEST B=100

Baseline B=20

NEST B=20

(a) Link delay variance.

0 10 20 30 40 50
Summary Block Size

0

200

400

600

800

1000

1200

1400

La
te
n
cy
 (
m
se
c)

Block Latency

Base - N=3

Base - N=5

Base - N=7

NEST - N=3

NEST - N=5

NEST - N=7

(b) Number of producers.

0 20 40 60 80 100
Summary Block Size

20

40

60

80

100

120

140

160

180

200

La
te
n
cy
 (
m
se
c)

Avg. per Message Latency

Baseline

NEST

(c) Per message latency.

0 10 20 30 40 50
Summary Block Size

0

500

1000

1500

2000

2500

3000

La
te
n
cy
 (
m
se
c)

Block Latency

W=1

W=10

W=20

(d) Pipelining window sizes.

Fig. 4: Latency performance.

0 50 100 150 200 250 300 350 400
Summary Block Size

0

2000

4000

6000

8000

10000

La
te
n
cy

 (
m
se

c)

Block Latency

Baseline: |P|=2k

Baseline: |P|=4k

NEST: |P|=2k

NEST |P|=4k

(a) Different sample size |P|.

0 20 40 60 80 100
Summary Block Size

0

500

1000

1500

2000

2500

La
te
n
cy

 (
m
se

c)

Block Latency for C2

Baseline: Cache OFF

Baseline: Cache ON

NEST: Cache OFF

NEST: Cache ON

(b) Caching.

Fig. 5: Latency performance.

B. Latency Performance

In this section, we evaluate the latency performance of
PDST after the LON has been delivered to the consumers.
We compare the performance to the baseline protocol.

1) Link delay variance: First, we vary link delay variance
and measure the incurred latency. We fix the maximum
pipelining window size to W = 10 and vary the link delays
from the producers to the consumer in the range 5 to 200msec
while maintaining a fixed average. Here, we consider a topol-
ogy with 5 producers and 1 consumer, and we consider two
different summary block sizes B = {20, 100}. As shown in
Fig. 4a, the block latency improves as the link delay variance
increases. This is because NEST effectively checks if similar
objects exist at producers with better network conditions
and fetches objects from those producers first. Essentially,
objects with slow retrieval times are pushed to the end of
retrieval order. Compared to the baseline system, block latency
performance is improved by more than 40% when the link
delay standard deviation is 50msec.

In Fig. 4b, we plot the block latency tB for a varying
B. We also show the performance for topologies with dif-
ferent number of producers. First, we observe that while the
baseline system performance does not change when number
of producers change, NEST fully utilizes producer diversity.
In particular, as the number of producers increases, diversity
improves and block latency decreases.

We also study the per message latency when N = 5, where
W and link delays are chosen as in previous experiments. In
Fig. 4c, we plot the average per message latency vs. different
B. The figure shows that by taking advantage of producer
diversity, the latency improvements can be as high as 50%.
Note that as the block size increases for a fixed dataset size,
this gain is expected to decrease. We study the effect of the

ratio B
|P| in Section V-B3.

2) Pipelining: Next, we study the effect of the maximum
pipelining window size W on the block latency. In Fig. 4d,
there are five producers with link delays similar to those in the
previous experiments. Note that PDST’s adaptive pipelining
does not send new interest messages while pending interests
with the same partial name exist, to avoid duplicate object
retrievals. It is seen that pipelining improves block latency
compared to a simple stop and wait approach (W = 1). In
addition, consumers will experience more packet losses as W
increases and thus more bandwidth wastage. The figure shows
that diminishing gains result due to increasing W . We find
that W = 10 achieves the best latency performance.

3) Impact of dataset size: Next, we study the effect of the
dataset size on the block latency. It is expected that as the
ratio B

|P| decreases, the latency gain of NEST increases. In
other words, when the requested summary block size B is
comparable to the dataset size, consumers may not be able
to avoid fetching objects from producers with unfavorable
network conditions. We fix five producers with link delays
similar to previous experiments. Fig. 5a shows that, for a
given block size B, the latency reduction gain is only slightly
reduced when the sample size is halved. When |P| = 2000,
NEST can achieve a positive gain for summary block sizes
up to 20% of the dataset, which is reasonable for applications
in which consumers are interested only in data summaries of
large datasets.

4) Caching: Finally, we study the performance of NEST
when caching is enabled in the underlying NDN. In this exper-
iment, the topology has two consumers and five producers with
similar link delays as in previous experiments. Both consumers
are using the same LON. We introduce a delay between the
time each consumer starts fetching items to see the effect of
caching. Caching allows intermediate nodes to temporarily
store content that was previously forwarded to other hosts
in the network. As seen in Fig. 5b, NEST yields latency
performance improvements of about 50%. Compared to the
baseline performance with caching disabled, the combined
latency reduction gain is more than 70%.

VI. RELATED WORK

There has been prior work on selectively sending a rep-
resentative subset of data instead of the entire dataset [21],
[22]. However, unlike our work, these efforts are application
specific. Moreover, these approaches try to optimize for energy

287

efficiency in contrast to our goal of minimizing latency in re-
trieving the summary. Achieving our goal requires an approach
that is much different from those proposed in these efforts.

More recently, multiple works considered optimizing la-
tency in NDN [23]–[25]. In these works, architectural changes
to NDN are proposed to improve the support for low latency
applications such video conferencing [23]. In addition, multi-
path routing as well as network coding are employed [24],
[25] to improve performance of video streaming. Unlike these
approaches, NEST does not require changes to underlying
NDN infrastructure and operates as an end-host application.
Thus, we argue that it is much more general and easy to
deploy.

On the other hand, distributed dataset synchronization was
recently addressed [26]. The goal is to efficiently synchronize
the state of a group of hosts for applications such as group
text messaging. This is different from the problem we consider
wherein we address producer synchronization, since we do not
require all hosts to have the full dataset.

The closest works to ours are Espresso [13] and InfoMax
[6]. The former creates a tree representation and object names
from a given dataset for creating summaries, while the latter
transforms the tree into an ordered list for transport. However,
their model considers only a single producer. While we use
a similar approach towards summarization, we address a
different set of challenges wherein the dataset is distributed
across multiple producers. In particular, transport performance
is our primary issue of focus; this was not addressed in these
works.

VII. CONCLUSION

In this paper, we target the problem of delivering a summary
of a large dataset to consumers from a set of producers with
low latency. Retrieval of such a summary of the dataset, is
becoming popular in many emerging applications. We propose
NEST, an efficient data summary transport protocol which
leverages the NDN architecture towards achieving this goal.
Our novel framework opportunistically fetches data from the
producers with good network conditions relative to consumers
after constructing a global view of the dataset shared between
producers and establishing similarity relations between data
points. Our experimental results show that large latency re-
duction gains can be achieved compared to baseline strategies
that do not exploit producer diversity. The gains are especially
noteworthy (up to 50%) when the number of producers and
link delay variations are large.

Acknowledgment: This work was partially supported by
the Army Research Laboratory and was accomplished un-
der Cooperative Agreement Number W911NF-09-2-0053. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on. This work was also partially supported by the NSF
CPS grant 1544969.

REFERENCES

[1] L. Columbus, “Roundup of internet of things forecasts and market
estimates, 2016,” https://www.forbes.com/sites/louiscolumbus/2016/11/
27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/
#1b7ea093292d, 2016.

[2] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[3] B. Marr, “Big data overload: Why most companies can’t deal with the
data explosion,” https://www.forbes.com/sites/bernardmarr/2016/04/28/
big-data-overload-most-companies-cant-deal-with-the-data-explosion/
#33cde7b06b0d, 2016.

[4] S. H. Bouk, S. H. Ahmed, D. Kim, and H. Song, “Named-data-
networking-based its for smart cities,” IEEE Communications Magazine,
vol. 55, no. 1, pp. 105–111, 2017.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Commun. Review, vol. 44, no. 3, pp. 66–73, 2014.

[6] J. Lee, A. Kapoor, M. T. Al Amin, Z. Wang, Z. Zhang, R. Goyal, and
T. Abdelzaher, “InfoMax: An information maximizing transport layer
protocol for named data networks,” in IEEE 2015 24th Int. Conf. on
Computer Commun. and Networks (ICCCN), 2015, pp. 1–10.

[7] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” in Advances in Neural
Information Processing Systems, 2013, pp. 1995–2003.

[8] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median
clustering,” in Proceedings of the thirty-sixth annual ACM symposium
on Theory of Computing. ACM, 2004, pp. 291–300.

[9] J. Chen, H. Sun, D. Woodruff, and Q. Zhang, “Communication-optimal
distributed clustering,” in Advances in Neural Information Processing
Systems, 2016, pp. 3727–3735.

[10] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of
euclidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2,
pp. 245–248, 2009.

[11] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. on Inf.
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[12] D. Arthur, B. Manthey, and H. Röglin, “Smoothed analysis of the k-
means method,” J. ACM, vol. 58, no. 5, pp. 19:1–19:31, Oct. 2011.

[13] J. Lee, M. T. Al Amin, and T. Abdelzaher, “Espresso: A data naming
service for self-summarizing transport,” in 2017 14th Annual IEEE Int.
Conf. on Sensing, Commun., and Networking (SECON), 2017, pp. 1–9.

[14] “named-data/mini-ndn,” https://github.com/named-data/mini-ndn.
[15] “Mininet,” http://mininet.org/.
[16] “NLSR - named data link state routing protocol,” http://named-data.net/

doc/NLSR/current.
[17] “NFD - named data networking forwarding daemon,” https://

named-data.net/doc/NFD/current.
[18] “NDN testbed,” https://named-data.net/ndn-testbed/.
[19] J. Ramos et al., “Using tf-idf to determine word relevance in document

queries,” in Proceedings of the first Instructional Conf. on Machine
Learning, vol. 242, 2003, pp. 133–142.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[21] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient gathering
of correlated data in sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, no. 1, p. 4, 2008.

[22] Y. Ma, Y. Guo, X. Tian, and M. Ghanem, “Distributed clustering-based
aggregation algorithm for spatial correlated sensor networks,” IEEE
Sensors Journal, vol. 11, no. 3, pp. 641–648, 2011.

[23] M. Almishari, P. Gasti, N. Nathan, and G. Tsudik, “Optimizing bi-
directional low-latency communication in Named Data Networking,”
SIGCOMM Computer Commun. Review, vol. 44, no. 1, pp. 13–19, 2013.

[24] S. de Arco, J. Eduardo, E. Bourtsoulatze, N. Thomos, and T. Braun,
“Adaptive video streaming with network coding enabled named data
networking,” IEEE Trans. on Multimedia, 2017.

[25] K. Matsuzono, H. Asaeda, and T. Turletti, “Low latency low loss
streaming using in-network coding and caching,” in IEEE INFOCOM,
2017.

[26] Z. Zhu and A. Afanasyev, “Let’s Chronosync: Decentralized dataset state
synchronization in named data networking,” in 2013 21st IEEE Int. Conf.
on Network Protocols (ICNP), 2013, pp. 1–10.

288

MUCA: New Routing for Named Data Networking
Chavoosh Ghasemi1, Hamed Yousefi2, Kang G. Shin2, and Beichuan Zhang1

1Department of Computer Science, The University of Arizona
2Department of Electrical Engineering and Computer Science, The University of Michigan

Abstract—Named Data Networking (NDN) is a fundamental
paradigm shift from host-centric to data-centric Internet ar-
chitecture. Among its numerous benefits, in-network caching
and multipath forwarding are two prominent features that can
significantly improve the performance and resiliency of networks
and applications. The current NDN routing protocols, however,
still focus on the traditional problem of forwarding content
requests to content producers, without explicit or efficient support
of in-network caching and multipath forwarding, which will limit
NDN’s potential and benefits to applications.

In this paper, we propose a new intra-domain name-based
routing protocol to provide simple and scalable support for
MUltipath forwarding and in-network CAching (MUCA). While
MUCA collects the network topology and computes the shortest
paths to content producers in the same fashion as link-state
routing protocols, it also learns multiple alternative paths from
neighboring routers similar to distance-vector routing protocols.
Moreover, by labeling each route update at the entry point
into a network, internal routers select the same border router
for the same name prefix, which enhances the hit ratio of
cached contents. Our in-depth simulations demonstrate MUCA’s
effectiveness in reducing content retrieval delay and improving
network resiliency while lowering the routing protocol overhead.

I. INTRODUCTION

Named Data Networking (NDN) is a clean-slate future
Internet architecture and also an important representative of
Information Centric Networking (ICN) [22], [23]. In NDN,
content is identified by a hierarchical name, and both the
requests (i.e., Interests) and the responses (i.e., Data) carry the
content name rather than a source/destination address. Among
the various benefits of the NDN architecture, in-network
caching and multipath forwarding are two major features that
can significantly improve network performance and resiliency.
Since each network packet carries a unique name that identifies
its content, intermediate routers can cache Data in its returning
path to the requester(s) to serve future network Interests, i.e.,
NDN enables native in-network caching. Moreover, as pointed
in [21], NDN’s forwarding plane can detect routing loops by
itself and choose a different next-hop if loop happens. This
allows NDN routers to make use of multiple next-hops and
adapt the choice based on content retrieval performance.

Full realization of the potential of in-network caching and
multipath forwarding needs support from the underlying rout-
ing protocol. (Note that the routing plane in NDN is decoupled
from the forwarding plane as discussed in Section II.A.) At the
heart of NDN, the forwarding engine needs a routing protocol
to efficiently compute and install proper forwarding entries in
order to forward Interests towards the corresponding content

ISBN 978-3-903176-08-9 c©2018 IFIP

provider(s). While some studies have been done on NDN
routing protocols [10], [17] or similar content-centric routing
protocols [8], [9], they all focus on the traditional problem
of computing the shortest path towards a content producer,
without explicit or efficient support of in-network caching and
multipath forwarding.

To increase cache hit ratio in network caches, requests for
the same content but generated by different consumers should
merge as early as possible in the network, i.e., their forwarding
paths merge before they reach the content producer. Traditional
shortest-path computation does not take this into consideration,
thus the result is opportunistic for caching. To alleviate this
deficiency, MUCA labels each routing announcement/update
in border routers such that all the internal routers will select the
same border router for the same name prefix. This guarantees
that requests for the same content will always merge before
they go out of the network while improving the chance of
their merge even before reaching the border router. Not only
does this feature increase the efficiency of in-network caching,
but also reduces the transport cost incurred by traffic between
networks.

To take advantage of the NDN’s capability of multipath
forwarding, the routing protocol is expected to provide the
forwarding plane with multiple next-hops for each name
prefix. Traditional routing protocols only compute a single
best path. NLSR [17], a name-based link state routing protocol
currently used in the NDN testbed, computes a list of ranked
next-hops by running Dijkstra algorithm in a router for each of
its active interfaces, which can incur significant computational
overhead, especially for routers with high connectivity. To
address this issue, MUCA—as a link-state routing protocol—
borrows a distance-vector mechanism, retrieving routing tables
from neighboring routers instead of computing them. From
these retrieved routing tables, one can easily figure out the
ranked list of possible next-hops and save CPU cycles for the
local router.

In addition to explicit support of caching and efficient sup-
port for multipath, MUCA employs a simpler mechanism than
NLSR to propagate incremental routing updates. NLSR treats
the routing update propagation problem as a data synchro-
nization problem, and adopts ChronoSync [25] to synchronize
the link state database (LSDB) between neighboring routers.
MUCA simply notifies the neighbor router that a routing
update is available, and expects the neighbors to retrieve this
incremental update. Thus, it effectively reduces the routing
overheads.

We have conducted extensive simulations to demonstrate

..

CS PIT
FIBInterest packet

Routing Plane

Forwarding Plane

Strategy
Module

Forward
Interest packet

Data packet
Forward

Data packet

Fig. 1: Forwarding and routing planes in an NDN router

Discard
Interest

Forward Interest
Add PIT
recordAdd incoming

interface
Return Data

..

Remove
PIT entry

Forward
Data

Drop
Data

Data (Return) Path

Interest Path

CS PIT FIB

PITCS

Interest packet

Data packet

Lookup
Miss

 Lookup
Hit

Fig. 2: Interest/Data processing in the forwarding plane

MUCA’s benefits for multipath routing, in-network caching,
and LSDB synchronization. Compared to the last version
of NLSR, as the current de facto routing protocol of NDN
testbed, MUCA enables multipath routing with 94% less traffic
overhead, 26% faster content retrieval (by explicit support of
in-network caching), 27% less overall cache space usage, and
22% less engaged routers for caching a specific content. At
the same time, MUCA achieves fast reaction to failures due
to quick routing update propagation and multipath support.

The remainder of this paper is organized as follows. Section
II describes how routing and forwarding planes are decoupled
in NDN and motivates our study. The design and operation of
MUCA are detailed in Section III. The simulation results are
presented in Section IV. Section V discusses the related work,
and finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Routing vs. Forwarding

IP forwarding plane is neither adaptive nor intelligent, as
it strictly follows the routing plane [21]. NDN implies a
substantial re-engineering of the forwarding plane and changes
the role of routing plane from a directive to a consultant
[10]. Thus, the routing plane is a second-class citizen in
NDN. Actually, the routing plane only computes the route(s)
towards each producer and provides the forwarding plane
with this information. Instead, a forwarding strategy module
is responsible for controlling all forwarding decisions (i.e.,
whether, where, and when to forward an Interest). Thus, unlike
in IP, the forwarding table is not under control of the routing
protocol and continuously updated according to forwarding
plane performance measurements and administrative policies.
This intelligent and adaptive forwarding plane enables ex-
ploring more radical and scalable routing schemes that are
not possible in IP networks. Fig. 1 shows the forwarding
and routing planes in an NDN router. It is worth noting that
our main focus in this paper is on the routing plane. The
way the paths are used by the strategy module depends on
administrative decisions and the adopted forwarding strategies,
which is beyond the scope of this paper.

In the NDN’s request-driven (pull-based) communication
model, a node requests a named content using an Interest
packet. The intermediate neighbor nodes remember the in-
terface from which this packet was received, and forward
it by consulting their forwarding tables. Any node receiving
the Interest packet and having the requested content simply

responds with the corresponding Data packet. Unlike IP-based
networks, not all of the packets need to be routed in NDN.
Only the Interest packets are routed and the corresponding
Data packets are returned based on the state information set
up by the Interest packets in intermediate nodes (symmetric
Interest-Data exchange).

As shown in Fig. 1, along with the strategy module,
NDN has three main tables in its forwarding plane [23]: (1)
CS (Content Store), a cache memory, that stores previously
retrieved Data packets, (2) PIT (Pending Interest Table) that
stores unsatisfied Interests as well as the interfaces through
which they have been received, and (3) FIB (Forwarding
Information Base) that serves as the forwarding table to direct
the Interests towards the potential provider(s) of matching
Data. Fig. 2 shows how Interest/Data packets are processed
in the NDN tables in both sending and returning paths. Upon
arrival of an Interest packet at a router, CS is searched for the
requested name. If the desired content is found, then a Data
packet is returned else PIT is searched. If the name matches
a PIT entry, meaning that an Interest for this data has already
been forwarded upstream, we just add the incoming interface
to the related entry in PIT and wait for the response Data.
Otherwise, after assigning a new entry to the requested name
in PIT, the Interest is forwarded to the next hop(s) based on
the forwarding strategy looking at FIB. If multiple next-hops
exist in a FIB entry, the forwarding strategy determines how to
use the multiple routes for forwarding Interests. On the return
path, if the desired content arrives after its expiration time, it
will be discarded; otherwise, after caching the content in CS,
it will be sent through the interfaces listed in the matching
PIT entry.

In-network caching is a gift from CS. Thanks to this built-
in opportunity, all the NDN routers can act as temporary
providers, thus unneeding to traverse the entire network for a
desired content. Multipath support is a gift from PIT. Actually,
PIT makes the NDN forwarding plane stateful, thus ensuring
loop-free forwarding. This brings the opportunity of sending
an Interest out through multiple interfaces in each router.

B. Motivation

In-network caching and multipath forwarding support are
two prominent features of NDN. However, state-of-the-art
studies still focus on the traditional problem of forwarding
content requests to content producers, without explicit or
efficient support of these two built-in opportunities in NDN,

290

BP (NLSR)

R1 R2

Area Producer NDN Router

R3

MUCA

R1 R2

R3

Fig. 3: MUCA merges the forwarding
paths for the same content as early as
possible (in the worst case, at the same
border router). (The areas simply follow
the network partitioning in OSPF.)

MPP

BP

SBP_1

SBP_2

SBP_3

..

….

BP

BP_2

BP_3

BP_4

BP_5

..

….

MUCANLSR
Fig. 4: MUCA vs. NLSR: a ranked
list of routes (BP (Best Path), SBP
(Semi Best Path), and MPP (Most
Probable Path))

R0R1R0

R2 R4

R3

R3 R2

1

1

2

23

3

4

4

5

5
4

a/b/c
server

A2

A1 1 2

1 2
3

1
2

3

Fig. 5: Update dissemination after adding the /a/b/c
server

which will limit the NDN’s potential and benefits to applica-
tions. To alleviate this deficiency, while also improving scal-
ability in terms of both computational and traffic overheads,
we propose a new routing protocol which (1) mimics cache-
awareness to the routing plane, and (2) computes multiple
paths efficiently.

Caching: For any satisfied Interest, the response is cached
in all nodes on its returning path to the requester. The story
of routing in NDN is deficient without caring the caching
capability in the routing plane. Simply enjoying this capa-
bility in the forwarding plane without explicitly exploiting
in-network caching, as NLSR does, can degrade the perfor-
mance in terms of both content retrieval delay and traffic
(Interest/Data) overheads. Fig. 3 shows a simple example,
where three nodes (R1, R2, and R3) request the same content.
Ignoring the in-network caching capability in the state-of-the-
art—which relies on the shortest paths—can cause forwarding
the Interests through late, even never, merging paths (R3&R2
and R1&R2, respectively). Our idea is to label incoming
route announcements and updates (advertised in the case of
both topology and name prefix changes) at border routers
such that all the internal routers will select the same border
router for the same name prefix. This not only guarantees
that requests for the same content will always merge before
going out of the network (see R1&R2&R3’s paths), but also
improves the chance that they merge even before reaching
the border router (see R1&R2’s paths). Thus, MUCA equips
the forwarding plane with a new path (referred to as MPP),
explicitly exploiting in-network caching in NDN.

Multipath: Traditional routing protocols only compute a
single best path. To implement multipath routing, NLSR
provides a ranked list of all possible paths towards each
producer. In this line, as a Link State (LS) routing protocol,
it has no way except to run the Dijkstra algorithm from
every single interface’s point of view. This approach incurs
high computational overhead, especially for routers with high
connectivity. To address this issue, our general idea is to run
Dijkstra only once in each router—this surely provides the

best path (referred to as BP) towards each producer—and
then ask for help from neighbors using their precomputed
paths. This way, MUCA borrows a Distance Vector (DV)
mechanism, realizing a cooperative routing for NDN. Thus,
MUCA provides a list of alternative paths (referred to as SBPs)
for each BP in much lower complexity in the price of a little
more communication overhead.

In conclusion, as shown in Fig. 4, MUCA provides the for-
warding plane with a new list of forwarding paths—including
MPP, BP, and a dynamic list of SBPs as discussed later—while
effectively utilizing caching and multipath in the routing plane.

III. MUCA DESIGN

This section describes our design and its essential parts—
multipath routing and LSDB synchronization. We simply
follow the network partitioning in OSPF [1] and use
a general hierarchical naming model, where each router
takes a unique name /<1-st Area ID>/<2-nd Area
ID>/. . ./<n-th Area ID>/<Router ID> in ascending
order of the areas in which it resides. For example, in Fig. 5,
internal router R0 in A1 and border router R4 in both A1 and
A2 are simply named 1/0 and 1/2/4, respectively.

A. Multipath Routing

MUCA comes with three different characterized paths: (1)
Best Path (BP), provided by Link State (LS) face; (2) Semi
Best Path(s) (SBPs), provided by Distance Vector (DV) face;
and (3) Most Probable Path (MPP), provided by effectively
exploiting the caching opportunity built in NDN. As the only
characteristic in common, all of these three paths route the
packets towards the content producers (i.e., original providers).
While BP and SBPs ignore the in-network caching capability,
MPP tries to meet the network caches as early as possible on
its way to the producer.

To describe different paths, Fig. 5 shows an example in
which a new /a/b/c server announces the content it serves
(i.e., /a/b/c) by disseminating a routing update in the
network. Each sequential step of dissemination is shown as a
number next to each link. The shape changes to pentagon and

291

triangle when the update packet passes border routers 1/2/1
and 1/2/4, respectively.

1) Scalable Multipath Support:
BP: It is the shortest path between every pair of routers, and

used to deliver an Interest packet to its associated producer(s)
with a minimum cost. BPs are calculated by the LS face,
which runs Dijkstra algorithm in each router, having the global
information of its area(s).

After synchronizing LSDBs in an area (see Section III.B),
the MUCA’s LS face determines BPs and builds the routing
table (a.k.a. Routing Information Base (RIB)) for each router
to all the others in that area. (For a router, its routing table,
RIB, is populated with the costs to reach the other routers
within its area.) Fig. 6 shows the RIBs of routers R2, R3, and
R4 in area A1 in Fig. 5 after determining BPs, where all link
costs are assumed to be 1 for simplicity. To differentiate the
interfaces of a router, there is a number next to each link (as
also shown in Fig. 5). BP cost and BP interface at each router
are associated with the shortest-path cost and the interface
through which the path reaches another router within the same
area. For example, BP interface and BP cost in R3’s RIB
towards R0 in A1 are 1 and 2, respectively.

SBP: We propose using SBP as a supporting/alternative
path for BP. We exploit the potential for cooperation between
neighbors offered from the DV face of MUCA. Although DV
is unsuitable for large wide-area networks, we borrow its main
concept (i.e., querying only the neighbors) to use their “pre-
computed” routing tables for finding the Semi Best Paths—
called SBPs. It is worth noting that having the complete
routing information of neighbors in a router, the number
of SBPs towards a provider can be dynamically adjusted
according to the administrative policies. Thus, unlike for BP
(and MPP), MUCA can provide the forwarding engine with a
ranked list of SBPs. However, for simplicity, we only present
it as a single path in this paper. SBP can be exploited not only
as a backup path for fault-tolerant routing but also for other
purposes, such as load-balancing. However, how the strategy
module uses this path is beyond the scope of this paper which
focuses on the routing plane.

After determining BPs, the DV face resolves SBPs for
each router to all the others within the area. To this end,
each router sends a query to all of its neighbors and asks
for their RIBs. This query is an Interest packet with name
</InterestSBP>, and each router replies with its RIB
(which includes its BP to each destination Y). Then, the SBP
to Y passes through the BP of a directly connected neighbor
providing the minimum cost. Note that SBP from a router
X to a router Y needs to satisfy two conditions to ensure a
loop-free routing: (1) SBP cannot go through the same X’s
interface as BP towards Y , and (2) BP to Y from the neighbor
cannot cross X again. Fig. 6 shows the packets exchanged to
resolve SBPs for R3. For example, as Figs. 6 and 7 show,
R3 chooses R2 as its SBP next-hop to R4, while satisfying
two conditions (1) BP and SBP to R4 go through different
interfaces, and (2) R3 is not on R4’s BP to R2. Moreover, the
SBP interface and SBP cost in R3’s RIB towards destination

R4 are 1 and 2, respectively, since R2’s BP to R4 has cost 1
and R3 reaches R2 through interface 1 just in one hop.

One may argue that as BP and SBP from a source router are
not necessarily disjoint paths, our approach is not fault-tolerant
enough. However, note that, unlike IP’s end-to-end packet
delivery model, the NDN forwarding policies are applied in a
hop-by-hop manner. Thus, in the case of a link/node failure
along the BP, its immediate neighbor quickly replaces the
forwarding path by SBP (i.e., a part of BP is replaced by
another path towards the producer). From the source router’s
point of view, the current forwarding path is not the best
until it becomes aware of the failure and updates its RIB and
FIB. Thus, the synchronization time (called the convergence
time for fault-tolerant routing) is key to the performance of a
multipath routing (see Section III.B).

Finally, note that SBP is equal to the NLSR’s second best
path (except in case that the second best path goes through
the same interface as BP). Thus, it offers almost the same
performance by incurring much lower computational overhead.

2) In-network Caching Support:
MPP: As mentioned earlier, MUCA also equips the for-

warding plane with another path—called Most Probable Path
(MPP)—through which an Interest will likely meet the desired
content before reaching the producer(s). By using MPPs, we
try to forward similar traffic (Interests) via the same (even
partly) path to maximize utilizing built-in caching in NDN.
To this end, we send all the requests which target the same
name prefix through the same border router. We consider the
case where routing announcements/updates are received in an
area through multiple border routers. Then, the entry points
(i.e., border routers) simply update a field Modified Time
in receiving announcements/updates—this is referred to as
labeling process. Finally, the internal routers choose the border
router informed of a new name prefix before the others (i.e.,
that with the least Modified Time) and use their BPs (and SBPs)
towards this border router to forward their similar requests.
The same scenario applies sequentially in other areas. Finally,
from a given router’s point of view, there is a path (maybe
longer than BP) which eventually reaches the producer(s),
but with a higher probability of satisfying its request by an
intermediate router.

For example, from the vantage point of router R3 in A1
in Fig. 5, its MPP to /a/b/c server goes through router
1/2/1 (R1). This is because the advertisement of this name
prefix has been received by router 1/2/1 at the second
hop, and propagated into the network (follow pentagon-shaped
updates) before router 1/2/4 (follow triangle-shaped update)
receiving the update at the third hop. Finally, BP and MPP
towards /a/b/c server are [1/3-1/2/4-2/3-2/2] and
[1/3-1/2-1/0-1/2/1-2/0], respectively. Note that the
resolved MPP in a router towards /a/b/c server may be
the same as BP or SBP (e.g., for routers 1/0 and 1/2), or
different (as described for router 1/3). Thus, although MPPs
may take longer paths than BPs, they can effectively reduce
content retrieval delay. This is because MPPs from all internal
routers for /a/b/c are directed to the same border router in

292

SBP calculation and Filling the xRIB for R4

Fig 2

R3
R4

Data (RIB)

/InterestSBP/InterestSBP

Ti
m

e

Data (RIB)

Calculation of SBPs

1/0 2 1
1/2

1/2/4
1/2/1

1 1
1 2
3 1

Node
name BP cost BP

Interface

RIB of R3

12 2 2

1

3

3

1

1/0 2 1
1/2
1/3

1/2/1

1 1
1 2
3 1

Node
name BP cost BP

Interface
1/0 1 1
1/3

1/2/4
1/2/1

1 2
1 3
2 1

Node
name BP cost BP

Interface

RIB of R2 RIB of R4

3 2
2 2
2 1
4 2

- -
2 3
2 2
- -

SBP cost SBP
Interface

3 2
2 2
2 1
4 2

SBP cost SBP
Interface

SBP cost SBP
Interface

R2

Fig. 6: RIB (routing table) update and SBP calculation by exploiting
the distance-vector face of MUCA

R0R1R0
a/b/c

server

A2

A1

SBP MPPBP

R4 R3 R2R2

R3

Fig. 7: BP, SBP, and MPP
from R3 to retrieve /a/b/c

2/31/2

/InterestChange/1/2/4/$n

/InterestRequest/1/2/InterestChange/1/2/4/$n

Data (UpdateContent)

Data (UpdateContent)

/InterestRequest/1/2/4/InterestChange/2/3/$n

/InterestChange/2/3/$n

Ti
m

e

1/2/4

Fig. 8: Notifying the neigh-
bor routers to synchronize
their LSDBs

an area, which not only guarantees that the paths merge before
going out of the area, but also improves their chance to merge
even before reaching the border router.

To realize MPP, we define MUCA header, including three
fields Area ID, Border Router, and Modified Time augmented
with NDN Data header. These fields experience no change in
the return path while passing internal routers. However, upon
arrival at a border router, they are updated according to the
current area, border router, and arrival time.

By presenting MPP, we prevent scattered caching and
forwarding Interests through improper paths or towards depre-
cated copies of contents. Moreover, by avoiding sending sev-
eral similar Interests throughout the network, MPPs reinforce
the role of PIT, as one of the NDN main design principles.
This way, we save more network bandwidth and decrease the
possibility of congesting the intermediate links/routers, and
reduce the transport cost incurred by traffic between networks.
By receiving fewer Interest packets at the producers, the
servers’ load will also be reduced.

Note that MUCA can support multipath routing not only
for a single content producer by leveraging BP, SBP, and MPP
(Fig. 7 depicts BP, SBP, and MPP from router 1/3 to /a/b/c
server), but also for multiple producers (in case there are more
/a/b/c servers in the network).

B. LSDB Synchronization

As part of any LS routing protocol, to synchronize all the
LSDBs (Link State Databases), each router needs to detect
a new update in the case of both topology and name prefix
changes and disseminate it throughout the network. (The
LSDB at each router contains information on reachability to
both routers and name prefixes.) In this line, the latest version
of NLSR [17] uses ChronoSync [25]. Considering the routing
update propagation problem as a synchronization problem,
two neighbors need to periodically inform each other about
the state of their LSDBs (even if there is no changes in the
network). Although there are some benefits with ChronoSync,
especially in highly dynamic and unreliable scenarios, it is
not a perfect fit to NDN routing protocol synchronization, so
incurring high message overhead. To address this problem,
MUCA suggests that each router simply notifies its neighbors
that a routing update is available, and expects the neighbors
to retrieve this incremental update. This mimics a push-based

Scattered caching may waste and improperly leverage cache capacity.

notification of the exact changes in heart of the NDN pull-
based communication model, which effectively reduces not
only the convergence time but also many unnecessary periodic
control packets to detect the updates and difference between
LSDBs, if any.

Implementing LSDB Synchronization: The currently adopted
update model in NDN is request-driven, requiring all the
routers to pull the updates. To implement our approach, in
the case of any update in a node, it sends an InterestChange
to its neighbors and they respond by returning InterestRequests
to pull new changes (as a Data packet UpdateContent). Upon
receiving the changes at a neighbor, it updates its LSDB and
notifies its neighbors. This procedure is repeated hop-by-hop
until all the routers in the associated area are informed of any
update. Names /InterestChange/<origin router
name>/<nonce> and /InterestRequest/<sender
router name>/InterestChange/<origin router
name>/<nonce> are used for InterestChange and Intere-
stRequest packets, respectively, where the suffix of InterestRe-
quest is identical to its associated InterestChange. Here, origin
router name and sender router name refer to the routers from
which InterestChange and InterestRequest are transmitted,
respectively, and Nonce is a random integer. Fig. 8 shows
LSDB synchronization process for routers 2/3, 1/2/4, and
1/2 in Fig. 5, where $n is a Nonce. After receiving the routing
update at router 1/2/4 from router 2/3, it updates its LSDB
and then sends InterestChange to its neighbor (i.e., router
1/2). Upon receiving this packet, router 1/2 requests an
update by returning an InterestRequest. Finally, router 1/2/4
generates an UpdateContent by which router 1/2 can update
its LSDB and inform its neighbor of this new change.

IV. EVALUATION

In this section, we evaluate the performance of MUCA
via extensive simulations using ndnSIM, which is the de
facto simulator of NDN. The results are compared to the
last version of NLSR [17], as the current de facto routing
protocol of NDN testbed, to demonstrate MUCA’s benefits
for multipath routing, LSDB synchronization, and in-network
caching utilization. The simulation parameters are set to their
default values in ndnSIM [3]. The topology generator aSHIIP
v.3 [2] and the GLP model [4] are also employed to generate
random networks. The results are the average of 10 runs.

293

0 20 40 60 80 100 120

0

100

200

300

Time(s)

#
Sa

tis
fie

d
In

te
re

st
s

SBP+BP BP

(a)

0 20 40 60 80 100 120
10−1

100

101

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
) SBP+BP BP

(b)
Fig. 9: The benefits of multipath routing in a node failure scenario: (a) number of satisfied Interests and (b) content retrieval delay

0 20 40 60 80 100 120
10−1

100

101

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
) MUCA NLSR

Fig. 10: Semi Best Path (SBP) in MUCA achieves the performance
of second Best Path in NLSR with much lower routing overheads

A. Multipath Support

We answer three questions on the performance of our
proposed multipath routing protocol exploiting LS and DV
faces: (1) what are the benefits of employing multipath? (2)
how MUCA and NLSR outperform each other during a failure
scenario?, and (3) what is the cost of resolving SBPs in terms
of traffic overhead?

To answer the first question, Fig. 9 compares two modes,
BPs alone and BPs & SBPs together, in terms of number
of satisfied Interests and consumer-perceived response time
(a.k.a. content retrieval delay) in case of node failure. The
retrieval delay is the time duration between sending an Interest
and receiving its corresponding Data, including the time for
retransmissions. We capture network events during a period
of 120 seconds, where two randomly selected nodes act as
the producer and consumer residing in two sides of a 100-
node network partitioned into four areas. After computing and
populating the LSDBs in all the routers, at the 10-th second,
we brought down a node on the consumer’s BP towards
the producer. In MUCA with only a single path, the node
failure triggers the Dijkstra algorithm to calculate the new
BP and resolve the desired content. As shown in Fig. 9(a)

This is long enough for warming up and testing the behavior of network
in terms of convergence time.

and (b), it takes about 60 seconds to detect the node failure
and then to converge (thus, using only BPs, no Data returns
during this period). This figure clears the importance of using
multipath, as using a single path (i.e., BP) drastically increases
packet drop rate (see Fig. 9(a)) and content retrieval delay (see
Fig. 9(b)), during convergence time. However, providing the
forwarding plane with SBPs lets it forward Interests on another
path almost immediately from the failed node’s neighbor,
until the network converges and the consumer updates its BP
(around the 70-th second). Finally, at the 100-th second, when
the failed node is recovered, the traffic is switched back on the
old path. Fig. 9 thus illustrates the benefit of employing SBPs
along with BP, and its vital effect on overall performance of
the network.

To answer the second question, Fig. 10 compares MUCA
with NLSR in the same scenario except that the failed node
is not brought back up. Both MUCA and NLSR enable the
forwarding plane to quickly switch to the alternative paths
(SBP and the second best path, respectively) and continue
transmission of packets with a larger retrieval delay. After de-
tecting the node failure (around the 70-th second as mentioned
earlier), both MUCA and NLSR daemons start propagating
this change throughout the network and updating LSDB of the
routers consequently. As evident from the figure, both proto-
cols perform almost the same, though MUCA could converge
a little faster due to its update propagation mechanism. After
convergence time, both protocols switch to a new BP with
a relatively longer delay than the initial one. In conclusion,
using SBP, MUCA can achieve the performance of NLSR
only by incurring little traffic overhead to the network, while
drastically reducing the computational overhead of NLSR.

Finally, to answer the third question, Fig. 11 shows a com-
plete analysis of traffic overhead of resolving SBPs. To give a
broader view, we consider different sizes of the network, i.e.,
50, 80, 100, and 150 nodes. (We attempted to cover medium to
large networks (as the AT&T core network topology has 154
nodes [9].)) We also change parameter p in the GLP model to

As in OSPF, tracking the network connectivity is handled by sending Hello
packets to neighbor nodes. Usually after hearing nothing from a neighbor
within three continuous Hello packet interval, the neighbor is determined as
dead.

294

0.15 0.35 0.55 0.75 0.95
0

10

20

30

p

Pe
r

N
od

e
Pa

ck
et

O
ve

rh
ea

d 50 80 100 150

Fig. 11: Average “per-node” packet over-
head to resolve SBPs for different network
sizes (50, 80, 100, and 150 nodes) and
node degrees (p)

0.15 0.35 0.55 0.75 0.95

0.9

0.95

1

p

Tr
af

fic
O

ve
rh

ea
d

R
ed

uc
tio

n
R

at
io

50 80 100 150

Fig. 12: MUCA vs. NLSR: MUCA effec-
tively reduces traffic overhead by utilizing
a new LSDB synchronization mechanism

1

3

0
4

8
9

5 6

10

11

2 7

13 14 15 16

17 18 19 20

21 22 23 24

25
26

2827

29

33

36 32

37

38

41

39

42

4035

31

34

30

A1

A2

A3

12

Border Router

Consumer

Fig. 13: Network topology to evaluate the
MPP performance

create different node degrees, ranging from very sparse to very
dense deployments, where p (1−p) specifies the probability of
adding a predefined number of new links (a new node) to the
network at each time-step. The results show that this overhead
is negligible. For example, when there are 80 routers in the
network and the density is normal (i.e., p = 0.5, which means
the network is neither fully mesh nor sparse), less than 10
packets per node is needed to resolve SBPs.

B. LSDB Synchronization

We now evaluate the performance of MUCA against NLSR
in terms of synchronization overhead. In each scenario, a
random router is informed of a new name prefix and updates its
LSDB. Then, the number of transmitted packets (including all
periodic and non-periodic ones) are measured. Fig. 12 shows
the traffic overhead reduction ratio provided by MUCA to
synchronize all the LSDBs in the network. MUCA is shown to
significantly outperform NLSR, especially in larger networks.
Moreover, by increasing p, the number of links grows, so
more periodic packets will be exchanged by NLSR. This figure
casts doubt on using ChronoSync (or similar algorithms) as it
performs poorly compared with a straightforward approach.
Instead, by blocking many unnecessary packets (e.g., those
exchanged for finding differences between LSDBs), our ap-
proach reduces the traffic overhead on average by 94% in the
network.

C. In-Network Caching Support

As mentioned earlier and also shown in Fig. 4, MUCA
provides the forwarding plane with a new ranked list of
the candidate paths, giving priority to MPPs. In this section,
we compare the NDN forwarding based on MPP versus BP
(NLSR approach) to see whether MUCA’s ranking rubric
outperforms NLSR. Moreover, to fully demonstrate the pros
and cons of MPP-based forwarding, we also compare it with
“flooding” (as the simplest de facto forwarding strategy in
NDN). All three schemes follow regular caching of Data
packets at intermediate nodes and use LFU as their replace-
ment policy [14]. The performance of in-network caching is

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0.2

0.3

0.4

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

29 41

(a) BPs (NLSR)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0

0.1

0.2

0.3

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

29 41

(b) MPPs

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

0.1

0.2

0.3

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

29 41

(c) Flood
Fig. 14: Content retrieval delay in nodes 29 and 41 using different
forwarding schemes

evaluated in terms of: (i) content retrieval delay, (ii) overall
cache memory usage, and (iii) number of nodes engaged in
caching.

Fig. 13 illustrates a network of 44 nodes partitioned into

295

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0

10

20

30

Time(s)

C
um

ul
at

iv
e

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

BP(NLSR) MPP Flood

Fig. 15: Cumulative content retrieval delay using different forwarding
schemes

three areas, where four consumers request 20 name prefixes
served by one server (at the top). The location of each
consumer is also denoted by double-dotted circles. In order to
test the network operation, each time step is randomly chosen
between 0 and 4 seconds, in which each of four consumers
requests one of the prefixes. At the end of simulation that
lasts for 50 seconds, each node has requested at least a half of
the existing name prefixes. Thus, it is highly possible that a
content is repeatedly requested by different consumers (time-
locality principle). Although each content in CS is valid only
for a short while in reality, we enjoy the caching opportunity
built in NDN.

Fig. 14(a)-(c) shows the content retrieval delay for nodes 29
and 41 (two of four consumers) in A3 for all three forwarding
schemes. This delay for the nodes under the MPP-based
scheme is shown to be higher than that under the flooding
scheme, while smaller than that under the BP-based one.
Indeed, although leveraging only BPs can result in the same or
even better performance under a special condition (when the
content requisition does not follow the time locality principle),
MPPs can, in general, reduce the retrieval delay. As evident
from the figure, nodes 29 and 41 have relatively opposite
retrieval delay trends (i.e., high vs. low). This verifies that
by leveraging in-network caching, if a node needs a content
which has already been requested, it will meet a cached version
with high probability. For example, as evident from the 22-nd
till the 28-th second in Fig. 14(b), node 41 retrieves a desired
content very quickly as it has been already consumed by node
29. For the majority of time, the content can be retrieved in less
than 0.2 second in Figs. 14(b) and (c), while this is reversed
in Fig. 14(a).

Fig. 15 illustrates the cumulative retrieval delay for all con-
sumers using different forwarding schemes. As evident from
the figure, the MPP-based forwarding scheme performs close
to flooding which is our lower bound—flooding minimizes the
delay in the cost of incurring the maximum traffic overheads
to the network. Actually, the MPP-based scheme outperforms
the BP-based one on average by 26% in this scenario, while
flooding reduces the retrieval delay on average by 34% and
12% compared to BP- and MPP-based schemes, respectively.

Fig. 16 shows the cumulative cache memory usage by each
scheme in terms of the number of cached packets at the
network nodes. As evident from the figure, the MPP-based

BP(NLSR) MPP Flood

1,000

2,000

3,000

4,000

Forwarding Scheme

#
C

ac
he

d
Pa

ck
et

s

Fig. 16: Number of packets
cached in the network using
different forwarding schemes

BP(NLSR) MPP Flood

20

30

40

Forwarding Scheme

#
E

ng
ag

ed
N

od
es

in
C

ac
hi

ng

Fig. 17: Number of nodes en-
gaged in caching using differ-
ent forwarding schemes

scheme decreases the overall CS space usage on average by
27% and 64% compared with BP-based and flooding schemes,
respectively. Besides, as shown in Fig. 17, forwarding the
Interests over MPPs can reduce the number of nodes engaged
in caching a specific content on average by 22% and 64%
compared to BP-based and flooding schemes. Obviously, fewer
engaged nodes mean less scattered caching, while also pro-
viding a lower retrieval delay by using MPP compared to the
BP-based scheme. In general, scattering the content between
more network nodes (as flooding does) results in a greater
opportunity to reduce the retrieval delay. However, we did
not follow this to avoid caching redundant contents. Finally,
the MPP-based scheme consumes CS space very efficiently
while also performing very close to flooding. Based on these
observations, we can make a trade-off between the content
retrieval delay and the CS space usage by choosing MPPs or
flooding.

Knowing the benefits of using MPP over BP in different
aspects, we can reject adopting the assumption of several
studies (like NLSR) which imply using path cost as a metric
to rank the available paths. Instead, we believe that the paths
with higher probability to meet the cached content have higher
priority over the shortest paths towards the provider(s) in
NDN. That is why MUCA gives MPP a higher priority than
BP and SBPs in its ranked list of paths as shown in Fig. 4.

V. RELATED WORK

There exists several studies on routing in NDN. OSPFN
[18], as an extended version of OSPF [1], is the first NDN rout-
ing protocol for rapid prototyping of name-based forwarding
in the NDN testbed. However, it suffers from several critical
drawbacks such as IP dependency, employing GRE tunnels,
and disregarding multipath forwarding. The two-layer routing
protocol in [6] uses OSPF to resolve topology and calculate
the shortest-spanning trees. However, it relies on flooding
for update dissemination and does not yet support multipath
routing towards a single producer. To mitigate these problems
and allow for new topology-discovery methods, a named-data
link state routing protocol (NLSR) was proposed in [10], [17].
However, it—as the current de facto routing protocol of NDN

296

testbed—suffers from high computational and traffic over-
heads. A controller-based routing scheme (CRoS) for NDN
was also proposed in [15], which uses multiple controllers
to achieve scalability. However, it incurs high traffic overhead
due to flooding of Interests to search for controllers. LSCR [9]
proposed a name-based link-state routing protocol which aims
to provide forwarding plane with permanent loop-free paths.
DCR [8] is the first name-based content routing which does
not require any information about physical topology and works
solely based on distance information. However, both LSCR
and DCR refuse to provide the network with information of
all available providers, while none of them explicitly employ
in-network caching capability, as well. Bloom Filters (BF)
are used in [5], [11], [12], [20] to digest FIB and exchange
information about content availability, but they incur high
signaling overheads. The stateful BF is also used in [16], but it
only leverages the passive mode of prefix announcements, thus
flooding the network multiple times. Although BF can reduce
the space complexity, it suffers from false positives (collisions)
which, in turn, degrade performance. Besides, Wang et al. [19]
and Zhang et al. [24] attempted to utilize in-network caching
by adding new data structures or modifying the existing ones.
However, they preserve the relationship with IP-based routing,
which does not meet the NDN’s goal of departing from IP [10].

There have also been other efforts [7], [13] focusing on
“inter-domain” routing and leveraging the concept of BGP
which are beyond the scope of this paper.

VI. CONCLUSION

Explicit support of in-network caching and multipath for-
warding from routing protocol is key to realize NDN. This
paper proposed MUCA as a stand-alone intra-domain routing
protocol for NDN and highlighted its important features. It
makes three main contributions: (1) a combination of link-
state and distance-vector routing protocol classes to efficiently
support multipath routing, (2) a new path, different from the
regular forwarding paths, to effectively exploit built-in caching
opportunity in NDN, and (3) a new mechanism for LSDB
synchronization, where the incremental routing updates are
simply notified to the neighbor routers. Finally, MUCA equips
the forwarding plane with a new ranked list of forwarding
paths. Our in-depth evaluation demonstrates the benefits of
MUCA and its superiority over NLSR, the current de facto
routing protocol of NDN testbed.

We expect that MUCA will play a key role in NDN,
as what OSPF has done in IP-based networks. MUCA can
easily accommodate new ideas/solutions thanks to its flexible
design. MUCA is, therefore, a good starting point towards a
comprehensive routing solution for NDN.

ACKNOWLEDGMENTS

This work was supported in part by NSF under Grants CNS-
1345142 and CNS-1629009.

NDN can work in two name-announcement modes (i) active mode (where
the prefixes are announced by producers), and (ii) passive mode (where the
prefixes are solicited by consumers).

REFERENCES

[1] “OSPF Version 2,” https://www.ietf.org/rfc/rfc2328.txt, [Online].
[2] “Supelec,” http://wwwdi.supelec.fr/software-orig/ashiip/, [Online].
[3] A. Afanasyev et al., “ndnSIM: NDN simulator for NS-3,” Tech. Rep.

NDN-0005, 2012.
[4] T. Bu and D. Towsley, “On distinguishing between internet power law

topology generators,” in IEEE INFOCOM’02, 2002, pp. 638–647.
[5] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini,

“INFORM: A dynamic interest forwarding mechanism for information
centric networking,” in ICN’13, 2013, pp. 9–14.

[6] H. Dai, J. Lu, Y. Wang, and B. Liu, “A two-layer intra-domain routing
scheme for named data networking,” in IEEE GLOBECOM’12, 2012,
pp. 2815–2820.

[7] S. DiBenedetto, C. Papadopoulos, and D. Massey, “Routing policies in
named data networking,” in ACM SIGCOMM workshop on Information-
centric networking (ICN’11), 2011, pp. 38–43.

[8] J. Garcia-Luna-Aceves, “Name-based content routing in information
centric networks using distance information,” in ACM Conference on
Information-Centric Networking (ICN’14), 2014, pp. 7–16.

[9] E. Hemmati and J. Garcia-Luna-Aceves, “A new approach to name-
based link-state routing for information-centric networks,” in ACM
Conference on Information-Centric Networking (ICN’15), 2015, pp. 29–
38.

[10] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and
L. Wang, “NLSR: Named-data link state routing protocol,” in ACM SIG-
COMM workshop on Information-centric networking (ICN’13), 2013,
pp. 15–20.

[11] M. Lee, K. Cho, K. Park, T. Kwon, and Y. Choi, “SCAN: Scalable
content routing for content-aware networking,” in IEEE ICC’11, 2011,
pp. 1–5.

[12] H. Liu, X. De Foy, and D. Zhang, “A multi-level DHT routing framework
with aggregation,” in ACM SIGCOMM workshop on Information-centric
networking (ICN’12), 2012, pp. 43–48.

[13] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma, “Incentive-
compatible caching and peering in data-oriented networks,” in ACM
CoNEXT’08, 2008, pp. 1–6.

[14] S. Tarnoi, K. Suksomboon, W. Kumwilaisak, and Y. Ji, “Cooperative
routing protocol for content-centric networking,” in IEEE LCN’13, 2013,
pp. 699–702.

[15] J. V. Torres, L. H. G. Ferraz, and O. C. M. B. Duarte, “Controller-
based routing scheme for named data network,” Electrical Engineering
Program, COPPE/UFRJ, Tech. Rep., 2012.

[16] M. Tortelli, L. A. Grieco, G. Boggia, and K. Pentikousis, “COBRA:
Lean intra-domain routing in NDN,” in IEEE CCNC’14, 2014.

[17] Y. Y. L. W. B. Z. V. Lehman, A. M. Hoque and L. Zhang, “A secure
link state routing protocol for NDN,” Tech. Rep. NDN-0037, Jan. 2016.

[18] L. Wang, A. K. M. M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN:
An OSPF based routing protocol for named data networking,” University
of Memphis and University of Arizona, Tech. Rep., 2012.

[19] S. Wang, J. Bi, and J. Wu, “Collaborative caching based on hash-routing
for information-centric networking,” in SIGCOMM’13, 2013, pp. 535–
536.

[20] Y. Wang, K. Lee, B. Venkataraman, R. Shamanna, I. Rhee, and S. Yang,
“Advertising cached contents in the control plane: Necessity and feasi-
bility,” in IEEE INFOCOM’12, 2012, pp. 286–291.

[21] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in named data networking,” in ACM Conference
on Information-Centric Networking (ICN’14), 2014, pp. 27–36.

[22] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73,
2014.

[23] L. Zhang et al., “Named Data Networking (NDN) Project,” Tech. Rep.
NDN-0001, 2010.

[24] X. Zhang, T. Niu, F. Lao, and Z. Guo, “Topology-aware content-centric
networking,” in SIGCOMM’13, 2013, pp. 559–560.

[25] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in named data networking,” in IEEE ICNP’13,
2013, pp. 1–10.

297

Association Optimization in Wi-Fi Networks based
on the Channel Busy Time Estimation

Mohammed Amer
Univ Lyon, UCB Lyon1, Inria,

ENS de Lyon, CNRS, LIP UMR 5668
Email: mohammed.amer@ens-lyon.fr

Anthony Busson
Univ Lyon, UCB Lyon1, Inria,

ENS de Lyon, CNRS, LIP UMR 5668
Email: anthony.busson@ens-lyon.fr

Isabelle Guérin Lassous
Univ Lyon, UCB Lyon1, Inria,

ENS de Lyon, CNRS, LIP UMR 5668
Email: isabelle.guerin-lassous@ens-lyon.fr

Abstract—With the centralized management paradigm offered
by the recent IEEE 802.11 products, it is now easier and more
efficient to optimize associations between access points (APs)
and stations. Most of the optimization approaches consider a
saturated network. Even if such traffic conditions are rare,
the optimization of the association step under this assumption
has the benefit to fairly share the bandwidth between stations.
Nevertheless, traffic demands may be very different from one
station to another and it may be more useful to optimize
associations according to the stations’ demands. In this paper,
we propose an optimization of the association step based on the
stations’ throughputs and the channel busy time fraction (BTF).
The latter is defined as the proportion of time the channel is
sensed busy by an AP. Associations are optimized in order to
minimize the greatest BTF in the network. This original approach
allows the Wi-Fi manager/controller to unload the most congested
AP, increase the throughput for most of the stations, and offer
more bandwidth to stations that need it. We present a local search
technique that finds local optima to this optimization problem.
This heuristic relies on an analytical model that predicts BTF for
any configuration. The model is based on a Markov network and
a Wi-Fi conflict graph. NS-3 simulations including a large set of
scenarios highlight the benefits of our approach and its ability to
improve the performance in congested and non-congested Wi-Fi
networks.

I. INTRODUCTION

Wireless LANs can offer the possibility to mobile devices
to access the Internet. In particular, due to its efficiency
and facility of deployment, IEEE 802.11 (referred as Wi-Fi
hereafter) has become a very popular wireless technology [1].
The density of access points (APs) allows the users to expe-
rience a high throughput and to be mobile without significant
degradation of the link quality or connection interruption.
Nevertheless, the limited number of non-overlapping channels
makes difficult to ensure a good quality of service to users in
dense WLANs without a dynamic and rational management.
The management functions include channel assignment to
access points, transmission power control, association between
stations and APs, handovers, etc. In this work, we focus on the
association. In Wi-Fi networks, association is the first step that
allows a station to connect to the network. A station associates
with an AP within its transmission range. If several APs are
available in this area, the station will associate, generally, to
the AP with the best RSSI (Radio Signal Strength Indicator).
This metric, that measures the link quality between APs and

stations, does not take into account the number of already
associated stations neither the traffic load on the APs. It may
lead to a heterogeneous distribution of stations among APs
and consequently a bad distribution of the load in the network.
Resources are therefore not optimally utilized, penalizing the
overall performance of the network.

This problem and the need to facilitate AP administration
have led to a centralization of the management in Wi-Fi net-
works [2], [3]. A Wi-Fi controller is in charge of all operations
in the Wi-Fi network. It has a global vision of the network
that enables a simple, flexible and efficient management of the
resources. In particular, associations optimizing the resource
usage can be computed in real time. The controller has then
the ability to move stations from an AP to another using, for
instance, the BSS transition management frames defined in
IEEE 802.11v [4].

Most of the existing solutions to optimize associations
propose solutions that aim to improve the overall network
throughput and/or the fairness between stations in a saturated
scenario [5]–[7]. The saturated scenario corresponds to a case
where devices (stations and/or APs) have always a frame to
send. This assumption is unrealistic but allows to express the
minimum amount of throughput a device can obtain. Never-
theless, it does not take into account real traffic demands and
the proposed association may be inaccurate. For example, if a
part of the stations have very low traffic, the unused bandwidth
can be reused by other stations with higher demands. A fair
distribution of the resources may then be counter-productive:
low traffic stations may be associated to the same AP which
may be consequently idle whereas stations requiring high
throughput are associated to overloaded APs.

In this paper, we propose an association optimization based
on traffic demands. These traffic demands are defined as the
downlink traffic from APs to stations and are measured in real
time. The load of an AP is estimated through the busy time
fraction (BTF). BTF corresponds to the fraction of time an AP
senses the medium/channel busy due to its own transmissions
or the ones from the other APs in its sensing range. This
quantity is easily collected from the local Wi-Fi card statistics
obtained on the current configuration. From a protocol point of
view, it can be collected from the channel load request/report
defined in IEEE 802.11k amendment [8]. In order to forecast
its values for other configurations, we propose an analyticalISBN 978-3-903176-08-9 c© 2018 IFIP

model that estimates BTF. It is based on a Markov network, a
conflict graph and the current traffic demands. Our optimiza-
tion problem consists in finding the association that minimizes
the greatest BTF in the network. This original approach allows
the Wi-Fi controller to unload the most congested AP and
offer more bandwidth to stations that needs it. Our solution
is evaluated with NS-3 simulations that cover a large set of
scenarios (ISM and UNII bands, existing topologies of Wi-Fi
networks and random ones, different number of stations and
input rates, TCP and UDP flows, etc.). The obtained results
highlight the benefit of our approach and its ability to improve
performance in congested and non-congested networks.

The paper is organized as follows. In Section II, we present
the related work and our own contributions. The network
model is described in Section III-A. The BTF is defined
in Section III-B. The model estimating its value for any
configuration is presented in the same section. Section IV
introduces the optimization problem and the heuristic used to
propose approximate solutions. Numerical results are shown
and discussed in Section V. We conclude in Section VI.

II. RELATED WORK

The densification of Wi-Fi networks and the turn to its
centralized management have motivated researches to optimize
Wi-Fi configurations. Association between stations and APs is
one of the key elements to improve the network performance.
Below, we briefly summarize studies that address AP asso-
ciation. Contributions are classified as distributed, centralized
and on-line.

Several approaches have proposed a distributed strategy.
For instance in [9], the problem of AP association in WLAN
is formulated through a mixed strategic game with a utility
function that maximizes the throughput. They propose to users
to move from their positions to improve their throughput.
Distances traveled to a new AP are incorporated as a cost
in the strategy game. The authors in [10] propose a solution
for differentiated access service selection based on network
applications, which are classified into four types according
to their QoS requirements. Their approach can be used in a
periodic or aperiodic strategy. In [11] a utility-based strategy is
proposed to select the best AP according to the distance, data
rate and delay. These three metrics are normalized between
zero and one. Then, an equal weight is given to each metric
within the utility function. The AP with the highest utility
value is selected. Authors of [12] propose an algorithm that
evaluates applications used by the stations, classified as data
or voice, and changes the association accordingly. To achieve
load balancing and good voice quality, the number of nodes
connected to an AP and its RSSI are also considered in
the association algorithm. However, evaluation is performed
through a simulation of the model and not with a realistic
network simulator. Moreover, one single data rate is considered
for all transmissions between stations and APs. All these
approaches assume only the saturated mode.

Centralized association has been proposed in order to
achieve a global optimum. Wong et al. [13] propose a central-

ized max-min user throughput approach to optimize the AP
re-association subject to a certain handover cost constraint.
A multi-objective optimization function that maximizes the
download user throughput and minimizes the number of han-
dovers in saturated mode is also proposed in [14]. In [15],
the authors formulate this problem as a non-cooperative game
where each user tries to minimize its cost function, defined
as the data transfer time. Their solution can be centralized or
distributed. Authors of [16] propose a centralized approach to
improve users’ throughput in dense WLAN. They use signal-
interference-noise-ratio (SINR) between APs and stations to
control the association. In order to further coordinate interfer-
ence and increase spatial reuse, an algorithm is proposed to
adjust the clear channel assessment (CCA) threshold of the
802.11 MAC protocol. Taking into account the propagation
environment, the authors of [17] investigate the impact of the
AP deployments and station association in dense WLAN on
the aggregate throughput.

On-line approaches have also been proposed in the litera-
ture. It consists in changing associations in real time, typically
when an event occurs such as the arrival or departure of a
station. In [18] the authors present a new AP selection metric.
Their mechanism tries to maximize stations throughput as well
as minimize its negative effect on high rate stations currently
accommodated by the AP to which it wishes to associate. They
propose two selection schemes based on this metric: a static
one where stations only consider their association as well as a
dynamic scheme where all associations are reevaluated from
time to time. To improve the overall WLAN performance,
Babul et al. propose in [19] an approach that considers
simultaneously the channel assignment and the association
control. However, validation is made through a simulation of
the model and realistic Wi-Fi/network layers are not taken into
account. Based on the Markov model to estimate the uplink
and downlink throughput of clients, the authors of [20] propose
an on-line AP association algorithm for 802.11n WLANs
with heterogeneous clients. In this approach, authors seek to
improve the overall network throughput.

All the cited approaches consider a saturated network except
in [16] where the SINR is measured and used to determine data
and error rates. Moreover, the traffic demand is not taken into
account in the associations. The motivation of this paper is to
design association algorithms able to adapt to traffic demands.
It allows the controller to balance the load according to the real
traffic, alleviate congested AP, and offer bandwidth to stations
that need it. It is based on measurements available on most
of the Wi-Fi products (e.g., busy time, data rates, error rates,
etc.).

III. SYSTEM MODEL

A. Network Model

We consider a general 802.11 WLAN consisting of a fixed
number of APs. The set of APs is assumed to belong to
the same extended service set (ESS) and is managed by
a WLAN controller. We take into account only downlink
traffic, from the APs to the stations, as downlink traffic is

299

preponderant compared to uplink traffic [21]. The controller is
in charge of determining the association. When a new station
connects to the ESS, it first associates with the default AP
which is, for most of the implementation, the one with the
best RSSI. The controller can, according to our algorithm,
change associations at regular intervals or when a particular
event occurs (arrival/departure of stations for instance). We
assume that the controller collects periodically the following
measurements from APs:
• the current association,
• the busy time fraction for each AP,
• the conflicts between APs (the conflict graph is formally

defined later in this paper),
• for each station:

– the data rates between APs and the station,
– the throughput and the average frame size received

by the station from its AP,
– the error rate (or equivalently the probability of

success) between the station and its AP.
It is worth noting that most of these measurements are

already available on most of the AP products (e.g., Cisco
Aironet Series APs).

When the controller finds out a better association, it triggers
the corresponding changes: through control frames, stations
can be disassociated from the current AP and associated to the
new one. The application of a new configuration induces a re-
association cost. The condition for applying a new association
may be function of the cost and gain of the new configuration.

The association, proposed in this work, is based on the
estimation of BTF. The BTF of the current configuration is
known, but it has to be predicted for the other configurations
that can be considered for a new association. Our prediction
model relies on the following assumptions:
• Data rate: APs are able to determine the best data rate

for all the stations in its transmission range (associated
or not).

• Throughput: we assume that a station, associated to a
new AP, will request at least the same throughput as in
the current configuration.

• Probability of success: the probability of success for
each station (probability that a frame is correctly re-
ceived) is measured between APs and their associated
stations. Its prediction for another association is difficult.
In our model, we assume that this probability remains
the same if the station does not change its channel when
it reassociates. In case of a channel change, the success
probability is set to the smallest probability of success
among the stations already associated with the new AP.

The objective function based on BTF and the heuristic used
to minimize it are presented in Section IV. We introduce, in
the next section, the analytical model used to estimate BTF
for all APs.

B. Busy Time Fraction estimation
BTF for an AP is defined as the fraction of time the channel

is sensed occupied. This measurement can be obtained from

the measurement reports of IEEE 802.11k or directly from
the physical registers of the interface that measures the busy
time according to the CCA mechanism [1]. This quantity
is generally available for the current association. But in the
context of our optimization, it is necessary to estimate this
fraction for any other configuration.

In our model, we define bj the busy time fraction for an AP
j. This time is composed of two quantities: the local busy time
fraction and the neighbor busy time fraction. The local busy
time fraction, denoted bLj , corresponds to the time, per second,
the channel is occupied by its own transmissions. This time
takes into account the physical occupation of the channel and
the access method times (back-off, DIFS, etc.). The neighbor
busy time fraction, denoted bNj , is the proportion of time the
channel is occupied by APs in its sensing range. It considers
only the physical occupation of the channel corresponding to
transmissions. We get,

bj = bLj + bNj

1) Local Busy Time Fraction: This time includes the time
to transmit data on the physical channel (TPHY) to one of its
stations and the time of the access method (TMAC). Thus, the
local BTF of an AP j is the sum of the busy time fractions
due to transmissions to all of its stations.

bLj =
∑
i∈Sj

bLij

where Sj is the set of stations associated with AP j, and bLij the
BTF corresponding to the transmissions from AP j to station
i. bLij can be computed as follows:

bLij = T (Rij , L)×Di

where T (Rij , L) is the average time required for AP j to
transmit one datagram of size L to station i with data rate Rij .
Di is the average number of datagrams transmitted to station
i in one second. It does not take into account retransmissions.

Nevertheless, a datagram is subject to transmission errors
and may require one or more retransmissions. According to
the IEEE 802.11 standard, the time required for AP j to
successfully transmit a frame of size L to station i at data
rate Rij after k attempts is given by:

T (k,Rij , L) = TPHY + TMAC

TPHY = TP + TH + L/Rij + TAck

TMAC = TDIFS + TSIFS + Tbackoff (k)

TP and TH represent the duration of the preamble and the
header of the physical layer. TDIFS is the DCF Inter Frame
Space and TSIFS is the Short Inter Frame Space. TACK is the
duration of the ACK frame. Tbackoff (k) is the average back-
off after k unsuccessful successive transmission attempts and
is given by:

Tbackoff (k) =
min(2k(CWmin+1)−1,CWmax)

2 × Tslot

300

where Tslot is the duration of a slot. CWmin and CWmax

are respectively the minimum and maximum sizes of the
contention window.

The average time that AP j requires to correctly transmit
to station i or discard a single datagram is [22]:

T (Rij , L) = pijT (0, Rij , L) +
m∑

k=1

(
pij(1− pij)

k

(
k−1∑
l=0

Tc(l, Rij , L) + T (k,Rij , L)

))
+

(1− pij)
m+1

m∑
l=0

Tc(l, Rij , L)

where m is the maximum number of retransmissions, pij is
the probability of success to transmit from APj to station i and
Tc(l, Rij , L) = Tbackoff (l) + TDIFS + TP + TH + L/Rij +
TATO is the time between two consecutive transmissions if
the frame transmission fails (TATO is the acknowledgment
timeout).

Note that, in the previous formula, the value of the pa-
rameter Rij may be different at each retransmission, but is
constant during a retransmission. It is consistent with current
implementations like Minstrel.

2) Neighbor Busy Time Fraction: In this section, we present
the model to estimate the fraction of time the channel is sensed
busy by an AP due to the activity of the other APs. Formally,
in Wi-Fi networks, channel sensing is performed by the CCA
(Clear Channel Assessment) mechanism [1]. We consider a
conflict graph [23] composed of vertices that represent APs
and where an edge (j, k) exists if APs j and k detect their
mutual transmissions (according to the CCA mechanism).

To compute the Neighbor BTF bNj , we introduce a set of
notations. We define the event Ai as follows:

Ai = {AP i is transmitting} (1)

So, the fraction of time that the channel is sensed busy by AP
j due to transmissions from its neighbors is given by:

bNj = Pr

 ⋃
i∈Nj

Ai

 (2)

where Nj is the set of neighbors of vertex j in the conflict
graph. The events Ai are not disjoint and the computation of
the union is consequently not trivial. To compute this probabil-
ity, we propose to use the Inclusion-Exclusion Principle [24],
which is defined as:

Pr

 ⋃
i∈Nj

Ai

 =

|Nj |∑
k=1

(−1)k−1
∑
I⊂Nj

|I|=k

Pr

(⋂
l∈I

Al

) (3)

where I ⊂ Nj with |I| = k describes all the subsets of Nj

with cardinal k.
If |I| = 1, the computation Pr

(⋂
l∈I

Al

)
is trivial. When

|I| > 1, we have to take into account the conflict graph.
Indeed, there are two possible cases that we illustrate through

(a) APs Topology (b) APs conflict graph

Fig. 1. Topology with 4 APs and its conflict graph

the example given in Figure 1. We consider BTF of AP 1.
It has three neighboring APs. As there is a link between
AP 2 and AP 3, they cannot transmit at the same time and
Pr(A2 ∩ A3) = 0. As there is no conflict between AP 3
and AP 4, transmissions from these APs can overlap and
Pr(A3 ∩A4) 6= 0.

Consequently if two APs in I are neighbors, then their
transmissions are exclusive and the intersection is zero:

Pr

(⋂
l∈I

Al

)
I⊂Nj

|I|=k

= 0, if ∃(p, q) ∈ I2 s.t. p ∈ Nq(q ∈ Np)

(4)
Otherwise, transmissions are not exclusive and this probability
may be > 0.

But, the events (Al)l∈I are not independent and the prob-
ability of their intersection (overlap) cannot be computed as
their product. In order to compute this probability, we consider
this problem as an Undirected Graphical Model or Markov
Network. It is based on a graph where the vertices correspond
to the events Ai and the edges represent the dependencies
between them.

(a) APs conflict graph (b) Markov Network

Fig. 2. 4 APs conflict graph and its Markov Network. Formally, the Markov
Network is defined as function of the correlations between random variables.
So, we introduce the random variables (Xj)j which indicates if AP j is
transmitting (Aj = {Xj = 1}).

The considered graph is then the same as the APs conflict
graph. In Figure 2 we show the previous example with a

301

topology with 4 APs conflict graph and the corresponding
Markov Network.

Markov network relies on the Global Markov Property [25],
which is defined as follows:

Definition: For any disjoint subsets of the vertices A, B, and
C in the graph G such that C separates A and B (i.e. every
path between a node in A and a node in B passes through
a node in C), the random variables XA are conditionally
independent of XB given XC , i.e. XA ⊥ XB/XC , where
XA = {Xv}v∈A.

In our context, we assume that the transmissions of non-
neighboring APs are independent if the set of all their neigh-
bors (union of neighbors) does not transmit:

Pr

(⋂
l∈I

Al

)
= Pr

(⋂
l∈I

Al

∣∣∣∣∣ ⋂
l′∈I′

Al′

)
Pr

(⋂
l′∈I′

Al′

)
,

I ⊂ Nj , |I| = k, I ′ =
⋃
i∈I

Ni

Applying this property, we obtain:

Pr

(⋂
l∈I

Al

)
=
∏
l∈I

(
Pr

(
Al

∣∣∣∣∣ ⋂
l′∈I′

Al′

))
Pr

(⋂
l′∈I′

Al′

)

=

∏
l∈I

Pr

(
Al ∩

(⋂
l′∈I′

Al′

))
Pr

(⋂
l′∈I′

Al′

)
Pr

(⋂
l′∈I′

Al′

)

=

∏
l∈I

Pr

(
Al ∩

(⋂
l′∈I′

Al′

))
(
Pr

(⋂
l′∈I′

Al′

))|I|−1 (5)

Moreover, we have,

Pr

(
Al ∩

(⋂
l′∈I′

Al′

))
= Pr

(
Al ∪

(⋃
l′∈I′

Al′

))

− Pr

(⋃
l′∈I′

Al′

)
(6)

and,

Pr

(⋂
l′∈I′

Al′

)
= 1− Pr

(⋃
l′∈I′

Al′

)
(7)

By substituting (6) and (7) in Equation (5), we obtain:

Pr

(⋂
l∈I

Al

)
=

∏
l∈I

Pr(
⋃

l′∈I′∪{l}

Al′)− Pr(
⋃
l′∈I′

Al′)

(
1− Pr(

⋃
l′∈I′

Al′)

)|I|−1
(8)

We obtain a system of nonlinear equations where each term
(variable) is the probability of union of the events {Ai}. As the
number of possible combinations between all events is finite
then the system contains a finite number of equations. This
system can be solved by any numerical method.

To sum up, bNj , given by Equation (2), is obtained from
the union of the events Ai (Equation (3)), itself obtained from
Equation (8).

IV. ASSOCIATION OPTIMIZATION

Our association scheme is based on BTF. This quantity
describes the saturation level of an AP. If an AP is saturated,
its BTF is close to 1, and the associated stations are likely
restrained in terms of throughput and thus unsatisfied. On the
other hand, if BTF is lower, stations necessarily obtain the
required throughput since a part of the bandwidth is available
and not used. Stations are then assumed satisfied in terms of
their throughput demand. The optimization problem aims to
minimize the maximum BTF in the network. Formally, it is
given by Equation (9).

Algorithm 1 BTF association algorithm
1: //Initialization
2: Collect measurements from APs

• station data rates Rij

• station success probabilities pij
• APs BTF bj

3: Infer the APs conflict graph for each channel
4: MaxBTF = max

j∈A
[bj]

5: //The optimization loop
6: while Convergence() = false do
7: for all Sta i do
8: for all APs j do
9: //check if Sta i lies in the transmission range of

AP j
10: if Rij 6= 0 then
11: Compute the success probability pij with AP j
12: //We do not associate Sta i to AP j if it will be

saturated
13: if bj + bLij < 1 then
14: associate Sta i with AP j
15: compute new BTF for all APs: bj = bLj + bNj
16: if max

i∈A
[bi] < MaxBTF then

17: save the best value: MaxBTF = max
i∈A

[bi]

18: save this best association change
19: end if
20: cancel this change
21: end if
22: end if
23: end for
24: end for
25: Apply the best association change
26: end while
27: end procedure

302

minimize max
j∈A

[bj] (9)

where A is the set of APs and bj the BTF of AP j. This
objective function has been designed to:
• share the load among APs as it will try (if such solutions

exist) to unload the most loaded APs,
• satisfy a maximum of stations in terms of throughput, as

it will try to decrease BTF of saturated APs,
• increase the station throughputs, as unsatisfied stations

will be moved to unsaturated APs.
The evaluation of BTF of each AP relies on the model

proposed in Section III-B which predicts bj (i.e. BTF of AP
j) for any association. We propose an iterative heuristic based
on the principle of local search to solve our optimization
problem. Local search is an important class of heuristics
used to solve combinatorial optimization problems. The key
idea of a local search algorithm is to start from an initial
feasible solution (association) and iteratively find, at each
iteration, a solution called a best neighbor that improves the
objective function [26]. The main benefits of local search lie
in its simplicity and its iterative process which can stop the
optimization process at any time to comply with a constraint
like the computation time for instance. This is supported by the
fact that the local search algorithms consider only complete
feasible solutions during the search. The proposed algorithm
has then the advantage to improve Wi-Fi associations at each
iteration, and can be stopped at any time with a feasible
solution. The time that the system spends in computing a
solution can thus be bounded and tuned.

The controller runs the iterative local search Algorithm 1,
which consists in:

1) starting with an initial configuration (RSSI or any cur-
rent association),

2) then at each iteration, it chooses, among all possible
association changes, the one that minimizes the objective
function. This configuration becomes the current solu-
tion on which to apply the next iteration.

V. EVALUATION

In this section, we present the simulation environment, the
performance metrics, and the different simulation scenarios.
We then discuss the simulation results.

A. Simulation configuration

We used a fixed point method [27] to solve the system of
nonlinear equations. The optimization heuristic is implemented
using C++ programming language. Simulations have been
performed with the network simulator 3 (ns-3). We use the
log-distance path loss model. The transmission power is set
to 16 dbm. The number of APs and stations is fixed for each
topology. Stations are associated according to the RSSI value
in the initial configuration. The ideal Wi-Fi manager of ns-3 is
used to determine the data rates between APs and stations. In
the figures, we increase the input rates (mean of the flow rates
between APs and stations). For each input rate, simulations are

repeated 30 times with different stations position. Flow rates
are constant during a simulation but set randomly with a given
average. Therefore, physical transmission rates and flows are
different from a station to another for each simulation. A 95%
confidence interval is computed over these 30 samples. The
duration of each simulation is 60 seconds.

Fig. 3. WLAN topology at one floor in our university. The upper number
corresponds to the used channel and the lower number corresponds to the AP
number.

B. BTF Estimation

In order to estimate the accuracy of the BTF model proposed
in Section III-B we compare its values obtained by simulation
and from the model. The considered topology is the WLAN of
our university at a given floor of the building. This network is
composed of 15 APs as shown in Figure 3. APs use the ISM
frequency band (2.4 Ghz). In this band the number of non-
overlapping channels is limited (three orthogonal channels: 1,
6 and 11). This Figure shows also the three conflict graphs
(one for each orthogonal channel).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 B
u

s
y
 T

im
e

 F
ra

c
ti
o

n

 Average Station Input Rate (Mbps)

BTF-Simul-AP4

BTF-Model-AP4

BTF-Simul-AP5

BTF-Model-AP5

Fig. 4. Simulation vs Model BTF values for APs 4 and 5 in the university
topology

The simulated scenario consists of 60 stations randomly
distributed in the coverage area of the 15 APs. We plot in
Figure 4 the BTF values according to the average input rate
(mean of the flow rates). To evaluate the effectiveness of the
approach in dense environment, we consider BTF of APs 4
and 5 of our topology (each one is in conflict with 3 other
APs).

For AP 4, the difference between the measured BTF (sim-
ulation) and model is 7% when the load is low (BTF < 0.2).
This difference decreases to 2% when the load increases

303

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 B
u
s
y
 T

im
e
 F

ra
c
ti
o
n

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(a) BTF of the most loaded AP

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.2 1.4 1.6 1.8 2.0

 U
n
s
a
ti
s
fi
e
d
 S

ta
ti
o
n
s
 (

%
)

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(b) Unsatisfied stations

Fig. 5. BTF of the most loaded AP and proportion of unsatisfied stations according to the WLAN load.

(BTF > 0.7). For AP 5 the difference varies in average
between 3% and 6%. According to these results, it appears
that the model provides a very good estimation of BTF. The
model slightly underestimates the BTF as we do not take into
account acknowledgments transmitted by the stations. It is
neglected because to include them in the BTF computation a
full knowledge of the conflict graph is required (in particular
conflicts between stations) whereas in our model only conflicts
between APs are considered. It is more realistic from an imple-
mentation point of view, but these conflicts/acknowledgments
can be easily integrated in the model if the controller is able
to infer them.

C. Association Optimization

In order to evaluate the improvement brought by our ap-
proach, we have considered two different topologies. From
the simulation results, we compute the following performance
parameters:
• Busy Time Fraction: for each simulation we consider the

greatest BTF in the network.
• Number of unsatisfied stations: it represents the pro-

portion of stations that are not satisfied in terms of
throughput (i.e. when the ratio between the obtained
throughput and the demand is less than 98%).

• Throughput Satisfaction Ratio: it is the ratio between
the throughput obtained and the throughput requested for
each station.

Our solution is compared to three existing approaches:
• Initial configuration: stations associate to APs according

to the value of the RSSI. It is denoted as RSSI in the
figures.

• Access based Fairness [5]: stations associated to the same
AP have the same opportunity of service in saturated
mode. It is denoted AbF in the figures.

• Proportional Fairness [7]: the saturated mode is also
considered with an access opportunity to the medium
which is proportional to the data rate of each station.
It is denoted PF in the figures.

In the performance evaluation we consider different flow
types, as follows:

• UDP: all the packets have the same size (1500 bytes) and
the inter-packet time is constant for each station.

• Real trace: packet sizes vary according to a distribution
obtained from a real trace [28] (Average Packet Size =
755.572 bytes and Standard Deviation = 674.05).

• TCP: constant bit rate flows are installed over TCP
connections.

a) ENS topology.: The first scenario considers the topol-
ogy of our university (ENS) used in the previous section and
UDP flows. Figure 5a illustrates the BTF of the most loaded
AP as function of the WLAN load. For AbF, the busy time
fraction is approximately the same as the one observed for the
RSSI association. For PF association, the busy time fraction is
even increased of 11% in average. With BTF optimization, the
busy time fraction is decreased by approximately 15% when
the network is not heavily loaded. This will allow stations to
request more traffic without saturating APs. It appears clearly
that AbF and PF approaches are unable to decrease BTF in
unsaturated WLAN.

Nevertheless, when the WLAN reaches saturation, the three
approaches provide similar results in terms of busy time
fraction. To show the benefit of our approach when the WLAN
becomes loaded (more than 1 Mbps per station in the figure),
we measure and compare the number of stations not satisfied
before and after the optimization for the three approaches.
Results are shown in Figure 5b. Our solution reduces the
number of unsatisfied stations by more than 84% for an
average load of 1.2 Mbps per station, and 18% for an average
load of 2 Mbps per station. For AbF, the gain varies between
64% and 14%, and for PF it varies between 55% and 16%.
Even in saturated conditions, our solution still presents a lower
number of unsatisfied stations.

b) Random topologies.: To evaluate our approach with
denser topology and more complex conflict graphs between
APs, we performed simulations on random topologies. Each
topology is composed of 25 APs uniformly deployed in a
square of size 500m × 500m. 100 stations are distributed in
the coverage area of these APs. APs are configured with 8
orthogonal channels. In this scenario, APs location is changed
at each simulation. This randomness allows us to consider an

304

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

 B
u

s
y
 T

im
e

 F
ra

c
ti
o

n

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(a) BTF of the most loaded AP

 0

 10

 20

 30

 40

 50

 60

1.5 2.0 2.5 3.0

 U
n

s
a

ti
s
fi
e

d
 S

ta
ti
o

n
s
 (

%
)

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(b) Unsatisfied stations

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 1.5 2 2.5 3 3.5

 T
h

ro
u

g
h

p
u

t
S

a
ti
s
fa

c
ti
o

n
 R

a
ti
o

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(c) Throughput Satisfaction Ratio

Fig. 6. BTF association optimization using random topology with the Real Trace flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

 B
u

s
y
 T

im
e

 F
ra

c
ti
o

n

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(a) BTF of the most loaded AP

 0

 10

 20

 30

 40

 50

 60

1.5 2 2.5 3

 U
n

s
a

ti
s
fi
e

d
 S

ta
ti
o

n
s
 (

%
)

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(b) Unsatisfied stations

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 1.5 2 2.5 3 3.5

 T
h

ro
u

g
h

p
u

t
S

a
ti
s
fa

c
ti
o

n
 R

a
ti
o

 Average Station Input Rate (Mbps)

RSSI

BTF

AbF

PF

(c) Throughput Satisfaction Ratio

Fig. 7. BTF association optimization using random topology with TCP flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

 B
u

s
y
 T

im
e

 F
ra

c
ti
o

n

 Average Station Input Rate (Mbps)

RSSI

BTF1

BTF2

BTF3

(a) BTF of the most loaded AP

 0

 10

 20

 30

 40

 50

 60

1.5 2.0 2.5 3.0

 U
n

s
a

ti
s
fi
e

d
 S

ta
ti
o

n
s
 (

%
)

 Average Station Input Rate (Mbps)

RSSI

BTF1

BTF2

BTF3

(b) Unsatisfied stations

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 1.5 2 2.5 3 3.5

 T
h

ro
u

g
h

p
u

t
S

a
ti
s
fa

c
ti
o

n
 R

a
ti
o

 Average Station Input Rate (Mbps)

RSSI

BTF1

BTF2

BTF3

(c) Throughput Satisfaction Ratio

Fig. 8. BTF association optimization using random topology with UDP flows and applied 3 times

important number of different topologies (30 for each set of
parameters).

Figure 6 illustrates the results of the simulations with the
real trace. It allows us to evaluate performances for different
packet sizes. Figure 6a shows that the BTF approach can
offload 35% of the most charged AP. AbF and PF approaches
allow a load reduction of about 25% and 30% respectively.
In Figure 6b, the number of unsatisfied stations is decreased
of 54% with BTF optimization with regard to to the RSSI
association. For AbF and PF, improvements are 45% and 42%
in average. The satisfaction ratio is shown in Figure 6c. For
the BTF approach, it is increased in average between 3% and
27%. On the other hand, AbF approach allows a gain between
6% and 13%, and between 5% and 14% for PF.

Figure 7 shows results with TCP flows. In Figure 7a our

approach decreases the load of the most loaded AP up to
37%. For the AbF and PF approaches the decrease is almost
the same and does not exceed 25%. Regarding the number
of unsatisfied stations shown in Figure 7b, BTF allows a
gain between 87% and 35%. For AbF, the decrease of the
number of unsatisfied stations varies between 79% and 28%.
For PF, the decrease is between 69% and 29%. Figure 7c plots
the throughput satisfaction ratio. With BTF the stations gain
in throughput on average between 25% and 15%. The AbF
and PF approaches allow an average gain of 17% and 16%
respectively.

In order to illustrate the impact of the BTF approach in a
more realistic implementation context where the optimization
process is executed whenever needed (at regular interval for in-
stance), we have simulated the same scenario with UDP flows

305

in which our optimization method is applied 3 times.After each
optimization we evaluate the performance and then collect the
necessary measures for the next optimization. Results for this
scenario are shown in Figure 8.

Even if the first optimization allows significant improve-
ments for all performance parameters, the second and third
optimizations can further improve these performances. For
the greatest BTF in the network, the improvement for the
first, second and third optimizations is in average 30%, 35%
and 36% respectively. For the unsatisfied station number, the
improvement is 68%, 74% and 75% respectively. For the
throughput satisfaction ratio, the improvement is 22%, 27%
and 29% respectively.

All these results tend to show that our solution generally
offers better performance whatever the load of the network.
Nevertheless, when the network is very loaded (average station
input rate > 2.5 Mbps) the AbF and PF approaches allow to
have results close to BTF.

VI. CONCLUSION

In this paper, we propose an original approach for the
association optimization in Wi-Fi networks. Our solution is
based on a model predicting BTF at each AP and aims to
associate stations in order to minimize the most loaded AP.
We have shown through simulations that the model allows an
accurate estimation of BTF in the considered configurations.
Moreover, performance evaluation has shown that such an
approach reduces the congestion in the network as it decreases
the most loaded AP. This improvement can reach 18% in
average when the network is not heavily loaded. Also, our
solution decreases the number of unsatisfied stations, up
to 80% when the network becomes saturated and improves
throughput of the unsatisfied stations. When the network is
unsaturated, which corresponds to the normal conditions of
a Wi-Fi network, approaches based on models that rely on
saturated conditions are significantly less efficient that our
proposition.

ACKNOWLEDGMENT

The authors wish to thank Isabel Martin Faus for her
thorough and constructive comments of an earlier version of
this paper.

REFERENCES

[1] “IEEE standard for information technology–telecommunications and
information exchange between systems local and metropolitan area
networks–specific requirements part 11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications,” IEEE Std
802.11-2012, pp. 1–2793, March 2012.

[2] P. Calhoun, M. Montemurro, and D. Stanley, “Control and provisioning
of wireless access points (CAPWAP) protocol specification,” Internet
Requests for Comments, RFC Editor, RFC 5415, March 2009.

[3] K. Sood, S. Liu, S. Yu, and Y. Xiang, “Dynamic access point as-
sociation using software defined networking,” in 2015 International
Telecommunication Networks and Applications Conference (ITNAC),
Nov 2015, pp. 226–231.

[4] IEEE Std 802.11v-2011 Amendment 8: IEEE 802.11 Wireless Network
Management, pp. 1–433, Feb 2011.

[5] M. Amer, A. Busson, and I. Guérin Lassous, “Association optimization
in wi-fi networks: Use of an access-based fairness,” in Proceedings of
the 19th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, ser. MSWiM ’16. ACM,
2016, pp. 119–126.

[6] H. Tang, L. Yang, J. Dong, Z. Ou, Y. Cui, and J. Wu, “Throughput op-
timization via association control in wireless LANs,” Mobile Networks
and Applications, vol. 21, no. 3, pp. 453–466, 2016.

[7] O. B. Karimi, J. Liu, and J. Rexford, “Optimal collaborative access point
association in wireless networks,” in IEEE INFOCOM 2014. Conference
on Computer Communications, April 2014, pp. 1141–1149.

[8] IEEE 802.11k-2008 Amendment 1: IEEE 802.11 Radio Resource
Measurement, 2008.

[9] I. Sohn, “Access point selection game with mobile users using correlated
equilibrium,” PLOS ONE, vol. 10, no. 3, pp. 1–13, 03 2015.

[10] Z. Chen, Q. Xiong, Y. Liu, and C. Huang, “A strategy for differentiated
access service selection based on application in wlans,” in 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS), April 2014, pp. 317–322.

[11] J. B. Ernst, S. Kremer, and J. J. P. C. Rodrigues, “A utility based
access point selection method for ieee 802.11 wireless networks with
enhanced quality of experience,” in 2014 IEEE International Conference
on Communications (ICC), June 2014, pp. 2363–2368.

[12] M. V. Ramesh and M. S. Nisha, “Design of optimization algorithm
for wlan ap selection during emergency situations,” in 2011 IEEE 3rd
International Conference on Communication Software and Networks,
May 2011, pp. 340–344.

[13] W. Wong, A. Thakur, and S. H. G. Chan, “An approximation algorithm
for ap association under user migration cost constraint,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, April 2016, pp. 1–9.

[14] E. Zola, F. Barcelo-Arroyo, and A. Kassler, “Multi-objective opti-
mization of wlan associations with improved handover costs,” IEEE
Communications Letters, vol. 18, no. 11, pp. 2007–2010, Nov 2014.

[15] K. Khawam, J. Cohen, P. Muhlethaler, S. Lahoud, and S. Tohme, “Ap as-
sociation in a ieee 802.11 wlan,” in 2013 IEEE 24th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Sept 2013, pp. 2142–2147.

[16] P. B. Oni and S. D. Blostein, “Ap association optimization and
cca threshold adjustment in dense wlans,” in 2015 IEEE Globecom
Workshops (GC Wkshps), Dec 2015, pp. 1–6.

[17] A. Ozyagci, K. W. Sung, and J. Zander, “Association and deployment
considerations in dense wireless lans,” in 2014 IEEE 79th Vehicular
Technology Conference (VTC Spring), May 2014, pp. 1–5.

[18] M. Abusubaih, S. Wiethoelter, J. Gross, and A. Wolisz, “A new access
point selection policy for multi-rate ieee 802.11 wlans,” Int. J. Parallel
Emerg. Distrib. Syst., vol. 23, no. 4, pp. 291–307, Aug 2008.

[19] B. P. Tewari and S. C. Ghosh, “Interference avoidance through frequency
assignment and association control in ieee 802.11 wlan,” in 2014 IEEE
13th International Symposium on Network Computing and Applications,
Aug 2014, pp. 91–95.

[20] D. Gong and Y. Yang, “On-line ap association algorithms for 802.11n
wlans with heterogeneous clients,” IEEE Transactions on Computers,
vol. 63, no. 11, pp. 2772–2786, Nov 2014.

[21] F. Malandrino, C.-F. Chiasserini, and S. Kirkpatrick, “Cellular Net-
work Traces Towards 5G: Usage, Analysis and Generation,” IEEE
Transactions on Mobile Computing, vol. PP, no. 99, p. 1, August 2017.

[22] V. Atanasovski and L. Gabrilovska, “Influence of header compression on
link layer adaptation in ieee 802.11b,” in 2005 International Conference
on Wireless Networks, Communications and Mobile Computing, vol. 2,
June 2005, pp. 1551–1556 vol.2.

[23] A. Busson, E. Fleury, and N. M. Phung, “A simple method to infer
Wi-Fi conflict graph,” in CORES2017, Quiberon, France, May 2017.

[24] T. Andreescu and Z. Feng, Inclusion-Exclusion Principle. Boston, MA:
Birkhäuser Boston, 2004, pp. 117–141.

[25] D. Edwards, Introduction to Graphical Modelling, ser. Springer Texts in
Statistics. Springer New York, 2012.

[26] J. P. Walser, Integer Optimization by Local Search: A
Domain-independent Approach. Berlin, Heidelberg: Springer-Verlag,
1999.

[27] V. Berinde, Iterative Approximation of Fixed Points, ser. Lecture Notes
in Mathematics. Springer Berlin Heidelberg, 2007.

[28] “The CAIDA anonymized internet traces 2015 dataset,” http://www.
caida.org/data/passive/passive 2015 dataset.xml, 2015.

306

Carrier-Sense Multiple Access with Transmission
Acquisition (CSMA/TA)

Marcelo M. Carvalho
Electrical Engineering Department

University of Brası́lia
Brası́lia, DF, Brazil 70919-970

J.J. Garcia-Luna-Aceves
Computer Engineering Department

UC Santa Cruz, Santa Cruz, CA, 95064
PARC, Palo Alto, CA 94304

Abstract—This paper introduces Carrier-Sense Multiple Ac-
cess with Transmission Acquisition (CSMA/TA) for wireless local
area networks (WLANs) with stations endowed with half-duplex
radios using single antennas. In contrast to traditional contention-
based channel-access methods, CSMA/TA seeks to increase the
likelihood of having the last transmission from a group of
colliding transmissions succeed. To accomplish this, a station
senses the channel before sending a pilot packet. After finishing
the transmission of the pilot, the station is required to wait for
a certain amount of time before sensing the channel again. If
the channel is sensed to be idle again, the station understands
that “it has acquired its right to transmit a data frame” and
proceeds with that. The throughput of CSMA/TA is compared
with the throughputs of CSMA and CSMA/CD. An important
feature of the analysis presented in this paper is the consideration
of the impact of the receive-to-transmit and transmit-to-receive
turnaround times. It is shown that CSMA/TA performs better
than ideal CSMA and CSMA/CD if the propagation delays in
the network are larger than the turnaround times, and its per-
formance can still surpass CSMA/CD and CSMA if turnaround
times are larger than propagation delays but not too much larger.

I. INTRODUCTION

In the past few decades we have witnessed the explosive
deployment of wireless networks worldwide, which has caused
a dramatic change in the way people use the Internet and
its many services by virtue of mobile devices. In particular,
the unprecedented success of wireless local area networks
(WLANs) has allowed fast and easy connectivity in a number
of environments, and its on-going evolution is now moving
towards new realms, such as the Internet of Things (IoT),
with long-range connections (∼1000 m) at sub-GHz fre-
quencies, typified by the latest IEEE 802.11ah standard [1].
However, while many technological advances have been in-
corporated into WLANs over the years, the most significant
ones have been done at the physical layer, such as the adop-
tion of advanced modulation and coding schemes, multiple-
input multiple-output (MIMO) technologies, and wider channel
bandwidths. By contrast, the core of the medium access control
(MAC) sub-layer of current WLANs still relies on variations of
the traditional carrier-sense multiple access (CSMA) technique
first introduced by Kleinrock and Tobagi [2], as it is the case
in the DCF used by stations allocated to a restricted access
window (RAW) in the IEEE 802.11ah.

One of the key features of CSMA and many of its variants,
such as CSMA/CD [3], is that all stations involved in a
transmission collision are forced to give up and retry at a later

time. Such an approach renders transmission periods during
which the channel is wasted with packet collisions without
resulting in any successful transmission. In CSMA/CD such
wasted periods are shortened due to its full-duplex operation,
by which a station monitors the channel while transmitting a
frame, followed by its quick abortion if a collision is detected.
Nevertheless, to date, CSMA/CD stands as the “holy grail”
of contention-based MAC protocols for wireless networks,
whose performance a number of works have tried to achieve
using different techniques, such as multiple transceivers [4],
[5] or the newest full-duplex radios based on self-interference
cancellation [6], [7] (see Section II for related work).

The contribution of this paper is introducing CSMA/TA
(Carrier Sense Multiple Access with Transmission Acquisi-
tion), which is a variant of CSMA for WLANs based on
off-the-shelf half-duplex radios, and is such that the last
transmission from a group of overlapping transmissions is
allowed to succeed. The approach adopted in CSMA/TA
leverages the short transmit-to-receive (TX/RX) and receive-
to-transmit (RX/TX) turnaround times of modern half-duplex
radios, which are about 2µs [8] and are far shorter than the
192µs incurred by other radios [9]. This is significant, because
such turnaround times are of the same order of magnitude
or even smaller than the propagation delays in many WLAN
scenarios, especially those seeking long-range coverage.

Section III describes CSMA/TA. In a nutshell, a node
that needs to send a data packet and senses the channel idle,
first transmits a pilot packet, stops for a short time period to
listen for other pilots, and if the channel is sensed to be idle
during that time period it determines that the channel is free
and proceeds to transmit the data packet accordingly. We call
this process transmission acquisition. Section IV presents the
throughput analysis of CSMA/TA, which is dictated by the
relation between the propagation delay and the radio’s TX/RX
and RX/TX turnaround times. If the turnaround times are
smaller than the propagation delay, then CSMA/TA guarantees
that the node that transmitted the last pilot in a group of
concurrent pilots succeeds in acquiring the channel, while the
others back off. But, if the turnaround times are bigger than the
propagation delay, the transmission acquisition depends on the
likelihood of transmission acquisition which, in turn, depends
on the relative magnitude of both aforementioned parameters.

Section V compares the throughput attained with
CSMA/TA against CSMA and CSMA/CD in different scenar-
ios, considering the impact of the turnaround times of half-
duplex radios. As the results show, if the turnaround times areISBN 978-3-903176-08-9 c© 2018 IFIP

much greater than the propagation delay, CSMA/TA performs
slightly better than CSMA; however, if they are very close to
the propagation delay CSMA/TA becomes more efficient than
CSMA/CD. Section VI presents our conclusions.

II. RELATED WORK

A number of contention-based channel access protocols
have been proposed since CSMA [2] and CSMA/CD [3]
were first introduced [13]. In particular, because collision
detection using single-antenna half-duplex radios is not doable,
CSMA/CD performance became the benchmark in the design
of MAC protocols for wireless networks. Still, few proposals
have been reported on how to emulate CSMA/CD using half-
duplex radios. Rom [12] proposed a MAC protocol that detects
collisions by means of pauses. A station that senses the
channel busy defers transmission as in CSMA; a transmitter
that senses the channel idle starts transmitting but pauses
during transmission and senses the channel. If the channel is
sensed idle, the sender completes its transmission; otherwise,
the sender continues to transmit for a minimum transmission
duration to jam the channel. This approach cannot guarantee
that data packets will not collide with other transmissions at
the receiver if packets start at the same time or the transmit-
to-receive turnaround times are not negligible.

FAMA-PJ [11] emulates CSMA/CD in the context of
collision avoidance in WLAN’s and prevents data packets from
colliding with other transmissions. A transmitter sends an RTS
if it detects no carrier in the channel, and listens for a period
of time after its RTS to check for jamming signals sent by
passive nodes that detected a collision. A passive listener that
receives the signal from the one or multiple RTS’s sent and is
unable to decode an RTS successfully sends a jamming signal
for a period of time that is long enough to ensure that active
transmitters hear the jamming signals from passive listeners
once they can start listening to the channel after sending their
RTS’s. A remaining limitation of FAMA-PJ is that too many
passive nodes end up sending jamming signals.

Other works have tried to emulate CSMA/CD by using
more than one transceiver/antenna. For instance, Peng et
al. [5] proposed a MAC protocol that requires two separate
transceivers to operate on two separate channels for control and
data frame transmissions. Pulses over the control channel are
used for collision detection, along with a CTS frame to avoid
hidden terminals. Also requiring two separate transceivers,
CSMA/CN [4] utilizes the standard CSMA to acquire the
medium. The intended receiver uses PHY-layer information
to detect packet collisions, and notifies the transmitter via
a distinct signature sent over the same data channel. The
signature is unique to every transmitter, and the transmitter
employs a separate, listener antenna to perform signature
correlation to identify the notification. If the notification is
identified, the transmitter aborts its transmission.

With the advent of single-channel full-duplex (FD)
wireless transceivers based on self-interference cancellation
(SIC) [10], a number of MAC protocols have been proposed
to achieve CSMA/CD-like operation. For instance, FD-WiFi
CSMA/CD [6] uses FD to implement carrier sensing while
transmitting data. But, due to residual self-interference, the
sensing threshold needs to be properly designed to balance

the errors due to miss detection and false alarms. FD-
CSMA/CD [7] implements a CSMA/CA with collision detec-
tion in which the receiver acknowledges the reception of a
packet immediately if its header is correct, and keeps sending
the ACK as long as no collision is detected. At the same
time, the transmitting node keeps sending its packet as long
as it keeps receiving the ACK. Thus, if the receiver detects
a collision, it stops the ACK, which causes the transmitter to
stop its transmission immediately. CSMA/CAD [14] also uses
SIC to guarantee collision avoidance under hidden-terminal
scenarios, while it implements collision detection during the
four-way handshake. It is shown to attain higher throughput
than CSMA, DBTMA, and CSMA/CA.

Although the potential of FD radios in the design of
future MAC protocols is undeniable, the availability of cheaper
half-duplex radios with much faster turnaround times allows
the development of simple approaches that can even surpass
the performance of CSMA/CD in certain conditions, and
CSMA/TA is one alternative.

III. CSMA/TA

A. Motivation and Design Objectives

The operation of CSMA/TA is motivated by the observation
that, to date, contention-based medium access control protocols
have been designed under the premise that either: (a) all
colliding stations should give up on their transmission attempt,
no matter the order (and when) each colliding station started
its attempt; or (b) stations can attempt to resolve collisions in
a sequence of collision rounds. For instance, in CSMA and
CSMA/CD, the first station to access the channel is forced to
give up due to other stations who, inadvertently, initiated their
transmission attempt at a slightly later time, causing frame
collisions. Therefore, in such protocols, and the many variants
that followed them, all stations are treated equally and are
forced to retry at a later time, which leads to a waste of channel
usage and, potentially, more channel contention.

But, what if a “winner” station could be named among a
group of colliding stations? How would that be possible using
only half-duplex radios with a single antenna? With that goal
in mind, we designed CSMA/TA to allow the last transmitting
station in a group of colliding stations to proceed with its data
frame transmission, i.e., to implement the idea of the “last
standing station always wins.”

To accomplish the above, a station running CSMA/TA that
has a data frame ready for transmission must first perform
carrier sensing to check if the channel is clear. If the channel
is clear, the station transmits a pilot packet that is common to
every station participating in the network. The duration γ of
a pilot must be greater than twice the maximum propagation
delay τ in the WLAN. Once the transmission of the pilot is
over, the sending station must simply wait for a period of time
equal to the propagation delay τ . After waiting for τ seconds,
the station executes carrier sensing again. If the channel is
sensed to be idle, the station claims to have “acquired its
right for transmission,” and it immediately proceeds with the
transmission of its data frame. Otherwise, if the channel is
sensed to be busy, the station must refrain from transmitting its
data frame and, consequently, must reschedule its transmission

308

to a future time according to some contention resolution
algorithm, such as a back-off algorithm.

To illustrate the basic design idea in CSMA/TA, consider
the case of three stations A, B, and C that are exactly within
τ seconds from each other, as depicted in Figure 1. Station A
senses the channel and finds it to be idle at time instant t0;
therefore, it initiates the transmission of its pilot of duration γ
seconds. However, before A’s pilot signal reaches stations B
and C, i.e., before τ seconds elapse, stations B and C sense the
channel at time instants tB and tC , respectively, and perceive
the channel to be idle as well. Consequently, both stations B
and C start transmitting their own pilots at tB , tC ∈ (t0, t0+τ].
Once all stations complete the transmission of their pilots, they
must all wait for τ seconds before sensing the channel again.

In this scenario, both A and B will refrain from transmit-
ting their data frames because they will sense the channel busy
after the waiting period of τ seconds. In the case of A, it will
detect the presence of the pilots from both B and C, while B
will detect the presence of the pilot from C, as indicated in
the figure. Therefore, only station C will sense an idle channel
after the waiting period of τ seconds, because it is the last
station who transmitted a pilot. Consequently, C claims that it
has acquired the right to transmit its data frame, and proceeds
to transmit without collisions.

Fig. 1. CSMA/TA example with negligible turnaround latencies

More generally, if n stations initiate their pilot transmis-
sions at different time instants in the interval (t0, t0+τ], where
t0 is the time instant where a reference station has first initiated
its transmission, and assuming that t0 < t1 < . . . < tn−1 <
tn < t0 + τ , where ti is the time instant of the i-th pilot
transmission then, after waiting for τ seconds after the end of
their specific pilot transmission, only the n-th station acquires
the right for transmission, while all other stations refrain from
transmitting their data frames.

Unfortunately, the “wait for τ seconds before transmit”
rule may not work if the transmit-to-receive (TX/RX) and the
receive-to-transmit (RX/TX) turnaround times of the radios
are taken into account. This is especially the case if such
latencies are greater than the propagation delay in the WLAN;
otherwise, the previous rule is valid. When that is the case,
the vulnerable period for the occurrence of frame collisions
increases, and we need to take that into account. The design
of CSMA/TA considers these issues and their impact on the
conditions for transmission acquisition to occur.

B. Non-negligible RX/TX and TX/RX Turnaround Times

To understand the impact of turnaround times on the
operation of CSMA/TA and on the extension of the vulnera-
bility periods surrounding any frame transmission, we go over
another simple example. Let us assume that, at time instant
t0, a node A senses the channel, which means that its radio
interface is in a state equivalent to a “receive” state. Let us
also assume that node A perceives an idle channel at this
same time instant, and immediately starts the procedure to
initiate the transmission of its pilot. Before the pilot is actually
transmitted, however, an RX/TX turnaround time of duration
ε1 seconds is incurred by the radio interface, followed by the
pilot transmission itself, which lasts γ seconds. Once the pilot
transmission is over, and following the CSMA/TA design, the
station has to switch its radio interface to the receive state
in order to sense the channel again. This incurs a TX/RX
turnaround time that lasts ε2 seconds, which is assumed to be
greater than or equal to τ . Because of that, the rule of “wait for
τ seconds before sensing the channel again” must be replaced
by “wait for the TX/RX turnaround to finish.” Then, all that is
required is to immediately sense the channel once the TX/RX
turnaround time ε2 is over. Notice that, if ε2 < τ , we have a
scenario that is equivalent to the rule of “wait for τ seconds
before sensing the channel again.”

Once station A switches to the receive mode, it senses the
channel instantaneously. It is assumed that processing delays
for carrier sensing or collision detection are negligible. If the
channel is sensed to be idle again, the station may start the
procedure to transmit a data frame, which will require an
additional RX/TX turnaround time of duration ε1, followed
by the transmission of the data frame itself, which lasts T
seconds. Finally, τ seconds are required for the complete data
frame to reach every other node in the network. Figure 2 shows
the time intervals incurred in the successful transmission of a
data frame when no other station transmits.

Fig. 2. Time diagram of a successful transmission of a data frame, including
all time intervals involved in the process: RX/TX turnaround time ε1, pilot
duration γ, TX/RX turnaround time ε2, RX/TX turnaround time ε1, data
frame T , and the propagation delay τ for the data frame to be received by all
stations in the network completely.

In the previous scenario, a time interval of length ε1 + τ
seconds occurs from the instant when station A decides to
transmit a pilot to the instant when that pilot first reaches the
other nodes in the network (i.e., after a propagation delay).
Hence, considering just another station B that has a data frame
ready to be sent, and if it senses the channel at any time during
the interval (t0, t0 + ε1 + τ], station B will perceive an idle
channel because A’s pilot will not reach station B until the
instant t0 + ε1 + τ . Thus, the actual vulnerability period, i.e.,
the time interval during which stations can transmit without
noticing other transmissions over the channel, increases from
τ to τ+ε1 seconds. Then, depending on the time instant when
station B starts transmitting its pilot, its signal may arrive at
A while A is still switching from transmit to receive mode,
as shown in Figure 3. If this happens, then when A finally
switches to the receive mode, it will perceive an idle channel

309

similarly to B, in the end of its TX/RX turnaround time. In
this case, both nodes will “claim their right to transmit” their
data frames, and their frames will collide. Therefore, when
the radio’s turnaround times are taken into account, collisions
may happen with the proposed CSMA/TA rule. Nonetheless,
rather than insisting on the idea of having a successful station
on every group of colliding stations, we will look at the
conditions for the likelihood of having a successful station
within a colliding group.

Fig. 3. Example showing transmission acquisition failing: Station A cannot
perceive B’s frame on the channel because, after finishing its own transmis-
sion, there is an extra time interval due to the TX/RX turnaround time before
it can actually sense the channel. By the time the TX/RX turnaround time is
over, the channel is clear. The same happens to B, and both A and B detect
a free channel, which leads to the collision of data frames.

Let us explore the conditions for having station B success-
fully transmitting a data frame, i.e., to have station A refraining
from transmitting its data frame, as in the “ideal” case. Let
Y denote the length of the time interval between t0 and the
time instant when node B senses the channel and decides to
transmit its pilot, i.e., its RX/TX turnaround time begins, as
shown in Figure 4. In order for B to successfully acquire its
right for transmission, node A must listen to the end of B’s
pilot (at least) when A’s TX/RX turnaround time is over. This
condition is depicted in Figure 4 when station A detects a busy
channel.

Fig. 4. Example of successful transmission acquisition. The time instant
when B switches to transmit mode is such that the end of its pilot is sensed
by the end of station A’s TX/RX turnaround time.

Based on the above argument, the following inequality
relating the relevant time intervals in the process must be
always satisfied in order for A to refrain from transmitting
its data frame and, consequently, have station B acquiring the
channel for its data frame transmission without collision:

Y + ε1 + γ + τ > ε1 + γ + ε2 ⇒ Y > ε2 − τ, (1)

i.e., as long as Y is greater than ε2 − τ , station A is able to
detect station B’s pilot and refrains from transmitting its data
frame. At the same time, if Y > ε1 + τ , station B detects A’s

pilot, and defers its transmission. Therefore, the length of the
time interval Y that allows station B to acquire the channel
successfully is bounded as follows:

ε2 − τ < Y ≤ ε1 + τ. (2)

It follows from (2) that the RX/TX turnaround time ε1

must be related to the TX/RX turnaround time ε2 by

ε1 > ε2 − 2τ, and ε1 ≥ 0. (3)

If ε2 = τ , i.e., in the ideal case when there is no TX/RX
turnaround time and the station has to wait for τ seconds
before checking the channel again, the above inequality is
satisfied with ε1 = 0, i.e., when no RX/TX turnaround
time is considered. This is exactly the scenario discussed in
Section III-A.

Now, let us assume that n ≥ 1 stations start their transmis-
sion procedures after a station A starts its transmission proce-
dure at t0, i.e., all stations start their transmission procedures
in the interval (t0, t0 + ε1 + τ], with the beginning of their
RX/TX turnaround times at instants denoted by t1 < t2 <
· · · < tn−1 < tn. Many scenarios are possible in this case.
One such scenario is depicted in Figure 5, which shows three
nodes A, B, and C starting their pilots at time instants t0, tB ,
and tC , respectively. Assume that X = tB − t0 > ε2 − τ , and
Y = tC − tB < ε2 − τ . So, in spite of having B initiating its
transmission procedure at an instant that is distant apart from t0
by more than ε2−τ , station C starts its RX/TX turnaround time
at an instant that does not follow the inequality with respect to
the last station that has initiated a transmission, i.e, station B.
As a result, stations B and C will perceive an idle channel at
the end of their TX/RX turnaround time, and they will incur
a collision of their data frames, as shown below.

Fig. 5. CSMA/TA example with non-negligible turnaround times

Consider now the case when station C starts its transmis-
sion procedure at an instant tC that is ε2 − τ seconds apart
from tB , i.e., tC − tB > ε2 − τ . In this case, stations A and
B will detect a busy channel, for sure, in the end of their
TX/RX turnaround times, and they will defer their data frame
transmissions. In this case, station C will acquire the right for
transmission, and will transmit a data frame without collision,
as it is shown in Figure 6.

It is important to notice that it is not enough to have any
transmission initiation procedures apart from each other by
ε2 − τ , but only the last and the next-to-the-last initiation
procedures. Figure 5 clearly showed this situation, where A

310

and B are distant apart from each other by more than ε2 − τ
seconds, but B and C are not. In that case, B and C detected
a free channel and collided.

Fig. 6. Example of successful transmission acquisition when three stations
compete for the channel. Station C is the last station to start its transmission
procedures, and the time instant tC is distant from the next-to-the-last station
B by more than ε2 − τ seconds. As a consequence, it acquires the channel.

Figure 7 shows a time diagram where the arrows indicate
the time instants of transmission procedures of n stations
within the time interval (t0, t0 + ε1 + τ]. In this case, the last
time instant tn must be such that tn − tn−1 > ε2 − τ . Under
such conditions, station n successfully acquires the channel.

ε2 − τ

t0 tntn−1 t0 + ε1 + τ

Fig. 7. Time instants of transmission procedures of n stations

IV. THROUGHPUT ANALYSIS

We derive the normalized throughput of CSMA/TA for
fully-connected networks under ideal channel conditions, and
consider the impact of the RX/TX and TX/RX turnaround
times. The performance of CSMA/TA is compared with non-
persistent CSMA (with and without turnaround times), and
CSMA/CD, which does not have turnaround times given that
it requires full-duplex radios. We focus on the non-persistent
versions of CSMA/TA, CSMA, and CSMA/CD using the
traffic model first introduced by Kleinrock and Tobagi [2].
In this analysis, we do not consider the use of priority
acknowlegdments (ACKs), because we are only concerned
with errors due to multiple access interference.

According to our model, there is a large number of stations
that constitute a Poisson source sending data packets to the the
channel with an aggregate mean generation rate of g packets
per unit time (i.e., new and retransmitted packets). Each node
is assumed to have at most one data packet to be sent at
any time, which results from the MAC layer having to submit
one packet for transmission before accepting the next packet.
A node retransmits after a random retransmission delay that,
on the average, is much larger than the time needed for a
successful transaction between a transmitter and a receiver and
such that all transmissions can be assumed to be independent
of one another. The channel is assumed to introduce no errors,
so multiple access interference (MAI) is the only source of
errors. Nodes are assumed to detect carrier perfectly.

We assume that two or more transmissions that overlap
in time in the channel must all be retransmitted (i.e., there is
no power capture by any transmission), and that any packet
propagates to all nodes in exactly τ seconds. The RX/TX and
TX/RX turnaround times at each radio interface are ε1 and
ε2, respectively, and are assumed to be larger than or equal
to the propagation delay τ , which agrees with the parameters
assumed in IEEE 802.11 DCF. The transmission time of a data
packet is T . For the case of CSMA/CD, the time of a jamming
bit sequence is J , which is larger than the error-checking field
of a packet (e.g., 48 bits). We assume that processing delays
are negligible, which includes the time to detect carrier or do
collision detection. The protocols are assumed to operate in
steady state, with no possibility of collapse, and hence the
average channel utilization of the channel is given by [2]

S =
U

B + I
, (4)

where B is the expected duration of a busy period, defined to
be a period of time during which the channel is being utilized;
I is the expected duration of an idle period, defined as the
time interval between two consecutive busy periods; and U
is the time during a busy period that the channel is used for
transmitting user data successfully.

A. Non-Persistent CSMA/TA

Theorem: The throughput of non-persistent CSMA/TA is

S =
Te−g(ε2−τ)

1
g + 3ε1 + 2τ + γ + ε2 + T − 1

g

[
1− e−g(ε1+τ)

]2
+K

,

(5)

where K = −(ε1 + τ)e−g(ε1+ε2).

Proof: Based on the discussion in Section III-B, event
E, which denotes successful transmission acquisition, can be
described by the union of two mutually exclusive events as
follows:

E={{no transmissions ∈ [t0, t0 + ε1 + τ]}∪{{some trans.
∈ [t0, t0 + ε1 + τ]} ∩ {tn − tn−1 > ε2 − τ}}}, (6)

where the event tn − tn−1 > ε2 − τ requires that the interval
between the last and next-to-the-last transmission attempt must
be greater than ε2−τ . Hence, the probability Psuc of successful
transmission acquisition is given by

Psuc = P{E} = P{no transmissions ∈ [t0, t0 + ε1 + τ]} +

P{{some trans. ∈ [t0, t0 + ε1 + τ]} ∩ {tn − tn−1 > ε2 − τ}},
(7)

where, due to our Poisson assumptions,

P{no transmissions ∈ [t0, t0 + ε1 + τ]} = e−g(ε1+τ). (8)

The second probability in (7) can be written as

P{some trans. ∈ [t0, t0 + ε1 + τ] ∩ tn − tn−1 > ε2 − τ} =

= P{tn − tn−1 > ε2 − τ | some trans. ∈ [t0, t0 + ε1 + τ]}×
× P{some trans. ∈ [t0, t0 + ε1 + τ]}, (9)

where

P{some trans. ∈ [t0, t0 + ε1 + τ]} = 1− e−g(ε1+τ). (10)

311

To simplify notation, let A = {some trans. ∈ [t0, t0 + ε1 +
τ]}. Then, for the conditional probability in (9) we use total
probability to get

P{tn − tn−1 > ε2 − τ |A} =

=

∞∑
n=1

P{tn − tn−1 > ε2 − τ,N = n|A}

=

∞∑
n=1

P{tn − tn−1 > ε2 − τ |N = n,A}P{N = n|A}, (11)

where N is the number of transmission attempts initiated in
(t0, t0 + ε1 + τ]. Using Bayes’ rule,

P{N = n|A} =
P{N = n,A}

P{A}
=
P{A|N = n}P{N = n}

P{A}

=
P{A|N = n}[g(ε1 + τ)]ne−g(ε1+τ)

[1− e−g(ε1+τ)]n!
, (12)

which leads to

P{N = n|A} =

{
0, if N = 0
[g(ε1+τ)]ne−g(ε1+τ)

[1−e−g(ε1+τ)]n!
, if N > 0,

(13)

because P{A|N = n} = 1 if N > 0. From (11), we need
to compute P{tn − tn−1 > ε2 − τ |N = n,A}. For a Poisson
process, the conditional probability density function of the first
n count times, T1, T2, . . . , Tn, given {N∆T = n}, i.e., given
that N = n time instants have occurred in a given time interval
∆T , is given by [15]

f(t1, t2, . . . , tn|N = n) =
n!

(∆T)n
, (14)

if 0 < t1 < · · · < tn < ∆T, and 0 elsewhere, where ∆T
is the length of the time interval of interest, i.e., in our case,
∆T = ε1 + τ . Using this fact, and since 0 < t1 < t2 < · · · <
tn−1 < tn, it can be shown that

P{tn − tn−1 > ε2 − τ |N = n,A} =

=

∫ ε1−τ

ε2−τ

∫ tn−ε2+τ

0

∫ tn−1

0

· · ·
∫ t2

0

n!

(∆T)n
dt1 . . . dttn−1

dttn

=

[
ε1 − ε2 + 2τ

ε1 + τ

]n
. (15)

Substituting (15), (13), (11), (10), and (8) into (7), we have

Psuc = e−g(ε1+τ) + [1− e−g(ε1+τ)]

∞∑
n=1

[(ε1 − ε2) + 2τ]n

(ε1 + τ)n
×

× [gn(ε1 + τ)n]e−g(ε1+τ)

[1− e−g(ε1+τ)]n!

= e−g(ε1+τ)+e−g(ε2−τ)
∞∑
n=1

[g(ε1−ε2+2τ)]n

n!
e−g(ε1−ε2+2τ)

= e−g(ε1+τ) + e−g(ε2−τ) [1− P{N = 0 in (ε1 − ε2 + 2τ)}]
= e−g(ε1+τ)︸ ︷︷ ︸

no transmission in [t0, t0 + ε1 + τ]

+ e−g(ε2−τ)︸ ︷︷ ︸
no transmission within (ε2 − τ) s

× [1− e−g(ε1−ε2+2τ)]︸ ︷︷ ︸
some transmission in the interval of length (ε1 + τ)− (ε2 − τ)

(16)

Finally,

Psuc = e−g(ε1+τ) + e−g(ε2−τ)
[
1− e−g(ε1−ε2+2τ)

]
= e−g(ε2−τ), (17)

which reduces to the fact that a successful transmission acqui-
sition happens if the last station to transmit in (t0, t0 +ε1 +τ]
starts its transmission procedures within an interval that is at
least ε2 − τ seconds away from the next-to-the-last station in
the same interval. Note that, if ε2 = τ , then Psuc = 1, regard-
less of the value of the propagation delay τ and the RX/TX
turnaround time ε1. Later, we will show that CSMA/TA has an
effective vulnerable period that is ε1−ε2 +2τ seconds smaller
than Nonpersistent CSMA, if we take into account the RX/TX
turnaround time in CSMA as well. Given the Psuc, we can
now proceed with the evaluation of U , B, and I .

1) Average Busy Period: For the average busy period B =
E[B], two events can happen: either a successful data frame
transmission happens or a collision occurs. Therefore,

E[B] = E[B|success]P{success}+ E[B|fail]P{fail}. (18)

In the case of success, we need to consider the cases where
either no one transmits in [t0, t0 + ε1 + τ] (i.e., N = 0), or
one or more stations transmit in [t0, t0 + ε1 + τ] (i.e., N > 0),
which leads to

E[B|success] = E[B|success, N = 0]P{N = 0}+
+ E[B|success, N > 0]P{N > 0}. (19)

For the first conditional probability, we have

E[B|success, N = 0] = ε1 + γ + ε2 + ε1 + T + τ

= 2ε1 + γ + ε2 + T + τ, (20)

while for the case N > 0 we have

E[B|success, N > 0] =

= E[Y + ε1 + γ + ε2 + ε1 + T + τ |success, N > 0]

= E[Y |success, N > 0] + 2ε1 + γ + ε2 + T + τ. (21)

To compute E[Y |success, N > 0] we need to first notice
that, given there is a success, the last node to transmit in the
interval [t0, t0 + ε1 + τ] must have actually transmitted within
the interval [t0 + ε2 − τ, t0 + ε1], because its transmission
procedures must start at least ε2 − τ seconds away from the
next-to-the-last node in the interval. Therefore, for the last
transmitting node, ε2 − τ ≤ Y ≤ ε1 + τ .

Let Z = Y − (ε2 − τ). Then, 0 ≤ Z ≤ ε1 − ε2 + 2τ , and
we can compute FZ(z) = P [Z ≤ z] by making

P [Z ≤ z] = P{no transmission in [ε1 − ε2 + 2τ − z]}
= e−g(ε1−ε2+2τ−z). (22)

Given that Z ≥ 0, we can compute E[Z] as follows

E[Z] =

∫ ∞
0

[1− FZ(z)]dz

=

∫ ε1−ε+2τ

0

1− e−g(ε1−ε2+2τ−z)dz

= ε1 − ε2 + 2τ − 1

g

[
1− e−g(ε1−ε2+2τ)

]
. (23)

312

Finally, because Y = Z + (ε2 − τ),

E[Y |success, N > 0] = E[Z] + ε2 − τ

= ε1 + τ − 1

g

[
1− e−g(ε1−ε2+2τ)

]
. (24)

Given E[Y |success, N > 0] we can substitute its value in
(21) to compute E[B|success, N > 0], i.e.,

E[B|success, N > 0] =

= 3ε1 + 2τ + γ + ε2 + T − 1

g

[
1− e−g(ε1−ε2+2τ)

]
. (25)

Hence,

E[B|success] = (2ε1 + γ + ε2 + T + τ)e−g(ε1+τ)+

+
[
1− e−g(ε1+τ)

]
{3ε1 + 2τ + γ + ε2 + T−

−1

g

[
1− e−g(ε1−ε2+2τ)

]}
= (2ε1 + γ + ε2 + T + τ)︸ ︷︷ ︸

length with no transmission

+

+

{
ε1 + τ − 1

g

[
1− e−g(ε1−ε2+2τ)

]}
×︸ ︷︷ ︸

additional length due to some transmission in [t0, t0 + ε1 + τ]

×
[
1− e−g(ε1+τ)

]
(26)

To compute E[B|fail] we notice that, in this case, the last
transmission can happen anywhere in (t0, t0 + ε1 + τ], which
leads to

E[B|fail] = E[Y + ε1 + γ + ε2 + ε1 + T + τ |fail]
= E[Y |fail] + 2ε1 + γ + ε2 + T + τ. (27)

The computation of E[Y |fail] can be obtained by first
noticing that, in this case, 0 < Y < ε1 +τ . Therefore, because
arrivals are Poisson distributed,

FY (y) = P{Y ≤ y} = P{no transmission in ε1 + τ − y}
= e−g(ε1+τ−y). (28)

Since Y is a non-negative random variable, we have

E[Y] =

∫ ∞
0

[1− FY (y)]dy =

∫ ε1+τ

0

1− e−g(ε1+τ−y)dy

= ε1 + τ − 1

g

[
1− e−g(ε1+τ)

]
(29)

Therefore,

E[B|fail] = 3ε1 + 2τ + γ + ε2 + T − 1

g

[
1− e−g(ε1+τ)

]
.

(30)

Finally, the average busy time E[B] is given by

B = 3ε1 + 2τ + γ + ε2 + T − (ε1 + τ)e−g(ε1+ε2)−

− 1

g

[
1− e−g(ε1+τ)

]2
. (31)

2) Average Idle Period (I): The average length of an idle
period I is simply the average inter-arrival time of packets,
which are preceded by pilot transmissions, and this equals 1/g
because inter-arrival times are exponentially distributed with
parameter g.

3) Average Successful Busy Period: The average time pe-
riod used to transmit useful data U is simply the useful portion
of a successful busy period, which occurs with probability
Psuc = e−g(ε2−τ).

Substituting the values of U , B, and I into (4) we obtain
(5). �

Usually, it is more convenient to work with normalized
values in the computation of the average throughput. Hence, if
we normalize all time intervals with respect to the data frame
transmission time T , i.e., if we make a = τ/T , b = ε1/T ,
c = ε2/T , d = γ/T , and G = gT , then (5) becomes

S =
Ge−G(c−a)

1 + (1 + 2a+ 3b+ c+ d)G−
[
1− e−(a+b)G

]2
+K

,

(32)

where K = −(a+b)Ge−(b+c)G. One special case of interest is
the “ideal case,” i.e., when ε1 = 0 and ε2 = τ , i.e., b = 0 and
c = a, which refers to the case when there are no turnaround
times, and the rule “wait for τ” is employed. In this case,

S =
G

1 + (1 + 3a+ d)G− [1− e−aG]2 − aGe−aG
. (33)

B. Non-Persistent CSMA

The throughput for non-persistent CSMA is well-
known [2]. If the RX/TX turnaround time is considered,
however, the vulnerable period of CSMA increases to ε1 + τ .
Therefore, if the ACKs are assumed to be received instanta-
neously through an ideal secondary channel, the normalized
throughput becomes

S =
Ge−(a+b)G

1 + [2(a+ b) + 1]G− [1− e−(a+b)G]2 −K
, (34)

where K = (a + b)Ge−(a+b)G and b = ε1/T . Note that,
if we consider the RX/TX turnaround time, the successful
probability of CSMA considers an interval ε1+τ (or a+b) that
is 2τ seconds bigger than the interval of CSMA/TA, which is
ε2−τ (or b−a) in the case when ε1 = ε2. In other words, the
successful probability of CSMA decays faster than CSMA/TA
for non-negligible turnaround times.

C. Non-Persistent CSMA/CD

The throughput of non-persistent CSMA/CD under the
previous assumption of instantaneous ACKs can be easily
derived (see [16] without considering priority ACKs). There
are no turnaround times in CSMA/CD because the stations
can sense the channel while transmitting. Hence, if J denotes
the jamming signal time duration, and h = J/T , then the
normalized throughput is given by

S =
Ge−aG

2 + (2a+ h)G+Ge−aG(1− a− h− 1/G)
. (35)

313

V. NUMERICAL RESULTS

We compare the performance of CSMA/TA with CSMA
and CSMA/CD by considering different scenarios in terms of
the data rate R, the transmission range r, and the packet size
L. We assume that the TX/RX and RX/TX turnaround times
are equal (ε1 = ε2 = ε) and fixed at 2µs. The CSMA/TA pilot
signal is set to three times the propagation delay τ in every
case, while the jamming signal of CSMA/CD has the same
time duration J as its counterpart in Ethernet, i.e., 48-bit time,
which favors CSMA/CD when propagation delays are longer.

The scenarios depict cases when the propagation delay
is smaller than the turnaround times. Therefore, the modifier
“ideal” in the graphs correspond to turnaround times that are
smaller than the propagation delay, which we take into account
by assuming a turnaround time of 0 for ideal CSMA/TA and
CSMA. Such results (shown in dashed lines) are included to
understand the impact of turnaround times on CSMA and
CSMA/TA. We remind the reader that, if the propagation
delay is greater than the turnaround times, CSMA/TA operates
according to the ideal case, while CSMA still suffers the
impact of the turnaround times. Hence, in long-haul coverage
scenarios with propagation delays larger than or equal to 2µs,
CSMA/TA would perform just as the “ideal CSMA/TA.”

Figure 8 shows the results when L = 1500 bytes,
R = 1 Mb/s and r = 100 m. In this case, the turnaround
time ε = 6τ . It is clear that ideal CSMA/TA achieves the
best throughput, which increases monotonically to a value very
close to 1.0 as the offered load G increases without bound
(i.e., by taking the limit G → ∞ in (33)). This behavior
is in stark contrast to CSMA/CD and ideal CSMA, whose
throughput values collapse as G increases, due to higher
chances of frame collisions. If we consider the turnaround
times, CSMA/TA performs slightly better than CSMA (solid
lines), while CSMA/CD surpasses both of them. It is inter-
esting to observe that, with turnaround times, the range of G
values over which CSMA has non-zero throughput is almost
an order of magnitude smaller than in the ideal case.

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7
0

0.2

0.4

0.6

0.8

1

Normalized Offered Load (G)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(S

)

CSMA/TA (Ideal)

CSMA/TA

CSMA/CD

CSMA (Ideal)

CSMA

Fig. 8. S vs. G for L = 1500 bytes, R = 1 Mb/s, and r = 100 m.

Figure 9 shows the results when L = 1500 bytes, R =
1 Mb/s, and a turnaround time that is just 1% above the
propagation delay, i.e., ε = 1.01τ , which gives us r =
594.06 m. We can observe the great advantage of non-ideal
CSMA/TA, whose throughput values not only match, but also
surpass CSMA/CD at high loads. The results indicate that

CSMA/TA can, in practice, accommodate a large number of
devices that collectively generate a high traffic load (e.g.,
IoT scenarios). In this scenario, the likelihood of having a
transmission acquisition within a group of colliding stations is
high, as opposed to CSMA and CSMA/CD, who always force
the whole group of colliding stations to retransmit in a future
time.

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7
0

0.2

0.4

0.6

0.8

1

Normalized Offered Load (G)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(S

)

CSMA/TA (Ideal)

CSMA/TA

CSMA/CD

CSMA (Ideal)

CSMA

Fig. 9. S vs. G for L = 1500 bytes, R = 1 Mb/s, and r = 594.06 m.

Figure 10 shows the results for a data rate of 300 Mb/s
with L = 1500 bytes, and an 100-m range. The performance
of any protocol based on carrier sensing degrades as the ratio
a = τ/T increases. Hence, the impact of the turnaround time
is significant on both CSMA and CSMA/TA, and they achieve
a maximum normalized throughput of about 0.6 and allow
a much smaller range of traffic-load values, compared to the
results of Figure 8. Here, the range of viable traffic-load values
decreases by more than two orders of magnitude. We also
notice that CSMA/TA performs slightly better than CSMA at
high loads.

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6
0

0.2

0.4

0.6

0.8

1

Normalized Offered Load (G)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(S

)

CSMA/TA (Ideal)

CSMA/TA

CSMA/CD

CSMA (Ideal)

CSMA

Fig. 10. S vs. G for L = 1500 bytes, R = 300 Mb/s, and r = 100 m.

Figure 11 shows the results for a data rate of 300 Mb/s,
L = 1500 bytes, and a transmission range r = 594.06 m,
i.e., ε = 1.01τ . In this case, the maximum throughput of
CSMA/TA is 0.68, which is 32% higher than the maximum
throughput of CSMA, but just 8% smaller than CSMA/CD.
At higher data rates, the overhead due to the pilot signal
of CSMA/TA becomes more significant. In spite of that,
CSMA/TA maintains throughput values above 0.6 for a wider
range of traffic loads compared to CSMA/CD.

314

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6
0

0.2

0.4

0.6

0.8

Normalized Offered Load (G)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(S

)

CSMA/TA (Ideal)

CSMA/TA

CSMA/CD

CSMA (Ideal)

CSMA

Fig. 11. S vs. G for L = 1500 bytes, R = 300 Mb/s, and r = 594.06 m.

Figure 12 shows the results for r = 100 m (ε = 6τ) and
Figure 13 shows the results for r = 594.06 m (ε = 1.01τ)
when L = 100 bytes and R = 1 Mb/s. These results can
be related to Figures 8 and 9, respectively, since they have
the same general behavior, except for the fact that the range
of traffic-load values over which the throughput is non-zero
is smaller by more than an order of magnitude across all
protocols, and there is a slight decrease in the maximum
throughput values due to the small packet size. The cases for
L = 100 bytes and R = 300 Mb/s are not shown due to lack of
space, but all protocols have the same general behavior shown
in Figures 10 and 11, and perform poorly due to the high τ/T
ratio.

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6
0

0.2

0.4

0.6

0.8

1

Normalized Offered Load (G)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(S

)

CSMA/TA (Ideal)

CSMA/TA

CSMA/CD

CSMA (Ideal)

CSMA

Fig. 12. S vs. G for L = 100 bytes, R = 1 Mb/s, and r = 100 m.

1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6
0

0.2

0.4

0.6

0.8

1

Normalized Offered Load (G)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(S

)

CSMA/TA (Ideal)

CSMA/TA

CSMA/CD

CSMA (Ideal)

CSMA

Fig. 13. S vs. G for L = 100 bytes, R = 1 Mb/s, and r = 594.06 m.

VI. CONCLUSIONS

We introduced Carrier-Sense Multiple Access with Trans-
mission Acquisition (CSMA/TA) as an extension of CSMA
for stations using half-duplex radios with a single antenna.
CSMA/TA seeks to increase the likelihood of having a success-
ful transmitting station among a group of colliding stations. It
was shown that CSMA/TA can perform better than CSMA
and CSMA/CD (which would require using full-duplex radios
in WLANs) if the radio’s turnaround times are close to the
propagation delay. This is a very promising result, because the
chipsets available in the market today and in the near future
are such that turnaround times are being reduced dramatically.
Given that half-duplex radios with much faster turnaround
times are much cheaper than full-duplex radios, this makes
CSMA/TA an attractive approach for future WLANs compared
to traditional CSMA. Our future work addresses the embedding
of CSMA/TA as part of the IEEE 802.11 standard for WLANs.

ACKNOWLEDGMENT

This work was supported in part by the Jack Baskin Chair
of Computer Engineering at UCSC and by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES).

REFERENCES

[1] IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as
amended by IEEE Std 802.11ai-2016), pp. 1–594, May 2017.

[2] L. Kleinrock and F. A. Tobagi, “Packet Switching in Radio Channels:
Part I - Carrier Sense Multiple-Access Modes and Their Throughput-
Delay Characteristics,” IEEE Trans. Commun., 1975.

[3] R. M. Metcalfe and D. R. Boggs, “ETHERNET: Distributed packet
switching for local computer networks,” CACM, vol. 19, no. 7, pp. 395
– 403, 1976.

[4] S. Sen, R. R. Choudhury, and S. Nelakuditi, “CSMA/CN: Carrier sense
multiple access with collision notification,” IEEE/ACM Trans. Netw.,
vol. 20, no. 2, pp. 544–556, Apr. 2012.

[5] J. Peng, L. Cheng, and B. Sikdar, “A wireless MAC protocol with
collision detection,” IEEE Transactions on Mobile Computing, vol. 6,
no. 12, pp. 1357–1369, Dec 2007.

[6] L. Song, Y. Liao, K. Bian, L. Song, and Z. Han, “Cross-layer protocol
design for CSMA/CD in full-duplex WiFi networks,” IEEE Communi-
cations Letters, vol. 20, no. 4, pp. 792–795, April 2016.

[7] T. Vermeulen, F. Rosas, M. Verhelst, and S. Pollin, “Performance
analysis of in-band full duplex collision and interference detection in
dense networks,” in IEEE CCNC, Jan 2016, pp. 595–601.

[8] 2.4GHz to 2.5GHz 802.11g/b RF Transceivers with Integrated PA,
MAXIM, 2011.

[9] A True System-on-Chip Solution for 2.4GHz IEEE 802.15.4 and ZigBee
Applications, Texas Instruments, 2011.

[10] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving
single channel, full duplex wireless communication,” in ACM Mobicom.
ACM, 2010, pp. 1–12.

[11] C. L. Fullmer and J.J. Garcia-Luna-Aceves, “FAMA-PJ: a channel
access protocol for wireless LANs,” Proc. ACM MobiCom ‘95, 1995.

[12] R. Rom, “Collision Detection in Radio Channels,” Local Area and
Multiple Access Networks, Computer Science Press, 1986.

[13] R. Jurdak et al., “A survey, classification and comparative analysis of
medium access control protocols for ad hoc networks,” IEEE Commu-
nications Surveys & Tutorials, 2004.

[14] J.J. Garcia-Luna-Aceves, “Carrier-Sense Multiple Access with Collision
Avoidance and Detection,” Proc. ACM MSWiM, 2017.

[15] B. Hajek, “Random Processes for Engineers” Cambridge University
Press, 2015.

[16] J.J. Garcia-Luna-Aceves, “Carrier Resolution Multiple Access,” Proc.
ACM PE-WASUN, 2017.

315

Prescriptive Analytics for MEC Orchestration
Alberto Ceselli∗, Marco Fiore†, Angelo Furno‡, Marco Premoli∗, Stefano Secci§, Razvan Stanica¶

∗ Università Degli Studi di Milano, Dept. of Computer Science, Crema, Italy. Email: {firstname.lastname}@unimi.it
† CNR–IEIIT, Torino, Italy. Email: marco.fiore@ieiit.cnr.it

‡ Univ Lyon, IFSTTAR, ENTPE, LICIT UMR T9401, F-69675, Lyon, France. Email: angelo.furno@ifsttar.fr
§ Sorbonne Université, CNRS, LIP6, F-75005 Paris, France. Email: stefano.secci@sorbonne-universite.fr
¶ Univ Lyon, INSA Lyon, Inria, CITI, F-69621, Villeurbanne, France Email: razvan.stanica@insa-lyon.fr

Abstract—Orchestrating network and computing resources in
Mobile Edge Computing (MEC) is an important item in the
networking research agenda. In this paper, we propose a novel
algorithmic approach to solve the problem of dynamically assign-
ing base stations to MEC facilities, while taking into consideration
multiple time-periods, and computing load switching and access
latency costs. In particular, leveraging on an existing state of
the art on mobile data analytics, we propose a methodology
to integrate arbitrary time-period aggregation methods into a
network optimization framework. We notably apply simple con-
secutive time period aggregation and agglomerative hierarchical
clustering. Even if the aggregation and optimization methods
represent techniques which are different in nature, and whose
aim is partially overlapping, we show that they can be integrated
in an efficient way. By simulation on real mobile cellular datasets,
we show that, thanks to the clustering, we can scale with the
number of time-periods considered, that our approach largely
outperforms the case without time-period aggregations in terms
of MEC access latency, and at which extent the use of clustering
and time aggregation affects computing time and solution quality.

I. INTRODUCTION

The softwarization of networks is an innovative trend ex-
pected to transform the mobile access environment in the com-
ing years. It is an evolution accompanied by the virtualization
of network functions and application servers, which can be
operated running virtualization clusters close to, or at cellular
base stations and mobile network points of presence [1].
The type of functions that can be virtualized ranges from
traffic load balancers and multimedia (de)coders to mobile core
functions such as those of the Long Term Evolution (LTE)
Evolved Packet Core (EPC) [2]. Application servers can also
be run in such facilities, so that the end-to-end user experience
benefits from low access latency [3].

An illustration of this evolution is given in Fig. 1. Fig. 1a
depicts a legacy 4G environment, where the user accesses
remote applications via cellular access, in such a way that its
wireless signals are processed at Base Band Unit (BBU) nodes
integrated to cellular Base Stations (BSs), its traffic is routed
through the EPC (composed of four main functions), before
reaching the Internet border on the way to the application
server. Fig. 1b shows instead a fully cloudified environment,
where radio-network elements such as the BBU, EPC func-
tions, mobile phone remotely executable applications, as well

(a) Legacy 4G access network.

(b) Fully cloudified access network.

Fig. 1. Mobile access network evolution with edge computing.

as application servers (possibly synchronized with a remote
cloud) are all virtualized in potentially the same place, called
Mobile Edge Computing (MEC) facility. Such a scenario is
an extreme one, coping with the virtualization of a variate
set of hardware, but that could correspond to the reality in
the coming decade. In any case, the virtualization of a subset
of these functions is a certainty, as demonstrated by different
ongoing projects in the industry, for instance those regarding
the virtualization of EPC functions (as announced by Orange
Spain in fall 2017), of radio-access network elements (as
announced by China Mobile in 2011), or of application servers
(as encompassed in some reference MEC use-cases [1]).

Among the virtualizable nodes at MEC facilities, we can
distinguish nodes that are strictly serving a subset of the BSs
of an operator (e.g., vBBU and vEPC nodes), and nodes that
serve single or multiple users (e.g., virtualized mobile device
environment for computation offloading, virtualized applica-
tion servers), possibly behind different BSs. An important
amount of traffic can therefore be aggregated at MEC facilities,
depending on the type of virtualized functions that are run
at these edge delivery points. The management of virtualized
nodes running at MEC facilities encompasses service and
network management operations mainly related to: i) BS-to-
MEC facility association, and ii) user-to-virtual machine (VM)
association (a VM being in turn associated to a MEC facility).
This kind of association decisions imply the execution of
VM-level MEC orchestration operations, such as VM scaling
up/down (increase/decrease of computing resources such as
memory, processor, storage), Virtual Network Function (VNF)
scaling in/out (more or less VM instances running a given
VNF), VM migration, VM creation or destruction.

At the time being, the telco industry is more focused on
the virtualization of the nodes that serve a subset of cellularISBN 978-3-903176-08-9 c© 2018 IFIP

antennas (e.g., vBBU, vEPC), instead of working directly
at the user-VM granularity, mainly because of scalability
concerns. Therefore, one shall consider BS-to-MEC facility
switching decisions as critical ones. In this paper, we indeed
propose a MEC orchestration framework that primarily op-
timizes BS-to-MEC facility association over time, based on
a spatiotemporal grouping of the BSs, while integrating VM
workload adaptations across MEC facilities.

BS-to-MEC facility switching operations can not be rea-
sonably expected to run continuously, as this would incur
in traffic loss and overhead due to traffic handover, but to
occur only at certain points in time (e.g., once every thirty
minutes). Hence, introducing an implicit time discretization
of the orchestration system appears appropriate. In order to
identify suitable discrete-time profiles of the traffic demand,
different strategies can be employed. The simplest option is
to aggregate the demand observed at each BS during every
time step in a recent reference period, exploiting training data,
using one reference profile for each time step. Another option
to identify suitable discrete-time profiles of the traffic demand
is to use temporal clustering analytics on the historical data,
so as to group together time slots that feature very similar
distributions of the mobile traffic demand across the BSs.

In this paper, we explore the two options above, proposing a
prescriptive analytics approach integrating advanced temporal
clustering into a mathematical programming formulation of the
addressed MEC orchestration problem. The clustering returns
a limited number of profiles, each of which corresponds to
time intervals where the mobile network presents a similar
distribution of the demand. It is then possible to feed the
optimization framework with a small number of profiles, with
the risk of decreasing the solution quality, since typical profiles
can only approximate the actual MEC network load at a
specific time step. We assess in the paper the computational
and quality aspects of our prescriptive analytics approach, as
compared to basic time aggregation in the orchestration.

The manuscript is structured as follows. Section II draws
the necessary background. Our network model is described in
Section III, while our orchestration algorithm is described in
Section IV. Section V reports numerical results. Section VI
concludes the paper.

II. BACKGROUND

We draw in this section the necessary background on edge
computing and virtualization and on the integration of data
analytics in network optimization problems.

A. Edge computing and network virtualization

In a MEC infrastructure, virtualization clusters – called
‘MEC facilities’ or ‘MEC hosts’ in the standardization doc-
uments [1], or ‘cloudlets’ in academic jargon [5] – are con-
nected to access network nodes within a few hops, to deliver
access to application servers running as VMs. Various oper-
ations dealing with the changing mobile access demand can
be applied to orchestrate the resulting cloud-network system,
which include BS to MEC facility dynamic assignment, VM

capacity rescaling (addition or removal of computing power in
terms of live memory or virtual processors) and VM migration
(a VM state is moved from one MEC facility to another one).
An ‘orchestrator’ is in charge of instantiating such decisions
into the MEC infrastructure. Each orchestration action comes
at a cost, often referred to as ‘migration’ or ‘switching’ cost, as
it can require synchronizing states and reconfiguring network
equipment and servers, across a geographical network under
stringent performance guarantees. The technology to perform
MEC orchestration operations is being experimented since
many years [6]. It commonly takes into consideration changing
states of the network in time and space, related to user mobility
and digital usages behavior.

These dynamics are being considered for the management
of not only application servers, but also of the network services
needed to deliver resilient access to applications. Indeed, 5G
systems will also build on new networking paradigms such as
Network Function Virtualization (NFV) and Software Defined
Networking (SDN) in order to, on the one hand, support
the orchestration of virtualized network functions and, on the
other hand, provide to core network switches the necessary
features to support flow management that may be needed when
applying fine-grained orchestration decisions [7].

Eventually, for mobile access networks and in particular
cellular networks, the physical facility delivering application
and network function VMs is expected to be the same,
as already discussed in Fig. 1, located in access network
aggregation points of presence. Such a convergence is also
clearly appearing in standardization efforts related to MEC
and NFV systems [8], [9], with equivalent interfaces between
virtualization layer and orchestration system components.

A significant amount of work exists in the area of MEC
and mobile-access NFV orchestration. A common problem
addressed is the virtualization cluster placement within the
access network, as considered in [10] for application VMs,
in [4] for the EPC functions and in [11] for radio-access func-
tions. A different orchestration dimension is the one related
to VM migration and rescaling across a given set of MEC
facilities, as a function of user mobility, as addressed in [12]
for application VMs and in [13] for the EPC functions. Finally,
in the area of virtualized radio-access network orchestration,
the problem of clustering, i.e., assigning a set of BSs to BBUs
was also extensively studied, as for instance in [14].

B. Data-driven mobile networks

A further step in this area, only marginally addressed to
date, is to investigate how to integrate the result of data
analytics in the instrumentation of MEC orchestration deci-
sions, related to placement, migration, rescaling and clustering
operations, along the lines traced in [15], [16].

Virtualized networks where significant resources are placed
in proximity of the radio access open substantial new scenarios
for the dynamic management of system operations. Solutions
based on data analytics are in particular expected to play a crit-
ical role: knowledge inferred by mining traffic measurements
and Key Performance Indicators (KPIs) will fuel effective

317

orchestration policies for the deployment and re-allocation
of resources across mobile edge computing facilities. The
vision of ‘data-driven’ (also referred to as ‘cognitive’) network
management is attracting the interest of a growing research
community [17], [18], and is supported by major players in
the 5G ecosystem [19].

Due to the very recent emergence of relevant use cases,
solutions to extract useful information from massive amounts
of mobile traffic data records and to employ it for network
configuration are still in their infancy. Data analytics for
mobile network traffic based on clustering or spectral analysis
have revealed regular macroscopic structures [20], [21] that are
highly predictable [22]. Actual experiments of data-driven net-
work management have mainly focused on optimizing video
streaming services [23], [24] and controlling core network
congestion [25], [26]. However, as of today there is almost no
practical demonstration of how MEC can benefit from data-
driven paradigms. The single application we could identify is
the data-driven BBU-to-BS clustering approach in [27], where
however the interconnection network is not modeled.

In this paper, we present a first application of data-driven
networking in the context of MEC orchestration, and more
precisely clustering decisions, considering both network and
systems constraints. Specifically, we leverage existing analyt-
ics for the spatiotemporal classification of traffic, and extract
long-timescale patterns in the spatial distribution of the mobile
traffic demand. We then employ these patterns to guide the
operation of MEC facilities so that the user Quality of Service
is maximized, by their integration in orchestration algorithms
based on mathematical programming.

C. Network optimization

The orchestration problem we address is to find groups
of BSs for their association to MEC facilities, in a multi-
period setting such that the BS-to-MEC facility association
can change across periods. In the area of network optimization,
this requires to tackle a multi-period extension of the famous
Generalized Assignment Problem (GAP) [28].

We point to [29] for a detailed review on the GAP and its
extensions. Despite the large body of research available on
the GAP, we are not aware of many papers directly dealing
with its multi-period extensions. In [30], the authors face a
single-source allocation problem with a flexible model and
an effective algorithm; however, their model does not handle
limited capacity, which is a crucial feature in our application.
The multi-period allocation problem discussed in [31], in
which a dual ascent technique is adapted to telecommunication
networks applications, is similarly missing the handling of
capacities.

Although our problem does not require to decide the loca-
tion of the facilities, which is instead assumed to be optimized
in a prior strategic planning [10] and given as input, one may
expect features and computational challenges similar to those
of multi-period location problems [33]. Recent approaches
on that field include [34]: the authors face a multi-period
concentrator location and dimensioning problem, providing

MILP formulations and reduction techniques, and solving to
optimality in less than one hour of computation instances with
up to 30 clients, 10 candidate location sites and 15 time
periods, or 100 clients, 30 candidate locations and 5 time
periods. In [35] the authors introduce exact methods for a
capacitated multi-period facility location problem in which,
however, unlike our case, the demand of each client can be
fractionally served by multiple facilities. Large scale instances
with up to 200 facilities, three periods and an arbitrary number
of clients could be solved with their algorithms.

III. MEC NETWORK ORCHESTRATION MODEL

We elaborate our reference MEC network orchestration
model along the following generic lines. BSs have associated
mobile traffic demand, that changes over time. Each MEC
facility has a certain capacity, limiting the overall amount of
demand it can serve simultaneously. BSs must be assigned to
MEC facilities; each new assignment implies a cost for each
user connected to the BS in terms of latency for communicat-
ing with the associated MEC server. Due to capacity limits, it
might not always be a good decision to assign each AP to its
MEC facility of minimum latency; furthermore, since demand
changes over time, an assignment pattern would hardly remain
an efficient one over the whole planning horizon. We therefore
leave the option of changing assignments over time, taking
into account that each change implies a switching cost for the
network, for example in terms of signaling to move session
data of active users. An optimization problem therefore arises,
that is to assign BSs to MEC facilities over time, respecting
capacity constraints and minimizing a combination of users
(assignment) and network (switching) costs.

Before providing a more formal problem statement and
mathematical formulation, we describe the data analytics prob-
lem we address to instrument the orchestration algorithm.

A. Data analytics

The data analytics we adopt to drive our resource orchestra-
tion problem is inspired by the temporal classifier of mobile
network traffic introduced by [37]. The classifier leverages an
agglomerative hierarchical clustering with fine-tuned distance
measures, and allows detecting long time periods during which
the geographic distribution of the mobile traffic demand does
not vary significantly. The results presented in the original
paper show that, e.g., the aggregate demand of voice calls and
text messages switches among a very small number of possible
spatial configurations during a whole week.

We employ the classifier above as a building block, and
proceed through the 4 phases, also summarized in Fig. 2:
Phase 1: We collect substantial measurement data from an
operational mobile network. The data captures the demand for
a major mobile service in two large-scale metropolitan regions
for a period of several consecutive months. Details on the data
collection are provided in Sec. V-A.
Phase 2: For a subset of the collected data, representing our
training set, we compute the typical weekly average demand,
by aggregating all data collected at the same time of the week.

318

.
.

.
.

...

.

.

.
.

......… … …

.
.

.
.

...

.

.

.
.

...... ...

Mon, 2016-09-05
00:00

Mon, 2016-09-12
00:00

Mon, 2016-09-19
00:00

average Monday,
00:00

Mon, 2016-09-05
01:00

Mon, 2016-09-12
01:00

Mon, 2016-09-19
01:00

average Monday,
01:00

Sun, 2016-09-11
23:00

Sun, 2016-09-18
23:00

Sun, 2016-09-25
23:00

average Sunday,
23:00

Phase 1: data collection

i

j

k

Phase 3a: classification based on total traffic distance

Phase 3b: classification based on the normalized fraction of traffic distance

i

i

j

j

ji
k

k

⍵ i,j

⍵ i,k ⍵ j,k

! i,j

! i,k ! j,k

ik j

aggregation level m

aggregation level n

Phase 2:
average demand

computation

Phase 4: intersection of the
two clustersets

ℂ#

ℂ$

ℂ#
ℂ%#

ℂ&#

ℂ'#

…

…
ℂ(#

..., i, j, ……

i, j…

∩

ℂ*

i, j…

=

…

…

…

k

ℂ$
ℂ%$

ℂ&$

ℂ,$

…

…
ℂ($.

.

.
.

Fig. 2. Workflow for the classification of network usage profiles. The final intersection cluster set Cq is used for the training.

0
0
:0

0
:0

0

0
1
:0

0
:0

0

0
2
:0

0
:0

0

0
3
:0

0
:0

0

0
4
:0

0
:0

0

0
5
:0

0
:0

0

0
6
:0

0
:0

0

0
7
:0

0
:0

0

0
8
:0

0
:0

0

0
9
:0

0
:0

0

1
0
:0

0
:0

0

1
1
:0

0
:0

0

1
2
:0

0
:0

0

1
3
:0

0
:0

0

1
4
:0

0
:0

0

1
5
:0

0
:0

0

1
6
:0

0
:0

0

1
7
:0

0
:0

0

1
8
:0

0
:0

0

1
9
:0

0
:0

0

2
0
:0

0
:0

0

2
1
:0

0
:0

0

2
2
:0

0
:0

0

2
3
:0

0
:0

0
Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

C20
C2
C0
C11
C10
C9
C3
C16
C8
C15
C14

C7
C5
C12
C13
C18
C4
C6
C17
C19
C1

Fig. 3. Sample cluster set of 10-minute time instants for a mobile service. The
plot outlines the existence of 20 temporal classes of spatial distributions of
the demand, during each daytime (abscissa) of different weekdays (ordinate).

For instance, the representative offered load on Monday, 4:00
pm at one antenna is the average of all measurements on
Mondays in the training set, at that specific time and antenna.
Clearly, time needs to be discretized in order to obtain a finite
set of time instants: we thus assume that each time instant
refers in fact to a period of duration T .
Phase 3: Following the methodology suggested in [37], we run
two separate instances of the classifier on the average week,
considering two distance metrics to compute the similarity
of demands at diverse time instants. The first such metric is
the difference of total traffic volumes, which tends to cluster
together time instants with equivalent total demands. The
second metric is the difference of the normalized fraction of
traffic at each antenna, which groups together time instants
that feature comparable spatial distributions of the demand.
Phase 4: We derive the intersection of the two cluster sets,
obtaining our final set of time instant classes. The rationale is
that such an intersection yields classes that have i) equivalent
total traffic volumes, that are ii) distributed in the same way
across antennas. In other words, the demands in time instants
that belong to the same class are similar from all viewpoints.

Fig. 3 shows an example of the final cluster set for our
reference mobile service, when considering that each time
instant spans T = 10 minutes. In the specific case under study,
our approach categorizes all 10-minute time periods in a week
into just 20 classes, i.e., spatial configurations of the mobile
service demand. The fact that 20 classes capture the diversity
of offered loads in more than 1,000 time instants underscores
how the demand for our target mobile service shows significant
regularity over time. The emergence of 20 classes is also good

news for our case study, as it implies that a small number of
MEC facility deployments can be sufficient to accommodate
all possible spatial dynamics in the traffic.

Another interesting observation is that time instants in a
same class are typically contiguous. Also this aspect plays
in favor of our objective: the temporal consistence of spatial
configurations entails that MEC resource allocation profiles
remain valid throughout quite long timespans, and the number
of switches between profiles is reduced. The expectation
(confirmed by our numerical evaluation) is that these intrinsic
properties of the mobile service demand can make a data-
driven approach for MEC deployment highly effective.

B. Orchestration Optimization Model

Our MEC orchestrator includes an optimization core for
performing prescriptive analytics on a tactical level. We adapt
models and methods from [38]. In particular, we build dynamic
assignment plans detailing, for each time slot, the set of
BSs to be connected to each MEC facility and, as a by-
product, the set of switching operations to be performed
between subsequent time slots. We consider a periodic single-
assignment operational policy, that is, in each time slot each
BS is assigned to exactly one MEC facility, and the last time
slot is assumed to be followed by the first one.

The task details are the following.
Input. We assume to be given the set of BSs, the set of MEC
facilities and a discretization of the time horizon in a set T
of time slots. We also assume to be given i) for each BS,
the mobile traffic demand that has to be accommodated in
each time slot, ii) the capacity of each MEC facility, iii) the
physical distance between each BS and each MEC facility
and the network distance between each pair of MEC facilities
(that is, a measure directly proportional to the network latency,
including packet processing latency at intermediate nodes, and
physical distance).
Output. We expect, as output of the optimization core, an
assignment plan: for each BS and each time slot, an indication
of the MEC facility where traffic needs to be routed. As a side
result, we expect a switching plan, that is a boolean value for
each BS and each pair of MEC facilities for each time slot,
indicating whether that BS switches at that time between a

319

particular pair of MEC facilities, or not.
Requirements. The assignment plan satisfies the following
conditions: i) the overall demand assigned to each MEC
facility at each time slot must not exceed its capacity, ii) each
BS is connected to exactly one MEC facility at each time slot,
iii) assignment and switching plans must be coherent.
Objective. The plans must target a trade-off between the
minimization of network- and user-related costs. The former
is generated by the change of BS-MEC facility associations
in consecutive time slots, which produces some overhead due
to the necessity of migrating VMs. The latter is instead the
latency experienced by the user with the current BS-MEC
facility association. The relative weight of the network- and
user-related costs in the objective function is represented by
suitable parameters, set to equal weights in our experiments.

A sample instance with three APs (squares), two MEC
facilities (circles) and two time-slots (left and right parts) is
depicted in Fig. 4: AP 2 is assigned to MEC facility A at
t = 1 and MEC facility B at time t = 2, therefore a switching
operation from A to B needs to be performed.

Formally, our orchestration task can be modeled with the
following Mathematical Program:

min α
∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk +β

∑
t∈T

∑
i∈A

∑
k∈K

dtimikx
t
ik

(1)

s.t.
∑
i∈A

dtix
t
ik ≤ Ck ∀t ∈ T, ∀k ∈ K

(2)∑
k∈K

xtik = 1 ∀i ∈ A,∀t ∈ T

(3)

xtik =
∑
l∈K

ytilk
∀i∈A,∀k∈K
∀t∈T\{1}

(4)

xtik =
∑
l∈K

yt+1
ikl

∀i∈A,∀k∈K
∀t∈T\{T}

(5)

xti,k ∈ {0, 1}∀i∈A,∀k∈K
∀t∈T , yti,k′,k′′ ∈ {0, 1}∀i∈A,∀t∈T

∀k′,k′′∈K
(6)

where A is the set of BSs, K is the set of MEC facilities,
T is the set of time slots, dti is the demand of BS i ∈ A
during time slot t ∈ T , Ck is the capacity of MEC facility
k ∈ K and ljk (resp. mik) is the distance from facility j to
facility k (resp. from BS i to facility k). Assignment plans
are encoded by variables xtik, which take value 1 if BS i
is assigned to facility k at time t, 0 otherwise. Switching
plans are encoded by variables ytijk, which are 1 if traffic
from BS i must be switched from facility j to facility k at
time t, 0 otherwise. Constraints (2) and (3) model requirement
i) and ii), respectively. Collectively, constraints (4) and (5)
ensure assignment and switching plans to be coherent. Finally,
(6) impose binary value to all variables. The first term in

the objective function (1) models switching costs, while the
second term models assignment costs.

t = 1

A B

1 2 3

t = 2

A B

1 2 3

x12A x22B

y22AB

Fig. 4. x and y variables

IV. RESOLUTION ALGORITHM

Problem (1) – (6) is NP-Hard in general [29]. When the
size of the MEC network is large, the resolution of the orches-
tration problem requires ad-hoc algorithms. A decomposition
approach can be employed: when the requirements on MEC fa-
cility capacities are considered in ‘soft’ form, penalizing their
violation with suitable multipliers in the objective function, the
problem disaggregates in independent subproblems per BS.

In particular, when a penalty multiplier is fixed for each
capacity unit violation, a minimum cost path problem in a
suitable graph needs to be solved independently for each BS;
these problems admit polynomial time algorithms, and can
therefore be computed efficiently also on large scale networks
and fine grained time discretizations.

In turn, we are able to obtain a set of optimal multipliers
through Dantzig Wolfe Reformulation and Column Generation
methods [38]. Strictly speaking, the solution found by means
of Dantzig Wolfe Reformulation might be fractional, that is
some BSs might be fractionally assigned to more than a
single MEC facility in some time slots. In that case, we run
a heuristic, selectively rounding these fractions, and thereby
always choosing a single MEC facility. Our heuristic works as
follows. We iterate over each time slot in sequential order. In
each time slot, for each BS, the MEC facility having highest
fractional assignment is retrieved: we sort the set of BSs
according to these assignment values (from highest to lowest).
Then, we iterate over each BS following this order, assigning
a single MEC facility to each BS; whenever an integer
assignment would yield a capacity violation, an alternative
MEC facility is selected for that BS, still in order of non-
increasing fractional assignment values in the particular time
slot. Our computational experiments revealed this heuristic to
be highly effective.

Furthermore, we employ several techniques for speeding up
our algorithms, like the use of Lagrangean fixing procedures
to reduce the search space. In particular, we initialize column
generation using greedy heuristics: for each time slot, BSs are
sorted by non-increasing demand and each BS is associated to
a profitable MEC facility. The most profitable MEC facility is
considered to be that involving no switching cost, if enough
residual capacity is available, or the nearest one with enough
residual capacity, otherwise.

320

V. SIMULATION RESULTS

We implemented our algorithms in C++, using CPLEX 12.6
[39] to solve the master LP subproblems, running tests on an
Intel i7 4GHz workstation equipped with 32 GB of RAM.
Before describing the results on orchestration time period
assessment and MEC performance, we describe the dataset.

A. Dataset

The dataset used in our study was collected in the core
network of Orange, a major European mobile operator, during
three months in 2016. It describes the traffic generated by sev-
eral millions of mobile subscribers in the French metropolitan
areas of Lyon and Paris, for a specific mobile service, i.e.,
Facebook. More precisely, the data was recorded by monitor-
ing IP sessions at the 3G and 4G core network gateways. A
combination of Deep Packet Inspection (DPI) and proprietary
fingerprinting tools was employed to infer application-level
information on Facebook user sessions. The approach allows
to determine the volume of all content traffic related to
the Facebook mobile service, including streaming content or
messaging, accessed through the app or web interfaces.

The rationale for the choice of Facebook is that it represents
a prominent mobile service, generating around 20% of the
compound downlink and uplink demand in the network. It is
also an example of typical service that could benefit from the
improved quality of service granted by a MEC infrastructure.

It is important to remark that the traffic is aggregated at
the antenna sector level. This ensures that the information in
the dataset is a combination of the Facebook sessions of many
users, hence it does not contain personal data or raises privacy
issues. The dataset is composed of twelve weeks of traffic
demands, aggregated by 10-minutes time-periods.

B. Time-period granularity

In order to identify suitable demand discrete-time profiles,
we evaluated six different time-period aggregations:
• aggregating consecutive 10-minute periods to form a

period of four, two and one hour (‘4H’, ‘2H’ and ‘1H’
in the remainder). The resulting training sets consist of
42, 84 and 168 time-periods, respectively. Using shorter
time periods for this strategy revealed to be too complex
to solve; at the same time we found tests on longer time
periods not informative, as already the 4H case is domi-
nated by 2H and 1H aggregations, and the experimental
trend is clear, as discussed in the remainder;

• aggregating 10-minute periods belonging to the same
clustering profile generated as presented in Subsec-
tion III-A, with clustersets of one hour (‘1HC’), 30-
minute (‘30MC’) and 10-minute (‘10MC’); the resulting
training sets differs for Lyon and Paris dataset: for Lyon
dataset, time-periods are 99 for ‘1HC’, 171 for ‘30MC’
and 260 for ‘10MC’; for Paris dataset, time-periods are
60 for ‘1HC’, 160 for ‘30MC’ and 141 for ‘10MC’.

We observe that the number or time-periods in 2H is similar
to that of 1HC. The same can be observed for 1H and 30MC.

For the training set, we use the first 4 weeks of the dataset to
build the typical average week used by the clustering approach
in the classification process. As recommended in [37], we also
tested the construction of the typical week using the median
value of the demand, but the results only marginally differed
with respect to the average week, so we avoid reporting them.

Lyon dataset contains demands from 332 BSs, while Paris
dataset has 1907 BSs. We set three cardinalities of facilities
for the dataset of Lyon (10, 20 and 30, resp.) and two
cardinalities of facilities for the dataset of Paris (20 and 50,
resp.). The location of the facilities was generated by a k-
medoid algorithm, using the coordinates of the BS locations as
input data. Distances between BS and facilities were computed
using the Haversine formula [40]. Parameters α and β of
objective function (1) were both set to 1. The resulting training
set is composed of 60 instances.

a) Benchmark: As benchmark for our methodology, we
considered a baseline approach without the time-period ag-
gregation we propose with our model, therefore with a single
time-period, leading to a single assignment for every BS to a
MEC facility over the week and no switching of assignment
among MEC facilities during the week. We computed a single
time-period demand averaging demands of all time-periods
in our dataset; we used this single-time average demand to
train our model for every city and every facility cardinality
(5 training instances). We solved the corresponding problem
with the ILP general solver of CPLEX, stopping the resolution
when an optimality gap lower than 1% was reached. We label
such instances as ‘S’ in the remainder.

b) Training Computational Results: In Fig. 5 we present
the box-plots of the execution times of the training sets, in
logarithmic scale (base 10), highlighting each the different
time-period granularity (a boxplot shows a box bars indicating
the minimum, 1st quartile, median, 3rd quartile, maximum).
We can notice that the consecutive 1H case has the highest
execution time (up to 10 hours of executions), followed by
the 30MC case, while a lower time is required by 4H and 2H
and 1HC, with S as fastest approach. In addition to the plot,
we found that the average execution time for ‘S’ is 10 seconds,
for ‘4H’, ‘2H’ and ‘1HC’ is less than five minutes (165.1 s,
273.5 s and 268.8 s, resp.), for ‘1H’ is more than 2 hours
(9022.6 s), for ‘30MC’ is slightly more then 1 hour (4515.6
s) and finally for ‘10MC’ half an hour (2012.9 s). Having
similar number of time-periods, ‘2H’ and ‘1HC’ (resp. ‘1H’
and ‘30MC’) require similar training time.

In Fig. 6 we present the box-plots of the optimality gap
of the training sets, still highlighting each the different time-
period granularity. As specified previously, ‘S’ training was
stopped as soon as an optimality gap less than 1% was
reached. We can notice little difference among different ag-
gregations: with respect to the worst-case performance, ‘4HC’
has the worst result, while the clustering cases have better
performances; with respect to the median performance, all
aggregations show similar results in the range 2–5%. In
addition to the plot, we found that the average optimality gap
for ‘4H’ is around 5%, for ‘2H’, ‘1H’ and ‘1HC’ is around

321

Fig. 5. Execution Time

4%, while ‘30MC’ and ‘10MC’ is around 3.3%.

C. Cost components assessment

We tested the assignments generated by our algorithm
against the original 10-minute periods demands in our datasets,
considering all twelve weeks separately. That is, for every
training instance we have twelve tests with a different demand.

First, we compare the performance of the time-periods
aggregation from the point of view of the MEC access latency
costs, that is defined by the objective function of model (1).

We present the costs in three parts:
• the assignment cost considering the distance between

a BS and MEC facility and the demand of the BS
(component β

∑
t∈T

∑
i∈A

∑
k∈K dtimikx

t
ik in (1));

• the switching cost considering the distance between MEC
facilities in considering time-slots and the demand of the
BS (component α

∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk in (1));

• and the total cost (1).
We do not present the absolute value of the assignment

and total costs, rather for every test week we compute the
percentage difference between the lowest cost among those
obtained with the seven time-period aggregations (4H, 2H,
... 10MC, plus the benchmark S) and the cost obtained with
the given time-period aggregation. For example, while testing
with 10 facilities, trained with average reference week, let us
assume that for test week 1 the minimum cost c̄1 is given by
the training assignment generated by ‘30MC’ aggregation: the
percentage difference of the costs of the test week 1 of every
time-period aggregation is computed as (c1 − c̄1)/c̄1. Hence,
‘30MC’ will have a percentage gap of 0 for test week 1, in
the scenario with 10 facilities trained with average week.

In Fig. 7 we present the box-plots of the percentage gaps of
the costs. Every figure contains a separate box-plot for each
time-period aggregation method. We can notice that:
• the positive effect of clustering can be evaluated by com-

paring ‘1H’ with ‘30MC’: they yield a similar number of
time-periods, but the latter allows slightly faster training,
producing at the same time solutions of lower costs;

• w.r.t. assignment costs (Fig. 7a), ‘S’ always leads to
the highest cost, i.e. longer MEC access latency, on
median 20% higher than the minimum; all other ag-
gregations show similar results, except ‘4H’ which has
slightly worse results (on median 8% higher cost than the

Fig. 6. Optimality Gap

minimum): the lowest average cost is given by ‘30MC’,
‘1H’ retrieves a cost higher on median of 1%, while
‘2H’,‘1HC’ and ‘10MC’ show worsening of about 2-4%;

• on the contrary, w.r.t. switching costs (Fig. 7b), with
the exception of ‘S’ which always ensures no switching
costs, ‘4H’ always leads to the lowest cost, i.e., the least
number of MEC facility switching, and on median all
other aggregations retrieve a switching costs from 2 to 8
times the cost given by ‘4H’;

• however, the huge difference in the switching cost does
not lead to a significant change in the total cost (Fig. 7c):
this latter is composed mostly of the aggregation costs
and it shows similar difference gaps.

In order to further analyze this behavior, in Fig. 8 and 9
we present two indices regarding the assignments and the
switching arising from the training:
• given that every BS has to be assigned to a MEC

facility in every time-period, in our model the best option
corresponds to the nearest facility. Therefore, we compute
for every case the percentage of times a BS has not been
assigned to its nearest MEC facility, that we present in
Fig. 8 as single box-plots for every time-period aggrega-
tion. We can notice that ‘S’ has the highest median non-
nearest assignments (more than 30% of the assignments);
‘4H’ and ‘1HC’ have similar median behavior with 26%
of non-nearest assignments, and all other aggregations
show a value around 22%. This behavior better explains
the poor performance of ‘S’ and ‘4H’ for what concerns
assignment costs.

• in Fig. 9 we present the percentage of times a switching
occurs in any time-period for any BS (i.e. number of
switching over (|T | − 1) · |A|), as box-plot for each
time-period aggregation: we can notice that this value
is considerably low for ‘4H’ (on average less than 0.5%
of the time a switching occurs) and is on average low
for every aggregation (the highest value is 1.25% of the
times). This behavior also explains the low effect of the
switching costs in the total cost computation.

D. Computing capacity violation

Given that the BS-MEC facility assignment is computed
using a reference week, it can generate a violation of the MEC
facility capacity given by the change of the demand pattern in

322

(a) Assignment Costs (b) Switching Costs (c) Total Costs

Fig. 7. MEC access latency and switching costs gaps.

the test week from the reference week. In order to measure
the violation of capacity, we introduce three indices:
• average capacity excess (‘SUM-SUM’ in the remainder):∑

t∈T

∑
k∈K

max{
∑

i∈A d
t
ix

t
ik − Ck, 0}

Ck · |K| · |T |

• percentage number of times a capacity is exceeded
(‘SUPPORT’ in the remainder):

|{(t, k) :
∑

i∈A d
t
ix

t
ik − Ck < 0,∀t ∈ T, ∀k ∈ K}|
|K| · |T |

• average of excess, only when a violation occurs (‘SUM-
SUM-SUPPORT’):∑

t∈T,k∈K:dt
ix

t
ik−Ck<0

(∑
i∈A dt

ix
t
ik−Ck

Ck

)
|{(t, k) :

∑
i∈A d

t
ix

t
ik − Ck < 0,∀t ∈ T, ∀k ∈ K}|

In Fig. 10 we present box-plots of these three indices, in
logarithmic scale (base 10). We can notice that:
• the ‘SUM-SUM’ index (Fig. 10a) is rather low for every

time-period aggregation, only the ‘10MC’ show a slightly
higher median value, but it is less than the 0.05% for both
the reference weeks;

• the ‘SUPPORT’ index (Fig. 10b), i.e. the percentage of
time-periods in which a MEC facility has a capacity
violation, does not show particular differences between
the time-periods aggregation; ‘4H’ shows a lower third
quartile, that is however always lower than 0.5% for every
time-period aggregation;

Fig. 8. Non-Nearest Assignments

• the ‘SUM-SUM-SUPPORT’ index (Fig. 10c), i.e. the
average violation computed only when violations occur,
show a different behaviour for the ‘10MC’ aggregation:
while the median value is almost constant for all aggre-
gations, ‘10MC’ in the worst-case can violates a MEC
capacity of more than 350% (i.e. it assign to a facility
an amount of demand that is more than three times its
capacity); this behaviour would advise against ‘10MC’.

VI. CONCLUSIONS

We presented in this paper a MEC orchestration framework
that (i) enables taking orchestration decisions on base station
to MEC facility assignments, and that (ii) at an arbitrary time
period granularity within a reference horizon hence taking into
consideration load variations along time, while (iii) supporting
advanced spatio-temporal clustering among base stations based
on network data analytics. It is, as of our knowledge, the first
effort of this type.

We show that - by extensive simulations against real net-
work data of an application that could benefit from MEC
- with our framework we (a) largely outperform baseline
orchestration decision without time-period aggregation by a
order of magnitude in terms of MEC access latency, (b)
scale with the number of time periods by leveraging on
spatio-temporal clustering of base stations, and (c) identify
which time-periods and aggregation techniques better allow
minimizing MEC access latency and facility switching costs.

As a further work we plan at refining the clustering algo-
rithms so as to anticipate factors in the preprocessing phase
that could enhance the quality of the orchestration solutions.

Fig. 9. Switching Occurrences

323

(a) SUM-SUM (b) SUPPORT (c) SUM-SUM-SUPPORT

Fig. 10. Capacity violation measures.

ACKNOWLEDGEMENTS

This work has been partially funded by “Piano di Sostegno
alla Ricerca 2015-17” (Università degli Studi di Milano), the
ANR ABCD (Grant No: ANR-13-INFR-005) and FP7 Mo-
bileCloud (Grant No. 612212) projects. We thank C. Ziemlicki
from Orange for the support with data collection.

REFERENCES

[1] M. Patel et al., “Mobile-Edge computing introductory technical white
paper”, ETSI MEC, Tech. Rep., 2014.

[2] H. Hawilo, A. Shami, M. Mirahmadi, R. Asal, “NFV: state of the
art, challenges, and implementation in next generation mobile networks
(vEPC)”, IEEE Network, vol. 28, no. 6, pp. 18–26, 2014.

[3] A. Aijaz et al., “Realizing the tactile internet: Haptic communications
over next generation 5g cellular networks”, IEEE Wireless Communi-
cations, vol. 24, no. 2, pp. 82–89, April 2017.

[4] D. Dietrich et al., “Network function placement on virtualized cellular
cores”, in Proc. of COMSNETS 2017.

[5] M. Satyanarayanan, “Cloudlets: at the leading edge of cloud-mobile
convergence”, in Proc. of ACM QoSA 2013.

[6] D. Lindemeier, “MEC proofs of concept,” ETSI, [On-
line]: http://www.etsi.org/technologies-clusters/technologies/
multi-access-edge-computing/mec-poc

[7] P. Rost et al., “Mobile network architecture evolution toward 5G,” IEEE
Communications Magazine, vol. 54, no. 5, pp. 84–91, May 2016.

[8] “Mobile Edge Computing (MEC); Framework and Reference Architec-
ture”, ETSI DGS/MEC-003Arch, V1.1.1 (2016-03).

[9] “Network Functions Virtualisation (NFV); Architectural Framework”,
ETSI RGS/NFV-002, V1.2.1 (2014-12).

[10] A. Ceselli, M. Premoli, S. Secci, “Mobile edge cloud network design
optimization”, IEEE Transactions on Networking, vol. 25, no. 3, 2017.

[11] C. Colman-Meixner et al., “Resilient cloud network mapping with
virtualized BBU placement for cloud-RAN”, in Proc. of ANTS 2016.

[12] S. Secci, P. Raad, P. Gallard, “Linking virtual machine mobility to user
mobility”, IEEE Transactions on Network and Service Management,
vol. 13, no. 4, pp. 927–940, Dec 2016.

[13] T. Taleb, A. Ksentini, “Follow me cloud: interworking federated clouds
and distributed mobile networks”, IEEE Network, vol. 27, no. 5, pp.
12–19, 2013.

[14] MY. Lyazidi, N. Aitsaadi, R. Langar, “Dynamic resource allocation for
Cloud-RAN in LTE with real-time BBU/RRH assignment”, in Proc. of
IEEE ICC 2016.

[15] H. Assem, T. S. Buda, L. Xu, “Initial use cases, scenarios and
requirements”, H2020 5G-PPP CogNet, Deliverable D2.1, 2015.

[16] K. Zheng et al., “Big data-driven optimization for mobile networks
toward 5G”, IEEE Network, vol. 30, no. 1, pp. 44–51, January 2016.

[17] H. Yao et al., “A novel framework of data-driven networking”, IEEE
Access, vol. 4, pp. 9066–9072, 2016.

[18] J. Jiang, V. Sekar, I. Stoica, H. Zhang, Unleashing the Potential of
Data-Driven Networking. Springer International Publishing, 2017.

[19] “EC H2020 5G infrastructure PPP pre-structuring model, version 2.0,”
5GPPP, http://5g-ppp.eu, April 2014.

[20] A. Furno et al., “A tale of ten cities: Characterizing signatures of mobile
traffic in urban areas”, IEEE Transactions on Mobile Computing, vol. 16,
no. 10, October 2017.

[21] A. Furno, M. Fiore, R. Stanica, “Joint spatial and temporal classification
of mobile traffic demands,” in Proc. of IEEE INFOCOM 2017.

[22] J. Wang et al, “Spatiotemporal Modeling and Prediction in Cellular
Networks: A Big Data Enabled Deep Learning Approach”, in Proc. of
INFOCOM 2017.

[23] A. Ganjam et al., “C3: Internet-scale control plane for video quality
optimization”, in Proc. USENIX NSDI 2015.

[24] J. Jiang et al., “CFA: A practical prediction system for video QoE
optimization”, in Proc. of USENIX NSDI 2016.

[25] K. Winstein, H. Balakrishnan, “TCP ex machina: Computer-generated
congestion control”, in Proc. of ACM SIGCOMM 2013.

[26] M. Dong et al., “PCC: Re-architecting congestion control for consistent
high performance”, in Proc. of USENIX NSDI 2015.

[27] L. Chen et al., “Complementary Base Station Clustering for Cost-
Effective and Energy-Efficient Cloud-RAN”, in Proc. of UIC 2017.

[28] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[29] D. R. Morales, H. E. Romeijn, “The generalized assignment problem
and extensions”, in Handbook of Combinatorial Optimization, D.-Z. Du
and P. M. Pardalos, Eds., 2005, pp. 259–311.

[30] R. Freling, H. E. Romeijn, D. R. Morales, A. P. M. Wagelmans, “A
branch-and-price algorithm for the multiperiod single-sourcing prob-
lem”, Operations Research, vol. 51, no. 6, pp. 922 – 939, 2003.

[31] I. Murthy, P. K. Seo, “A dual?ascent procedure for the file allocation and
join site selection problem on a telecommunications network”, Networks,
vol. 33, no. 2, pp. 109 – 124, 3 1999.

[32] I. Murthy, “Solving the multiperiod assignment problem with start-up
costs using dual ascent”, Naval Res. Log., vol. 40, pp. 325–344, 1993.

[33] S. Nickel, F. S. da Gama, “Multi-period facility location,” in Location
Science, G. Laporte, S. Nickel, and F. S. da Gama, Eds. Springer, 2015,
pp. 289–310.

[34] I. Gourdin, O. Klopfenstein, “Multi-period capacitated location with
modular equipments”, Comp. Op. Res., vol. 35, no. 3, pp. 661–682,
2008.

[35] J. Castro, S. Nasini, F. Saldanha-da Gama, “A cutting-plane approach for
large-scale capacitated multi-period facility location using a specialized
interior-point method”, Mathematical Programming, vol. 163, no. 1, pp.
411–444, 2017.

[36] R. Halper, S. Raghavan, M. Sahin, “Local search heuristics for the
mobile facility location problem”, Computers & Operations Research,
vol. 62, pp. 210 – 223, 2015. [Online].

[37] A. Furno, D. Naboulsi, R. Stanica, M. Fiore, “Mobile demand profiling
for cellular cognitive networking”, IEEE Transactions on Mobile
Computing, vol. 16, no. 3, March 2017.

[38] A. Ceselli, M. Fiore, M. Premoli, S. Secci, “Optimized Assignment
Patterns in Mobile Edge Cloud Networks”, Comp. Op. Res, 2018.

[39] IBM ILOG CPLEX 12.6 User Manual. IBM corp., 2013, accessed:
2016-11-01.

[40] Shumaker, B. P., and R. W. Sinnott. “Astronomical computing: 1.
Computing under the open sky. 2. Virtues of the haversine.”, Sky and
telescope 68 (1984): 158-159.

324

Profit and Strategic Analysis for MNO-MVNO
Partnership

Nesrine Ben Khalifa, Amal Benhamiche, Alain Simonian, Marc Bouillon
Orange Labs, France

Email: firstname.name@orange.com

Abstract—We consider a mobile market driven by two Mobile
Network Operators (MNOs) and a new competitor Mobile
Virtual Network Operator (MVNO). The MNOs can partner with
the entrant MVNO by leasing network resources; however, the
MVNO can also rely on other technologies such as free WiFi
access points. Moreover, in addition to its connectivity offer, the
MVNO can also draw indirect revenues from services due to its
brand. In that framework including many access technologies
and several revenue sources, a possible partner MNO will then
have to decide which wholesale price to charge the MVNO for its
resources. This multi-actor context, added to the need to consider
both wholesale and retail markets, represents a new challenge
for the underlying decision-making process. In this paper, the
optimal price setting is formulated as a multi-level optimization
problem which enables us to derive closed-form expressions for
the optimal MNOs wholesale prices and the optimal MVNO retail
price. The price attractivity of the MVNO is also evaluated in
terms of its indirect revenues and the proportion of resources
leased from possible partner MNOs. Finally, through a game-
theoretical approach, we characterize the scenario where both
MNOs partner with the MVNO as the unique Nash equilibrium
under appropriate conditions.

Index Terms—Network Economics, Strategic Partnership,
Multi-Level Optimization, Non-Cooperative Game Theory

I. INTRODUCTION

Mobile telecommunication markets are usually covered by
a few number of operators because of high infrastructure and
spectrum license costs. In addition, mobile operators are facing
the challenges of upgrading their networks to 5G technology in
order to cope with the increasing demand of users’ traffic. This
context, as well as the virtualization of wireless networks, may
lower the barrier for the entrance of Mobile Virtual Network
Operators (MVNO) to the market. While not possessing their
own network infrastructure, MVNOs can lease capacities from
Mobile Network Operators (MNOs) on the wholesale market
to ensure wireless services to their customers.

A new generation of MVNOs has recently emerged, capable
of leasing resources from different MNOs while also taking
advantage of the available WiFi hotspots in order to propose a
full connectivity offer to their customers. The latter can there-
fore afford to blindly use multiple network/technology services
to establish the communications and use mobile Internet with-
out any specific setting. Typically, such MVNOs can launch
their activity thanks to specific inter-operator partnerships with
MNOs for the cellular infrastructure utilization while the WiFi
offloading part remains a unilateral decision. A recent example

is offered by Google through its Project-Fi [1], launched in
the U.S. in partnership with three leading MNOs, namely
Sprint, T-Mobile and U.S. Cellular. This illustrates the case
of a competitive MVNO able to absorb a significant part of
the retail market (on mobile and data services) from the MNOs
without being an expert in networking or even possessing the
physical infrastructures and the ability to manage them.

On the other hand, an entrant MVNO can be already
positioned at a higher place in the Value Chain and have
income from its new customers through its current “non telco”
activity. In fact, this MVNO may have a good reputation as
an OTT (”Over the Top”) providing content or other high
level services; it can thus draw significant additional revenue,
hereafter termed as indirect to differentiate it from the telco
offer, from its new customers.

This new multi-technological and multi-activity context
therefore raises new questions as to the interactions between
MNOs and such a MVNO, namely the optimal price setting
adopted by all actors and the consequences on the respective
market shares and profits. The economic viability of a possible
partnership between MNOs and the MVNO should, in partic-
ular, be understood on account of the existence of alternative
technologies and other sources of revenues.

A. State-of-the-art

The ecosystem of MNO-MVNO relationships has been
addressed in many studies. A detailed description of the
MVNOs’ classes in terms of their dependence to the host
operator is presented in [2], where it is shown that a MVNO
can be classified as either light or full. The authors describe,
in particular, the possible business models of MVNOs and
examine the impact of different parameters such as the MNO’s
market share on the outcome of cooperation between the host
and virtual operators. In [3], the authors analyze the incentives
for MNOs to form a strategic cooperation with MVNOs. They
specifically examine the effects of the brand appeal of the
MVNO and the wholesale discount offered by the MNO on
the fulfillment of mutually beneficial partnerships.

Besides, the economic viability of MNO-MVNO relation-
ship has been investigated in [4], [5] and references therein.
First in [4], it is argued that the business of a MVNO may be
profitable in a transitory phase when it partners with MNOs
with a small market share; however, it is shown in [5] that,
in the long term, the MVNO is better off when it preferably
partners with a big MNO, say, the incumbent. The latter pointISBN 978-3-903176-08-9 c© 2018 IFIP

of view of a stabilized market and mature economic actors
will be adopted in the sequel.

A multi-stage game for modeling the MNO-MVNO inter-
action is presented in [6] where the MNO investment, the
MVNO’s decision on the leasing from the MNO and the
retail pricing are successively focused on at each stage. In [7],
spectrum leasing and pricing are studied with game-theoretic
models. A comprehensive study of the market share between
MNO and MVNO based on the brand appeal of the MNO is
provided in [8] where the authors also use game theory tools.

A recent study of Google-Fi like MVNOs is provided in
[9] where the price setting between multiple service providers
and the virtual operator is examined. In that paper, the user
defection rate to the MVNO is assumed to be simply constant
with no account of the impact of the MVNO price on its
customer base; further, the authors only optimize the MVNO
price for given wholesale MNO prices.

In contrast, we will here consider a more accurate economic
model wherein (1) using the so-called price-demand elasticity,
the users reply to the MVNO offer depends on the varying
price difference between the MVNO offer and that of the other
MNOs; (2) beside the search of an optimal retail price for
the MVNO, we also determine the wholesale MNO prices by
maximizing their respective profit.

B. Addressed issues and contributions

In this paper, we make a thorough economic analysis of
strategic MNO-MVNO partnership. We consider the upcoming
of a new MVNO, a potential competitor proposing low-cost
services and threatening the MNO market share. Specifically,
we address the following questions:
• When a MNO decides to conclude a partnership with

the MVNO, what is the best price setting for the partner
MNO in order to maximize its profit?

• When the wholesale prices are fixed by partner MNOs,
what is the optimal price that should be charged by the
MVNO to its customers ?

• What is the impact of the MVNO’s indirect revenues on
its optimal retail price ?

• What is the best decision for the MNOs facing the entry
of the MVNO?

In this aim, the optimal price setting is addressed via a Stackel-
berg Game involving leaders and followers [5] (Section 2.3.6).
In particular, we define and study two different decision-
making models for the optimal wholesale price setting, namely
a fully sequential model and a partially sequential model;
we then determine the optimal retail price of the MVNO.
Furthermore, we study the impact of the MVNO’s indirect
revenue on its optimal retail price in both decision-making
models. Finally, we propose a game-theoretical approach to
determine the Nash equilibrium under sufficient conditions on
this indirect revenue and discuss its economic interpretation.

C. Paper structure

In Section II, we formally introduce the economic model
describing the interactions between MNOs and the MVNO. In

Section III, we formulate the price setting problem and study
the wholesale and retail price optimization for all actors. A
game-theoretical setting is discussed in Section IV. In Section
V, we comment our general results on economic grounds.
Finally, some concluding remarks are given in Section VI.

II. ECONOMIC MODEL AND ASSUMPTIONS

We consider a mobile operator market composed of two
MNOs that share the whole customer base. The upcoming
of a new MVNO proposing an attractive price impacts the
repartition of customers who can defect from their original
operators to the benefit of this MVNO. The MNOs must then
identify the best decisions they are able to make, that is,
to decide whether to partner with the MVNO. An operator
that would decide to contract a partnership with the MVNO
would obviously not be immune to lose customers but might,
nevertheless, recover a part of the lost retail revenue via
the wholesale income. Given this ecosystem, the economic
variables of the MNOs and MVNO activity can be described
as follows:

MNO’s profit: the profit of a MNO is the sum of its
revenues obtained from the retail market for end-users (and
possibly from the Business-to-Business wholesale market for
partner MNOs) from which are subtracted the corresponding
costs. Denote by pi (resp. wi) the unit price of MNO i on
the retail (resp. the wholesale) market; the retail revenues
then depend linearly on the operator’s customer base, while
the wholesale revenues depend linearly on the amount of
MVNO traffic accommodated by the MNO’s network. Besides,
we consider unit network costs ci, non-network costs c̃i (IT,
commercial, etc.) and fixed costs Ci; as a linear approximation,
the total network and non-network costs are assumed to
depend linearly on the customer base whereas fixed costs are
independent of the amount of the operator’s customer base;

MVNO’s profit: the total revenue of the MVNO is the sum
of direct revenues obtained from the retail market (with net
unit price p0) and of indirect revenues (with unit price r0)
obtained from e.g. advertising. As to network costs, we here
consider that the MVNO enables its users’ devices either to
automatically connect to a free public WiFi Access Point (AP)
or to a partner MNO’s network, depending on the Quality of
Service of each access mode. The proportion of MVNO traffic
handled by free WiFi APs is denoted by γ ∈ [0, 1[; the only
network costs of the MVNO are therefore those caused by
the other proportion 1−γ of traffic dealt with MNOs through
partnerships. In addition to these network costs, the MVNO
finally incurs non-network and fixed costs denoted by c̃0 and
C0, respectively.

For both MNOs, we assume that long-distance (backhaul
and core) network costs are negligible compared to the access
costs; the possible wholesale offer of any MNO will therefore
mainly account for the transportation through its cellular
access network of MVNO traffic.

Users Behavior: the users’ reply to the MVNO’s offer is
assumed to depend only on the relative price of that offer.
Specifically, the behavior of users is modeled according to

326

TABLE I
KEY TERMS AND SYMBOLS

Symbol Definition (i = 1, 2)
pi, ci, c̃i Unit retail price, network and non-network costs

of MNO i

Ci Fixed costs of MNO i
Qi Customer base of MNO i before the MVNO’s entry
Q Total customer base

πi = Qi/Q Market share of MNO i before the MVNO’s entry
Qi,0 Customer base of MNO i which defects to the MVNO
Q0 Total customer base of the MVNO
r0 Net unit indirect revenues of the MVNO

p0, c̃0 Unit retail price, non-network costs of the MVNO
C0 Fixed costs of the MVNO
wi Unit wholesale price charged by MNO i to the MVNO
γ Proportion of MVNO traffic handled by

free WiFi APs

TABLE II
MVNO TRAFFIC SPLIT

Traffic Amount Accommodation
γQ0 WiFi APs

(1− γ)π1Q0 MNO 1’s Cellular BSs
(1− γ)π2Q0 MNO 2’s Cellular BSs

the price-demand elasticity [10] so that the part of MNO i
customers which defects to the MVNO is expressed by

Qi,0 = εQi

(
pi − p0

pi

)
(1)

where Qi denotes the customer base of MNO i before the
MVNO joins the market and ε > 0 is the price-demand
elasticity coefficient (although generally depending on prices,
ε is here assumed to be a constant on the basis of a small
price variability range). Without loss of generality, we assume
throughout the paper that p2 6 p1 and p0 6 p2; this ensures
that both Q1,0 and Q2,0 are non-negative. The MVNO’s total
customer base is then

Q0 = Q1,0 +Q2,0. (2)

MVNO traffic split: in the case when both MNOs partner
with the MVNO, the MVNO traffic which is not supported
by free WiFi APs is split between MNOs networks propor-
tionally to their market share before the MVNO’s upcoming.
Consequently, the traffic transported for the MVNO on MNO
i network equals (1−γ)πiQ0, where πi = Qi/Q is the market
share of MNO i before the MVNO’s entry (with π1 +π2 = 1).
This is motivated by the fact that the MVNO will partner with
a MNO all the more that the latter has a large market share.

Note finally that a sample value of parameter γ is given by
the ratio of the duration spent on WiFi access to the overall
duration of a given communication session; this ratio can
then be averaged over all successive sessions to provide the
mean proportion γ; the latter is clearly related to the given
geographic density of the WiFi APs.

Tables I and II sum up the notation used in the paper.

III. WHOLESALE AND RETAIL PRICE SETTING

In this section, we address the optimization of MNOs and
MVNO profits in order to determine the optimal wholesale and
retail prices. Specifically, we introduce several optimization
problems where wi, i ∈ {1, 2}, and p0 are the decision
variables. In the sequel, we denote by ”Part” the strategy
consisting in partnering with the MVNO and by ”NonPart”
the strategy consisting in not partnering with the MVNO. In
a competitive environment where the MNOs do not collude
with each other, two scenarios can be envisaged:
A. Only one operator, either MNO 1 or MNO 2, decides

to contract with the MVNO. We denote this scenario by
(Part-NonPart) or (NonPart-Part), respectively;

B. Both operators choose to contract with the MVNO. We
denote this scenario by (Part-Part).

These two scenarios are successively analyzed below.

A. Scenario (Part-NonPart)
Consider first the case when only MNO i proposes a

wholesale offer to the MVNO, while MNO −i decides not
to partner with the new entrant (by convention, i = 1 or 2
implies −i = 2 or 1). In this case, the traffic γQ0 generated
by the MVNO’s users will be delivered through free WiFi APs
and the remaining (1 − γ)Q0 will be handled by the partner
MNO’s network. The MVNO’s profit is therefore given by

R0(p0, wi) = (p0 + r0)Q0 − wi(1− γ)Q0 − c̃0Q0 − C0. (3)

The optimal MVNO’s retail price p∗0 can then be determined
by solving the following optimization problem:

max
06p06p2

R0(p0, wi). (4)

Lemma 1. In the (Part-NonPart) scenario, given the whole-
sale price wi, the optimal MVNO retail price equals

p∗0(wi) = min(p̃0(wi), p2) (5)

where

p̃0(wi) =
1− γ

2
wi +

Q

2S
+
c̃0 − r0

2
, (6)

with S = Q1/p1 +Q2/p2.

Proof. First observe that, in view of definitions (1) and (2),
Q0 involved in expression (3) is a linear function of vari-
able p0, thus making the profit R0 a quadratic function of
p0. Given the price wi, the first order optimality condition
∂R0(p0, wi)/∂p0 = 0 for problem (4) then provides the
critical point p̃0(wi) as given in (6). Besides, the second
derivative ∂2R0(p0, wi)/∂p

2
0 is equal to the negative constant

−2εS; R0(p0, wi) is therefore a strictly concave function of
p0 with a unique maximum at price p∗0(wi) given by (5).

Now, we consider the profit of MNO i given by

Ri(p0, wi) = pi(Qi −Qi,0) + wi(1− γ)Q0 −
ci(Qi −Qi,0 + (1− γ)Q0) −
c̃i(Qi −Qi,0)− Ci,

327

that is,

Ri(p0, wi) = hi(Qi −Qi,0) + (wi − ci)(1− γ)Q0 − Ci (7)

where hi = pi − ci − c̃i > 0. The partner MNO i seeks to
maximize its profit Ri. To this end, we replace p0 involved
in expression (7) via Qi,0 and Q0 by its optimal value p∗0(wi)
derived in Lemma 1; in fact, the MNO anticipates the best
pricing strategy of the MVNO and thus sets its optimal
wholesale price based on this anticipation. Define then

R∗i (wi) = Ri(p
∗
0(wi), wi) (8)

which is obtained through (7) with Qi,0 = εQi(pi−p∗0(wi))/pi
and Q0 given by (2). The optimization problem for MNO i
can then be expressed by

max
wi>0

R∗i (wi). (9)

Proposition 1. In the (Part-NonPart) scenario, the optimal
MNO’s wholesale price equals

ŵi = min(wi, w̃i) (10)

where we set

wi =
1

1− γ

(
2p2 −

Q

S
+ r0 − c̃0

)
(11)

and

w̃i =
ci
2

+
1

1− γ

(
hiQi

2piS
+

Q

2S
+
r0 − c̃0

2

)
. (12)

The optimal MVNO’s retail price is then determined by

p̂0(ŵi) = min(p̃0(ŵi), p2). (13)

Defining the constant

ri,0 =
hiQi

piS
+ ci(1− γ) +

3Q

S
+ c̃0 − 4p2, (14)

we then have wi 6 w̃i ⇐⇒ p∗0(ŵi) = p2 ⇐⇒ r0 6 ri,0.

Proof. We consider the two cases (a) p̃0(wi) > p2 and (b)
p̃0(wi) 6 p2. First consider case (a). This corresponds to
values of wi such that wi > wi where wi is given by (11).
Relation (5) then yields p∗0(wi) = p2 and by (8), we easily
show that R∗i (wi) = Ri(p2, wi) is a linear and increasing
function of wi. The optimal value of R∗i is thus obtained at
wi = +∞; but this unbounded price giving the value −∞ for
R0, case (a) is thus eventually excluded.

Now consider case (b). This corresponds to values of wi

such that wi 6 wi. Relation (5) now yields p∗0(wi) = p̃0(wi);
using (8) again and writing now

Qi,0 = ε
Qi

pi
(pi − p̃0(wi)), Q0 = Q1,0 +Q2,0

as functions of wi, R∗i (wi) = Ri(p̃0(wi), wi) can then be
easily expressed as a quadratic function of wi. The first order
optimality condition ∂R∗i (wi)/∂wi = 0 for problem (9) yields
the critical point w̃i as given in (12). Besides, the second
derivative ∂2R∗i (wi)/∂w

2
i is equal to the negative constant

Leader MNO
i chooses wi

MNO −i
chooses w−i

MVNO
chooses p0

MNO 1
chooses w1

MNO 2
chooses w2

MVNO
chooses p0

Fig. 1. Hierarchical decision models. Left, Fully sequential model. Right,
Partially sequential model.

−ε(1 − γ)2S/2. Therefore, R∗i (wi) is a strictly concave
function of wi with a unique maximum at ŵi given by (10).

The optimal MVNO’s retail price is obtained by replacing
wi in (5) by ŵi given in (10), hence (13). Finally, elementary
algebra reduces condition wi 6 w̃i to r0 6 ri,0, with ri,0
given by (14).

All previous results symmetrically hold for the (NonPart-
Part) scenario.

B. Scenario (Part-Part)
We now turn to the situation where both MNOs partner with

the MVNO. Two models can be proposed depending on the
order in which decisions are taken, namely:
• A Fully Sequential (FS) model where a leader MNO

(say, the one with the highest market share) first chooses
its wholesale price; then the second MNO, the follower,
determines its wholesale price accordingly; finally, the
MVNO chooses its retail price. This situation is illus-
trated in Fig. 1-Left.

• A Partially Sequential (PS) model where first the two
MNOs (say, with comparable weights) choose their re-
spective wholesale price without coordination; then, the
MVNO chooses its retail price. This situation is illus-
trated in Fig. 1-Right.

In both models, we consider that the MNOs move before the
MVNO because they own the resources to lease to the latter.
They forecast the MVNO’s reply to their pricing strategies and
choose the wholesale prices that maximize their profits, given
the anticipated MVNO’s optimal pricing strategy. The MVNO
eventually chooses its retail price, given the wholesale prices
fixed by the MNOs.

The MVNO’s profit is now given by

R0(p0, w1, w2) = (p0 + r0)Q0 − w1(1− γ)π1Q0 −
w2(1− γ)π2Q0 − c̃0Q0 − C0 (15)

and the optimization problem of the MVNO is formulated by

max
06p06p2

R0(p0, w1, w2). (16)

328

Lemma 2. In the (Part-Part) scenario, given the wholesale
prices w1 and w2, the optimal retail price of the MVNO equals

p∗0(w1, w2) = min(p̃0(w1, w2), p2) (17)

where

p̃0(w1, w2) =
(1− γ)

2
(π1w1 + π2w2) +

Q

2S
+
c̃0 − r0

2
. (18)

Proof. Similar to that of Lemma 1.

In this section, the notations for profit Ri should not be
confused with that of Section III-A. Now, consider the profit
of MNO i ∈ {1, 2} given by

Ri(p0, wi) = pi(Qi −Qi,0) + wi(1− γ)πiQ0 −
ci(Qi −Qi,0 + (1− γ)πiQ0)−
c̃i(Qi −Qi,0)− Ci,

that is,

Ri(p0, wi) = hi(Qi −Qi,0) + (19)

(wi − ci)(1− γ)πiQ0 − Ci

where we set hi = pi − ci − c̃i. Both MNO partners 1 and
2 seek to maximize their own profit R1 and R2. In order to
solve this optimization problem for either model (FS) or (PS),
we replace p0 by its optimal value p∗0(w1, w2) derived above
in Lemma 2. Define then

R∗i (w1, w2) = Ri(p
∗
0(w1, w2), wi) (20)

as obtained from (19) with Qi,0 = εQi(pi − p∗0(w1, w2))/pi
and Q0 given by (2).

We now successively address the maximization of MNOs
profits for the (FS) and (PS) models.

1) Fully Sequential Model: Assume that MNO i ∈ {1, 2}
is the leader and MNO −i is the follower (by convention,
−i = 2 if i = 1, and −i = 1 if i = 2). Given wi, the
follower thus decides on the wholesale price w−i to charge
the MVNO. The optimization problem for both MNOs can
then be expressed by the following bilevel formulation

max
wi>0

R∗i (w1, w2)|w−i=w∗
−i
,

subject to w∗−i = argmax
w−i>0

R∗−i(w1, w2)
(21)

where the notation |w−i = w∗−i means that function R∗i is
evaluated for the variable w−i equal to w∗−i; note that w∗−i is
a function of wi. The symmetrical case when MNO −i is the
leader is similarly defined. In order to solve problem (21), we
introduce the following definitions.

Definition 1. We denote by ∆ the closed triangular region
defined by ∆ = {(w1, w2) ∈ R+ × R+ : p̃0(w1, w2) 6 p2}
where p̃0(w1, w2) is given by (18) (see Fig. 2).

Further denote by δ the boundary segment of ∆ defined by
δ = {(w1, w2) ∈ ∆ : p̃0(w1, w2) = p2}.

∆

wC

wA

wB

δ

DA

δ

DB

w̃A

w̃B

w1

w2

Fig. 2. The region ∆, its boundary δ, and the points wA, wB , w̃A, w̃B

and wC (lines DA and DB are invoked in Appendix VII-A).

Definition 2. Let wA = (wA
1 , w

A
2) and wB = (wB

1 , w
B
2)

denote the pair of prices given by

wA
1 =

h1Q1

p1
+ c1(1− γ)π1S + 2Q− 2Sp2

(1− γ)π1S
,

wA
2 =

−h1Q1

p1
− c1(1− γ)π1S − 4Q+ 4p2S + T

(1− γ)π2S
and

wB
1 =

−h2Q2

p2
− c2(1− γ)π2S − 4Q+ 4p2S + T

(1− γ)π1S
,

wB
2 =

h2Q2

p2
+ c2(1− γ)π2S + 2Q− 2Sp2

(1− γ)π2S
,

respectively, with T = Q+ (r0 − c̃0)S for short.
Define also the function Ω−i, i ∈ {1, 2}, by

Ω−i(wi) =
c−i
2

+
h−iQ−i

2p−i(1− γ)π−iS
+

Q

2(1− γ)π−iS
−

c̃0 − r0

2(1− γ)π−i
− πi

2π−i
wi (22)

and the points w̃B = (w̃1,Ω2(w̃1)), w̃A = (Ω1(w̃2), w̃2)
where

w̃i =

hiQi

pi
− h−iQ−i

p−i
+ S(1− γ)(ciπi − c−iπ−i) + T

2(1− γ)πiS
. (23)

Note that wA ∈ δ and wB ∈ δ; a geometric interpretation of
the pairs wA, wB and w̃A, w̃B is given in Appendix VII-A.
We can now state the following.

Proposition 2. Define the constant r0 by

r0 =
h1Q1

p1S
+
h2Q2

p2S
+(1−γ)(π1c1 +π2c2)+

7Q

S
+ c̃0−8p2.

329

In the (Part-Part) scenario with FS model,
• if r0 6 r0 and MNO 1 (resp. MNO 2) is the leader, then

the optimal wholesale price vector (w∗1 , w
∗
2) is given by

wB ∈ δ (resp. wA ∈ δ) introduced above. In either case,
the optimal MVNO’s retail price is then

p∗0(w∗1 , w
∗
2) = p2;

• if r0 > r0 and MNO 1 (resp. MNO 2) is the leader, then
the optimal wholesale price vector (w∗1 , w

∗
2) is given by

w̃B ∈ ∆ \ δ (resp. w̃A ∈ ∆ \ δ) introduced above. In
either case, the optimal MVNO’s retail price is then

p∗0(w∗1 , w
∗
2) = p̃0(w∗1 , w

∗
2) < p2.

We defer the detailed proof to Appendix VII-A.

2) Partially Sequential Model: Now assume that MNOs
simultaneously choose their optimal wholesale prices. Given
(20), the joint optimization problem for both MNOs is thus
expressed by

max
w1>0

R∗1(w1, w2) (24)

and

max
w2>0

R∗2(w1, w2). (25)

Definition 3. Let wC = (wC
1 , w

C
2) denote the pair of prices

given by

wC
1 =

2h1Q1

p1
− h2Q2

p2
+ (1− γ)(2c1π1 − c2π2)S + T

3(1− γ)π1S
,

wC
2 =

2h2Q2

p2
− h1Q1

p1
+ (1− γ)(2c2π2 − c1π1)S + T

3(1− γ)π2S

with T = Q+ (r0 − c̃0)S .

The pair wC is given a geometric interpretation in Appendix
VII-B. This enables us to state the following.

Proposition 3. Define the constant r[0 by

r[0 =
h1Q1

p1S
+
h2Q2

p2S
+(1−γ)(π1c1 +π2c2)+

5Q

S
+ c̃0−6p2.

In the (Part-Part) scenario with PS model,
• if r0 > r[0, the optimal wholesale price vector (w∗1 , w

∗
2)

is given by wC ∈ ∆\δ. The optimal MVNO’s retail price
is then

p∗0(wC
1 , w

C
2) = p̃0(wC

1 , w
C
2) < p2

as defined by (18);
• if r0 = r[0, the optimal wholesale price vector (w∗1 , w

∗
2)

is given by wC ∈ δ. The optimal MVNO’s retail price is
then p∗0 = p2;

• if r0 < r[0, the problem (24)-(25) admits no solution.

The proof of Proposition 3 is detailed in Appendix VII-B.

IV. GAME-THEORETIC MODEL

In this section, we propose a non-cooperative game-
theoretical model to formalize the competition between MNO
1 and MNO 2.

Definition 4. Introduce the two-player game where
− the players are MNO 1 and MNO 2,
− the strategies are either to contract with the new entrant,

”Part” strategy, or not to contract, ”NonPart” strategy,
− the payoffs are given by the matrix

(Part NonPart

Part (R∗1(w∗1 , w
∗
2),R∗2(w∗1 , w

∗
2)) (R∗1(ŵ1),R2(ŵ1))

NonPart (R1(ŵ2),R∗2(ŵ2)) (R0
1,R0

2)

)
.

In this matrix, the pair (R0
1,R0

2) corresponds to the scenario
when no MNO partners with the MVNO, thus forbidding its
entrance into the market.

We recall that a Nash Equilibrium (NE) is a strategy profile
such that no player has an incentive to unilaterally deviate
from this profile [11]. Besides, recall from definition (1) that
Qi,0 denotes the customer part which defects from MNO i to
the new entrant in the scenario (Part, Part); furthermore, let
Q̂i,0 denote the customer part which defects from MNO i to
the MVNO in the scenario (NonPart, Part), that is, when only
MNO −i contracts a partnership with the new entrant.

Lemma 3. In the FS model with r0 6 r0, a MNO loses more
customers when it is non-partner than when it is a partner of
the MVNO, that is, Q̂i,0 > Qi,0.

Proof. From Proposition 2 with r0 6 r0, we have
p∗0(w∗1 , w

∗
2) = p2 while Proposition 1 entails p̂0(ŵ−i) 6 p2.

Using definition (1), we then deduce that the difference
Qi,0 − Q̂i,0 = εQi

pi
(p̂0(ŵ−i)− p∗0(w∗1 , w

∗
2)) is non-positive,

as claimed.

As a consequence, we can formulate the subsequent result
on the existence of a Nash equilibrium.

Proposition 4. In the FS model with r0 6 r0 and for
wholesale prices higher than network costs,

(a) the scenario (Part, Part) is a NE;
(b) if r0 6 min(r0, r2,0), (Part, Part) is the unique NE.

Proof. (a) Scenario (Part, Part) is a NE. Suppose that both
operators partner with the MVNO, that is, the scenario is
(Part, Part); consider MNO i and let R∗i (w∗1 , w

∗
2) denote its

profit for this scenario. Assume now that MNO i unilaterally
switches from strategy ”Part” to strategy ”NonPart”; we denote
by Ri(ŵ−i) the profit of MNO i when it applies strategy
”NonPart” while MNO −i keeps strategy ”Part”. We then have

R∗i (w∗1 , w
∗
2) = hi(Qi −Qi,0) + (w∗i − ci)(1− γ)πiQ0 − Ci

and Ri(ŵ−i) = hi(Qi − Q̂i,0)− Ci, so that

R∗i (w∗1 , w
∗
2)−Ri(ŵ−i) = hi(Q̂i,0 −Qi,0) + (w∗i − ci)×

(1− γ)πiQ0. (26)

330

As Q̂i,0 > Qi,0 by Lemma 3, the profit difference
R∗i (w∗1 , w

∗
2) − Ri(ŵ−i) in (26) is then non-negative after

assumptions hi > 0 and w∗i − ci > 0; MNO i then has no
incentive to unilaterally deviate from strategy ”Part” since this
yields a profit decrease. (Part, Part) is thus a NE.

(b) (Part, Part) is the unique NE. Assume both MNOs
use strategy ”Non Part”. Now suppose MNO 2 unilaterally
switches to ”Part”; we first have R0

2 = h2Q2 − C2 while
R∗2(ŵ2) = h2(Q2 − Q̂2,0) + (ŵ2 − c2)(1 − γ)Q0 − C2 after
(7), hence

R∗2(ŵ2)−R0
2 = −h2Q̂2,0 + (ŵ2 − c2)(1− γ)Q0. (27)

From Proposition 1, we have Q̂2,0 = 0 if r0 6 r2,0; the
difference R∗2(ŵ2) − R0

2 in (27) is then non-negative after
assumption ŵ2 − c2 > 0 and (Non Part, Non Part) is not a
NE. We conclude that if r0 6 r0 and r0 6 r2,0, (Part,Part) is
the only NE.

Note that a preliminary study has given us hints for
(Part,Part) to be still a NE for r0 > r0. For the PS model,
a similar analysis should also be addressed for r0 6 r[0.

V. ECONOMIC DISCUSSION

The results obtained in the previous sections allow us to
provide the following comments.

Scenario (Part-Part): When both MNOs partner with the
MVNO, Propositions 2 and 3 entail that, when γ → 1, all
optimal wholesale prices are of order 1/(1−γ); this increasing
rate again confirms the effect of economy of scale. Now,
regarding the MVNO’s optimal retail price, we distinguish two
cases depending on the order in which decisions are taken by
MNOs. First, we have shown (Proposition 2) for the FS model
that the entrant MVNO charges its users the same price p2 as
the lowest MNO if r0 6 r0, thus attracting users only from the
MNO with the highest retail price; otherwise, it attracts users
from both MNOs. Second, we have shown (Proposition 3) for
the PS model that the entrant MVNO cannot set an optimal
retail price strictly lower than both MNOs’ prices unless it has
sufficiently high indirect revenues, that is, r0 > r[0. Otherwise,
if r0 < r[0, there is no wholesale prices that jointly optimize
both MNOs profits.

For each class of actors, we can conclude the following:
For the MVNO: for all scenarios, the MVNO retail price p∗0

decreases with r0; the MVNO can thus set a retail price strictly
lower than that of the MNOs if it has high enough indirect
revenues. Besides, the threshold value r0 (resp. r[0) in model
FS (resp. model PS) is a decreasing function of the proportion
γ, so that the MVNO has an optimal retail price strictly lower
than that of both MNOs for large enough γ. The technological
independence of the MVNO from its partner MNOs due to free
WiFi access thus translates into an economic advantage on the
retail market (but this does not obviously account for better
QoS and security levels offered to its customers if a larger part
of MVNO traffic were transferred through optimized cellular
networks);

For the MNOs: for the FS model and under sufficient
conditions on the indirect revenue of the MVNO, the scenario
(Part, Part) defines the unique NE. This means that the MNOs
have then an incentive to partner with the new entrant: in fact,
the MNOs would in the first place prefer that the MVNO does
not enter the market in order to keep their customer base, but
each MNO fears that its competitor hosts the MVNO, in which
case it would incur losses both on the retail and wholesale
markets. As a consequence, both MNOs will eventually decide
to partner with the MVNO. In addition, a non-partner MNO
would incur higher retail losses if it were non-partner than
when it is a partner of the MVNO. Cooperating with the
MVNO therefore enables each MNO to compensate for a part
of its retail revenue losses.

VI. CONCLUSION

In this paper, our contribution is twofold. First, we address
the price setting optimization problems for both MNOs and the
entrant MVNO in the framework of two distinct scenarios. In
this aim, we propose several mathematical programming for-
mulations for the underlying problems, each one correspond-
ing to a specific decision-making scheme; we also discuss
the economic interpretation of the optimal solution in each
case. Secondly, based on the optimal price setting step, we
provide a game-theoretical analysis of the MNOs competition
and show that (Part, Part) is the unique Nash Equilibrium, and
thus the most profitable scenario for both MNOs, provided
that appropriate conditions on the MVNO’s indirect revenue
are fulfilled.

The particular case of only two competing MNOs has
provided us with interesting results, and a natural extension
to this work would be to generalize the results obtained for
two MNOs to an arbitrary number (n > 3) of MNOs. Indeed,
the two-dimensional optimization problems that we have here
addressed may exhibit other features in the n-dimensional
case (e.g. several possible optimal points). Furthermore, the
associated n-player games could be amenable to cooperation
schemes among players which could be interestingly studied.
On the other hand, other demand models differing from
that considered in this paper (customer defection due to the
price/demand elasticity) could also be envisaged; alternative
models based on interactions between users or on the MVNO
brand appeal could capture other preference sources of users
towards each actor.

ACKNOWLEDGMENT

The authors thank V. Chandrakumar, L. Le Beller and M.
Touati at Orange Labs for fruitful discussions, together with
the anonymous referees for their valuable comments.

REFERENCES

[1] “Google’s project Fi website,” https://fi.google.com/about/.
[2] M. Balon and B. Liau, “Mobile virtual network operator,” in Proc. of the

15th International Telecommunications Network Strategy and Planning
Symposium (NETWORKS), Rome, Oct 2012, pp. 1–6.

331

[3] A. Banerjee and C. M. Dippon, “Voluntary relationships among mobile
network operators and mobile virtual network operators: An economic
explanation,” Information Economics and Policy, vol. 21, no. 1, pp. 72–
84, 2009.

[4] L. Zheng, C. Joe-Wong, J. Chen, C. G. Brinton, C. W. Tan, and
M. Chiang, “Economic viability of a virtual ISP,” in Proc. of the IEEE
International Conference on Computer Communications (Infocom), At-
lanta, USA, May 2017, pp. 1–9.

[5] P. Maillé and B. Tuffin, Telecommunication Network Economics From
Theory to Applications. Cambridge, 2014.

[6] M. H. Lotfi and S. Sarkar, “The economics of competition and co-
operation between MNOs and MVNOs,” in Annual Conference on
Information Science and Systems (CISS), Baltimore, March 2017.

[7] L. Guijarro, V. Pla, B. Tuffin, P. Maille, and J. R. Vidal, “Competition
and bargaining in wireless networks with spectrum leasing,” in Proc. of
IEEE Global Telecommunications Conference (GLOBECOM), Houston,
USA, Dec 2011, pp. 1–6.

[8] M. Debbah, L. Echabbi, and C. Hamlaoui, “Market share analysis be-
tween MNO and MVNO under brand appeal based segmentation,” in 6th
International Conference on Network Games, Control and Optimization
(NetGCooP), Avignon, France, Nov. 2012, pp. 9–16.

[9] L. Zheng, J. Chen, C. Joe-Wong, C. W. Tan, and M. Chiang, “An
economic analysis of wireless network infrastructure sharing,” in Proc.
of the 15th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), Paris, May 2017, pp.
1–8.

[10] K. E. Case, R. C. Fair, and S. M. Oster, Principles of Economics.
Pearson Prentice Hall, 2012.

[11] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54,
no. 2, pp. 286–295, Sep. 1951.

[12] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, Third edition. New Jersey: Wiley, 2006.

VII. APPENDIX

A. Proof of Proposition 2.
Recall that MNO i ∈ {1, 2} (resp. MNO −i) is assumed

to be the leader (resp. the follower). We successively consider
the two cases (a) (w1, w2) /∈ ∆ and (b) (w1, w2) ∈ ∆.

First consider case (a). In view of (17), this corresponds
to values of (w1, w2) such that p∗0(w1, w2) = p2 and by (20),
we easily show that R∗−i(w1, w2) = R−i(p2, w−i) is a linear
and increasing function of w−i. The optimal value of R∗−i is
thus obtained at w−i = +∞; as this unbounded price gives
the value −∞ for R0, case (a) can thus be excluded.

Now consider case (b). By (17), this corresponds to pairs
(w1, w2) such that p∗0(w1, w2) = p̃0(w1, w2). To solve the
optimization problem for follower MNO −i in (21) with given
wi, we introduce the associated Lagrange function given by

L−i(w1, w2, λ−i) = R∗−i(w1, w2)− λ−i (p̃0(w1, w2)− p2)

where λ−i is the Lagrange multiplier associated to the con-
straint p̃0(w1, w2) 6 p2; from definition (20) and the expres-
sion (18) of p̃0(w1, w2), R∗−i(w1, w2) is easily expressed as
a quadratic function of variable w−i. The system of Karush-
Kuhn-Tucker (KKT) ([12], Chap.4, Sec. 4.2.13) conditions for
the Lagrangian L−i above can be written as

∂L−i
∂w−i

(w1, w2, λ−i) = 0,

λ−i > 0, λ−i
(
p̃0(w1, w2)− p2

)
= 0,

p̃0(w1, w2) 6 p2.

(28)

Two cases can intervene for the multiplier λ−i:

(I) if λ−i = 0, the first KKT condition in system (28) reads

∂R∗−i
∂w−i

(w1, w2) = 0; (29)

function R∗−i being quadratic, equation (29) is linear in both
variables w1, w2 and thus defines geometrically a line D
(displayed in Fig. 2 as line DB if −i = 2 or line DA

if −i = 1). Solving (29) for w−i then yields the unique
maximum at point w∗−i = Ω−i(wi) with function Ω−i defined
as in (22).

Now, consider the profit maximization in problem (21) for
the leader MNO i. In order to solve it, we replace w−i in the
profit R∗i (w1, w2) by the maximum w∗−i = Ω−i(wi) derived
above. Given (20), we thus define

R∗∗i (wi) = R∗i (w1, w2)|w−i=Ω−i(wi).

Recall that we consider case (b) for which (w1, w2) ∈ ∆ and
p∗0(w1, w2) = p̃0(w1, w2), so that the optimization problem
for leader MNO i eventually reads

max
wi>0

R∗∗i (wi),

subject to p̃0(w1, w2)|w−i=Ω−i(wi) 6 p2.

(30)

First, the constraint p̃0(w1, w2)|w−i=Ω−i(wi) 6 p2 in (30) is
easily translated into wi 6 wi where we set

wi =

−h−iQ−i
p−i

− c−i(1− γ)π−iS − 4Q+ 4p2S + T

(1− γ)πiS
with T = Q + (r0 − c̃0)S. Second, the 1st order condition
∂R∗∗i (wi)/∂wi = 0 for problem (30) yields the critical point
w̃i, given as in (23). The second derivative ∂2R∗∗i (wi)/∂w

2
i

being equal to the negative constant −ε(1 − γ)2π2
i S/2,

R∗∗i (wi) is therefore a strictly concave function of wi and
has a unique maximum on R+ at w̃i. It thus follows from the
latter discussion that

w∗i = min(w̃i, wi)

is the unique solution to problem (30). Now, we easily verify
that w̃i > wi ⇐⇒ r0 6 r0 where r0 is expressed in Proposi-
tion 2. We thus conclude that if r0 6 r0, the optimal solution is
the intersection point w∗ = (w1,Ω2(w1)) = wB ∈ DB∩δ when
i = 1, or w∗ = (Ω1(w2), w2) = wA ∈ DA ∩ δ when i = 2;
otherwise, if r0 > r0, the optimal solution is the intersection
point w∗ = (w̃1,Ω2(w̃1)) = w̃B ∈ DB ∩ ∆ when i = 1, or
w∗ = (Ω1(w̃2), w̃2) = w̃A ∈ DA ∩∆ when i = 2;.

(II) otherwise, if λ−i > 0, the first KKT condition
∂L−i(w1, w2, λ−i)/∂w−i = 0 in system (28) yields

w−i = ω̄−i(λ−i, wi), (31)

with ω−i(λ−i, wi) = Ai(wi)/εS(1− γ)π−i where we set

Ai(wi) = ε
h−iQ−i

2p−i
+ ε

Q

2
− εSwi

1− γ
2

πi − εS
c̃0 − r0

2
+

εc−i(1− γ)π−i
S
2
− λ−i

2
.

332

The complementary slackness condition p̃0(w1, w2) = p2 then
eventually reduces to λ−i = Λ−i(wi) where

Λ−i(wi) = εS(1− γ)πiwi + ε
h−iQ−i
p−i

+ 3εQ +

εS(c̃0 − r0) + εSc−i(1− γ)π−i − 4εSp2.

By inserting this expression of λ−i = Λ−i(wi) into the right-
hand side of (31), we finally get w−i = Ω−i(wi) where

Ω−i(wi) =
−(1− γ)πiSwi −Q− S(c̃0 − r0) + 2Sp2

S(1− γ)π−i
.

Now, consider the profit of leader MNO i given by

R∗∗i (wi) = R∗i (w1, w2)|w−i=Ω−i(wi)
.

The first derivative of R∗∗i (wi) with respect to wi equals
dR∗∗i (wi)/dwi = πi(1− γ)Q0 and is strictly positive; but in
the present case, wi ∈ [0, w0

i] where w0
i is either the abcissa

or the ordinate of the intersection point of line δ with the
axis w−i = 0. The corresponding optimal unit price w∗−i for
the follower MNO −i is therefore 0; as having no economic
relevance for this partner MNO, this case (II) is eventually
excluded.

B. Proof of Proposition 3.
We successively consider the two cases (a) (w1, w2) /∈ ∆

and (b) (w1, w2) ∈ ∆.
First consider case (a). In view of (17), this corresponds

to pairs (w1, w2) such that p∗0(w1, w2) = p2 and by (20),
we easily show that R∗i (w1, w2) = Ri(p2, wi) is a linear and
increasing function of wi, i ∈ {1, 2}. The optimal value of R∗i
is thus obtained at wi = +∞; as this unbounded price gives
the value −∞ for R0, case (a) can therefore be excluded.

Now consider case (b). In view of (17), this corresponds to
values of (w1, w2) such that p∗0(w1, w2) = p̃0(w1, w2). From
definition (20) and the expression (18) of p̃0(w1, w2), each
function R∗1(w1, w2) and R∗2(w1, w2) is again expressed as
a quadratic function of variable w1 and w2, respectively. The
KKT conditions associated with optimization problem (24) for
MNO 1, and optimization problem (25) for MNO 2, read

∂R∗i
∂wi

(w1, w2) = λi
(1− γ)πi

2
,

λi > 0, λi(p̃0(w1, w2)− p2) = 0,

p̃0(w1, w2) 6 p2;

(32)

for i = 1 and i = 2, respectively. At this point, we need to
distinguish three cases according to the values of the Lagrange
multipliers (I) λ1 = 0 and λ2 = 0, (II) λ1 > 0 and λ2 > 0,
(III) λ1 = 0 and λ2 > 0 (or reversely λ1 > 0 and λ2 = 0).

(I) First assume λ1 = 0 and λ2 = 0. The simultaneous
conditions

∂R∗1
∂w1

(w1, w2) = 0,
∂R∗2
∂w2

(w1, w2) = 0

yield the critical pair wC ∈ DA ∩ DB , intersection point
of lines DA and DB defined in (29). For each i ∈ {1, 2},

the second derivative ∂2R∗i (w1, w2)/∂w2
i equals the negative

constant −ε(1−γ)2π2
i S;R∗i is thus a strictly concave function

of the variable wi and the point wC is therefore the unique
joint maximum for R∗1 and R∗2. Besides, it is readily shown
that p̃0(wC

1 , w
C
2) < p2 if and only if r0 > r[0; in such a case,

we then have wC ∈ ∆ \ δ and this point wC is the optimal
pair of wholesale prices.

(II) Now assume λ1 > 0 and λ2 > 0. Solving each KKT
system (32) for i = 1 and i = 2, we get

w1(λ1) =

h1Q1

p1
+ c1(1− γ)π1S + 2Q− 2Sp2 −

λ1

ε

(1− γ)π1S
,

w2(λ1) =

h2Q2

p2
+ c2(1− γ)π2S + 2Q− 2Sp2 −

λ2

ε

(1− γ)π2S
,

λ1 + λ2 = εS(r[0 − r0).

We have λ1 + λ2 > 0 if and only if r0 < r[0. Calculating
the respective values of ϕ1(λ1) = R∗1(w1(λ1), w2(λ1)) and
ϕ2(λ1) = R∗2(w1(λ1), w2(λ1)) easily shows that ϕ1 and
ϕ2 are linear functions over interval [0, εS(r[0 − r0)] with
respective maximum at λ1 = 0 and λ1 = εS(r[0 − r0) (see
Fig. 3). Consequently, there cannot be a joint solution that
maximizes both R∗1(w1, w2) and R∗2(w1, w2) unless r0 = r[0,
in which case the optimal point coincides with wC .

ϕ1(λ1) ϕ2(λ1)

εS(r[0 − r0)0

λ1

Fig. 3. Variations of linear functions ϕ1 and ϕ2 on interval [0, εS(r[0−r0)].

(III) Finally assume λ1 = 0 and λ2 > 0. Solving then each
KKT system (32) for i = 1 and i = 2 yields the critical pair
wA and the value λ2 = εS(r[0 − r0); in particular, we have
λ2 > 0 if and only if r0 < r[0. Therefore, wA is the pair
of optimal wholesale prices when r0 < r[0. Symmetrically,
the case λ1 > 0 and λ2 = 0 gives the optimal pair wB if
r0 < r[0. In view of the above properties of functions ϕ1 and
ϕ2, however, we easily show that neither wA nor wB can be a
joint solution that simultaneously maximizes R∗1(w1, w2) and
R∗2(w1, w2), as required in (24) and (25). This joint problem
has consequently no solution when r0 < r[0.

333

HyLine: a Simple and Practical Flow Scheduling for

Commodity Datacenters

Soheil Abbasloo, Yang Xu, H. Jonathan Chao ({ab.soheil, yang, chao}@nyu.edu)

 New York University

Abstract— Today’s datacenter networks (DCNs) have been

built upon multipath topologies where each path contains multiple

links. However, flow scheduling schemes proposed to minimize

flow completion times (FCT) in DCNs are based on algorithms

which are optimum or close-to-optimum only over single link.

Moreover, most of these scheduling schemes seek either fully

centralized approaches having overhead of communicating to a

central entity or fully distributed approaches requiring changes in

the fabric.

Motivated by these shortcomings, we present HyLine a simple

scheduling design for commodity DCNs which is equipped with a

joint load-balancing and flow scheduling (path-aware) design

exploiting the multipath nature of DCNs. HyLine takes a hybrid

approach and uses the global-awareness of centralized and agility

of distributed techniques without requiring any changes in the

fabric. To that end, it determines a threshold margin identifying

flows for which using centralized approach is beneficial.

We have shown through extensive ns2 simulations that despite

HyLine’s simplicity, it significantly outperforms existing schemes

and achieves lower average and 99th percentile FCTs. For

instance, compared to Qjump–state-of-the-art practical scheme–

and pFabric–one of the best performing flow scheduling schemes–

HyLine reduces average FCT up to 68% and 31%, respectively,

under a production datacenter workload.

I. INTRODUCTION

User satisfaction (and total revenue) of today’s popular
datacenter applications such as search, social networks, and
recommendation systems is closely related to the response times
of these interactive applications. This motivates recent research
to propose new datacenter (DC) transport designs for
minimizing average flow completion times (AFCT) as the
primary objective that is mainly determined by the end-to-end
latency of datacenter networks (DCNs).

Prioritization is one of the main techniques used by different
approaches to achieve lower AFCTs [1-5]. Wide range of these
proposals use shortest remaining processing time (SRPT) (or its
simplified versions), the optimum scheduling algorithm when
used over a single link [1], to minimize AFCT in DCNs.
However, as we show in section III, these algorithms are
suboptimal for minimizing AFCT when each path in the
network has multiple links. This issue will be escalated when
multipath nature of today’s DCNs is considered.

Agility of fully in-network schemes motivates some
proposals to keep all changes in the network to achieve lower

response times [1, 6, 2]. However, this usually requires changes
in the fabric which brings extra costs for the datacenter owners
[18, 7]. On the other hand, using centralized schemes such as
[8], in which fabric will not be modified, comes at cost of
performance degradation due to the delay introduced by the
controller. This will be escalated when it is considered that most
of the DC flows are very small and can be finished in just a few
round trip times (RTTs) [9, 7]. Moreover, using explicit rate
control mechanisms to precisely adjust flows’ rates in the
network leads to high complexity in the centralized approach
(e.g., [3]) or the need to modify switches to coordinate with each
other for finding and maintaining the best rates in the distributed
approach (e.g., [6, 2]).

To overcome these shortcomings, in this paper, we present
HyLine, a simple and practical flow scheduling design which:

1. Takes a hybrid approach requiring no changes in the
fabric, and uses both global-awareness of centralized and agility
of distributed techniques such as priority flow control (PFC) in
layer 2,

2. Uses a joint load-balancing and flow scheduling (path-
aware scheduling) policy to exploit the multipath nature of
DCNs, and

3. Does not use any complicated per flow rate adjustment
mechanism.

To that end, HyLine determines a threshold identifying 2
categories of flows: flows that should be scheduled in a
centralized manner (2nd class flows having sizes larger than the
threshold) and flows that should not be (1st class flows having
size smaller than the threshold). Having that threshold, end-
hosts simply assign 1st class flows to the higher priority queue in
commodity switches and send them to the network at line rate
(TCP handles any further required rate adjustment). 2nd class
flows that are assigned to the lower priority queue will be
scheduled before coming to the network. Each of the 2nd class
flows should first send a request including flows’ information to
HyLine’s central MANager (MAN) seeking its permission.
MAN is responsible to control 2nd class flows in a very simple
stop-and-go fashion. To do that, it uses simple path-aware
scheduling policy to find the best path for the requested flow
based on flow’s information (priority). If a path is found for the
new flow, MAN sends back a Go signal carrying the path that
should be used by the corresponding flow. All permitted 2nd
class flows enter the network at their end-host’s line rate using
the assigned paths (each edge-link will be used by at most one
2nd class flow at a time). MAN also sends a Stop signal to the
preempted flows or the ones that cannot be served yet.

ISBN 978-3-903176-08-9 © 2018 IFIP

We evaluate HyLine’s performance through extensive
packet-level simulations in ns2 [10]. The results show that
despite simple nature of HyLine’s design, it significantly
outperforms recent schemes including pFabric [1], one of the
best performing flow scheduling schemes, Qjump [5], the state-
of-the-art practical scheme, and DCTCP [9]. In particular,
compared to pFabric, Qjump, and DCTCP, HyLine reduces
AFCT up to 31%, 68%, and 88% respectively, under a realistic
DCN workload [9].

II. RELATED WORKS

Transport Designs: There are vast number of TCP designs
targeting a specific environment (e.g., [28] in cellular context
and [3] in DCN context). Most of recent TCP proposals in DCN
context use various prioritization mechanisms to minimize FCT
[1, 4, 2, 3]. For instance, they assign different rates to flows
based on their criticality [2], tag each packet with its
corresponding priority and serve it regarding that priority in the
network [1], use strict priority scheduling among queues in
switches and assign flows dynamically to different levels of
priority [4], or use a combination of these strategies [3].
Although designs that use the prioritization idea achieve good
performance, they all are based on single-path scheduling
algorithms such as SRPT. Therefore, some of these schemes
(e.g., [3, 24]) only test their designs in single-path scenarios.
Most of the other ones including [1, 4, 11, 5] use packet spraying
[12] as load balancing mechanism to run their schemes on a
multipath DCN. However, packet spraying is not an available
feature in most of the commodity switches and is not used in
commodity DCNs [18, 7, 13]. Therefore, we avoid using such
load balancing mechanisms in this paper, though they might lead
to good performance.

Joint Transport-Load Balancing Designs: Almost none of
the load-balancing designs in the network layer are priority-
aware. To the best of our knowledge, there is only one scheme
called DeTail [14] in which a cross-layer approach is used to
reduce the long tail of FCTs in DCNs. Although DeTail achieves
good performance, a lack of backward compatibility and the
need for changing both switches and end-hosts make it very hard
if not impractical for commodity DCNs. Fastpass [8] uses a
centralized entity to handle not only scheduling block but also
load balancing block. However, it also follows the traditional
approach of designing scheduling block (timeslot allocation
block in [8]) and load balancing block (path selection block in
[8]) separately. Moreover, Fastpass could not minimize FCTs,
because at least for the very small flows that could be finished
in a few RTTs, it adds (at least) one RTT delay caused by
communication with Fastpass’s central controller.

Load Balancing Designs: Nearly all load balancing
schemes in DCNs are designed based on the fairness nature of

the network among all flows [15, 16, 17]. For instance, Hedera
[15] detects flows with sizes more than 100MB (10% of the
link’s capacity) and estimates their demands based on max-min
fairness criterion to reroute them. However, as recent transport
designs show, minimizing FCT in DCNs should be done through
considering the prioritization in the network. Therefore,
following the fairness criterion for designing the load balancing
block will cause suboptimal FCT, though a better load balancing
design, such as [16, 17], could reduce the overall FCT.

III. MOTIVATIONS & DESIGN DECISIONS

Scheduling Over Single-Link vs. Multiple-Link Paths: It
is usually mentioned in the literature that preempting lower
priority flows to serve higher priority ones minimizes the AFCT.
This statement is a direct result of considering SRPT–the
optimum solution when scheduling over a single link–as main
algorithm to schedule flows (e.g., [1, 2, 3]). However, we show
that this statement is wrong in a network where paths contain
multiple links. For that purpose, we use a simple example shown
in Fig. 1 where flows #1 and #2 have 5 and 4 remaining units
respectively. Now a new flow (Flow #3) with 3 units comes to
the network (consider remaining size of each flow as its priority
i.e., smaller size has higher priority). So clearly, in contrast with
SRPT, using no preemption (Fig. 1.a) leads to smaller AFCT.
This is important to mention that using either local-aware SRPT
(in S1 and S2 switches) (as in [1]) or global-aware SRPT (as in
[3]) will lead to the suboptimal result (Fig. 1.b). Therefore, the
incorrectness of the mentioned statement illustrates the need for
designing better scheduling algorithms by considering the
multiple-link nature of paths in DCNs.

Simple, deployable, and end-to-end: Datacenter owners
usually prefer using scale out (using commodity switches) to
scale up (using high-end switches with high-end new features)
to build their networks [18, 7]. This motivates us to not modify
any switches in the network, though modifying switches might
give good performance [1, 16, 6, 24] and look for a simple end-
to-end solution which is deployment friendly.

Why Hybrid? Centralized approaches are attractive
because they could use global knowledge of the network to
make better decisions [15, 8]. However, they suffer from some
issues. Due to the communication delay with the controller,
scheduling small flows (most flows in DCNs [9]) through
centralized approaches is not desired. Another issue is their
response times. For instance, the scheduler in [15] runs every 5
seconds, which leads to its bad performance compared to
distributed solutions such as [16]. For centralized schemes such
as [8] that require highly synchronized nodes, synchronization
is another issue. Keeping nodes synchronized at the order of one
microsecond as [8] requires, is challenging in a real DC
environment [5]. On the other hand, although responsiveness of
distributed approaches [16, 6, 2] is good, they require adding
new functionalities to the switches. Therefore, instead of using
a fully distributed or a fully centralized technique, it is beneficial
to come up with a hybrid approach combining the global
awareness of centralized techniques and the agility of distributed
ones.

Why Path-Aware Scheduling? One of our main ideas is
that load balancing and flow scheduling are dependent design

Link2

Link1

S3

S2

S1

Time

Link2

Link1 5 3

4 5 8

4

New Flow: F#3:Size=3
Time

Link2

Link1 53

3 7 8

4

3

3

AFCT=(4+5+8)/3
=5.66

AFCT=(3+7+8)/3
=6.00

F#2:Rem.

Size=4

F#1:Rem.

Size=5

(a)without
preemption

(b)with

preemption

Fig. 1. AFCT with and without preemption.

335

blocks in DCNs and should be designed together to achieve a
global objective such as minimizing AFCT in a multipath DCN.
So, instead of using single-path scheduling policies (e.g., [1, 4,
6, 5, 2, 3, 24]), we consider a path-aware scheduling logic.

IV. DESIGN

Scheduling flows to minimize AFCT in single path scenario
is an NP-hard problem [1]. This problem in multipath scenarios
will remain NP-hard. In this section, we introduce the key design
principles of HyLine, which uses heuristic approach to minimize
AFCT using path-aware scheduling in multipath commodity
DCNs.

A. HyLine’s Big Picture

End-Hosts: In HyLine, end-hosts are responsible for
classifying all flows into two classes: 1) Latency-sensitive
flows, i.e., the small flows, that require less queuing and
transmission delays. 2) Bandwidth hungry flows that could
tolerate some delays during their transmission. This
classification will be done using a threshold provided by MAN,
a logically centralized network manager. All of the flows in the
latency-sensitive class (1st class i.e., flows having sizes smaller
than threshold) are assigned to the higher priority queue in
switches (Q1) and all of the bandwidth hungry flows (2nd class
i.e., flows having sizes bigger than threshold) are assigned to the
lower priority queue in switches (Q2). Next, all 1st class flows
are sent to the network at line rate, and flow-based ECMP is used
for balancing their loads among available paths. However, end-
hosts should first send a Request to Send (RTS) message to
MAN asking permission before sending any of their 2nd class
flows to the network. This RTS carries source, destination, and
size of the flow.

MAN: MAN is the logically centralized entity in HyLine
that is responsible for scheduling 2nd class flows. To this end, it
guides transmission of all of the 2nd class flows in a very simple
Stop-and-Go fashion. If MAN decides that a flow could come to
the network, it sends back a Clear to Send (CTS) message (i.e.,
Go) carrying the path that should be used for transmission of this
flow. If not, it sends back a Stop to Send (STS) message forcing
the flow to be kept at the edge of network. Flows that get CTS
messages are sent to the network at line rate. These permitted
flows only would be stopped momentarily in two conditions by
two different mechanisms:

First: When there is no more bandwidth available to serve a
new incoming 2nd class flow with higher priority than a few of
the permitted ones. In this case, MAN uses a path-aware
preemption mechanism (§4.3) to select the best set of flows to

preempt and sends the STS messages to the preempted ones and
stops them.

Second: When permitted 2nd class flows are going to be
dropped at switches due to a high load in higher priority queue
caused by 1st class flows. In this case, to keep the design simple
and practical, instead of using fine-grained monitoring of the
queue occupancies for each switch, PFC– defined as part of
IEEE 802.1Qbb standard [19] and an available feature in today’s
commodity switches [9, 20]–is used to pause permitted 2nd class
flows without any need for coordination with MAN.

When a 2nd class flow is finished (or close to being
finished), its corresponding end-host sends a FIN message to
MAN indicating that the path (and bandwidth) allocated for this
flow is now free. Then, MAN assigns the available resources to
other flows which are stopped (by MAN).

B. Why it works?

There are three main reasons why HyLine boosts
performance of latency sensitive flows in DCNs:

1) Queue length builds up in a DCN mainly as a result of
having bandwidth hungry flows. This class of flows occupies
queues and causes dramatic increase in completion times of
small flows due to increasing buffer delay and increasing drop
rate of small flows’ packets and the consequent retransmission
of them. Therefore, giving credit to small flows and allowing
them to be served first in the switches significantly reduces their
completion times.

2) Due to the hash-based nature of flow-based ECMP, this
load balancing scheme performs very well when it is used for a
network that consists of only small flows [16].

3) Making the bandwidth hungry flows (large portion of all
bytes transferred in DCN [9, 7]) to be served after serving the
1st class flows opens room for the 1st class flows to bypass the
slow start phase of TCP and finish as soon as possible.

In addition, HyLine boosts performance of bandwidth
hungry flows, i.e., the 2nd class compared to single-path based
flow scheduler proposals [9, 1, 4, 5], because:

 1) Using the MAN, a logically centralized network manager,
enables HyLine to have global knowledge of the network for
scheduling the 2nd class flows.

2) HyLine benefits from the pre-planned nature of DCN
topologies and uses a preemption policy that not only considers
flows’ information but also network’s topology information at
the time of scheduling.

3) Since HyLine pushes back and stops the 2nd class flows
at the edge of the network when network could not serve them
at the current time, packet drops, retransmissions, queue
occupancy, and congestion for the 2nd class flows are reduced
dramatically.

C. Path-Aware Flow Scheduling Heuristic

In this section, we introduce a new path-aware scheduling
policy used in the core of HyLine by considering multiple-path
DCNs where each path has multiple links.

A B

F3: Rem. Size=P3

F1: Rem. Size=P1 F2: Rem. Size=P2

S6

Path 1: S1-S2-S4-S6
Path 2: S1-S3-S5-S6

F6: Rem. Size=P6

P6<P1<P2<P3<P4<P5

F4: Rem.
Size=P4 F5: Rem.

Size=P5

S5S3

S1

S2 S4

 Fig. 2. A simple multipath network.

336

To Preempt or Not to Preempt: To explain the HyLine’s
path-aware scheduling policy, we use the example shown in Fig.
2. Flow #6 (F6) with size 𝑝6 is generated at A and destined to
B, while there is no enough bandwidth to serve this flow without
preempting others (different links might contain different flows,
but Fig. 2 only shows the ones that have lower priorities (higher
remaining sizes) than F6). Similar to the example in Fig. 1, total
flow completion time (TF) when using each path can be
calculated as follow:

Without Preemption:

{

 𝑇𝐹𝑃𝑎𝑡ℎ1 = [𝑝1 + 𝑝2] + [𝑝3 + 𝑝4 + 𝑝5 + (𝑝6 + 𝑝5)] =∑ 𝑝𝑖
6

1
+ 𝑝5

𝑇𝐹 𝑃𝑎𝑡ℎ2 = [𝑝1 + 𝑝2 + (𝑝6 + 𝑝2)] + [𝑝3 + 𝑝4 + 𝑝5] = ∑ 𝑝𝑖
6

1
+ 𝑝2

 (1)

With Preemption:

{

𝑇𝐹𝑝𝑎𝑡ℎ1 = [𝑝1 + 𝑝2] + [(𝑝6 + 𝑝3) + (𝑝6 + 𝑝4) + (𝑝6 + 𝑝5) + 𝑝6]

=∑ 𝑝𝑖
6

1
+ 3𝑝6

𝑇𝐹𝑃𝑎𝑡ℎ2 = [(𝑝1 + 𝑝6) + (𝑝2 + 𝑝6) + 𝑝6] + [𝑝3 + 𝑝4 + 𝑝5]

=∑ 𝑝𝑖
6

1
+ 2𝑝6

 (2)

As these equations illustrate, path 2 is the best choice, and if
2𝑝6 < 𝑝2, preemption should be used.

In general, when N, 𝑃𝑚𝑎𝑥 , and 𝑃𝑛𝑒𝑤 represent number of
required preemption on a path, maximum priority on a path, and
priority of the new flow, if 𝑁 × 𝑃𝑛𝑒𝑤 < 𝑃𝑚𝑎𝑥 , preemption is
preferred, while in other cases, using no-preemption leads to
smaller AFCT. Therefore, totally, the path that has the Minimum
of either 𝑁 × 𝑃𝑛𝑒𝑤 (in short, MNP) or 𝑃𝑚𝑎𝑥 is the best path.

D. Scheduling Logic’s Details

HyLine’s main path-aware scheduling policy is based on the
fact that permitted flows are sent at edge link’s line rate. This
makes the overall design very simple and omits the need for any
precise rate calculation and sophisticated scheduling policies.
Another key rule to simplify the logic and reduce the time
complexity is out-of-order delivery avoidance. To avoid out-of-
order delivery, paths allocated for permitted flows could not be
changed. In other words, only new flows and already stopped
ones (by MAN) could be assigned to other paths.

Algorithm 1 shows MAN’s main logic. With new incoming
(RTS) request for a flow, MAN looks for the best path for the
new flow. For this purpose, MAN finds the number of required
preemptions and lowest priority on each path.

Balanced Load: When new flow is permitted to come to the
network, and there are multiple choices for the final path, the
remaining BW of these paths is considered and the path with the
maximum remaining BW is selected for the new incoming flow
(Remaining BW of a path is defined as the minimum remaining
BW of the links in that path). If the remaining BW is also equal
for those paths, random selection will be used to break the tie.
MAN will only consider 2nd class flows to calculate remaining
BW, because it does not have any information about 1st class
flows. HyLine manages the impact of 1st class flows by using
PFC in the network.

Reschedule: After selecting a path for a new incoming flow
and likely stopping/preempting some other flows on this path,
there might be available room for flows that have been stopped
before. Therefore, in case of preemption, MAN checks the
possibility of admitting more flows into the network
(considering out-of-order delivery avoidance rule). Clearly,
there is a trade-off between adding more rounds of rescheduling
to admit more probable flows and the overall time complexity
of the algorithm. To reduce the time complexity of the main
logic, we decided to do only one round of rescheduling. The
results in §5 show that this decision still leads to very good
overall performance.

HyLine’s Time Complexity: Here, we show that the time
complexity of HyLine is O(|F|) where |F| is the total number of
active flows in the 2nd class. To show this result, we first should
notice that the maximum number of permitted flows on a link
has an upper bound that is independent of the number of flows

337

considering the assumption that all flows are sent at line rate.
Assuming that the lowest and highest link rates on a path are S
bps and M bps, respectively, the maximum number of 2nd class
flows in a link of that path is M/S. When findMNP procedure
(line 37 in Algorithm 1) is implemented simply by exploring the
entire valid preemption list of flows in a path, for each path, at

most, it looks at (𝑀 𝑆⁄)𝑙 combinations in which, l is number of
links in a path. For instance, in a 3-tier datacenter, l is equal to
6. Therefore, FindPath takes constant time. In addition, the out-
of-order delivery avoidance rule causes a flow to be considered
during the ReSchedule procedure at most once. This illustrates
that the Complexity of Schedule function, which is equal to the
total complexity of the algorithm, is O(|F|).

PFC and Head-of-Line Blocking Issue: PFC if used in a
normal network will cause head-of-line blocking issue for flows
using the same priority queue. However, in HyLine, MAN
pushes most of the 2nd class flows back and stops them from
coming into the network. This strategy significantly reduces the
head-of-line blocking issue and as the results in §5.5 show, using
PFC boosts the overall performance.

Rate Control: HyLine has no complicated rate control
mechanism. It uses TCP, and to send flows at line rate, changes
initial congestion window size. However, 2nd class flows being
stopped by MAN should not cause TCP time-outs. So we
modify TCP to avoid such time-outs for the 2nd class flows
(when they receive STS signal from MAN) without affecting
TCP time-out mechanism for 1st class flows. This modification
only requires adding a few lines of code to the original TCP
implementation.

E. The Threshold to Distinguish Classes of Traffic

Some recent studies [1, 4] tried to formalize the problem of
finding optimum thresholds to distinguish different flows based
on their sizes and use available priority queues in today’s
commodity switches to separate packets of different types of
flows. PIAS and pFabric use simple M/M/1 and M/G/1 queue
models, respectively, to find the best threshold values. Even
with these simplifications, the problem of finding optimum
thresholds is complicated [1] and NP-hard [4]. Moreover, these
simplifications do not work in our case. In fact, none of the
M/M/1 or M/G/1 FIFO queue models are valid approximations
for our 2nd queue. Even in simple single queue scenario where
our 2nd queue scheduling mechanism is equal to SRPT, FIFO
queue models should be replaced by complex SRPT queue
models [21]. From this point of view, the problem of finding the
best thresholds becomes even more complicated than before.
Therefore, in this paper, we choose another direction and instead
of finding the optimum threshold, we determine a band for
practical threshold values.

Lower Bound: In theory, forcing more flows to be
controlled by MAN (i.e., decreasing the threshold) increases the
performance because of having a global view of the network
during the scheduling; however, in practice, reducing threshold
(H) causes additional delays for the small flows due to the
controller’s delay (both network delay for reaching the MAN
and computation delay of MAN). To simplify the analysis and
find a lower bound for H, we consider single queue model and
use mean queue analysis. We define a delay cost, 𝑇𝑐𝑜𝑠𝑡, for any

flow which is controlled by MAN, 𝑓𝑠 as the smallest flow in the
2nd queue (𝑓𝑠’s size = H), and 𝑊𝑓𝑠 as expected waiting time of 𝑓𝑠
(time from when it first arrives to when it receives service for
the first time). We argue that 𝑊𝑓𝑠 should not be smaller than

𝑇𝑐𝑜𝑠𝑡 (if 𝑇𝑐𝑜𝑠𝑡 > 𝑊𝑓𝑠 , putting 𝑓𝑠 in the 1st queue (increasing the

threshold to 𝐻 + 𝜀) will cause lower FCT for 𝑓𝑠).

The 𝑓𝑠 will be served only after serving all flows in the 1st
queue and after serving all flows having smaller remaining sizes
(but originally bigger) than it in the 2nd queue. In other words,
any flow with smaller size than 𝑓𝑠 in 1st queue or any flow with
smaller remaining size than 𝑓𝑠 in 2nd queue will preempt 𝑓𝑠
before it receives service for the first time. So, from 𝑓𝑠′s point of
view, 𝑊𝑓𝑠 in this network is equal to 𝑊𝑓𝑠 in a network where

there is only a single SRPT queue. Therefore, we can use [21]’s
analysis for an M/G/1/SRPT queue to find average value of 𝑊𝑓𝑠:

 𝐸[𝑊(𝑥)] =
𝜆(𝑚2(𝑥)+𝑥

2(1−𝐹(𝑥)))

2(1−𝜌(𝑥))
2

Here, we denote average arrival rate by 𝜆, service time (service

time=size/service rate, service rate=link speed) of a flow by X,

CDF of service time distribution by 𝐹(𝑥) , 𝑚2(𝑥) =

∫ 𝑡2𝑓(𝑡)𝑑𝑡
𝑥

0
, and the load made up by the flows of service time

less than or equal 𝑥 by 𝜌(𝑥) = 𝜆𝑋𝑥̅̅ ̅ in which 𝑋𝑥̅̅ ̅ = ∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑥

0
.

Substituting 𝑥 in this formula with ℎ = 𝐻 𝐶⁄ in which C

represents bandwidth of the link, will lead to calculation of

𝐸[𝑊(ℎ)] = 𝐸[𝑊𝑓𝑠]. So, the following inequality represents the

lower bound:

 𝑇𝑐𝑜𝑠𝑡 ≤
𝜆(𝑚2(ℎ)+ℎ

2(1−𝐹(ℎ)))

2(1−𝜌(ℎ))
2

Upper Bound: Increasing H puts more flows into the 1st
class, causes congestion in the 1st queue and consequently
decreases the performance. Therefore, to address this issue, we
require an upper bound on H. Here, the important observation is
that almost all of the schemes including normal TCP perform
very well when load is very low (less than 10%) [1, 4, 3, 5]. The
reason is that at low load, inter-arrival of the flows is large
enough to serve flows without having congestion issue. Based
on this important observation, we cap the overall load of the 1st

queue. In more detail, we choose 𝜌1 = 𝜌(ℎ) ≤
𝜌𝑡𝑜𝑡𝑎𝑙

10
. Since

𝜌𝑡𝑜𝑡𝑎𝑙 < 1, this choice guarantees that the total load in the 1st
queue (𝜌1) is always smaller than 10%; therefore, congestion in
the 1st queue will not be an issue. So, following equation
represents the upper bound:

𝜌1

𝜌𝑡𝑜𝑡𝑎𝑙
=

𝑋ℎ̅̅ ̅̅

𝑋𝑡𝑜𝑡𝑎𝑙 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
≤ 0.1

𝐸[𝑊(𝐻)] and
𝜌1

𝜌𝑡𝑜𝑡𝑎𝑙
 for web search workload and different

loads (up to 90%) are shown in Fig. 3 (C=1Gbps). The band for
choosing H in a moderate load of 60% is depicted in this figure
too (through this paper we assume 𝑇𝑐𝑜𝑠𝑡 = 100𝜇𝑠).

338

Static vs. Dynamic Threshold Assignment: Clearly,
assigning thresholds dynamically based on the load of the flows
(as lower bound criterion suggests) is beneficial. For that
purpose, different agents at end-hosts could periodically report
summary of all their flows to the MAN. Later, MAN will use
these reports to choose the threshold and report it back to the
end-hosts. Although HyLine’s structure enables us to use this
approach, to keep the design simple and practical we use a static
threshold assignment, and in §5, we will show that this approach
works very well for different loads and even for different types
of workloads. So, through the rest of this paper, based on Fig. 3,
we choose H=1MB.

V. EVALUATION

In this section, we evaluate the performance of HyLine using
extensive packet-level simulations in ns2 (available at:
https://github.com/soheil-ab/hyline). First, we compare the
performance of HyLine with existing proposals including
Qjump [5], pFabric [1], DCTCP [9], and TCP-New Reno. Then,
through micro-benchmarks, we evaluate HyLine’s performance
such as its sensitivity to the threshold value, improvements
caused by PFC.

A. Simulation Settings

Datacenter Topology: We use a 3-tier fat-tree topology [18]
which is the base topology for today’s DCNs [22,13] for our
evaluation (Fig. 4.a). The topology includes 8 pods
interconnecting 256 end-hosts using 80 8-port switches with a
300µs overall end-to-end RTT delay between end-hosts located
in different pods.

Load-balancing Mechanism: To have a fair comparison of
HyLine’s performance with other single-path based flow-
scheduling schemes, we use flow-based ECMP used in
commodity DCNs [18, 7] as the load balancing scheme.

Traffic Workloads: We use two realistic workloads from
production datacenters: web search workload [9] and data
mining workload [7]. In addition, we use 2 other synthetic
workloads named Heavy and Light to change the heavy-
tailedness of the traffic and do stress tests. The flow size
distributions of all workloads are shown in Fig. 4.b.

Performance Metrics: We consider AFCT and 99th
percentile FCT of flows as the performance objectives like prior
work [1, 4, 2, 3]. We normalize all FCTs to the flows’ ideal
values achieved if each flow is transmitted over the fabric
without any interference from competing traffic. In addition,
since most of the datacenter applications (from search and social
networks to MapReduce) use partition-aggregate structure
equipped with different deadlines for flows in different layers of

its hierarchy [23], similar to prior work [1, 3, 23], we use the
application throughput defined as the fraction of flows that meet
their deadline as another performance metric to investigate the
impact of HyLine on real applications.

Schemes Compared: We compare HyLine with Qjump [5],
pFabric [1], DCTCP [9], and TCP-New Reno with Sack. The
parameters used for the evaluation of these schemes are selected
based on their authors’ recommendations or reflect the best
settings that we have experimentally determined (Table 1). We
use these parameters for evaluations in this section unless
otherwise specified.

PFC Implementation in ns2: We use a simplified version
of PFC (on/off style) that we have added to ns2 simulator. For
that purpose, when the queue size hits a threshold (pause
threshold), the switch sends pause signal to upstream switch.
When the queue size becomes less than another threshold
(resume threshold) the switch sends resume message.

B. Overall Performance

In this section, we present the overall performance of
HyLine under the aforementioned workload and DCN topology.
[9, 7]. We show that despite HyLine’s simplicity, it outperforms
all compared schemes.

Overall AFCT: The overall normalized FCT of flows with
different schemes for search and data mining workloads are
shown in Fig. 5.e and Fig. 6.e, respectively. As these results
illustrate, HyLine achieves the best performance among all
compared schemes. For instance, AFCT using HyLine is ~3-
31% and ~52-66% lower than pFabric and Qjump respectively.
All schemes generally perform better in data mining workload.
The reason is that in this workload probability of having two
large flows competing for the same link is less than search
workload (Fig. 4.b). For this workload, HyLine achieves ~18-
30% lower AFCT than Qjump and compared to pFabric
performs roughly the same.

AFCT in More Detail: As expected, pFabric performs well
for the very small flows in (0, 100kB] range (Fig. 5.a and Fig.

...

Pod 1

All Links:
1Gbps

... ...

Pod 8

16 Core Switches

...

... ...

256 Servers in 8
Pods

Fig. 4. Simulation setup (a) The 3-tier topology (b) Flow size distributions of workloads used

Workload

% of Flows

smaller than

100KB

Heavy 40%

Web Search 58%

Data Mining 83%

Light 97%

Fig. 3. 𝑬[𝑾(𝑯)] and 𝝆𝟏/𝝆𝒕𝒐𝒕𝒂𝒍

TABLE I. DEFAULT SIMULATION SETTINGS

Scheme Parameters

pFabric
qsize = 50pkts (=2×BDP), initCwnd = 25pkts (=𝐵𝐷𝑃),

minRTO =1ms (≈3× 𝑅𝑇𝑇)

Qjump qsize = 225pkts, initCwnd = 25pkts, minRTO = 4ms

dctcp & tcp qsize = 225pkts, initCwnd = 10pkts, minRTO = 4ms

HyLine

qsize = 225pkts, initCwnd = 25pkts,

H=1MB, Tcost=100us, minRTO = 4ms,
initCwnd (2nd class) = 25pkts, minRTO (2nd class) = 1s,

pause threshold=215pkts, resume threshold=205pkts

339

6.a). However, it comes at the expense of performance reduction
for other ranges of flows, due to its local strategy of dropping
packets at earliest stages of the network and reacting to this
sooner by using small priority queues in switches and small
timeouts at end-hosts. In contrast, HyLine allows the other 1st
class packets (i.e. flows in (100kB, 1MB] range) to be queued in
switches too. Considering multipath nature of network and the
fact that all of these 1st class flows will not compete for the same
output links in the next stages of the network, this increases the
chance of serving flows in (100kB, 1MB] range later in the
network (Fig. 5.b and Fig. 6.b). Moreover, Qjump cannot
achieve very good performance for the small flows (specially for
the search workload (Fig. 5.a)) because it reduces the throughput
of these flows to give more bandwidth to the bigger ones.

For the 2nd class flows ((1MB, 10MB] and (10MB, ∞)
ranges), HyLine benefits from having a global view and path-
aware nature in its scheduler compared to other schemes . So, as
Fig. 5.c-d and Fig. 6.c-d illustrate, it performs better than all
other schemes for almost all loads and workloads except very
high loads in search workload for flows in (10MB, ∞) range. For
high loads in this range (Fig. 5.d), since total number of flows
including big flows increases, the total number of preemptions
for this range of flows increases too. Therefore, largest flows in
the network face more preemption delay. In contrast, TCP
achieves best performance at high loads (Fig. 5.d), because it
loses less bandwidth due to the fairness nature of its design.

C. Varying Performance Metrics

Application Throughput: Most of the today’s datacenter
applications use partition-aggregate structure in which flows in
each level of the hierarchy have deadlines [23]. For instance, in
a search application, if responses (flows) from workers miss
their deadlines, they are not included in the total response,
typically hurt the response quality, and waste network
bandwidth. Therefore, to investigate impact of HyLine for such
applications, we assign different deadlines to different flows and
similar to prior work [1, 2, 23] consider application throughput
as the performance metric. Here, deadline of each flow is

considered 4x of its ideal completion time achieved when there
are no other competing flows in the network. We used tighter
and looser deadlines for flows too, but since the overall results
are similar to the presented results, for brevity, we only report
the results for the mentioned deadline. Fig. 7 depicts the overall
results for two realistic workloads across different loads. HyLine
outperforms other schemes for both workloads.

Since in both workloads, most traffic are small flows,
finishing these small flows faster increases the probability of
meeting their deadlines. Therefore, schemes which achieve
better results for small flows potentially perform better for
deadline-aware traffic too. That’s why HyLine and pFabric
perform very well compared to other schemes. It is important to
notice that HyLine achieves this performance without any
changes in the network, while pFabric requires changes in
switches.

99th Percentile: In addition to previous metrics, we also
consider the 99th percentile FCT as a performance metric to
have a better comparison of HyLine with other schemes. Fig. 8
and Fig. 9 show the results of 99th percentile FCT for data
mining and search workloads respectively for different flows’
size ranges. 99th percentile result’s pattern is similar to the AFCT
result’s pattern discussed earlier.

D. Impact of Workload

So far we evaluated HyLine under realistic DCN workloads.
However, there might be still two concerns about the HyLine’s
performance: 1-What if traffic consists of more 1st class flows?
2-What if a workload consists of more 2nd class flows? To
evaluate the performance under these two corner cases, we used
Bounded-Pareto distribution to generate 2 synthetic workloads
named Light and Heavy (Fig. 4.b). In Light workload, 97% of
the flows are smaller than 100KB, while this number is only
40% for Heavy workload. This will provide us with workloads
to check the two mentioned concerns. Fig. 10 and Fig. 11 show
the AFCT, and application throughput results using Light and
Heavy workloads. Under Light workload, all schemes generally

Fig. 6. Normalized FCT statistics across different flow sizes for data mining workload.

(a) (0,100kB] (b) (100kB, 1MB] (c) (1MB, 10MB] (d) (10MB, ∞) (e) Overall

Fig. 5. Normalized FCT statistics across different flow sizes for web search workload.

(a) (0,100kB] (b) (100kB, 1MB] (c) (1MB, 10MB] (d) (10MB, ∞)

(e) Overall

Fig. 7. Application Throughput

across different loads

(a) Web Search

(b) Data Mining

340

perform well. However, for Heavy workload including more big
flows, the performance of schemes drops dramatically. Here,
scheduling issue and handling big flows dominate, and the
scheme which manages these issues better than others will
achieve higher performance. That’s why compared to other
schemes, HyLine works very well under Heavy workload.

E. HyLine Deep Dive

In this section, a series of targeted simulations are conducted
to dig deeper into HyLine’s design.

Sensitivity to Threshold: To check our analysis in the §4.5,
we use search workload and change the threshold identifying the
two classes of traffic, and check the AFCT as the performance
metric. Fig. 12 presents overall results in 60% load. Here, the
results fit very well with our lower bound and upper bound
analysis (Fig. 3). As we expected, for the thresholds below the
lower bound, cost of doing centralized scheduling dominates,
and for the ones above the upper bound, benefits of using
centralized scheduler is not so much. So, in both cases, overall
performance drops.

PFC: PFC, if used in a normal network, could cause the
head-of-line blocking issue. However, since HyLine controls all
of the 2nd class flows in the network, it prevents the head-of-
line blocking issue for this class of flows. Moreover, PFC is used
to prevent any drop of the 2nd class packets due to the increase
in the number of 1st class flows at high load situations. To show

the impact of using PFC at high loads, we use web search
workload and do simulations with and without PFC feature in
switches. Fig. 13 illustrates the improvement of the overall
performance for the 2nd class of flows when PFC is turned on.
In fact, PFC improves AFCT and 99th FCT by up to 13% and
15% respectively at high loads.

MAN: Here, we report MAN’s performance measurements
including average number of requests that MAN receives (Fig.
14), average waiting time (the time from when a flow first
arrives at the end-host to when it receives first CTS (GO signal)
from MAN), average preemption time (the total time that a flow
is in STOP state (i.e., preempted by MAN)), and average
number of preemptions that a flow experiences under web
search workload. When load increases, as expected, number of

preemptions per flow for the biggest flows (in (10MB-∞) range)

increases (Fig. 15). However, since smaller flows (in (1-10MB]
range) could be finished faster due to no competing bigger flows
which are already stopped by MAN at the edge of network, the
probability of being preempted during their transmission will be
small. This is shown in Fig. 15.

Fig. 16 shows ratio of waiting and preemption times that on
average a flow experiences to its total completion time across
different loads for 2 different ranges of flow sizes. As mentioned
earlier preemption time of flows in (1-10MB] range is small.
Also, as loads increases waiting time of flows in this range
slightly increases. The reason is that the flows which already

Fig. . Normalized th percentile FCT statistics for data mining workload across different flow sizes.

(a) (,1 k] (b) (1 k , 1M] (c) (1M , 1 M] (d) (1 M ,)

Fig. . Normalized th percentile FCT statistics for web search workload across different flow sizes.

(a) (,1 k] (b) (1 k , 1M] (c) (1M , 1 M] (d) (1 M ,)
Fig. 1 . Normalized FCT statistics

(a) Heavy workloads (b) Light workloads

Fig. 11. Application Throughput

(a) Heavy workload (b) Light Workload

Fig. 1 . AFCT

across different

thresholds.

Fig. 13. erformance with without FC

(a) AFCT (b) th ercentile FCT
Fig. 1 . Avg. of

preemptions per flow

for ranges of flow

sizes

Fig. 1 . Average of
req. received by MAN

Fig. 1 . Average portion of waiting and

preemption times that a flow experiences

to the total flow s completion time.

(b) (1 M) range(a) (1 1 M] range

341

have got permission from MAN most likely have smaller
remaining sizes compared to the new incoming flows, so new
incoming flows will wait for the completion of these flows.

VI. DISCUSSION

Flow Information: Previous studies show that for many
DCN applications (e.g. web search, Hadoop [25], data
processing), size of the flows are known at initiation time (For
example, see §2.1 of [23]), and can be conveyed to lower layer
(e.g., through a socket option). In other cases, when sizes of
flows are not known precisely in advance, offline measurements
enable applications to have an approximation of the flow sizes
and use them later at run time. However, it is important to
mention that based on DCN’s traffic characteristics, HyLine
does not require exact size information for 1st class flows (most
of the DCN’s flows), because it let them come to the network
without scheduling them one by one, while all other size-aware
schemes (e.g., [1], [2], [3]) need to know the exact size of all of
the flows. Therefore, using HyLine, for most of the DCN’s
flows, these offline measurements will be just to check whether
a flow is less than a threshold (e.g., 1MB).

Stopping vs. Terminating an Application: Although
results shown in Fig. 16 indicate that most of the 2nd class flows
have a very small preemption time, it is worth mentioning that
stopping a 2nd class flow momentarily is not equal to
terminating it. From the applications’ point of view, it is more
like TCP being in slow phase, so when a flow is stopped
momentarily by MAN, connections are still there and
applications are not terminated. Also, as mentioned before,
HyLine modifies TCP to avoid having time-outs in STOP state
and reacting to them as indication of packet loss.

Line Rate Transmission: With today’s advances in both
software (e.g., Intel DPDK [26], SR-IOV [27]) and hardware
(e.g., [29], [30]), end-hosts can achieve line rate transmissions.
However, if applications become the bottleneck of sending at
line rate, for the 2nd class flows, they could simply add their
maximum capable sending rate (maxRate) as part of their
request message to MAN. MAN could consider those flows as
flows generated by end-hosts having virtual maxRate-links
(instead of their physical speed links). Therefore, without
changing the logic, it could allow more flows to come and use
same links.

VII. CONCLUSION

We presented HyLine a simple and practical flow scheduling
design for DCNs. HyLine’s path-aware scheduling policy
exploiting the multipath nature of today’s DCNs shows that
load-balancing and flow scheduling design blocks are dependent
blocks, and they should be designed together to minimize AFCT
in DCNs. Moreover, HyLine’s hybrid approach indicates that to
reach high performance and minimize AFCT, it is unnecessary
to use fine-grained scheduling structures trying to schedule
every flow in DCNs by calculating and assigning either precise
rates or priorities to them. In sum, Despite the simple nature of
HyLine’s design and the fact that it does not require any changes
in the fabric, our evaluation results show that it outperforms
recent flow scheduling solutions. That’s why HyLine is a good

candidate to be used in today’s commodity DCNs, and why we
believe that performance meets simplicity at HyLine.

REFERENCES

[1] M. Alizadeh et al., pFabric: Minimal near-optimal datacenter transport. In
Proc. of SIGCOMM’13.

[2] C.-Y. Hong et al., Finishing Flows Quickly with Preemptive Scheduling.
In Proc. of SIGCOMM, 2012.

[3] A. Munir et al., Friends, not Foes - Synthesizing Existing Transport
Strategies for Data Center Networks. In Proc. of SIGCOMM 2014.

[4] W. Bai et al., Information-Agnostic Flow Scheduling for Commodity
Data Centers. In NSDI, 2015.

[5] M. . Grosvenor et al., Queues Don’t Matter When You Can JUM
Them! In NSDI, 2015.

[6] F. R. Dogar et al., Decentralized Task-aware Scheduling for Data Center
Networks. In roc. of SIGCOMM’1 .

[7] A. Greenberg et al., VL2: a scalable and flexible data center network. In
Proc. of SIGCOMM, 2009.

[8] J. Perry et al., Fastpass: A Centralized "Zero-Queue" Datacenter Network.
In Proc. of SIGCOMM, 2014.

[9] M. Alizadeh et al., Data center TCP (DCTCP). In Proc. of SIGCOMM,
2010.

[10] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[11] P. X. Gao et al., pHost: Distributed Near-optimal Datacenter Transport
Over Commodity Network Fabric. In Proc. ACM CoNEXT, Dec. 2015.

[12] A. Dixit et al., On the Impact of Packet Spraying in Data Center
Networks. In Proc. of INFOCOM, 2013.

[13] A. Singh et al., Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google's Datacenter Network. In Proc. of
SIGCOMM, 2015.

[14] D. Zats, et al. DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proc. of SIGCOMM, 2012.

[15] M. Al-Fares et al., Hedera: dynamic flow scheduling for data center
networks. In Proc. of NSDI, 2010.

[16] M. Alizadeh et al., CONGA: Distributed Congestion-aware Load
Balancing for Datacenters. In Proc. of SIGCOMM, 2014.

[17] K. He et al., Presto: Edge-based Load Balancing for Fast Datacenter
Networks. In Proc. of SIGCOMM, 2015.

[18] M. Al-Fares et al., A scalable, commodity data center network
architecture. In Proc. of SIGCOMM, 2008.

[19] IEEE 802.1: 802.1Qbb - Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.html.

[20] HP FlexFabric 5700 Switch Series.
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=c043473
52

[21] L.E. Schrage and L.W. Miller. The queue M/G/1 with the shortest
processing remaining time discipline. Operations Research, 1966.

[22] A. Roy et al., Inside the social network’s (datacenter) network. In roc.
of SIGCOMM, 2015.

[23] C. Wilson Better never than late: meeting deadlines in datacenter
networks. In Proc. of SIGCOMM, 2011.

[24] Y. Lu et al., One More Queue is Enough: Minimizing Flow Completion
Time with Explicit Priority Notification, In Proc. of INFOCOM, 2017.

[25] Hadoop. http://hadoop.apache.org/.

[26] DPDK. http://dpdk.org/.

[27] SR-IOV. https://www.pcisig.com/specifications/iov/.

[28] S. Abbasloo et al., “Cellular controlled delay TC (C TC),” in IFI
Networking Conference (IFIP Networking) and Workshops, 2018. IEEE,
2018.

[29] P. K. Gupta, Intel® Xeon® + FPGA Platform for the Data Center. In FPL
Workshop on Reconfigurable Computing for the Masses, Really?, 2015.

[30] SmartNIC. http://rnet-tech.com/smartnic.html

342

Dynamic Load Balancing with Tokens
Céline Comte

Nokia Bell Labs and Télécom ParisTech, University Paris-Saclay, France
celine.comte@nokia.com

Abstract—Efficiently exploiting the resources of data centers
is a complex task that requires efficient and reliable load
balancing and resource allocation algorithms. The former are
in charge of assigning jobs to servers upon their arrival in
the system, while the latter are responsible for sharing server
resources between their assigned jobs. These algorithms should
take account of various constraints, such as data locality, that
restrict the feasible job assignments. In this paper, we propose
a token-based mechanism that efficiently balances load between
servers without requiring any knowledge on job arrival rates and
server capacities. Assuming a balanced fair sharing of the server
resources, we show that the resulting dynamic load balancing
is insensitive to the job size distribution. Its performance is
compared to that obtained under the best static load balancing
and in an ideal system that would constantly optimize the
resource utilization.

I. INTRODUCTION

The success of cloud services encourages operators to scale
out their data centers and optimize the resource utilization.
The current trend consists in virtualizing applications instead
of running them on dedicated physical resources [1]. Each
server may then process several applications in parallel and
each application may be distributed among several servers.
Better understanding the dynamics of such server pools is a
prerequisite for developing load balancing and resource allo-
cation policies that fully exploit this new degree of flexibility.

Some recent works have tackled this problem from the point
of view of queueing theory [2]–[5]. Their common feature
is the adoption of a bipartite graph that translates practical
constraints such as data locality into compatibility relations
between jobs and servers. These models apply in various
systems such as computer clusters, where the shared resource
is the CPU [4], [5], and content delivery networks, where the
shared resource is the server upload bandwidth [3]. However,
these pool models do not consider simultaneously the impact
of complex load balancing and resource allocation policies.
The model of [2] lays emphasis on dynamic load balancing,
assuming neither server multitasking nor job parallelism. The
bipartite graph describes the initial compatibilities of incoming
jobs, each of them being eventually assigned to a single
server. On the other hand, [3]–[5] focus on the problem
of resource allocation, assuming a static load balancing that
assigns incoming jobs to classes at random, independently of
the system state. The class of a job in the system identifies the
set of servers that can be pooled to process it in parallel. The
corresponding bipartite graph, connecting classes to servers,
restricts the set of feasible resource allocations.

µ1 µ2 µ3

1 2

ν1 ν2

Servers

Job classes

Job types

Fig. 1. A compatibility graph between types, classes and servers. Two
consecutive servers can be pooled to process jobs in parallel. Thus there are
two classes, one for servers 1 and 2 and another for servers 2 and 3. Type-1
jobs can be assigned to any class, while type-2 jobs can only be assigned to the
latter. This restriction may result from data locality constraints for instance.

In this paper, we introduce a tripartite graph that explicitly
differentiates the compatibilities of an incoming job from its
actual assignment by the load balancer. This new model allows
us to study the joint effect of load balancing and resource
allocation. A toy example is shown in Fig. 1. Each incoming
job has a type that defines its compatibilities; these may reflect
its parallelization degree or locality constraints, for instance.
Depending on the system state, the load balancer matches the
job with a compatible class that subsequently determines its
assigned servers. The upper part of our graph, which puts
constraints on load balancing, corresponds to the bipartite
graph of [2]; the lower part, which restricts the resource
allocation, corresponds to the bipartite graph of [3]–[5].

We use this new framework to study load balancing and
resource allocation policies that are insensitive, in the sense
that they make the system performance independent of fine-
grained traffic characteristics. This property is highly desirable
as it allows service providers to dimension their infrastruc-
ture based on average traffic predictions only. It has been
extensively studied in the queueing literature [3], [6]–[8]. In
particular, insensitive load balancing policies were introduced
in [8] in a generic queueing model, assuming an arbitrary
insensitive allocation of the resources. These load balancing
policies were defined as a generalization of the static load
balancing described above, where the assignment probabilities
of jobs to classes depend on both the job type and the system
state, and are chosen to preserve insensitivity.

Our main contribution is an algorithm based on tokens
that enforces such an insensitive load balancing without per-
forming randomized assignments. More precisely, this is a
deterministic implementation of an insensitive load balancing
that adapts dynamically to the system state, under an arbi-
trary compatibility graph. The principle is as follows. The
assignments are regulated through a bucket containing a fixedISBN 978-3-903176-08-9 c© 2018 IFIP

number of tokens of each class. An incoming job seizes the
longest available token among those that identify a compatible
class, and is blocked if it does not find any. The rationale
behind this algorithm is to use the release order of tokens
as an information on the relative load of their servers: a
token that has been available for a long time without being
seized is likely to identify a server set that is less loaded
than others. As we will see, our algorithm mirrors the first-
come, first-served (FCFS) service discipline proposed in [5]
to implement balanced fairness, which was defined in [7] as
the most efficient insensitive resource allocation.

The closest existing algorithm we know is assign longest
idle server (ALIS), introduced in reference [2] cited above.
This work focuses on server pools without job parallel pro-
cessing nor server multitasking. Hence, ALIS can be seen as
a special case of our algorithm where each class identifies
a server with a single token. The algorithm we propose is
also related to the blocking version of Join-Idle-Queue [9]
studied in [10]. More precisely, we could easily generalize our
algorithm to server pools with several load balancers, each
with their own bucket. The corresponding queueing model,
still tractable using known results on networks of quasi-
reversible queues [11], extends that of [10].

Organization of the paper: Section II recalls known
facts about resource allocation in server pools. We describe a
standard pool model based on a bipartite compatibility graph
and explain how to apply balanced fairness in this model.
Section III contains our main contributions. We describe our
pool model based on a tripartite graph and introduce a new
token-based insensitive load balancing mechanism. Numerical
results are presented in Section IV.

II. RESOURCE ALLOCATION

We first recall the model considered in [3]–[5] to study the
problem of resource allocation in server pools. This model will
be extended in Section III to integrate dynamic load balancing.

A. Model

We consider a pool of S servers. There are N job classes
and we let I = {1, . . . , N} denote the set of class indices. For
now, each incoming job is assigned to a compatible class at
random, independently of the system state. For each i ∈ I, the
resulting arrival process of jobs assigned to class i is assumed
to be Poisson with a rate λi > 0 that may depend on the
job arrival rates, compatibilities and assignment probabilities.
The number of jobs of class i in the system is limited by
`i, for each i ∈ I, so that a new job is blocked if its
assigned class is already full. Job sizes are independent and
exponentially distributed with unit mean. Each job leaves the
system immediately after service completion.

The class of a job defines the set of servers that can be
pooled to process it. Specifically, for each i ∈ I, a job of
class i can be served in parallel by any subset of servers within
the non-empty set Si ⊂ {1, . . . , S}. This defines a bipartite
compatibility graph between classes and servers, where there

µ1 µ2 µ3

λ1 λ2

Servers

Job classes

Fig. 2. A compatibility graph between classes and servers. Servers 1 and 3
are dedicated, while server 2 can serve both classes. The server sets associated
with classes 1 and 2 are S1 = {1, 2} and S2 = {2, 3}, respectively.

is an edge between a class and a server if the jobs of this class
can be processed by this server. Fig. 2 shows a toy example.

When a job is in service on several servers, its service rate
is the sum of the rates allocated by each server to this job.
For each s = 1, . . . , S, the capacity of server s is denoted by
µs > 0. We can then define a function µ on the power set of
I as follows: for each A ⊂ I,

µ(A) =
∑

s∈
⋃

i∈A Si

µs

denotes the aggregate capacity of the servers that can process
at least one class in A, i.e., the maximum rate at which jobs of
these classes can be served. µ is a submodular, non-decreasing
set function [12]. It is said to be normalized because µ(∅) = 0.

B. Balanced fairness

We first recall the definition of balanced fairness [7], which
was initially applied to server pools in [3]. Like processor shar-
ing (PS) policy, balanced fairness assumes that the capacity of
each server can be divided continuously between its jobs. It is
further assumed that the resource allocation only depends on
the number of jobs of each class in the system; in particular,
all jobs of the same class receive service at the same rate.

The system state is described by the vector x = (xi : i ∈ I)
of numbers of jobs of each class in the system. The state space
is X = {x ∈ NN : x ≤ `}, where ` = (`i : i ∈ I) is the
vector of per-class constraints and the comparison ≤ is taken
componentwise. For each i ∈ I, we let φi(x) denote the total
service rate allocated to class-i jobs in state x. It is assumed
to be nonzero if and only if xi > 0, in which case each job
of class i receives service at rate φi(x)

xi
.

Queueing model: Since all jobs of the same class receive
service at the same rate, we can describe the evolution of the
system with a network of N PS queues with state-dependent
service capacities. For each i ∈ I, queue i contains jobs of
class i; the arrival rate at this queue is λi and its service
capacity is φi(x) when the network state is x. An example is
shown in Fig. 3 for the configuration of Fig. 2.

Capacity set: The compatibilities between classes and
servers restrict the set of feasible resource allocations. Specif-
ically, the vector (φi(x) : i ∈ I) of per-class service rates
belongs to the following capacity set in any state x ∈ X :

Σ =

{
φ ∈ RN+ :

∑
i∈A

φi ≤ µ(A), ∀A ⊂ I

}
.

As observed in [3], the properties satisfied by µ guarantee that
Σ is a polymatroid [12].

344

φ1(x)

x1 = 3

λ1

φ2(x)

x2 = 2

λ2

Fig. 3. An open Whittle network of N = 2 queues associated with the server
pool of Fig. 2.

Balance function: It was shown in [6] that the resource
allocation is insensitive if and only if there is a balance
function Φ defined on X such that Φ(0) = 1 and

φi(x) =
Φ(x− ei)

Φ(x)
, ∀x ∈ X , ∀i ∈ I(x), (1)

where ei is the N -dimensional vector with 1 in component
i and 0 elsewhere and I(x) = {i ∈ I : xi > 0} is the
set of active classes in state x. Under this condition, the
network of PS queues defined above is a Whittle network [13].
The insensitive resource allocations that respect the capacity
constraints of the system are characterized by a balance
function Φ such that, for all x ∈ X \ {0},

Φ(x) ≥ 1

µ(A)

∑
i∈A

Φ(x− ei), ∀A ⊂ I(x), A 6= ∅.

Recursively maximizing the overall service rate in the system
is then equivalent to minimizing Φ by choosing

Φ(x) = max
A⊂I(x),
A6=∅

(
1

µ(A)

∑
i∈A

Φ(x− ei)

)
, ∀x ∈ X \ {0}.

The resource allocation defined by this balance function is
called balanced fairness.

It was shown in [3] that balanced fairness is Pareto-efficient
in polymatroid capacity sets, meaning that the total service
rate

∑
i∈I(x) φi(x) is always equal to the aggregate capacity

µ(I(x)) of the servers that can process at least one active
class. By (1), this is equivalent to

Φ(x) =
1

µ(I(x))

∑
i∈I(x)

Φ(x− ei), ∀x ∈ X \ {0}. (2)

Stationary distribution: The Markov process defined by
the system state x is reversible, with stationary distribution

π(x) = π(0)Φ(x)
∏
i∈I

λi
xi , ∀x ∈ X . (3)

By insensitivity, the system state has the same stationary
distribution if the jobs sizes within each class are only i.i.d., as
long as the traffic intensity of class i (defined as the average
quantity of work brought by jobs of this class per unit of time)
is λi, for each i ∈ I. A proof of this result is given in [6] for
Cox distributions, which form a dense subset within the set of
distributions of nonnegative random variables.

C. Job scheduling

We now describe the sequential implementation of balanced
fairness that was proposed in [5]. This will lay the foundations
for the results of Section III.

We still assume that a job can be distributed among several
servers, but we relax the assumption that servers can process
several jobs at the same time. Instead, each server processes
its jobs sequentially in FCFS order. When a job arrives, it
enters in service on every idle server within its assignment,
if any, so that its service rate is the sum of the capacities of
these servers. When the service of a job is complete, it leaves
the system immediately and its servers are reallocated to the
first job they can serve in the queue. Note that this sequential
implementation also makes sense in a model where jobs are
replicated over several servers instead of being processed in
parallel. For more details, we refer the reader to [4] where the
model with redundant requests was introduced.

Since the arrival order of jobs impacts the rate allocation, we
need to detail the system state. We consider the sequence c =
(c1, . . . , cn) ∈ I∗, where n is the number of jobs in the system
and cp is the class of the p-th oldest job, for each p = 1, . . . , n.
∅ denotes the empty state, with n = 0. The vector of numbers
of jobs of each class in the system, corresponding to the state
introduced in §II-B, is denoted by |c| = (|c|i : i ∈ I) ∈ X . It
does not define a Markov process in general. We let I(c) =
I(|c|) denote the set of active classes in state c. The state
space of this detailed system state is C = {c ∈ I∗ : |c| ≤ `}.

Queueing model: Each job is in service on all the servers
that were assigned this job but not those that arrived earlier.
For each p = 1, . . . , n, the service rate of the job in position
p is thus given by∑
s∈Scp\

⋃p−1
q=1 Scq

µs = µ(I(c1, . . . , cp))− µ(I(c1, . . . , cp−1)),

with the convention that (c1, . . . , cp−1) = ∅ if p = 1. The
service rate of a job is independent of the jobs arrived later
in the system. Additionally, the total service rate µ(I(c)) is
independent of the arrival order of jobs. The corresponding
queueing model is an order-independent (OI) queue [14], [15].
An example is shown in Fig. 4 for the configuration of Fig. 2.

2 1 2 1 1

c = (1, 1, 2, 1, 2)

µ(I(c))
λ1
λ2

Fig. 4. An OI queue with N = 2 job classes associated with the server pool
of Fig. 2. The job of class 1 at the head of the queue is in service on servers
1 and 2. The third job, of class 2, is in service on server 3. Aggregating the
state c yields the state x of the Whittle network of Fig. 3.

Stationary distribution: The Markov process defined by
the system state c is irreducible. The results of [15] show that
this process is quasi-reversible, with stationary distribution

π(c) = π(∅)Φ(c)
∏
i∈I

λi
|c|i , ∀c ∈ C, (4)

345

where Φ is defined recursively on C by Φ(∅) = 1 and

Φ(c) =
1

µ(I(c))
Φ(c1, . . . , cn−1), ∀c ∈ C \ {∅}. (5)

We now go back to the aggregate state x giving the number
of jobs of each class in the system. With a slight abuse of
notation, we let

π(x) =
∑
c:|c|=x

π(c) and Φ(x) =
∑
c:|c|=x

Φ(c), ∀x ∈ X .

As observed in [5], [15], if follows from (4) that

π(x) = π(∅)

 ∑
c:|c|=x

Φ(c)

∏
i∈I

λi
xi = π(0)Φ(x)

∏
i∈I

λi
xi

in any state x. Using (5), we can show that Φ satisfies (2) with
the initial condition Φ(0) = Φ(∅) = 1. Hence, the stationary
distribution of the aggregate system state x is exactly that
obtained in §II-B under balanced fairness.

It was also shown in [5] that the average per-class resource
allocation resulting from FCFS service discipline is balanced
fairness. In other words, we have

φi(x) =
∑
c:|c|=x

π(c)

π(x)
µi(c), ∀x ∈ X , ∀i ∈ I(x),

where φi(x) is the total service rate allocated to class-i jobs
in state x under balanced fairness, given by (1), and µi(c)
denotes the service rate received by the first job of class i in
state c under FCFS service discipline:

µi(c) =

n∑
p=1
cp=i

(µ(I(c1, . . . , cp))− µ(I(c1, . . . , cp−1))).

Observe that, by (3) and (4), the rate equality simplifies to

φi(x) =
∑
c:|c|=x

Φ(c)

Φ(x)
µi(c), ∀x ∈ X , ∀i ∈ I(x). (6)

We will use this last equality later.
As it is, the FCFS service discipline is very sensitive to the

job size distribution. [5] mitigates this sensitivity by frequently
interrupting jobs and moving them to the end of the queue,
in the same way as round-robin scheduling algorithm in the
single-server case. In the queueing model, these interruptions
and resumptions are represented approximately by random
routing, which leaves the stationary distribution unchanged by
quasi-reversibility [11], [13]. If the interruptions are frequent
enough, then all jobs of a class tend to receive the same service
rate on average, which is that obtained under balanced fairness.
In particular, performance becomes approximately insensitive
to the job size distribution within each class.

III. LOAD BALANCING

The previous section has considered the problem of resource
sharing. We now focus on dynamic load balancing, using the
fact that each job may be a priori compatible with several
classes and assigned to one of them upon arrival. We first
extend the model of §II-A to add this new degree of flexibility.

A. Model

We again consider a pool of S servers. There are N job
classes and we let I = {1, . . . , N} denote the set of class
indices. The compatibilities between job classes and servers
are described by a bipartite graph, as explained in §II-A.
Additionally, we assume that the arrivals are divided into K
types, so that the jobs of each type enter the system according
to an independent Poisson process. Job sizes are independent
and exponentially distributed with unit mean. Each job leaves
the system immediately after service completion.

The type of a job defines the set of classes it can be assigned
to. This assignment is performed instantaneously upon the job
arrival, according to some decision rule that will be detailed
later. For each i ∈ I, we let Ki ⊂ {1, . . . ,K} denote the
non-empty set of job types that can be assigned to class i.
This defines a bipartite compatibility graph between types and
classes, where there is an edge between a type and a class if
the jobs of this type can be assigned to this class. Overall,
the compatibilities are described by a tripartite graph between
types, classes, and servers. Fig. 1 shows a toy example.

For each k = 1, . . . ,K, the arrival rate of type-k jobs in the
system is denoted by νk > 0. We can then define a function
ν on the power set of I as follows: for each A ⊂ I,

ν(A) =
∑

k∈
⋃

i∈A Ki

νk

denotes the aggregate arrival rate of the types that can be
assigned to at least one class in A. ν satisfies the submodu-
larity, monotonicity and normalization properties satisfied by
the function µ of §II-A.

B. Randomized load balancing

We now express the insensitive load balancing of [8] in our
new server pool model. This extends the static load balancing
considered earlier. Incoming jobs are assigned to classes at
random, and the assignment probabilities depend not only
on the job type but also on the system state. As in §II-B,
we assume that the capacity of each server can be divided
continuously between its jobs. The resources are allocated by
applying balanced fairness in the capacity set defined by the
bipartite compatibility graph between job classes and servers.

Open queueing model: We first recall the queueing model
considered in [8] to describe the randomized load balancing.
As in §II-B, jobs are gathered by class in PS queues with state-
dependent service capacities given by (1). Hence, the type of
a job is forgotten once it is assigned to a class.

Similarly, we record the job arrivals depending on the
class they are assigned to, regardless of their type before the
assignment. The Poisson arrival assumption ensures that, given
the system state, the time before the next arrival at each class
is exponentially distributed and independent of the arrivals at
other classes. The rates of these arrivals result from the load
balancing. We write them as functions of the vector y = `−x
of numbers of available positions at each class. Specifically,
λi(y) denotes the arrival rate of jobs assigned to class i when
there are yj available positions in class j, for each j ∈ I.

346

φ1(x)

x1 = 3

φ2(x)

x2 = 2

λ1(`− x)

λ2(`− x)

(a) An open Whittle network with state-dependent arrival rates.

λ1(y)

y1 = 1

λ2(y)

y2 = 2

φ1(x)

x1 = 3

φ2(x)

x2 = 2

Class-1
tokens

Class-2
tokens

(b) A closed queueing system consisting of two Whittle networks.

Fig. 5. Alternative representations of a Whittle network associated with the
server pool of Fig. 1. At most `1 = `2 = 4 jobs can be assigned to each
class.

The system can thus be modeled by a network of N PS
queues with state-dependent arrival rates, as shown in Fig. 5a.

Closed queueing model: We introduce a second queueing
model that describes the system dynamics differently. It will
later simplify the study of the insensitive load balancing by
drawing a parallel with the resource allocation of §II-B.

Our alternative model stems from the following observation:
since we impose limits on the number of jobs of each class,
we can indifferently assume that the arrivals are limited by
the intermediary of buckets containing tokens. Specifically, for
each i ∈ I, the assignments to class i are controlled through
a bucket filled with `i tokens. A job that is assigned to class i
removes a token from this bucket and holds it until its service
is complete. The assignments to a class are suspended when
the bucket of this class is empty, and they are resumed when
a token of this class is released.

Each token is either held by a job in service or waiting to
be seized by an incoming job. We consider a closed queueing
model that reflects this alternation: a first network of N queues
contains tokens held by jobs in service, as before, and a second
network of N queues contains available tokens. For each i ∈
I, a token of class i alternates between the queues indexed by
i in the two networks. This is illustrated in Fig. 5b.

The state of the network containing tokens held by jobs
in service is x. The queues in this network apply PS service
discipline and their service capacities are given by (1). The
state of the network containing available tokens is y = `− x.
For each i ∈ I, the service of a token at queue i in this
network is triggered by the arrival of a job assigned to class
i. The service capacity of this queue is thus equal to λi(y) in
state y. Since all tokens of the same class are exchangeable, we
can assume indifferently that we pick one of them at random,
so that the service discipline of the queue is PS.

Capacity set: The compatibilities between job types and
classes restrict the set of feasible load balancings. Specifically,
the vector (λi(y) : i ∈ I) of per-class arrival rates belongs to

the following capacity set in any state y ∈ X :

Γ =

{
λ ∈ RN+ :

∑
i∈A

λi ≤ ν(A), ∀A ⊂ I

}
.

The properties satisfied by ν guarantee that Γ is a polymatroid.
Balance function: Our token-based reformulation allows

us to interpret dynamic load balancing as a problem of re-
source allocation in the network of queues containing available
tokens. This will allow us to apply the results of §II-B.

It was shown in [8] that the load balancing is insensitive if
and only if there is a balance function Λ defined on X such
that Λ(0) = 1, and

λi(y) =
Λ(y − ei)

Λ(y)
, ∀y ∈ X , ∀i ∈ I(y). (7)

Under this condition, the network of PS queues containing
available tokens is a Whittle network.

The Pareto-efficiency of balanced fairness in polymatroid
capacity sets can be understood as follows in terms of load
balancing. We consider the balance function Λ defined recur-
sively on X by Λ(0) = 1 and

Λ(y) =
1

ν(I(y))

∑
i∈I(y)

Λ(y − ei), ∀y ∈ X \ {0}. (8)

Then Λ defines a load balancing that belongs to the capacity
set Γ in each state y. By (7), this load balancing satisfies∑

i∈I(y)

λi(y) = ν(I(y)), ∀y ∈ X ,

meaning that an incoming job is accepted whenever it is
compatible with at least one available token.

Stationary distribution: The Markov process defined by
the system state x is reversible, with stationary distribution

π(x) =
1

G
Φ(x)Λ(`− x), ∀x ∈ X , (9)

where G is a normalization constant. Note that we could
symmetrically give the stationary distribution of the Markov
process defined by the vector y = `−x of numbers of available
tokens. As mentioned earlier, the insensitivity of balanced
fairness is preserved by the load balancing.

C. Deterministic token mechanism

Our closed queueing model reveals that the randomized
load balancing is dual to the balanced fair resource allocation.
This allows us to propose a new deterministic load balancing
algorithm that mirrors the FCFS service discipline of §II-C.
This algorithm can be combined indifferently with balanced
fairness or with the sequential FCFS scheduling; in both cases,
we show that it implements the load balancing defined by (7).

All available tokens are now sorted in order of release in a
single bucket. The longest available tokens are in front. An
incoming job scans the bucket from beginning to end and
seizes the first compatible token; it is blocked if it does not
find any. For now, we assume that the server resources are
allocated to the accepted jobs by applying the FCFS service

347

discipline of §II-C. When the service of a job is complete, its
token is released and added to the end of the bucket.

We describe the system state with a couple (c, t) retain-
ing both the arrival order of jobs and the release order of
tokens. Specifically, c = (c1, . . . , cn) ∈ C is the sequence
of classes of (tokens held by) jobs in service, as before, and
t = (t1, . . . , tm) ∈ C is the sequence of classes of available
tokens, ordered by release, so that t1 is the class of the longest
available token. Given the total number of tokens of each class
in the system, any feasible state satisfies |c|+ |t| = `.

Queueing model: Depending on its position in the bucket,
each available token is seized by any incoming job whose type
is compatible with this token but not with the tokens released
earlier. For each p = 1, . . . ,m, the token in position p is thus
seized at rate∑
k∈Ktp\

⋃p−1
q=1 Ktq

νk = ν(I(t1, . . . , tp))− ν(I(t1, . . . , tp−1)).

The seizing rate of a token is independent of the tokens
released later. Additionally, the total rate at which available
tokens are seized is ν(I(y)), independently of their release
order. The bucket can thus be modeled by an OI queue, where
the service of a token is triggered by the arrival of a job that
seizes this token.

The evolution of the sequence of tokens held by jobs in
service also defines an OI queue, with the same dynamics
as in §II-C. Overall, the system can be modeled by a closed
tandem network of two OI queues, as shown in Fig. 6.

2 1 2 1 1

c = (1, 1, 2, 1, 2)

µ(I(c))

1 2 2

t = (1, 2, 2)

ν(I(t))

Fig. 6. A closed tandem network of two OI queues associated with the server
pool of Fig. 1. At most `1 = `2 = 4 jobs can be assigned to each class. The
state is (c, t), with c = (1, 1, 2, 1, 2) and t = (1, 2, 2). The corresponding
aggregate state is that of the network of Fig. 5. An incoming job of type 1
would seize the available token in first position (of class 1), while an incoming
job of type 2 would seize the available token in second position (of class 2).

Stationary distribution: Assuming Si 6= Sj or Ki 6= Kj
for each pair {i, j} ⊂ I of classes, the Markov process defined
by the detailed state (c, t) is irreducible. The proof, omitted for
brevity, is given in the technical report [16]. Known results on
networks of quasi-reversible queues [11] then show that this
process is quasi-reversible, with stationary distribution

π(c, t) =
1

G
Φ(c)Λ(t), ∀c, t ∈ C : |c|+ |t| = `,

where Φ is defined by the recursion (5) and the initial step
Φ(∅) = 1, as in §II-C; similarly, Λ is defined recursively on
C by Λ(∅) = 1 and

Λ(t) =
1

ν(I(t))
Λ(t1, . . . , tm−1), ∀t ∈ C \ {∅}.

We go back to the aggregate state x giving the number of
tokens of each class held by jobs in service. With a slight
abuse of notation, we define its stationary distribution by

π(x) =
∑
c:|c|=x

∑
t:|t|=`−x

π(c, t), ∀x ∈ X . (10)

As in §II-C, we can show that we have

π(x) =
1

G
Φ(x)Λ(`− x), ∀x ∈ X ,

where the functions Φ and Λ are defined on X by

Φ(x) =
∑
c:|c|=x

Φ(c) and Λ(y) =
∑
t:|t|=y

Λ(t), ∀x, y ∈ X ,

respectively. These functions Φ and Λ satisfy the recursions
(2) and (8), respectively, with the initial conditions Φ(0) =
Λ(0) = 1. Hence, the aggregate stationary distribution of the
system state x is exactly that obtained in §III-B by combining
the randomized load balancing with balanced fairness.

Also, using the definition of Λ, we can rewrite (6) as
follows: for each x ∈ X and i ∈ I(x),

φi(x) =
∑
c:|c|=x

1
GΦ(c)

∑
t:|t|=`−x Λ(t)

1
GΦ(x)Λ(`− x)

µi(c),

=
∑
c:|c|=x

∑
t:|t|=`−x

π(c, t)

π(x)
µi(c).

Hence, the average per-class service rates are still as defined
by balanced fairness. By symmetry, it follows that the average
per-class arrival rates, ignoring the release order of tokens, are
as defined by the randomized load balancing. Specifically, for
each y ∈ X and i ∈ I(y), we have

λi(y) =
∑

c:|c|=`−y

∑
t:|t|=y

π(c, t)

π(`− y)
νi(t),

where λi(y) is the arrival rate of jobs assigned to class i in
state y under the randomized load balancing, given by (7),
and νi(t) denotes the rate at which the first available token of
class i is seized under the deterministic load balancing:

νi(t) =

m∑
p=1
tp=i

(ν(I(t1, . . . , tp))− ν(I(t1, . . . , tp−1))).

As in §II-C, the stationary distribution of the system state is
unchanged by the addition of random routing, as long as the
average traffic intensity of each class remains constant. Hence
we can again reach some approximate insensitivity to the job
size distribution within each class by enforcing frequent job
interruptions and resumptions.

Application with balanced fairness: As announced ear-
lier, we can also combine our token-based load balancing algo-
rithm with balanced fairness. The assignment of jobs to classes
is still regulated by a single bucket containing available tokens,
sorted in release order, but the resources are now allocated
according to balanced fairness. The corresponding queueing

348

2 2 1

t = (1, 2, 2)

ν(I(t))

φ1(x)

x1 = 3

φ2(x)

x2 = 2

Class-1
tokens

Class-2
tokens

Fig. 7. A closed queueing system, consisting of an OI queue and a Whittle
network, associated with the server pool of Fig. 1. At most `1 = `2 = 4 jobs
can be assigned to each class.

model consists of an OI queue and a Whittle network, as
represented in Fig. 7.

The intermediary state (x, t), retaining the release order of
available tokens but not the arrival order of jobs, defines a
Markov process. Its stationary distribution follows from known
results on networks of quasi-reversible queues [11]:

π(x, t) =
1

G
Φ(x)Λ(t), ∀x ∈ X , ∀t ∈ C : x+ |t| = `.

We can show as before that the average per-class arrival rates,
ignoring the release order of tokens, are as defined by the
dynamic load balancing of §III-B.

The insensitivity of balanced fairness to the job size dis-
tribution within each class is again preserved. The proof
of [6] for Cox distributions extends directly. Note that this
does no imply that performance is insensitive to the job size
distribution within each type. Indeed, if two job types with
different size distributions can be assigned to the same class,
then the distribution of the job sizes within this class may be
correlated to the system state upon their arrival. This point
will be assessed by simulation in Section IV.

Observe that our token-based mechanism can be applied to
balance the load between the queues of an arbitrary Whittle
network, as represented in Fig. 7, independently of the system
considered. Examples or such systems are given in [8].

IV. NUMERICAL RESULTS

We finally consider two examples that give insights on
the performance of our token-based algorithm. We especially
make a comparison with the static load balancing of Section II
and assess the insensitivity to the job size distribution within
each type. We refer the reader to [17] for a large-scale analysis
in homogeneous pools with a single job type, along with a
comparison with other (non-insensitive) standard policies.

Performance metrics for Poisson arrival processes and expo-
nentially distributed sizes with unit mean follow from (9). By
insensitivity, these also give the performance when job sizes
within each class are i.i.d., as long as the traffic intensity is
unchanged. We resort to simulations to evaluate performance
when the job size distribution is type-dependent.

Performance is measured by the job blocking probability
and the resource occupancy. For each k = 1, . . . ,K, we let

βk =
1

G

∑
x≤`:

xi=`i, ∀i∈I:k∈Ki

Φ(x)Λ(`− x)

denote the probability that a job of type k is blocked upon
arrival. The equality follows from PASTA property [13].
Symmetrically, for each s = 1, . . . , S, we let

ψs =
1

G

∑
x≤`:

xi=0, ∀i∈I:s∈Si

Φ(x)Λ(`− x)

denote the probability that server s is idle. These quantities
are related by the conservation equation

K∑
k=1

νk(1− βk) =

S∑
s=1

µs(1− ψs). (11)

We define respectively the average blocking probability and
the average resource occupancy by

β =

∑K
k=1 νkβk∑K
k=1 νk

and η =

∑S
s=1 µs(1− ψs)∑S

s=1 µs
.

There is a simple relation between β and η. Indeed, if we
let ρ = (

∑K
k=1 νk)/(

∑S
s=1 µs) denote the total load in the

system, then we can rewrite (11) as ρ(1− β) = η.
As expected, minimizing the average blocking probability

is equivalent to maximizing the average resource occupancy.
It is however convenient to look at both metrics in parallel. As
we will see, when the system is underloaded, jobs are almost
never blocked and it is easier to describe the (almost linear)
evolution of the resource occupancy. On the contrary, when the
system is overloaded, resources tend to be maximally occupied
and it is more interesting to focus on the blocking probability.

Observe that any stable server pool satisfies the conservation
equation (11). In particular, the average blocking probability
β in a stable system cannot be less than 1 − 1

ρ when ρ > 1.
A similar argument applied to each job type imposes that

βk ≥ max

0, 1− 1

νk

∑
s∈

⋃
i:k∈Ki

Si

µs

 , (12)

for each k = 1, . . . ,K.

A. A single job type

We first consider a pool of S = 10 servers with a single
type of jobs (K = 1), as shown in Fig. 8. Each class identifies
a unique server and each job can be assigned to any class. Half
of the servers have a unit capacity µ and the other half have
capacity 4µ. Each server has ` = 6 tokens and applies PS
policy to its jobs. We do not look at the insensitivity to the
job size distribution in this case, as there is a single job type.

Servers with capacity µ Servers with capacity 4µ

ν

Fig. 8. A server pool with a single job type. Classes are omitted because
each of them corresponds to a single server.

349

0 2
5

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Load ρ

Jo
b

an
d

se
rv

er
m

et
ri

cs

Dynamic
Best static
Uniform static
Ideal

Fig. 9. Performance of the dynamic load balancing in the pool of Fig. 8.
Average blocking probability (bottom plot) and resource occupancy (top plot).

Comparison: We compare the performance of our algo-
rithm with that of the static load balancing of Section II, where
each job is assigned to a server at random, independently of
system state, and blocked if its assigned server is already full.
We consider two variants, best static and uniform static, where
the assignment probabilities are proportional to the server
capacities and uniform, respectively. Ideal refers to the lowest
average blocking probability that complies with the system
stability. According to (11), it is 0 when ρ ≤ 1 and 1− 1

ρ when
ρ > 1. One can think of it as the performance in an ideal server
pool where resources would be constantly optimally utilized.
The results are shown in Fig. 9.

The performance gain of our algorithm compared to the
static policies is maximal near the critical load ρ = 1,
which is also the area where the delta with ideal is maximal.
Elsewhere, all load balancing policies have a comparable
performance. Our intuition is as follows: when the system
is underloaded, servers are often available and the blocking
probability is low anyway; when the system is overloaded,
resources are congested and the blocking probability is high
whichever scheme is utilized. Observe that the performance
under uniform static deteriorates faster, even when ρ < 1,
because the servers with the lowest capacity, concentrating
half of the arrivals with only 1

5 -th of the service capacity, are
congested whenever ρ > 2

5 . This stresses the need for accurate
rate estimations under a static load balancing.

Asymptotics when the number of tokens increases: We
now focus on the impact of the number of tokens on the per-
formance of the dynamic load balancing. A direct calculation
shows that the average blocking probability decreases with the
number ` of tokens per server, and tends to ideal as `→ +∞.
Intuitively, having many tokens gives a long run feedback on
the server loads without blocking arrivals more than necessary
(to preserve stability). The results are shown in Fig. 10.

We observe that the convergence to the asymptotic ideal is
quite fast. The largest gain is obtained with small values of
` and the performance is already close to the optimal with
` = 10 tokens per server. Hence, we can reach a low blocking
probability even when the number of tokens is limited, for
instance to guarantee a minimum service rate per job or respect
multitasking constraints on the servers.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

Load ρ

B
lo

ck
in

g
pr

ob
ab

ili
ty

1 token
2 tokens
3 tokens
6 tokens
10 tokens
Ideal

Fig. 10. Impact of the number of tokens on the average blocking probability
under the dynamic load balancing in the pool of Fig. 8.

B. Several job types

We now consider a pool of S = 6 servers, all with the same
unit capacity µ, as shown in Fig. 11. As before, there is no
parallel processing. Each class identifies a unique server that
applies PS policy to its jobs and has ` = 6 tokens. There are
two job types with different arrival rates and compatibilities.
Type-1 jobs have a unit arrival rate ν and can be assigned to
any of the first four servers. Type-2 jobs arrive at rate 4ν and
can be assigned to any of the last four servers. Thus only two
servers can be accessed by both types. Note that heterogeneity
now lies in the job arrival rates and not in the server capacities.

ν 4ν

Servers with
capacity µ

Fig. 11. A server pool with two job types.

Comparison: We again consider two variants of the
static load balancing: best static, in which the assignment
probabilities are chosen so as to homogenize the arrival rates
at the servers as far as possible, and uniform static, in which
the assignment probabilities are uniform. Note that best static
assumes that the arrival rates of the job types are known, while
uniform static does not. As before, ideal refers to the lowest
average blocking probability that complies with the system
stability. The results are shown in Fig. 12.

Regardless of the policy, the slope of the resource occupancy
breaks down near the critical load ρ = 5

6 . The reason is that
the last four servers support at least 4

5 -th of the arrivals with
only 2

3 -rd of the service capacity, so that their effective load is
6
5ρ. It follows from (12) that the average blocking probability
in a stable system cannot be less than 4

5 (1− 5
6
1
ρ) when ρ ≥ 5

6 .
Under ideal, the slope of the resource occupancy breaks down
again at ρ = 5

3 . This is the point where the first two servers
cannot support the load of type-1 jobs by themselves anymore.

Otherwise, most of the observations of §IV-A are still
valid. The performance gain of the dynamic load balancing
compared to best static is maximal near the first critical load
ρ = 5

6 . Its delta with ideal is maximal near ρ = 5
6 and ρ = 5

3 .

350

0 5
6

1 5
3

2 3 4
0

0.2

0.4

0.6

0.8

1

Load ρ

Jo
b

an
d

se
rv

er
m

et
ri

cs

Dynamic
Best static
Uniform static
Ideal

Fig. 12. Performance of the dynamic load balancing in the pool of Fig. 11.
Average blocking probability (bottom plot) and resource occupancy (top plot).

0 5
6

1 5
3

2 3 4
0

0.2

0.4

0.6

0.8

1

Load ρ

B
lo

ck
in

g
pr

ob
ab

ili
ty

Average
Type 1
Type 2

Fig. 13. Blocking probability under the dynamic load balancing in the server
pool of Fig. 11, with either exponentially distributed job sizes (line plots)
or hyperexponentially distributed sizes (marks). Each simulation point is the
average of 100 independent runs, each built up of 106 jumps after a warm-up
period of 106 jumps. The corresponding 95% confidence interval, not shown
on the figure, does not exceed ±0.001 around the point.

Elsewhere, all schemes have a similar performance, except for
uniform static that deteriorates faster.

Overall, these numerical results show that our dynamic load
balancing algorithm often outperforms best static and is close
to ideal. The configurations (not shown here) where it was not
the case involved very small pools, with job arrival rates and
compatibilities opposite to the server capacities. Our intuition
is that our algorithm performs better when the pool size or the
number of tokens allow for some diversity in the assignments.

(In)sensitivity: We finally evaluate the sensitivity of our
algorithm to the job size distribution within each type. Fig. 13
shows the results. Lines give the performance when job sizes
are exponentially distributed with unit mean, as before. Marks,
obtained by simulation, give the performance when the job
size distribution within each type is hyperexponential: 1

3 -rd of
type-1 jobs have an exponentially distributed size with mean 2
and the other 2

3 -rd have an exponentially distributed size with
mean 1

2 ; similarly, 1
6 -th of type-2 jobs have an exponentially

distributed size with mean 5 and the other 5
6 -th have an

exponentially distributed size with mean 1
5 .

The similarity of the exact and simulation results suggests
that insensitivity is preserved even when the job size distri-
bution is type-dependent. Further evaluations, involving other
job size distributions, would be necessary to conclude.

Also observe that the blocking probability of type-1 jobs
increases near the load ρ = 5

3 , which is twice less than the
upper bound ρ = 10

3 given by (12). This suggests that the
dynamic load balancing compensates the overload of type-2
jobs by rejecting more jobs of type 1.

V. CONCLUSION

We have introduced a new server pool model that explicitly
distinguishes the compatibilities of a job from its actual
assignment by the load balancer. Expressing the results of [8]
in this new model has allowed us to see the problem of load
balancing in a new light. We have derived a deterministic,
token-based implementation of a dynamic load balancing that
preserves the insensitivity of balanced fairness to the job size
distribution within each class. Numerical results have assessed
the performance of this algorithm.

For the future works, we would like to evaluate the perfor-
mance of our algorithm in broader classes of server pools. We
are also interested in proving its insensitivity to the job size
distribution within each type.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter As a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
2nd ed. Morgan & Claypool Publishers, 2013.

[2] I. Adan and G. Weiss, “A loss system with skill-based servers under
assign to longest idle server policy,” Probability in the Engineering and
Informational Sciences, vol. 26, no. 3, p. 307321, 2012.

[3] V. Shah and G. de Veciana, “High-Performance Centralized Content De-
livery Infrastructure: Models and Asymptotics,” IEEE/ACM Transactions
on Networking, vol. 23, no. 5, pp. 1674–1687, Oct. 2015.

[4] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” SIGMET-
RICS Perform. Eval. Rev., vol. 43, no. 1, pp. 347–360, Jun. 2015.

[5] T. Bonald and C. Comte, “Balanced fair resource sharing in computer
clusters,” Performance Evaluation, vol. 116, no. Supplement C, pp. 70–
83, Nov. 2017.

[6] T. Bonald and A. Proutière, “Insensitivity in processor-sharing net-
works,” Performance Evaluation, vol. 49, no. 1, pp. 193–209, Sep. 2002.

[7] ——, “Insensitive bandwidth sharing in data networks,” Queueing Syst.,
vol. 44, no. 1, pp. 69–100, 2003.

[8] T. Bonald, M. Jonckheere, and A. Proutière, “Insensitive load balancing,”
SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp. 367–377, Jun.
2004.

[9] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg, “Join-
Idle-Queue: A novel load balancing algorithm for dynamically scalable
web services,” Performance Evaluation, vol. 68, no. 11, pp. 1056–1071,
Nov. 2011.

[10] M. van der Boor, S. Borst, and J. van Leeuwaarden, “Load balancing
in large-scale systems with multiple dispatchers,” in Proceedings of
INFOCOM 2017, 2017.

[11] F. P. Kelly, Reversibility and Stochastic Networks. New York, NY,
USA: Cambridge University Press, 2011.

[12] S. Fujishige, Submodular Functions and Optimization, Volume 58 - 2nd
Edition. Elsevier Science, Jul. 2005.

[13] R. Serfozo, Introduction to Stochastic Networks, ser. Stochastic Mod-
elling and Applied Probability. Springer New York, 1999.

[14] S. A. Berezner and A. E. Krzesinski, “Order independent loss queues,”
Queueing Systems, vol. 23, no. 1-4, pp. 331–335, Mar. 1996.

[15] A. E. Krzesinski, “Order independent queues,” in Queueing Networks:
A Fundamental Approach, R. J. Boucherie and N. M. van Dijk, Eds.
Boston, MA: Springer US, 2011, pp. 85–120.

[16] C. Comte, “Dynamic Load Balancing with Tokens,” arXiv:1804.01783
[cs], Apr. 2018, technical report, arXiv: 1804.01783. [Online].
Available: http://arxiv.org/abs/1804.01783

[17] M. Jonckheere and B. J. Prabhu, “Asymptotics of insensitive load
balancing and blocking phases,” SIGMETRICS Perform. Eval. Rev.,
vol. 44, no. 1, pp. 311–322, Jun. 2016.

351

Moving Bits with a Fleet of Shared Virtual Routers
Pradeeban Kathiravelu∗†, Marco Chiesa‡, Pedro Marcos§, Marco Canini¶ and Luís Veiga∗

∗INESC-ID Lisboa/Instituto Superior Técnico, Universidade de Lisboa †Université catholique de Louvain
‡KTH Royal Institute of Technology §UFRGS/FURG ¶KAUST

Abstract—The steady decline of IP transit prices in the past
two decades has helped fuel the growth of traffic demands in the
Internet ecosystem. Despite the declining unit pricing, bandwidth
costs remain significant due to ever-increasing scale and reach
of the Internet, combined with the price disparity between the
Internet’s core hubs versus remote regions. In the meantime,
cloud providers have been auctioning underutilized computing
resources in their marketplace as spot instances for a much
lower price, compared to their on-demand instances. This state
of affairs has led the networking community to devote extensive
efforts to cloud-assisted networks — the idea of offloading
network functionality to cloud platforms, ultimately leading to
more flexible and highly composable network service chains.

We initiate a critical discussion on the economic and techno-
logical aspects of leveraging cloud-assisted networks for Internet-
scale interconnections and data transfers. Namely, we investigate
the prospect of constructing a large-scale virtualized network
provider that does not own any fixed or dedicated resources and
runs atop several spot instances. We construct a cloud-assisted
overlay as a virtual network provider, by leveraging third-party
cloud spot instances. We identify three use case scenarios where
such approach will not only be economically and technologically
viable but also provide performance benefits compared to current
commercial offerings of connectivity and transit providers.

I. INTRODUCTION

The massive amount of content shared on the Internet, along
with the bandwidth requirements to provide higher Quality
of Experience (QoE) for latency-sensitive applications such
as online gaming and video conferencing, has resulted in
ever-increasing bandwidth demand and an urgent desire for
flexibility in interconnections by network operators.

Cloud-assisted networks have been recently proposed, to
increase performance, flexibility, and reliability of wide area
networks [31]. They leverage cloud resources to compose
large-scale overlay networks. This approach is appealing be-
cause cloud platforms generally guarantee high levels of avail-
ability through various levels of Service Level Agreements
(SLAs) [19]. Moreover, major cloud providers such as Amazon
have built their own global backbone network [40]. Therefore,
they do not rely on the transit providers for their data transfer.
These cloud networks are well provisioned and maintained,
which makes them better than the Internet paths regarding loss
rate and jitter [32]. Based on these observations, companies
such as Teridion [42] and Cloudflare [23] offer cloud-assisted
networks for SaaS providers as a premium service for a higher
price compared to using standard Internet-based connectivity.

However, the use of cloud-assisted overlays in a broader set
of use cases, such as their use by end users or enterprises for

regular data transfers and the economic viability of such cases,
is not well studied. We argue that the feasibility of cloud-
assisted overlay solutions deserves a broader study informed
by three key factors that we identify as follows.
Geographical price disparity. First, the oligopoly of a
limited number of connectivity providers and a substantial
dependence on expensive long-haul links to the US or EU for
international connectivity, have caused a higher price for IP
transit in the remote Internet regions [20]. For instance, prices
for 10 Gbps Ethernet (10 GbE) bandwidth remain up to 20
times more expensive in São Paulo and Sydney, compared
to EU and USA. This disparity is even more pronounced
in remote regions such as Central Asia and Sub-Saharan
Africa. For example, as of 2014, while the transit cost per
Mbps per month was 0.94$ in the US [37], it was 15$ in
Kazakhstan and 347$ in Uzbekistan [35]. Even though the
average IP transit prices at major Internet hubs have fallen by
an annual 61% during the past two decades, this decline has
been much less pronounced elsewhere [37]. Consequently, the
economic viability and incentives of a cloud-assisted solution
significantly depend on its geographical location.
On-demand bandwidth. Second, even though transit
providers currently offer bandwidth with minimum commit-
ment, as low as 10 Mbps [24], interconnection contracts
shorter than one month are still uncommon. To rectify this lim-
itation, companies such as Epsilon [4] and PacketFabric [8] are
working towards making bandwidth a tradeable utility, steering
up dynamic interconnections among their users. Furthermore,
companies like Megaport [6] and Console Connect [3] provide
scalable point-to-point connectivity to cloud and network
providers. Aligning to these recent developments, the pay-per-
use and per-second billing of cloud providers can enable cloud-
assisted solutions to offer dynamic interconnections with no
commitment to time or usage.
Low-cost cloud resources. Third, spot markets of cloud
providers such as Amazon Web Services (AWS) and Google
Cloud Platform (GCP) offer their spare compute instances,
with the same resources and capabilities as their on-demand
counterparts, at a much lower price. Nevertheless, spot in-
stances can be suddenly interrupted with a notification period
of up to two minutes. Applications that can tolerate the volatile
nature of the spot instances can use them as an economical al-
ternative to the on-demand ones. These spot markets, typically
underutilized, have idle and affordable resources in multiple
regions. The economic viability of cloud-assisted networks
depends on the need for connectivity services that are more
dynamic than the traditional ones. Resilient architectures builtISBN 978-3-903176-08-9 c© 2018 IFIP

atop spot instances can bring cloud expenditures down enough
to make cloud-assisted overlays profitable.

Given the above premises, we set out to investigate the
following research questions: i) Can a cloud-assisted network
built on several spot instances be a viable solution to realize
an on-demand virtual Network-as-a-Service provider, i.e., a
network provider built over multiple cloud offerings and that
does not own any fixed or dedicated resources? ii) If so, what
are its possible usage scenarios and under what conditions
would this approach be economically sustainable for a network
provider? iii) When would this approach be cheaper than
existing alternative connectivity providers, including transit
providers, Internet Service Providers (ISPs), and Multiprotocol
Label Switching (MPLS) network providers? iv) how stable
are today’s spot instances? v) If not competitive on price,
would this approach be able to provide higher performance
and/or additional features than the alternatives?

We study the technological and economic viability of such
a cloud-assisted network and propose NetUber as an efficient
architecture to realize it. NetUber consists of a broker that
i) purchases spot VMs from the cloud providers, and ii)
creates an overlay network over the multiple spot VMs to
function as a large-scale inter-region connectivity provider
to the customers who would buy connectivity directly from
NetUber. Thus, NetUber operates as an on-demand virtual
connectivity provider running atop virtual routers in the spot
VMs. By leveraging the memory and CPU of the acquired
spot instances, we further envision a deployment of auxiliary
services such as compression-as-a-service [1] and encryption-
as-a-service [2], offering an optional compressed or encrypted
data transfer between the regions.

Our primary contributions are: i) an economic model to ex-
ploit spot markets for direct secured connectivity between pairs
of endpoints, and ii) an inter-cloud approach that leverages
spot VMs in building a reliable virtual connectivity provider.
When compared to traditional flat-price connectivity providers,
our extensive evaluation shows that i) NetUber best suits the
needs of small dynamic monthly transfers up to at least 50
TB and ii) NetUber cuts Internet latencies up to a factor
of 30%. We see our contributions as a first step towards a
more systematic understanding of the next-generation overlay
interconnection networks.

We discuss the current potential for cloud-assisted networks
in Section II. We then elaborate the potential deployments
for the identified use cases of NetUber in Section III. We
illustrate the opportunities for NetUber through an economic
analysis in Section IV. We evaluate NetUber against the
current offerings in Section V. We discuss the related work
in Section VI and conclude the paper in Section VII.

II. MAKING CLOUD-ASSISTED NETWORKS A REALITY:
BACKGROUND AND MARKET ANALYSIS

A cloud-assisted network leverages the cloud VMs to
host the virtual routers and the underlying cloud network
infrastructure for its data transfer. In this section, we look
at these counterparts from both economic and technological

perspectives, and build a foundation for NetUber design
decisions based on our observations on cloud pricing trends.

A. Spot Markets

Large-scale dynamic overlays such as NetUber require
many cloud instances and a billing model that charges overlay
operators for their actual usage of cloud resources. While the
cloud providers offer per-second billing1, the price of on-
demand instances remains a concern for overlay operators.
Despite a constant price reduction [18], building an overlay
network with on-demand instances turns out to be more
expensive than using traditional connectivity providers for
the same Service Level Objectives (SLOs). Currently, largest
cloud providers offer a cheaper and appealing alternative to
on-demand instances. The so-called spot instances are spare
computing resources, exactly identical to their on-demand
counterparts, which are offered at a much lower price but can
suddenly be interrupted by the cloud provider with a short
notification. Amazon estimates that using spot instances can
save up to 90% compared to the on-demand pricing [10].
Similarly, GCP preemptible instances [29] provide a flat rate
of 80% of savings, and the recently announced Microsoft
Azure low-priority instances [41] are expected to offer the
same, compared to their respective on-demand offerings. Thus,
we propose to use spot instances to minimize the cost as
much as possible, while providing the same availability and
performance guarantees.

In contrast, “reserved” instances refer to the cloud instances
that are leased for an extended period such as 1 - 3 years,
for a discounted price. Often reserved instances offer similar
savings to spot instances. For example, 82% savings in Azure.
However, they are unsuitable due to their time commitment
that is unfit for the dynamic nature of the network demand.
Availability zones. Cloud data centers are present in several
geographical locations that are known as the “cloud regions”.
Each region further consists of multiple “availability zones”
that are physically separated servers in a given region. Avail-
ability zones provide resilience and fault-tolerance to the cloud
regions. Each EC2 region has multiple availability zones that
are isolated but connected to each other through low-latency
links internal to the EC2 region network. Price fluctuations
of EC2 spot market are inevitable and more vigorous for a
few instance types in some availability zones at specific time
frames. Even identical spot instances of different availability
zones, inside the same region, often have different prices at
times. In contrast, GCP preemptible instances have a fixed
pricing unlike the dynamic pricing of AWS spot instances.
Price fluctuations. We monitored the availability, perfor-
mance, and price fluctuations of EC2 spot instances over a
time frame of three months (April - June 2017). Throughout
our experiments, Linux r4.8xlarge spot instances remained the
cheapest, yet memory-optimized EC2 instances with 10 GbE
network interface. Each of these R4 instances consists of 32

1AWS and GCP moving to per-second billing from their per-hour and per-
minute billings, starting from October 2017.

353

Fig. 1. AWS Linux r4.8xlarge Spot Instance Price in Frankfurt and Sydney

virtual CPUs and 244 GB of memory. They offer 10 Gbps
bandwidth inside an AWS placement group (a logical grouping
of EC2 instances inside an availability zone as a cluster).
Network transfers outside a placement group are limited to
5 Gbps [13]. Figure 1 depicts the price fluctuations among
the Linux r4.8xlarge instances of the availability zones of
Frankfurt and Sydney regions during the period. We observed
up to 89% of savings with spot fleets of r4.8xlarge instances
in Sydney, Frankfurt, and North Virginia regions.

The spot price for Frankfurt remained relatively low and
stable across all the availability zones. However, the spot price
even exceeded the on-demand price in Sydney for availability
zone 2b at times, while the other two availability zones
remained cheaper for the spot instances. Instances of the zones
eu-central-1c and ap-southeast-2c had a relatively steady and
cheap price. While it is straightforward to opt for instances
from the availability zones that have remained cheaper recently
with a stable price, fluctuations in the future are unpredictable.
Hence, while some spot instances belonging to a particular
availability zone are being terminated, spot instances may be
spawned in the other availability zones of the same region.
This dynamic nature of the network poses the question of
how the inter-region traffic should be re-adjusted to route to
the current active instances.

Multiple spot instances can be spawned at once adhering
to user specifications in target capacity and cost threshold,
through approaches such as EC2 Spot Fleet [12] to mitigate the
problem of scale and complexity in managing a large number
of instances at once. Currently, EC2 spot instances are also
available with predefined duration from one to six hours, 30 -
50% cheaper than the on-demand instances, making them less
volatile and more reliable [10]. We observed that by leveraging
multiple availability zones in each region, a stable overlay
could be operated using the cheapest instances over time.

B. Cloud Data Transfer

Inter-region cloud data transfer prices remain relatively high
as there is no “spot data transfer” that provides cheaper data
transfer with a volatile bandwidth. The data transfer pricing
exhibited a slower decline compared to that of IP transit.
Around 20% and 25% of price reductions have been reported
in 2010 [16] and 2014 [17] respectively, for data transfer out
from the EC2 instances.

While it is typical for small enterprises and home users
to connect to the cloud servers through the public Internet,

for large-scale data transfers, a dedicated connection or co-
locating with a cloud Point of Presence (PoP) is recommended
for throughput and cost efficiency. Such a direct connection
avoids depending on a third-party connectivity provider such
as ISPs, which incur more costs and also limit the scale of
data transfer (for example, typically ISPs offer up to 1 TB
per month for home users abiding by the data rate promised
in the data plan). Cloud data transfers through private direct
connections thus avoid the bottleneck caused by the Internet-
based connectivity between the user data centers and cloud
servers. The virtual network overlay users must have an
existing connection to the cloud provider or set it up directly
with the cloud provider or its partners. The costs of setting
up the Direct Connect is pay-per-use and not more expensive
than the alternatives with the same throughput. It is configured
and paid directly by each cloud user to the cloud provider.

Currently, cloud providers such as AWS and GCP do not
charge for the data transfer into an instance either from the
Internet or the other regions. They charge for data transfer
out of a region, which differs based on the destination: the
Internet, a server connected by Direct Connect, and to any
other region. Currently, AWS typically charges the inter-
region traffic independent of the destination region (with a
few exceptions for nearest regions such as cheaper transfer
between the US East regions - North Virginia and Ohio). On
the other hand, GCP clusters the regions into four groups
(worldwide, Asia, China, and Australia) to give differentiated
rpricing based on the group of egress/destination region.
Cloud region price disparity. Figure 2 illustrates the dis-
parity of pricing among the AWS regions to transfer a unit of
data (1 TB), for transfers up to 10 TB. Larger transfers become
cheaper per unit, with the price reaching almost half when the
total volume reaches 500 TB. For example, it decreased from
92.16$/TB to 51.20$/TB for transfers out from regions 1 - 8
(Canada and EU-based regions, and US-based regions except
for GovCloud) to the Internet. The cloud data transfer options
such as Direct Connect are cheaper than sending data from the
cloud to a customer server directly through the Internet. The
discrepancy in pricing among the regions is visible (which is
comparable to the IP transit price disparity); regions 1 - 9 (US,
Canada, and EU) remain much cheaper than the others.

We observe that the current pricing of data transfer for the
cloud providers is not supportive of a more comprehensive
adoption of an Internet-scale cloud-assisted network, due to the
lack of a differentiated pricing model based on the current lo-

354

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
st

($
)

p
e

r
T
B

AWS Region
AWS Region → Internet

AWS Region → Another AWS Region
AWS Region → Amazon Direct Connect

Amazon Direct Connect/Internet → AWS Region

Fig. 2. Data Transfer Cost for AWS

cal time or demand for bandwidth. Moreover, cloud providers
charge for the data transfers by the volume of data transferred,
rather than by the data rate, unlike transit providers or ISPs.
Regardless of the throughput, the cloud user pays the same
amount based on the amount of data transferred. Therefore,
there is no incentive for the cloud users to opt for a slower data
rate even when their application is delay-tolerant. Furthermore,
not considering the cloud overlay network scenario, cloud
providers discourage long-distance inter-region data transfer
to counter communication delays due to poor SaaS design.

Based on our observations and subsequent analysis on the
cloud data transfer offerings and the availability of cheaper
spot VMs, we deduce that the data transfer will contribute
with the most significant share to the expenses for the Internet-
scale overlays deployed over multiple regions. Thus data
compression and minimizing data transfer path lengths can
enable a cost-efficient execution of the cloud-assisted network.

III. TOWARDS NETUBER DEPLOYMENTS

In this section, we will look into the deployment architecture
of three primary use cases of NetUber: i) a cheaper point-to-
point connectivity between two regions for data transfers, ii)
a premium connectivity between multi-cloud regions for end
users for faster data transfer and better SaaS performance, and
iii) a connectivity provider with additional network services.

A. Economical Point-to-Point Connectivity

NetUber leverages spot instances to offer short-term or
small-scale direct access between two geographically sepa-
rated endpoints, as an economical alternative to enterprise
MPLS networks. NetUber has no dedicated servers. Its broker
is hosted in a set of spot instances per region. Cloud monitors
such as AWS alarms are leveraged to ensure that each region
has at least one broker instance that is active and not scheduled
for termination. For a stable overlay, we need some instances
in each region, based on the bandwidth demand and the
number of active instances at any given time. At any moment,
the broker purchases instances from the availability zone that
has the cheapest of the higher performance instances in a
region. Over time, instances are spawned and maintained
across multiple availability zones. Therefore, the expensive
ones to maintain are terminated at the earliest.

Each NetUber cloud instance hosts a virtual router. Each
virtual router can dynamically connect to the virtual routers of
certain spot instances of another region through the overlay,
based on the users’ connectivity or data transfer requests.
Consider a scenario where a customer chooses to send data

from her server so to the destination server sd. These servers
are in the cloud provider regions ro and rd respectively and
are connected to the cloud provider through a dedicated con-
nection such as Amazon Direct Connect. Figure 3 illustrates a
representation of a sample NetUber deployment that offers a
direct connection between so and sd. NetUber is composed
of many spot VMs in multiple regions, connected through the
overlay network of virtual routers.

Spot Market: Cloud Provider - 1

Origin
Server: so

Destination
Server: sd

Region - ro Region - rd

Broker
Instance

Broker
Instance

Spot
VMs

Fig. 3. NetUber Deployment with a Single Cloud Provider

The broker instances monitor the resource utilization of
the current VMs purchased in the spot market. They alter
the spot fleet policies to bid for more instances, when the
existing VMs are not sufficient (measured with a margin, to
avoid performance degradation) to address the demand for
connectivity and when the price for the spot instances are
profitable to NetUber. The technical challenges include, i)
initializing a newly spawned instance to operate as a virtual
router in a short time, and ii) ensuring that the instances can be
connected and identified through an overlay, other than their
physical address, as spot instances remain volatile. The list
of spot instances of the virtual routers in each region can
be provided through an accessible and reliable location in
the cloud provider such as an S3 bucket. The broker handles
the updates to the list of instances, consisting of new and
terminated spot instances.

B. Higher Performance Point-to-Point Interconnection

On the intra-domain traffic, an ISP can seek the shortest
path as it controls the network. Since Border Gateway Protocol
(BGP) decisions are mainly policy-oriented, it may not result
in the selection of the best or the shortest path. With the cloud
instances, NetUber can choose to intelligently route the traffic
towards the VMs in the exact regions, minimizing the number
of hops and path length.

Currently, a few cities and geographical regions host the
cloud regions for multiple providers. For example, North
Virginia, Mumbai, London, São Paulo, Tokyo, and Singapore
host both AWS [11] and GCP [28] regions. As of now, Ohio,
North Carolina, Seoul, Canada central, and Ireland are AWS
regions but not GCP regions; Iowa, Belgium, South Carolina,
and Taiwan are GCP regions that are not AWS regions.

Figure 4 elaborates this scenario with the cloud provider
1 having presence in regions ro and ri, and the provider 2
with presence in regions ri and rd. None of the providers are
present in both ro and rd, while both providers are present
in ri. NetUber functions as a mediator between the two
cloud providers to enable data transfer from ro → rd by
interconnecting between the cloud providers in ri, through the
Internet-based connectivity or a direct/dedicated connectivity
offered by the cloud providers between the clouds.

355

VM Instances: Cloud Provider - 2

 VM Instances: Cloud Provider - 1

so

sd

Region - ro Region - rd
Region - ri

Fig. 4. Deployment Across Multiple Cloud Providers

The latency of the NetUber inter-cloud interconnection
remains minimal as multi-clouds of the same region are proxi-
mate to each other: they may share the same co-location facil-
ities, or potentially be interconnected via a direct connection
between the servers of the cloud vendors. For example, AWS
Direct Connect can offer a direct interconnection between
a pair of AWS and GCP instances in ri. This architecture
provides a higher performance point-to-point connectivity for
the end users for data transfers to a geographically remote
region, instead of connecting directly through an ISP.
NetUber needs to consider operational differences between

the cloud vendors for a stable execution. For example, cur-
rently, an AWS instance will be terminated by AWS when
the current spot price exceeds the bid, with a 2-minute notice.
GCP offers a 30-second notification. An AWS spot instance is
terminated either by the user or by AWS when the current spot
price exceeds the user bid price or when the spot resource pool
in an availability zone is over-utilized. GCP terminates every
spot instances 24 hours after they were started, in addition
to the same conditions as AWS spot instance termination.
NetUber avoids shutting down instances on its own for the
sake of stability, except for terminating the instances after
supporting a significant spike in bandwidth demand.

A SaaS provider can use NetUber, instead of having
geo-replicated deployments in multiple cloud regions which
can be technically more challenging and more expensive.
Furthermore, NetUber supports more regions beyond those
supported by any single cloud provider. For example, SaaS
applications hosted in rd can be accessed by an end user in
ro through NetUber more reliably than through the public
Internet. Thus, a SaaS provider can exploit NetUber to create
a point of presence in multiple regions while hosting the
application in just a single region. Hence, NetUber can be a
potential cost-efficient alternative to geo-replicated solutions.

C. A Provider of Network Services

Virtual Network Functions (VNFs) such as packet scrub-
bers, transcoder, firewalls, load balancers, and proxies, can
be hosted in the spot VMs of NetUber as SaaS to perform
middlebox actions to alter the data flow transferred atop the
overlay. For example, forwarded data can be encrypted or
compressed at an instance before the inter-region transfer,
if prompted by the user, as additional services. Encryption
enhances the security of data transferred, while compression
allows an economic transfer, with minimal latency as data
can be compressed in-memory in the spot instances. We can
host caching services in NetUber instances to optimize or
limit WAN traffic. NetUber can also be used for content

distribution atop the overlay or mitigation of distributed denial
of service (DDoS) attacks on the customer networks.

Hosting VNFs and SaaS on top of an overlay such as
NetUber is straightforward as these applications directly
consume the cloud resources. As elaborated in Section II,
NetUber relies upon highly-optimized 10 GbE spot instances
(i.e., R4), which are ideal to support all the above computation-
intensive network functions, as opposed to smaller unsta-
ble spot instances. These optimized instances have abundant
memory (244 GB memory each) and CPU resources. Thus,
with a relatively stable memory, computing, and networking
resources across the regions, NetUber can be used as a frame-
work for third-party network services on a cloud platform. We
omit elaborations on such services for the sake of brevity.

IV. ECONOMIC FEASIBILITY OF A CLOUD-ASSISTED
VIRTUAL CONNECTIVITY PROVIDER

Various pricing models have been proposed for connectivity
providers [33], content providers [30], and clouds [38]. Cloud
vendors list their VM prices at an hourly rate though they
charge per second. NetUber follows the same pricing scheme
since it acquires its instances on a per-second basis. Since
the connectivity providers list their charges per-month, we
assume one month as the total time in our models, for a fair
comparison. While a cloud-assisted network provider may be
able to negotiate a discounted price with the cloud providers
for a large-scale spot resource acquisition, we limit ourselves
as regular users for the sake of a realistic evaluation. A cloud
vendor itself may choose to operate a NetUber-like overlay.
However, our interest is limited to the decoupling of the
overlay provider from the cloud provider.

Equation 1 defines λo,d as an end-to-end unit data transfer
cost from so to sd. Currently, cloud providers do not charge
for incoming data from the Internet or another region. The
NetUber customers incur a cost (charged per used port-hours,
at an hourly rate, by AWS Direct Connect), Do and Dd, to
connect the servers so and sd to the cloud provider. Thus,

λo,d = λso,ro+λro,rd+λrd,sd = Do+λro,rd+λrd,sd+Dd (1)

By substituting the values for the two (also can be gen-
eralized for more than two) cloud providers, Equation 1 can
be extended to include the multi-cloud scenario depicted in
Figure 4. λ(1) and λ(2) denote the unit data transfer costs
by the cloud providers 1 and 2 respectively. The instance
of the cloud provider 2 in ri is just an external server
connected through the public (Internet-based) or a dedicated
direct connectivity for the cloud provider 1, whereas it
functions as the origin cloud server from the perspective of
the cloud provider 2. Thus, the cost associated with the
cloud provider 1 is denoted by λ

(1)
ro,ri + λ

(1)
ri,si , whereas the

cost associated with the cloud provider 2 is denoted by
λ
(2)
ri,rd +λ

(2)
rd,sd . Di denotes the cost of connecting the instances

of both cloud providers at the region i. Hence, Equation 2
denotes the total cost.

λ
(1,2)
o,d = Do +λ(1)ro,ri +λ(1)ri,si +Di +λ(2)ri,rd

+λ(2)rd,sd
+Dd (2)

356

We formulate the total cost from all the vendors for
NetUber C, in Equation 3. C consists of the cost associated
with acquiring the spot VMs and the cost of data transfer.
cv,r,i,t defines the cost for an instance from the cloud vendor
(v ∈ V) from a region at a given time step between t0 and
tf . Since the spot price continues to fluctuate, the cost to
acquire the required number of spot instances (i ∈ I) in each
of the regions (r ∈ R) is calculated as a time integral over its
execution time, and summed for all the instances from each
region of all the cloud vendors.

The data transfer cost is billed by the cloud provider per the
volume of data transferred. Therefore, it is calculated by a time
integral of data rate bt through a cloud path to its completion.
Since λo,d denotes the unit data transfer cost involving all the
cloud paths, we calculate the total data transfer cost from the
first NetUber instance that receives the user traffic, ∀i ∈ Iro ,
for each region of all the cloud vendors.

C =
∑
v∈V

∑
r∈R

[∑
i∈I

∫ tf

t0

cv,r,i,tdt+
∑
i∈Iro

∫ tf

t0

(λo,dbt)dt

]
(3)

We observed that the data rate of the inter-region data
transfers bt is proportional to the network interface (β) of
the instance. β is 10 Gbps in the r4.8xlarge instances used
by NetUber. However, it is impossible to reach the full
network interface capacity in the inter-region data transfer.
Cloud data transfers between regions have a degradation from
the promised network interface. We define the degradation in
the data rate of inter-region data transfer as a ratio of the
network interface of the pair of VM instances, χt ∈ (0, 1).
The actual data rate bt = β × (1− χt).

Data compression at the source can significantly reduce the
costs, given that cloud providers do not charge for the in-
coming data. Many cloud compression tools, general purpose
or optimized for specific file formats, make lossless com-
pressions feasible at the time of the cloud transmission [46].
By compressing the data before the inter-region transfer,
we can significantly increase throughput or the actual data
transferred per unit time. We define a compression ratio γt
as the percentage of size reduction from compression without
incurring data loss. γt and χt vary with time, unpredictable to
NetUber. Equation 4 illustrates the effective data rate b.

b =
bt

1− γt
=
β × (1− χt)

(1− γt)
;χt, γt ∈ (0, 1) (4)

NetUber proposes to charge its customers based on their
requested bandwidth (b), the length of the bandwidth usage
(τ), and a direct unit (per time unit, per unit data rate) cost
(Λo,d) to acquire the instances and data transfer from the
cloud provider. cv∗,ri defines the cost of acquiring intermediate
instances from any vendor v∗. cv∗,ri is 0 if vo = vd, as this
makes NetUber overlay with just one cloud vendor. β defines
the network interface of the instance. To find the instance
cost per unit data rate, we divide the cost of instances by the
capacity of their network interface. Thus, NetUber defines the
charge Γ for its customer as a cost function (Equation 5) such
that it remains profitable, with the total income of NetUber

from all its users for their connectivity demands remain higher
than its cost of acquiring spot instances and data transfer costs.

Γ = f(τ, b,Λo,d),where (5)

Λo,d = β−1 × (cvo,ro + cvd,rd +
∑

if(vo<>vd)

cv∗,ri) + λo,d.

V. EVALUATION

In this section, we aim to answer two questions: i) when
is NetUber more cost-efficient than connectivity providers?,
and ii) how does the performance of NetUber compare to
using direct Internet paths?
Prototype deployment. We deployed a prototype of
NetUber on multiple r4.8xlarge optimized spot instances
(each with 10 GbE network interface) in each AWS region, as
virtual routers. We performed an initial evaluation of various
origin and destination regions. We reached around 50 Mbps
between two instances in any regions with a single TCP
connection. We achieved 1.2 Gbps of maximum stable inter-
region bandwidth between the pair of 10 GbE instances with
parallel connections. Thus, we deployed our prototype on
at least 9 pairs of r4.8xlarge spot instances to achieve 10
Gbps bandwidth between two regions. We confirmed that the
maximum bandwidth (1.2 Gbps) obtained was independent of
the origin and the destination regions. By choosing a spot
instance ro in the overlay and placing it along with the origin
server so in the same placement group, NetUber ensures that
so utilizes the complete 10 GbE in sending data to the overlay.
Since spot instances are billed per second, we spawned the
instances only when necessary. Instances are shared across
users for multiple data transfers (at the same time, or at
different time intervals, based on the data rate required for
the transfer). Thus, the entire data rates of the instances are
exploited, with minimal underutilization.
Infeasibility of using smaller instances. There are alterna-
tives to the R4 instances that we used in NetUber: smaller
spot instances and on-demand instances. The smaller instances
such as C3 instances have a moderate network. We found two
issues with these moderate network instances: i) we need to ac-
quire a lot of them, which is more complicated to maintain due
to the need for a substantial number of parallel connections,
and ii) they are very unstable. We noted that with the cost
of acquiring the number of 10 GbE instances, we could have
around 2 - 4 Gbps, yet unpredictable, inter-region bandwidth
with numerous moderate-network spot instances. However, the
moderate network instances offered no promised guarantees
for the bandwidth, unlike the R4 instances (r4.8xlarge and
r4.16xlarge have 10 GbE and 25 GbE interfaces, respectively).

We were able to obtain the R4 spot instances promptly while
having to wait for up to one hour for the moderate network
instances. The r4.8xlarge of NetUber instances stayed alive
throughout the experiments which lasted up to 3 months, while
smaller instances shut down frequently. Thus, we observe that
it is possible to have a stable overlay over the 10 GbE spot
instances, whereas currently, it is not feasible over the smaller
ones. There was no difference in the quality of paths between

357

the on-demand and spot instances. Thus, we observed that
using smaller on-demand instances provide worse data rate or
a much higher cost than using the 10 GbE spot instances for
a functional prototype.

A. Economical Alternative to Connectivity Providers

To evaluate the cost efficiency of NetUber, we compare
the data transfer cost of NetUber from Frankfurt to Sydney,
against the offerings of 2 connectivity providers in the EU/US
regions, marked as CP-1 and CP-2 in Figure 5. Due to
cost restrictions, our extensive study only covers this pair
of EC2 regions. However, based on the past approximate
spot instance pricing details we gathered, we believe that our
approach can be generalized to other pairs of regions. We
also consider a compressed data transfer with NetUber in
the evaluations, accounting for the potential compression-as-
a-service deployment in the NetUber instances. We report the
cost of the instances as the average price during the period.

 0

 2000

 4000

 6000

 8000

 0 50 100 150 200 250

C
o
st

 (
$
)

Transferred Data (TB)

NetUber
NetUber (75% Compr.)

CP-2

CP-1 (Basic)
CP-1 (Premium)

Fig. 5. Monthly Fee for 10 GbE Flat Connectivity
CP-1 is an infrastructure provider with an extensive,

geographically-distributed infrastructure that offers connectiv-
ity as an alternative to transit providers. It provides two op-
tions: a basic scheme to connect to regular networks choosing
the cheapest paths, and a more expensive premium scheme to
connect to premium networks (connecting with large IXPs and
premium networks) for better throughput and shortest paths.
CP-2 is a transit provider. We obtained these price quotes via
private email queries. As these quotations are not public (as
typically transit providers do not list the prices in public), we
must refrain from disclosing the providers. We include the
costs of acquiring instances, data transfer costs, and the AWS
Direct Connect cost for a continuous data transfer of the given
volume for NetUber.

Up to 75% of lossless compression has been reported in
compressing streaming data in real time [1]. We demonstrate
a similar (0.75) or higher γt with in-memory compression at
ro. With these values, b = β · (0.12) / (1 - 0.75) = 0.48 ·
β = 4.8 Gbps, from Equation 4. While the inter-region data
transfer achieves only 0.12 · β (or 0.48 · β with compression),
AWS Direct Connect reaches the complete data rate of β.
In Figure 5, we plot the minimum price of NetUber as
the cost charged by EC2 for the spot instances and the data
transfer. Here we consider both regular (γt = 0; χt = 0.88)
and compressed (γt = 0.75; χt = 0.88) NetUber transfers.

3164.0625 TB per month (10 Gbps = 10/8 · 3600 · 24 ·
30 GB/month) of data can be transferred between a pair of
instances with 10 GbE interface. For volumes of data transfers

TABLE I
PING TIMES (MS): REGULAR INTERNET VS. NetUber

Origin → Destination Direct NetUber (via) Improvement
Vladivostok → São Paulo 362.72 307.08 (Tokyo) 15.34%
Hobart → Mumbai 347.22 248.41 (Sydney) 28.46%
Seoul → São Paulo 321.72 299.31 (Seoul) 6.97%
Tashkent → Singapore 351.61 258.57 (Mumbai) 26.46%
Nairobi → Tokyo 403.87 386.37 (Mumbai) 4.33%
Frankfurt → Tokyo 296.87 237.34 (Frankfurt) 20.05%
Thuwal → Tokyo 346.01 324.30 (Frankfurt) 6.27%
Prague → São Paulo 224.90 221.40 (Frankfurt) 1.56%
Nuuk → Sydney 415.02 352.46 (Canada) 15.07%
Fairbanks → Mumbai 441.57 435.64 (Canada) 1.34%
São Paulo → Paris 239.45 210.72 (São Paulo) 12.00%
Tacuarembó → Montreal 203.42 186.01 (São Paulo) 8.56%

up to at least 50 TB, NetUber always offered a competitive
price (compared to the benchmarked connectivity providers)
and remained globally profitable. When 75% compression is
assumed, NetUber was still cheaper up to 200 TB. Thus,
by leveraging the availability of abundant memory in the
r4.8xlarge instances, we can employ enhancements profitable
to NetUber or additional VNFs that can be executed as value-
added services on the data traffic.

B. Higher Performance Point-to-Point Interconnection

NetUber is not always cheaper. But can it perform better
when it is equally or more expensive than using the standard
Internet-based connectivity? To assess the performance, we
compare the round-trip time latency (ping time) between two
endpoints that connect through NetUber against the latency
using Internet-based connectivity of ISPs.We sent pings be-
tween the endpoints, first through the standard connection, and
then via NetUber by entering the overlay through the nearest
AWS region. For the geographically distributed servers, we
used RIPE ATLAS Probes [15] and our physical servers.

We benchmark NetUber along with ISPs for faster Internet
routes, against using just an ISP, how the chosen ATLAS
Probes are connected by default to the Internet. We repeated
the evaluations ten times and listed the average ping times (in
milliseconds) in Table I, along with the AWS region that the
ping is routed through for NetUber, as well as the improve-
ment when using NetUber. We measured the performance
improvement by the drop in latency, leaving other properties
such as jitter and loss rate for future work. In all the cases, we
observe that going through NetUber overlay offered better
latency (up to 30% improvement) than directly connecting
through the ISP, as long as a cloud region exists relatively
near to the origin server, en route to the destination. The ISP-
based connectivity remained the bottleneck in throughput as
it reached up to only 50 - 75 Mbps.

The results indicate that even without dedicated connections
to the cloud provider, an ISP user can resort to NetUber for
better latency and throughput for data transfer and accessing
SaaS hosted in a far cloud region, rather than directly con-
necting through the user’s ISP. However, we predict a better
latency and throughput when a dedicated connection such as
Amazon Direct Connect connects the servers to the overlay.
Similarly, NetUber can also be used in conjunction with

358

FTTH and community-based initiatives [14] for faster Internet
routes, as they are not widespread. One can even use NetUber
adaptively, such that only the transfers with a cloud region en
route to offer better latency go through the NetUber overlay.
We leave further discussion on these for future work.

VI. RELATED WORK

A. Cost Efficiency with Cloud Infrastructure

Cloud-based infrastructures can increase the cost-efficiency
of interconnections while minimizing the deployment time.
Voxility [44] leverages its vast distributed infrastructure to pro-
vide network services and end-to-end interconnection, cheaper
than the transit providers with more flexible agreement options
for short-term and small-scale interconnections. CloudDi-
rect [22] offers auxiliary services such as backup and disaster
recovery atop cloud offerings. Cloud resources of NetUber
can be leveraged for more than just connectivity, including
network services such as caching, content distribution to
multiple local subscribers, and data analytics over wide-area
networks [43].

Various approaches have been proposed, to reap the eco-
nomic benefits, while addressing the technical challenges
inherent to the volatile nature of spot instances. A third
party or a broker leveraging resources from multiple cloud
providers, and reselling them in a vertical market, has been
found to be beneficial for both the broker as well as the cloud
providers [36]. This multi-cloud infrastructure is in line with
that of NetUber. Dynamic bidding policies are developed to
support deadline-constrained jobs in spot instances [49]. Tem-
poral multiplexing of burstable instances (to have a constant
higher availability of CPU cycles) and spatial multiplexing of
spot instances (to have reliable connectivity with redundancy
in the path) can be performed inside a single AWS region with
minimal overhead [26]. A trusted third party such as Google
Fi [9] can function as a virtual ISP by exploiting the resources
of multiple ISPs [50]. However, no comprehensive study has
been conducted to realistically determine the feasibility of a
virtual ISP that leverages the resources of spot instances, as a
regular cloud user. NetUber exploits the differentiated pricing
of various availability zones for a relatively stable overlay.

Bidding in the spot markets of multiple regions can min-
imize the costs of CPU-intensive workloads, increasing the
availability of the Internet services [34]. While NetUber bids
in multiple regions to acquire VMs in geographically dis-
tributed locations to host the virtual routers, it cannot use mi-
grations between VMs in different regions for cost efficiency,
as it will, in turn, increase the bandwidth consumptions and
the number of hops. Cloud brokerage services have been built
on spot instances with scheduling and reservation mechanisms,
to minimize computing costs for jobs with a strict deadline,
up to 57% [47]. Cost efficiency and performance of in-
memory caches have been improved in the cloud, by deploying
in spot instances while exploiting burstable instances for a
backup [45]. But the scope of those research work is limited to
computing, while NetUber focuses on network connectivity,
data transfer, and additional VNFs on the path.

B. Decoupling the Internet

Software-Defined Internet Architecture (SDIA) [39] decou-
ples the architecture of the Internet from the infrastructure, by
modifying the way interdomain tasks operate, through SDN
and MPLS. SDIA and NetUber share the goal of connecting
endpoints on the Internet regardless of the underlying infras-
tructure. However, NetUber focuses on network virtualization
and does not alter how the underlying physical network works.
Consequently, NetUber can be deployed on existing cloud
providers without any modifications to the cloud networks. Jin-
gling [27] separates the network functions outside the network
towards external “Feature Providers”. While Jingling delegates
network functions to third parties, NetUber virtualizes the
entire network with virtual routers running atop spot VMs, by
a third party broker. Both NetUber and Jingling do not have
control over the exact physical location of the system. Thus,
specifying policies of the end users and identification of the
cloud instances should be done through service layer instead
of the physical address.

Virtual connectivity providers that do not control the infras-
tructure have been proposed, following an approach similar
to that of NetUber [25], [48], [21]. Cabo decouples ISPs
into infrastructure providers and service providers, with con-
current networks that run multiple virtual routers atop each
physical router, thus virtualizing links between any two virtual
nodes [25]. Slicing the home networks can enable various
service providers to reduce the costs and overhead associated
with deployment and management, by sharing a common
infrastructure [48]. However, NetUber focuses on leveraging
the cheap spot instances, and thus offers an economical
approach to deploy on a large scale.

There have been industrial efforts following the same goal
with NetUber, aiming at a fast direct interconnection between
two endpoints, without relying on traditional connectivity
providers in the region. PacketDirect [7] is an SDN-based
platform that reduces the time to set up interconnections
through its SDN-based framework. MPLS providers such as
iTel [5] connect multi-location decentralized offices with a
private layer-2 network, a unified connection to the whole
organization. These providers differ from the traditional MPLS
networks that merely provide connectivity between two end-
points, thus still requiring Ethernet connections for each office.

VII. CONCLUSION

Connectivity providers limit their agreements regarding
minimum length and scale, preventing customers with short-
term (in the scales of minutes, opposed to months), or minimal
bandwidth requirements. NetUber aims to address this as a
virtual connectivity provider, built as a cloud-assisted overlay,
running atop spot instances purchased from cloud providers for
a low price. NetUber aims for affordable end-to-end network
connectivity for anyone, while not owning the infrastructure.
In this paper, we built a case on why a virtual connectivity
provider without any fixed resources may not just be techno-
logically feasible, but also be economically sustainable.

359

We presented case studies with NetUber as i) an economi-
cal alternative to connectivity providers for data transfers up to
50 TB, ii) a higher performance connectivity as an alternative
to ISPs for end-to-end inter-region data transfer and accessing
SaaS hosted in far regions without geo-replication, and iii)
a provider for network services on top of a cloud-assisted
overlay. Our analysis of the spot instance prices shows that
cloud-assisted overlay network costs depend on a variety of
factors, including geographical locations and current demand.
We observe the enhancements in performance in comparison
to ISPs and cheaper data transfer for small decentralized
enterprises. As a future work, we envision an Internet-scale
economic analysis and deployment of NetUber on top of
multiple cloud infrastructures.

Acknowledgements: We are thankful to Márcio Santos and Virgil
Truica for their insights. This research was supported by European Union’s
Horizon 2020 research and innovation programme under the ENDEAVOUR
project (grant agreement 644960), and national funds through Fundação para
a Ciência e a Tecnologia with reference UID/CEC/50021/2013.

REFERENCES

[1] Compression as a service is now available in the cloud! boostedge.net
for isps, telcos and enterprises ubfast.com for end-users!, 2013. Avail-
able at http://www.businesswire.com/news/home/20130207006266/en/
Compression-Service-Cloud!-Boostedge.Net-ISPs-Telcos-Enterprises.

[2] Encryption as a service, 2014. Available at http://www.cloudlinktech.
com/wp-content/uploads/downloads/2014/07/Data-Encryption-as-a-
Service_R1.pdf.

[3] Console - the cloud connection company, 2017. Available at
https://www.consoleconnect.com/.

[4] Epsilon Telecommunications Limited – Connectivity Made Simple,
2017. Available at http://www.epsilontel.com.

[5] iTel MPLS (IP VPN) High Performance Connectivity, 2017. Available at
http://signup.itel.com/hubfs/Sales_Resources_InfoSheets/iTel_MPLS_
Info_Sheet.pdf.

[6] Megaport, 2017. Available at http://megaport.com/.
[7] PacketDirect, 2017. Available at

https://www.packetfabric.com/packetdirect/.
[8] Packetfabric, 2017. Available at https://www.packetfabric.com/.
[9] Project fi, 2017. Available at https://fi.google.com/about/.

[10] Amazon. Amazon ec2 spot instances, 2017. Available at
https://aws.amazon.com/ec2/spot/pricing/.

[11] Amazon. Aws regions and endpoints, 2017. Available at
http://docs.aws.amazon.com/general/latest/gr/rande.html.

[12] Amazon. How spot fleet works, 2017. Available at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html.

[13] Amazon. Placement groups, 2017.
docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-
groups.html.

[14] B4RN. Broadband for the rural north, 2018. https://b4rn.org.uk/about-
us/our-network/.

[15] V. Bajpai, S. J. Eravuchira, and J. Schönwälder. Lessons learned from
using the ripe atlas platform for measurement research. ACM SIGCOMM
Computer Communication Review, 45(3):35–42, 2015.

[16] J. Barr. Aws outbound data transfer prices reduced by $0.02/gb, 2010.
Available at https://aws.amazon.com/blogs/aws/aws-data-transfer-prices-
reduced/.

[17] J. Barr. Aws data transfer price reduction, 2014. Available at
https://aws.amazon.com/blogs/aws/aws-data-transfer-price-reduction/.

[18] J. Barr. Aws blog. category: Price reduction, 2017. Available at
https://aws.amazon.com/blogs/aws/category/price-reduction/.

[19] S. A. Baset. Cloud slas: present and future. ACM SIGOPS Operating
Systems Review, 46(2):57–66, 2012.

[20] B. Boudreau. Global bandwidth & ip pricing trends, 2017. Available at
http://www2.telegeography.com/hubfs/2017/presentations/telegeography-
ptc17-pricing.pdf.

[21] C. X. Cai, F. Le, X. Sun, G. G. Xie, H. Jamjoom, and R. H. Campbell.
Cronets: Cloud-routed overlay networks. In Distributed Computing
Systems (ICDCS), 2016 IEEE 36th International Conference on, pages
67–77. IEEE, 2016.

[22] CloudDirect. Move to Cloud ID - quickly, easily and securely, 2017.
Available at https://www.clouddirect.net/.

[23] Cloudflare. Cloudflare argo, 2017. Available at
https://www.cloudflare.com/argo/.

[24] Cogent. Cogent ip transit, 2017. Available at
http://www.cogentco.com/en/products-and-services/ip-transit.

[25] N. Feamster, L. Gao, and J. Rexford. How to lease the internet in
your spare time. ACM SIGCOMM Computer Communication Review,
37(1):61–64, 2007.

[26] A. Gandhi and J. Chan. Analyzing the network for aws distributed
cloud computing. ACM SIGMETRICS Performance Evaluation Review,
43(3):12–15, 2015.

[27] G. Gibb, H. Zeng, and N. McKeown. Outsourcing network functionality.
In HotSDN’12, pages 73–78. ACM.

[28] Google. Google cloud platform - cloud locations, 2017. Available at
https://cloud.google.com/about/locations/.

[29] Google. Preemptible vm instances, 2017. Available at
https://cloud.google.com/compute/docs/instances/preemptible.

[30] P. Hande, M. Chiang, R. Calderbank, and S. Rangan. Network pricing
and rate allocation with content provider participation. In INFOCOM’09,
pages 990–998. IEEE.

[31] O. Haq and F. R. Dogar. Leveraging the power of cloud for reliable
wide area communication. In HotNets’15, page 19. ACM.

[32] O. Haq, M. Raja, and F. R. Dogar. Measuring and improving the
reliability of wide-area cloud paths. In WWW’17, pages 253–262.

[33] H. He, K. Xu, and Y. Liu. Internet resource pricing models, mechanisms,
and methods. Networking Science, 1(1):48–66, 2012.

[34] X. He, P. Shenoy, R. Sitaraman, and D. Irwin. Cutting the cost of hosting
online services using cloud spot markets. In HPDC’15, pages 207–218.
ACM.

[35] P. Lovelock. Unleashing the Potential of the Internet in Central Asia,
South Asia, the Caucasus and Beyond. ADB Consultant’s Report, pages
27–28, 2015.

[36] A. Ludwig and S. Schmid. Distributed cloud market: Who benefits from
specification flexibilities? ACM SIGMETRICS Performance Evaluation
Review, 43(3):38–41, 2015.

[37] B. W. Norton. Internet transit prices - historical and projected,
2014. Available at http://drpeering.net/white-papers/Internet-Transit-
Pricing-Historical-And-Projected.php.

[38] R. Pal and P. Hui. Economic models for cloud service markets: Pricing
and capacity planning. Theoretical Computer Science, 496:113–124,
2013.

[39] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker. Software-defined internet architecture: decoupling
architecture from infrastructure. In HotNets’12, pages 43–48. ACM.

[40] D. Richman. Amazon web services’ secret weapon: Its custom-made
hardware and network, 2017. https://www.geekwire.com/2017/amazon-
web-services-secret-weapon-custom-made-hardware-network/.

[41] M. Scurrell. Batch computing at a fraction of the price, 2017.
Available at https://azure.microsoft.com/en-us/blog/announcing-public-
preview-of-azure-batch-low-priority-vms/.

[42] Teridion. Teridion, 2017. Available at https://www.teridion.com/.
[43] R. Viswanathan, G. Ananthanarayanan, and A. Akella. Clarinet: Wan-

aware optimization for analytics queries. In OSDI’16, pages 435–450.
USENIX Association.

[44] Voxility. Voxility - The secure infrastructure for your amazing Cloud
Service, 2017. Available at https://www.voxility.com/.

[45] C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang. Exploiting
spot and burstable instances for improving the cost-efficacy of in-
memory caches on the public cloud. In EuroSys’17, pages 620–634.
ACM.

[46] Y. Xing, G. Li, Z. Wang, B. Feng, Z. Song, and C. Wu. Gtz: a fast
compression and cloud transmission tool optimized for fastq files. BMC
bioinformatics, 18(16):549, 2017.

[47] M. Yao, P. Zhang, Y. Li, J. Hu, C. Lin, and X. Y. Li. Cutting your cloud
computing cost for deadline-constrained batch jobs. In ICWS’14, pages
337–344. IEEE.

[48] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown.
Slicing home networks. In HomeNets’11, pages 1–6. ACM.

[49] M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for spot vms in a cloud
for deadline constrained jobs. In CLOUD’12, pages 75–82. IEEE.

[50] L. Zheng, C. Joe-Wong, J. Chen, C. G. Brinton, C. W. Tan, and
M. Chiang. Economic viability of a virtual isp. In INFOCOM’17.
IEEE.

360

Real-time Money Routing by Trusting Strangers
with your Funds

Martijn de Vos and Johan Pouwelse
Distributed Systems group, Delft University of Technology, The Netherlands

Email: m.a.devos-1@tudelft.nl

Abstract—We explore a new stage in the evolution of digital
trust, trusting strangers with your funds. We address the trust
issues when giving money to others and relying on them to
forward it. For fraud identification, we leverage our deployed
blockchain which gradually builds trust between interacting
strangers. Our blockchain fabric, called TrustChain, records
interactions between entities in a scalable manner. This work
represents a small step towards a generic infrastructure for trust,
moving beyond proven single vendor platforms like eBay, Uber
and Airbnb.

Expanding upon established trust relations, we designed, im-
plemented and evaluated an overlay network: Internet-of-Money.
Internet-of-Money routes money to different banks through
individuals, so-called money routers. This removes the need for
central banks, to handle a payment. Our network reduces the
duration of traditional inter-bank payments from up to a day and
even a few days during weekends, to mere seconds. Internet-of-
Money is fully decentralized, scalable and privacy-preserving.

With real-world experimentations, we prove that Internet-of-
Money enables fast money forwarding. We show that the overlay
network is capable of discovering a majority of available money
routers within a minute. Finally, we demonstrate how profit of
cheating routers is limited and that misbehaviour is punished.

I. INTRODUCTION

Creating trust between strangers is at the core of numerous

successful Internet companies. Starting 22 years ago, Craigslist

offered an unmoderated mailing list of advertisements and

gossip on which buyer and seller could be trusted. eBay for-

malised this in 1997 and introduced a star-based rating system

that enables traders to build a trustworthy profile [1]. The e-

commerce platform was launched at a time when people were

still hesitant to use their credit card on a technology called The

Internet. Nowadays, people let strangers sleep in their houses

using Airbnb (since 2008). We trust Uber (since 2009) with

our physical security and get into cars late at night with a

driver that has never undergone a criminal background check

or given a government license. These influential milestones in

the evolution of digital trust are shown in Figure 1.

We continue this evolution of building trust. We created

an operational platform for one of the most challenging and

sensitive applications, having others handle your money.

Bitcoin created money without the need for banks [2]. In

the past, people were required to trust a central bank and

a host of other intermediaries when making payments [3].

The fundamental technology of Bitcoin, blockchain, radically

reduced the need to trust financial middlemen. It bootstrapped

an economy where no one can be stopped from spending their

money. Despite widespread speculation and ecosystems being

worth billions, blockchain in general suffers from scalability

issues due to inefficient mechanisms for fraud prevention.

Bitcoin is theoretically limited to seven transactions per second

and Ethereum has a throughput of around 20 transactions per

second [4]. Despite various scalability efforts like proof-of-

stake and sharding, broader adoption of blockchain stays out.
While a majority of Internet users trust the company behind

popular platforms, the events involving Mt. Gox highlighted

how digital trust can be established and compromised [5]. Mt.

Gox was at one point the largest Bitcoin exchange worldwide.

In 2014, hackers stole Bitcoin, worth around $460 million

at that time. This event, together with major data breaches in

2017 at high-profile companies like Uber and Equifax, exposed

the weakness of centralized architectures [6]. They motivate

research around decentralized technologies, like blockchain.
The generic problem of building trust between strangers

resides on the edge of technology, sociology and behavioural

science [7]. The question whether someone can be trusted,

depends on properties like personality, level of authority,

culture and past behaviour. In this research, we address the

trust problem from a technological perspective, using tamper-

proof interactions on a scalable blockchain. This structure

is built to detect fraudulent behaviour and misrepresentation.

We explore whether a trust model based merely on historical

encounters is sufficient to trust strangers with your money.
With established trust relations, we demonstrate how one

can transfer money within seconds between different banks by

relying on others to act as financial intermediaries. In compar-

ison to most proven platforms, our solution is designed to be

fully decentralized and autonomous. Our work is motivated by

slow money transfers to other banks using existing systems.

Inter-banking payments often take up to a day or even a few

days during weekends to arrive in the account of a beneficiary.
The main contributions of this work are as follows:

1) A trust model, based on repeated interactions and stored

on a tamper-proof, scalable blockchain.

2) Internet-of-Money, a novel overlay network that allows

real-time money routing to other banks.

3) Experimental quantification of the performance of our

trust model, the speed of money transfers and the

efficiency of our overlay network.

4) A framework to interface with multiple banks and to

initiate payments to others using Internet-of-Money.ISBN 978-3-903176-08-9 c©2018 IFIP

362

363

364

To determine trust scores, we use an algorithm which

has been studied extensively in related work, personalised

PageRank [18]. The algorithm assigns a score between 0 and 1

to each node in G. These scores are used to pick intermediaries

for money forwarding (see Section VI). We consider the node

in G that performs the computation as trusted source. Using

a reputation algorithm based on random walks is attractive

due to its high scalability and low computational complexity.

However, one might consider using a reputation algorithm

based on maximum network flow to compute trust scores.

In particular, we believe the Bazaar algorithm is suitable for

this use case and provides additional security at the cost of

increased computational requirements [19].

Preventing the Sybil Attack: We propose a mechanism

called router validation to ensure that a specific bank account

can only be operated by a single money router. The effective-

ness of this method comes from the difficult and costly process

of opening many accounts with different banks internationally.

This addresses the challenging Sybil Attack, where an attacker

operates multiple entities that use the same bank account for

money routing. A router first registers a bank account by

sending e0.01 to a trusted third party (TPP), for instance,

a bank. The digital identity of TPPs are publicly available.

TPPs sign and store a so-called verify transaction on Trustchain

together with a money router when the payment is observed.

This transaction uniquely connects a bank account to a money

router. Routers reusing accounts across multiple identities can

be identified by querying Trustchain records.

VI. SYSTEM DESIGN OF INTERNET-OF-MONEY

We expand upon fast payments and our trust model by

designing a novel overlay network named Internet-of-Money. It

operates on top of existing inter-bank payment systems, similar

to how The Internet was built on top of the legacy telephone

infrastructure.

The Money API: Except for the German FinTS payment

protocol, there are no open standards yet for online banking.

European legislation called PSD2 is forcing all EU banks to

create open interfaces (APIs) [20]. We created one of the

first open implementations capable of communicating with

numerous banks. We combined banks in the Netherlands

(Rabobank, ING and ABN Amro), the British bank HSBC

and the Luxembourg payment provider PayPal [21][22]. We

devised a single API to communicate with all these banks,

called The Money API. The Money API provides primitives

to login, fetch account balance, query mutations, initiate

payments to other accounts and register devices. This library

is designed to be extendible and we have partial support for

banks in Italy, Greece, Sri Lanka, Turkey and Germany. Our

open source2 library is currently being tested.

Money Routers: Each money routers must offer settlement

services with at least two different bank accounts. Having

2The Money API source code:
http://www.ds.ewi.tudelft.nl/fileadmin/pds/homepages/vos/
iom/internet of money.zip

many money routers in the network directly benefits avail-

ability and load balancing. A study conducted by NGData

indicated that 37.7% of the respondents held accounts at dif-

ferent banks and are able to act as settlement intermediary for

money transfers [23]. To create incentives for users to operate

a money router, we include transaction fees. Transaction fees

can be either fixed, defaulting to e0.01, or a percentage of a

fast payment volume. These fees are necessary to cover costs

enforced by banks when initiating cross-border payments or

when using business accounts to route money. In addition,

users can specify a minimum account balance to avoid taking

costs when their balance becomes negative. In the remainder

of this work, we assume transaction fees are fixed. We also

consider an analysis of monetary incentives out of scope and

not fundamental for the prototype evaluated in this work.

Note that our design also allows the role of money router

to be fulfilled by a single trusted third party or by a few

selected trustworthy entities (i.e. financial institutions). A more

centralized architecture would mitigate some of the trust and

security issues that arise from full decentralization. However,

we consider open enrollment (the opportunity for any user to

act as a money router) a cardinal property of our system.

Router Discovery: We designed a gossip protocol for dis-

covery of available money routers, based on utility. Like all

our proposed infrastructure, it does not depend on any server,

company, or other central entity. If Alice wishes to discover

a new router, she asks one of her known peers, say Bob, to

introduce a router to her. Now, Bob tries to introduce a router

to Alice through which she can route money. In general, the

algorithm prioritizes routers that provide the most benefit to

Alice. If Bob has no router in his set of known peers that

are able to provide new services to Alice, he will introduce

a random router to Alice. Repeating this gossiping protocol

quickly converges to a network with connections between

individuals able to provide routing services for each other.

An evaluation of this mechanism is given in Section VII-B.

Building a Money Circuit: Prior to transferring money, an

initiator of a fast payment starts by selecting eligible routers

that are capable of handling the upcoming fast payment. We

define a money circuit as the set of peers that are involved

in a fast payment. This set contains at least one initiator and

one beneficiary, and optionally one or more money routers.

A money circuit that contains n money routers, is called a

n-hop circuit. Building a money circuit proceeds in a depth-

first manner and starts with the initiator selecting a router, say

r, that is capable of routing money to another account. Next,

the initiator sends an extend message to r which contains the

payment volume and the destination bank account of the fast

payment. r responds with a boolean that indicates whether

r has sufficient funds to handle the transfer. The response

also includes a list of routers that are able to extend the

money circuit, and the transaction fee charged by r. If r

is able to handle the transfer, the initiator picks a router to

extend the circuit with and sends an extend message again.

These routers are picked based on trustworthiness scores. This

process repeats until the initiator built a money circuit that

365

can handle the fast payment. Users are able to change the

maximum number of routers in a circuit, which defaults to 3.
The trust model discussed in Section V is based purely

on past transactions. It is useful to consider other properties

when picking eligible money routers, such as transaction fees,

availability, reliability or network latency. Depending on the

situation, one might favour low network latency or competitive

transaction fees over trustworthiness.
Transferring Money: We now elaborate the process of

transferring money over a n-hop circuit. If n = 0, money

is sent directly to the beneficiary using exactly one in-house

payment and no money routers. A single sent transaction is

created between the fast payment initiator and beneficiary.
When a money circuit involves one or more money routers

(n ≥ 1), the fast payment is facilitated by intermediaries.

Let ri indicate the i-th router in the circuit (r1 represents

the first router). The initiator starts by sending a message to

r1, containing the payment volume and all subsequent routers

involved in the money circuit, including the final beneficiary

of the fast payment. Next, the initiator initiates a commit

transaction with r1 and sends the money. r1 now starts to poll

for the money and finally constructs a sent transaction when

funds are observed. r1 forwards the funds to the next router or

the beneficiary and this process repeats until the money arrives

in the bank account of the beneficiary. The final transfer to the

beneficiary does only result in a sent transaction. Thus, a fast

payment with n intermediaries results in 2n+ 1 new records.
Risk Mitigation: In addition to our trust model, we propose

two risk mitigation techniques to reduce counterparty risk

when using money routers:

1) Incremental settlement: A key risk mitigation technique

is to avoid making a single, large payment at once.

Instead, a payment is divided into n smaller inter-

bank payments. While this increases duration of a fast

payment by a factor n, it significantly reduces risk and

incentives for intermediaries to compromise money. We

believe that reduced risk for some increased latency is

a desirable trade-off in Internet-of-Money.

2) Multi-flow payments: We uniformly divide a fast pay-

ment amongst multiple, distinct money circuits. This

results in smaller payments through intermediaries.

While these individual strategies are viable to mitigate counter-

party risk, combining them results in a significant reduction

of the value at stake, at the cost of additional latency and

communication overhead. We evaluate the effectiveness of

these strategies in Section VII-B.
Router Recharging: Since funds arrive in one account and

leave another, money routers might become insolvent at one

point in time, unable to route additional funds. This can be

addressed by handling fast payments going in the opposite

direction, which restores account balances. However, initiation

of these fast payments is outside the control of money routers.

Balances can also be restored by initiating a payment from

the account with excessive balance to the other bank account.

Since this involves an inter-bank payment, settlement might

be slow and in turn, this negatively impacts router availability.

1

10

ABN AMRO ING PayPal Rabobank

Bank

S
e
tt
le

m
e
n
t
d
u
ra

ti
o
n
 (

s
e
c
)

0.32
0.30
0.33

1.00

1.22
1.14

5.51

4.31
4.96

10.66

9.13

Fig. 5: Settlement durations of in-house payments for four

supported banks.

We envision an infrastructure where routers help each other

to restore balances, effectively creating a two-sided market

with capacity supply and demand. For instance, a router can

offer PayPal capacity in return for HSBC funds. While this

is an efficient method to restore balances, only requiring in-

house payments, we consider the design and implementation

of such a mechanism as future work.

VII. EXPERIMENTS AND EVALUATION

We now evaluate the performance of money routers, speed

of router discovery within Internet-of-Money and the effec-

tiveness of our trust model.

A. Performance of Money Routing

This section concentrates on the performance of fast pay-

ments using money routers. All these experiments are con-

ducted with real bank accounts and real money.

Settlement duration of in-house payments: To determine set-

tlement duration of in-house payments for each bank, we send

e0.01 ten times between two accounts with different holders,

within the same bank. By adding a unique identifier to the

description field of a payment, we are able to track payments

and accurately measure settlement times. The experiment is

executed with two clients on two different computers, with a

polling interval of 500 milliseconds, to avoid hammering the

bank servers. Polling starts when the payment request has been

finished by the sending party. The results are shown in Figure

5, with a non-linear vertical axis. Only one bank, ABN AMRO,

has sub-second settlement times with an average duration of

320 milliseconds. ING is slower with 1109 milliseconds on

average. PayPal and Rabobank show settlement durations that

are an order of magnitude slower, averaging to 4.82 and 7.61

seconds respectively. When performing measurements for the

366

0

25

50

75

100

0 50 100

Time into the experiment (sec)

F
ra

c
ti
o

n
 o

f
u

s
e

rs
w

it
h

 f
u

ll
c
o

n
n

e
c
ti
v
it
y
 (

%
)

Max. routers in circuit 1 2 3

Fig. 6: Performance of router discovery under a varying

number of maximum hops in a money circuit.

Rabobank, we observed a notable outlier with a settlement

time of 320 milliseconds. This observation can be explained if

we assume that similar internal payments might be handled in

different ways by the Rabobank. This experiment demonstrates

that in-house payments are usually settled within seconds.

International Real-time Money Routing: Next, we focus on

the performance of an international fast payment and measure

the duration of a money transfer from Rabobank to ABN

AMRO, using two money routers. This experiment aims to

show the viability and speed of Internet-of-Money. Figure 8

shows the experimental setup and timeline of our experiment.

First, an initiator sends funds from his or her Rabobank

account to the first router (holding an account at Rabobank

and PayPal), and informs it about the sent funds. Next, the

first router starts polling for incoming funds, with an interval

of 500 milliseconds. When the first router observes the funds,

it forwards them to the second router (holding an account at

PayPal and ABN AMRO) and informs this router. When the

second router observes the funds, it forwards the money from

it’s ABN AMRO account to the ABN AMRO account of the

beneficiary. In total, three in-house payments are made, with

six different bank accounts.

From Figure 8, we conclude that it takes 15.85 seconds in

total for money to arrive in the bank account of a beneficiary

when using two intermediate routers. A significant amount of

time is spent on waiting for the funds to arrive in the PayPal

account of the second router, around 6 seconds or 38% of

the total duration. The average time to perform a payment

is 2.14 seconds and initiation of payments take 41% of the

total duration. The average time that a transaction is in transit

is 3.02 seconds. The total time to perform a fast payment is

heavily influenced by the type and number of intermediate

routers. This experiment demonstrates that Internet-of-Money

is capable of real-time money routing to other banks.

B. Overlay Evaluation

The purpose of the following experiments is to quantify

the performance of our money router overlay. This includes

an evaluation of our trust model and effectiveness of fraud

0

50000

100000

150000

0 50 100

Time into the experiment (sec)

T
o

ta
l
fr

a
u

d
 c

o
m

m
it
te

d
 (

e
u

ro
)

Strategy None Multi−Flow Incremental Multi−Flow + Incremental

Fig. 7: The effectiveness of fraud prevention, with different

risk mitigation strategies.

detection. We implemented our trust model and Internet-of-

Money overlay network in the Python programming language.

Our implementation is built upon the Dispersy framework,

providing primitives for peer discovery, decentralized commu-

nication and secure messaging [24].
Experimental Setup: The following real-world emulations

are executed on the DAS-5 supercomputer, using 50 instances

per node [25]. We deploy our experiment using the Gumby

framework and we create a scenario file where we sched-

ule actions at specific times. All code used during these

experiments is open source3. Due to the limited number of

accounts we own and to avoid a large load on the banking

infrastructure, simulated accounts are used during this experi-

ment. We assume a total of five different banks and devised a

basic RESTful banking server that handles account creation,

payments, balance queries and mutation requests. Distribution

of bank accounts amongst users follows the data as published

in the NGData customer banking survey (we assume that every

user owns at least one bank account) [23].
Router Discovery: We evaluate the efficiency of the router

discovery protocol discussed in Section VI. During the ex-

periment, we record the connected peers for each user at a

fixed interval (every 5 seconds). We determine whether this

user is capable of transferring money to all five different bank

accounts, using at most one, two and three intermediate money

routers respectively.

Figure 6 shows the performance of router discovery in

the Internet-of-Money overlay. The horizontal axis denotes

the time into the experiment. The vertical axis indicates the

percentage of users that are able to make fast payment to all

five banks, or are fully connected. We vary the maximum

number of routers in a money circuit. As expected, it takes

longer before users are able to build circuits to all other banks

using only one router, compared to three routers. However, the

differences are marginal. In general, router discovery happens

fast: 50% of all users are able to make fast payments to all

banks within 25 seconds after the experiment starts. 40 seconds

into the experiment, this percentage increased to 90%. Note

3https://github.com/devos50/gumby/tree/iom experiment

367

Fig. 8: Timeline of an international fast payment from Rabobank to ABN AMRO, using two money routers.

that it takes longer before all users are fully connected using

at most one intermediate router: 140 seconds.
Fraud Detection: Our final experiment focusses on the

effectiveness of fraud detection (see Section V). To this end,

we emulated 200 users with one or more bank accounts. Every

five seconds, each user with a single account initiates a fast

payment to another entity that has exactly one account of a

different type. This forces a money router in the established

circuits. The volume of each fast payment is picked from

a uniform random distribution between e0.01 and e1000.

We challenge ourselves and assume that every user with at

least two different bank accounts is malicious and has a 50%

probability of committing fraud and not forwarding received

funds during a fast payment. To improve router availability, we

connect all peers together before the experiment starts. In total,

we schedule payments which volume sums to e1,251,848.35.

The results are shown in Figure 7. The horizontal axis

denotes the time into the experiment in seconds, after users

start performing fast payments to each other. The vertical axis

shows the total amount of committed fraud in Euro. We run the

experiment four times with different risk mitigation strategies,

namely incremental settlement (we split each fast payment

in five equal parts) and/or multi-flow payments. The figure

hints that the amount of fraud is capped and that malicious

routers are successfully excluded from money circuits. Without

any risk migration strategy, malicious routers are able to steal

e1,544 on average during the whole experiment, indicating

that fraudulent routers are able to commit fraud multiple

times. This can be addressed to the fact that they are included

in multiple money circuits roughly at the same time. If we

consider risk mitigation strategies, we see that the combination

of multi-flow payments and incremental settlement leads to

the lowest amount of fraud possible, on average e174. Using

exclusively incremental settlement leads to a slightly higher

amount of fraud.

VIII. DISCUSSION

We now discuss this research from various perspectives.
Legal: The idea of directly sharing funds with others,

without a central bank involved, challenges existing regulation.

Routing money through other bank accounts resembles activ-

ity performed by financial settlement institutions and might

require a legal prerequisite in the form of a banking license.

The PSD2 regulation states that trusted third parties (TPPs) can

be authorized by end-users to perform financial activities on

their behalf [20]. However, it is unclear whether the definition

of a TPP includes money routers. Another consideration is

responsibility when a mistaken payment is initiated. Finally,

compatibility of our system with (inter)national anti-money

laundry regulations is uncertain. Exploring legal compliance of

this work is a fundamental requirement for broader adoption.
Limitations: While we have proven the viability of our

idea, there are several limitations that must be addressed prior

to broader adoption. We noticed that banks are not used

to our dynamic way of initiating money transfers and our

accounts got blocked several times due to suspected fraudulent

behaviour. An open ecosystem for settlement demands changes

by banks and it is an open question whether they are willing

to do so. On the other hand, many banks are already forced

to innovate their legacy systems to remain competitive [15].

Additionally, we observed that some banks require two-

factor authentication when transferring funds to unknown bank

accounts. This limits automation of money transfers since a

manual action by the user is required for a payment to proceed.
Privacy: We consider privacy an important requirement

of our open platform and expose minimal information about

money flows. The current privacy model in Internet-of-Money

is effective but open for extension. Decentralized path-based

transaction networks, for instance, SpeedyMurmurs, aim to

solve this specific problem [26].
Scalability: Our overlay network is scalable, due to the

absence of global consensus. However, techniques like incre-

mental settlement lead to additional payments and a higher

load on the banks. In addition, the choice of reputation

mechanism used in Internet-of-Money influences scalability.

IX. RELATED WORK

The last few years, there has been a steep increase in Fintech

start-ups, eager to disrupt existing financial services. Hawala is

an informal system to transfer value, without actually moving

368

money [27]. It consists of a network of hawala brokers, that

take a small commission. In contrast to our system, trust in

hawala is cultivated in an analogue manner whereas our model

depends on a digital solution.

Innovation in the financial sector has been catalysed by the

popularity of Blockchain technology, aiming to build trust be-

tween strangers without involvement of centralized authorities.

Bitcoin has proven that a sustainable currency can be built

without a central bank in control [2]. However, wide-spread

adoption stays out due to its volatile pricing, high transaction

fees, relatively slow confirmation times and unsure future. The

Lightning Network aims to improve scalability of Bitcoin by

providing bi-directional payment channels between users [28].

Payments between two users not directly connected with a

payment channel, are realised by routing payments through

channels of other users. This has similarities with money

routing in Internet-of-Money. New usages of blockchain tech-

nology are focussed around the way users transfer money and

other assets. The Ripple project, supported by various major

banks, attempts to build a connected network of financial

institutions and payment providers [29]. Their solution aims to

significantly speed up traditional money transfers, lower costs

and provide support for high-volume transactions. R3 Corda

can be compared to Trustchain since they share the idea that

a ledger with global consistency is often not necessary [30].

While blockchain solutions are slowly being adopted, the

aforementioned systems all aim to increase utility by building

a financial network from scratch. In comparison, Internet-of-

Money is built upon existing, proven infrastructure, making

migration towards our system effortless.

X. CONCLUSIONS AND FUTURE WORK

We explored a new stage in the evolution of digital trust and

addressed the problem of trusting strangers with your money.

The tamper-proof Trustchain structure provides a scalable and

public trace of historical interactions, and allows detection

and punishment of potential fraud. We expand upon this

with an overlay network to transfer money within seconds to

others, using other network participants as financial interme-

diaries. This mechanism depends on the fast settlement of in-

house payments. Our open ecosystem dramatically improves

speed when initiating cross-border payments while preserving

privacy and scalability. Our experiments demonstrated the

efficiency of in-house payments and effectiveness of money

routers. Additionally, we have proven that our fraud detection

mechanism, together with incremental settlement and multi-

flow payments, limits misuse and punishes malicious be-

haviour. However, there are various legal issues and limitations

that should be addressed, mostly by financial institutions,

before broader usage can be realised.

This work is an important milestone in our ambitious vision

to create the programmable economy. Ongoing work towards

this goal addresses self-sovereign identity, scalable blockchain

consensus compatible with Trustchain, and decentralized mar-

ketplaces. We refer the interested reader to our scientific

overview article [16].

ACKNOWLEDGEMENTS

The authors would like to thank Laurens Versluis for his

initial contributions to the design and implementation of The

Internet-of-Money.

REFERENCES

[1] P. Resnick et al., “Trust among strangers in internet transactions:
Empirical analysis of ebays reputation system,” The Economics of the

Internet and E-commerce, vol. 11, no. 2, pp. 23–25, 2002.
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[3] T. Kokkola, The payment system: Payments, securities and derivatives,

and the role of the Eurosystem. European Central Bank, 2011.
[4] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work

vs. bft replication,” in International Workshop on Open Problems in

Network Security. Springer, 2015, pp. 112–125.
[5] R. McMillan, “The inside story of mt. gox, bitcoins 460 million disaster,”

Wired. March, vol. 3, 2014.
[6] “The uber data breach has implications for us all.” [Online]. Available:

https://www.ft.com/content/e2bf6caa-d2cb-11e7-a303-9060cb1e5f44
[7] Z. Yan and S. Holtmanns, “Trust modeling and management: from social

trust to digital trust,” IGI Global, pp. 290–323, 2008.
[8] D. M. Kreps et al., “Rational cooperation in the finitely repeated

prisoners’ dilemma,” Journal of Economic theory, vol. 27, no. 2, pp.
245–252, 1982.

[9] B.-J. Koops, “The trouble with european data protection law,” Interna-

tional Data Privacy Law, vol. 4, no. 4, pp. 250–261, 2014.
[10] R. Delaviz et al., “Sybilres: A sybil-resilient flow-based decentralized

reputation mechanism,” in ICDCS, 2012. IEEE, 2012, pp. 203–213.
[11] S. D. Kamvar et al., “The eigentrust algorithm for reputation manage-

ment in p2p networks,” in WWW. ACM, 2003, pp. 640–651.
[12] M. Srivatsa et al., “Trustguard: countering vulnerabilities in reputation

management for decentralized overlay networks,” in Proceedings of

WWW’05. ACM, 2005, pp. 422–431.
[13] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-

to-Peer Systems. Springer, 2002, pp. 251–260.
[14] SWIFT payment system. [Online]. Available: https://www.swift.com
[15] McKinsey, Global Payments 2016, 2016 (accessed November 27, 2017).
[16] J. Pouwelse et al., “Laws for creating trust in the blockchain age,”

European Property Law Journal, 2017.
[17] P. Otte et al., “Trustchain: A sybil-resistant scalable blockchain,” Future

Generation Computer Systems, 2017.
[18] L. Page et al., “The pagerank citation ranking: Bringing order to the

web.” Stanford InfoLab, Tech. Rep., 1999.
[19] A. Post et al., “Bazaar: Strengthening user reputations in online mar-

ketplaces,” in Proceedings of NSDI11, 2011, p. 183.
[20] M. Cortet et al., “Psd2: The digital transformation accelerator for banks,”

Journal of Payments Strategy & Systems, vol. 10, no. 1, pp. 13–27, 2016.
[21] J. Doe and J. Pouwelse, “A vulnerability analyis of smartphone banking

applications,” 2015, unpublished research.
[22] J. Awesome and J. Pouwelse, “A vulnerability analysis of mobile

banking applications,” 2015, unpublished research.
[23] N. n, NGDATA 2014 Consumer Banking Survey, 2014 (accessed

November 20, 2017). [Online]. Available: http://www.ngdata.com/wp-
content/uploads/NGDATA-2014-consumer-banking-survey-brief.pdf

[24] N. Zeilemaker, B. Schoon, and J. Pouwelse, “Dispersy bundle synchro-
nization,” TU Delft, Parallel and Distributed Systems, 2013.

[25] H. Bal et al., “A medium-scale distributed system for computer science
research: Infrastructure for the long term,” Computer, vol. 49, no. 5, pp.
54–63, 2016.

[26] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” arXiv preprint arXiv:1709.05748, 2017.

[27] P. M. Jost and H. S. Sandhu, The hawala alternative remittance system

and its role in money laundering. Interpol, 2003.
[28] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain

instant payments. 2016,” 2015.
[29] D. Schwartz et al., “The ripple protocol consensus algorithm,” Ripple

Labs Inc White Paper, vol. 5, 2014.
[30] R. G. Brown, “Introducing r3 corda: A distributed ledger for financial

services,” R3, April, vol. 5, 2016.

369

Virtual Network Embedding Approximations:
Leveraging Randomized Rounding

Matthias Rost
TU Berlin, Germany

Email: mrost@inet.tu-berlin.de

Stefan Schmid
University of Vienna, Austria

Email: stefan schmid@univie.ac.at

Abstract—The Virtual Network Embedding Problem (VNEP)
captures the essence of many resource allocation problems
of today’s infrastructure providers, which offer their physical
computation and networking resources to customers. Customers
request resources in the form of Virtual Networks, i.e. as
a directed graph which specifies computational requirements
at the nodes and communication requirements on the edges.
An embedding of a Virtual Network on the shared physical
infrastructure is the joint mapping of (virtual) nodes to physical
servers together with the mapping of (virtual) edges onto paths
in the physical network connecting the respective servers.

This work initiates the study of approximation algorithms for
the VNEP. Concretely, we study the offline setting with admission
control: given multiple request graphs the task is to embed the
most profitable subset while not exceeding resource capacities.
Our approximation is based on the randomized rounding of
Linear Programming (LP) solutions. Interestingly, we uncover
that the standard LP formulation exhibits an inherent structural
deficit when considering general virtual networks: its solutions
cannot be decomposed into valid embeddings. In turn, focusing
on the class of cactus request graphs, we devise a novel LP
formulation, whose solutions can be decomposed into convex
combinations of valid embedding. Proving performance guaran-
tees of our rounding scheme, we obtain the first approximation
algorithm for the VNEP in the resource augmentation model.

We propose two rounding heuristics and evaluate their perfor-
mance in an extensive computational study, showing that these
consistently yield good solutions (even without augmentations).

I. INTRODUCTION

Cloud applications usually consist of multiple distributed
components (e.g., virtual machines, containers), which results
in substantial communication requirements. If the provider
fails to ensure that these communication requirements are met,
the performance can suffer dramatically [1]. Consequently,
over the last years, several proposals have been made to jointly
provision the computational functionality together with ap-
propriate network resources. The Virtual Network Embedding
Problem (VNEP) captures the core of this problem: given a
directed graph specifying computational requirements at the
nodes and bandwidth requirements on the edges, an embedding
of this Virtual Network in the physical network has to be
found, such that both the computational and the network
requirements are met. Figure 1 illustrates two incarnations of
virtual networks: service chains [2] and virtual clusters [3].

We study the offline setting with admission control: given
multiple requests the task is to embed the most profitable
subset while not exceeding resource capacities.

Customer Internet

LB1 LB2Cache

FW

NAT
VM1

VM5

VM4VM3

VM2

Fig. 1. Examples for virtual networks ‘in the wild’. The left graph shows
a service chain for mobile operators [4]: load-balancers route (parts of
the) traffic through a cache. Furthermore, a firewall and a network-address
translation are used. The right graph depicts the Virtual Cluster abstraction for
provisioning virtual machines (VMs) in data centers. The abstraction provides
connectivity guarantees via a logical switch in the center [3].

A. Formal Problem Statement

In the light of the recent interest in Service Chaining [2],
we extend the VNEP’s general definition [5] by consider-
ing different types of computational nodes. We refer to the
physical network as the substrate network. The substrate
GS = (VS , ES) is offering a set T of computational types.
This set of types may contain e.g., ‘FW’ (firewall), ‘x86
server’, etc. For a type τ ∈ T , the set V τS ⊆ VS denotes the
substrate nodes that can host functionality of type τ . Denoting
the node resources by RVS = {(τ, u) |τ ∈ T , u ∈ V τS } and all
substrate resources by RS = RVS ∪ES , the capacity of nodes
and edges is denoted by dS(x, y) > 0 for (x, y) ∈ RS .

For each request r ∈ R, a directed graph Gr = (Vr, Er)
together with a profit br is given. We refer to the respective
nodes as virtual or request nodes and similarly refer to the
respective edges as virtual or request edges. The types of
virtual nodes are indicated by the function τr : Vr → T .

Based on policies of the customer or the provider, the
mapping of virtual node i ∈ Vr is restricted to a set
V r,iS ⊆ V

τr(i)
S , while the mapping of virtual edge (i, j) is

restricted to Er,i,jS ⊆ ES . Each virtual node i ∈ Vr and
each edge (i, j) ∈ Er is attributed with a resource demand
dr(i) ≥ 0 and dr(i, j) ≥ 0, respectively. Virtual nodes and
edges can only be mapped on substrate nodes and edges
of sufficient capacity, i.e. V r,iS ⊆ {u ∈ V τr(i)S |dS(u) ≥ dr(i)}
and Er,i,jS ⊆ {(u, v) ∈ ES |dS(u, v) ≥ dr(i, j)} holds.

We denote by dmax(r, x, y) the maximal demand that a
request r may impose on a resource (x, y) ∈ RS :

dmax(r, τ, u) = max({0} ∪ {dr(i)|i ∈ Vr : τ(i) = τ ∧ u ∈ V r,i
S })

dmax(r, u, v) = max({0} ∪ {dr(i, j)|(i, j) ∈ Er : (u, v) ∈ Er,i,j
S })

In the following the notions of valid mappings (respecting
mapping constraints) and feasible embeddings (respecting
resource constraints) are introduced to formalize the VNEP.

ISBN 978-3-903176-08-9 c© 2018 IFIP

Definition 1 (Valid Mapping). A valid mapping mr of re-
quest r ∈ R is a tuple (mV

r ,m
E
r) of functions mV

r : Vr → VS
and mE

r : Er → P(ES), such that the following holds:
• Virtual nodes are mapped to allowed substrate nodes:
mV
r (i) ∈ V r,iS holds for all i ∈ Vr.

• The mapping mE
r (i, j) of virtual edge (i, j) ∈ Er is

an edge-path connecting mV
r (i) to mV

r (j) only using
allowed edges, i.e. mE

r (i, j) ⊆ P(Er,i,jS) holds.
We denote byMr the set of valid mappings of request r ∈ R.

Definition 2 (Allocations of Valid Mappings). We denote by
A(mr, x, y) the cumulative allocation induced by the valid
mapping mr ∈Mr on resource (x, y) ∈ RS:
A(mr, τ, u) =

∑
i∈Vr,τ(i)=τ,mV

r (i)=u
dr(i) ∀(τ, u) ∈ RVS

A(mr, u, v) =
∑

(i,j)∈Er,(u,v)∈mE
r (i,j)

dr(i, j) ∀(u, v) ∈ ES

The maximal allocation that a valid mapping of request r ∈ R
may impose on a substrate resource (x, y) ∈ RS is denoted
by Amax(r, x, y) = maxmr∈Mr

A(mr, x, y).

Definition 3 (Feasible Embedding). A feasible embedding
of a subset of requests R′ ⊆ R is a collection of valid
mappings {mr}r∈R′ , such that the cumulative allocations on
nodes and edges does not exceed the substrate capacities, i.e.∑
r∈R′ A(mr, x, y) ≤ dS(x, y) holds for (x, y) ∈ RS .

Definition 4 (Virtual Network Embedding Problem). The
VNEP asks for a feasible embedding {mr}r∈R′ of a subset of
requests R′ ⊆ R maximizing the profit

∑
r∈R′ br.

B. Related Work

In the last decade, the VNEP has attracted much attention
due to its many applications and the survey [5] from 2013
already lists more than 80 different algorithms for its many
variations [5]. The VNEP is known to be NP-hard and
inapproximable in general (unless P = NP) [6]. Based on the
hardness of the VNEP, most works consider heuristics without
any performance guarantee [5], [7]. Other works proposed
exact methods as integer or constraint programming, coming
at the cost of an exponential runtime [8], [9], [10].

A column generation approach was proposed by Jarray et
al. in [9] to efficiently compute solutions to the VNEP by
generating valid mappings ‘on-the-fly’. We believe that our
decomposable LP formulations may be used to price (i.e.
generate) further valid mappings more efficiently than by using
Mixed-Integer Programming.

Acknowledging the hardness of the general VNEP and the
diversity of applications, several subproblems of the VNEP
have been studied recently by considering restricted graph
classes for the virtual networks and the substrate graph. For
example, virtual clusters with uniform demands are studied in
[11], [3], line requests are studied in [12], [13], [14] and tree
requests were studied in [15], [13].

Considering approximation algorithms, Even et al. em-
ployed randomized rounding in [13] to obtain a constant ap-
proximation for embedding line requests on arbitrary substrate

graphs under strong assumptions on both the benefits and
the capacities. In their interesting work, Bansal et al. [15]
give an nO(d) time O(d2 log (nd))-approximation algorithm
for minimizing the load of embedding d-depth trees based on a
strong LP relaxation inspired by the Sherali-Adams hierarchy.
To the best of our knowledge, no approximation algorithms
are known for arbitrary substrate graphs and classes of virtual
networks containing cyclic substructures.

Bibliographic Note: In our preliminary technical re-
port [16] similar results were presented. The current work
presents a significantly simpler LP formulation and also pro-
vides an extensive computational evaluation. An extended
version of this work, containing all proofs and additional
details on our evaluation, can be found at [17].

Additionally, in our recent technical report [18], the approx-
imation approach presented in this work is extended beyond
cactus request graphs. However, approximating more general
request graphs comes at the price of non-polynomial runtimes.

C. Outline of Randomized Rounding for the VNEP

We shortly revisit the concept of randomized rounding.
Given an Integer Program for a certain problem, randomized
rounding works by (i) computing a solution to its Linear
Program relaxation, (ii) decomposing this solution into convex
combinations of elementary solutions, and (iii) probabilisti-
cally selecting elementary solutions based on their weight.

Accordingly, for applying randomized rounding for
the VNEP, a convex combination of valid mappings
Dr = {(fkr ,mk

r)|mk
r ∈Mr, f

k
r > 0} must be recovered from

the Linear Programming solution for each request r ∈ R,
such that (i) the profit of these convex combinations equals the
profit achieved by the Linear Program and (ii) the (fractional)
cumulative allocations do not violate substrate capacities. To
round a solution, for each request r the mapping mk

r is selected
with probability fkr , rejecting r with probability 1−

∑
k f

k
r .

D. Results and Organization

This paper initiates the study of approximation algorithms
for the VNEP on general substrates and general virtual net-
works. Specifically, we employ randomized rounding to obtain
the first approximation algorithm for the non-trivial class of
cactus graph requests in the resource augmentation model.

Studying the classic multi-commodity flow (MCF) formu-
lation for the VNEP in Section II, we show that its solutions
can only be decomposed for tree requests: request graphs
containing cycles can in general not be decomposed into valid
mappings. This result has ramifications beyond the inability
to apply randomized rounding: we prove that the MCF for-
mulation exhibits an unbounded integrality gap. Investigating
the root cause for this surprising result, we devise a novel
decomposable Linear Programming formulation in Section III
for the class of cactus graph requests. We then present and
prove performance guarantees for our randomized rounding
algorithm in Section IV, obtaining the first approximation
algorithm for the Virtual Network Embedding Problem. Sec-
tion V presents a synthetic computational study, in which

371

two rounding heuristics are evaluated. Our results indicate
that high-quality solutions can be obtained even without re-
source augmentations. In particular, our heuristical rounding
algorithm achieved 73.8% of the baseline’s profit on average.

II. THE CLASSIC MULTI-COMMODITY FORMULATION
FOR THE VNEP AND ITS LIMITATIONS

In this section, we study the relaxation of the standard multi-
commodity flow (MCF) formulation for the VNEP (cf. [2],
[7]). We first show the positive result that the formulation is
sufficiently strong to decompose virtual networks being trees
into convex combinations of valid mappings. Subsequently, we
show that the formulation fails to allow for the decomposition
of cyclic requests. This not only impacts its applicability
for randomized rounding but renders the formulation useless
for approximations in general: it can be shown that the
formulation’s integrality gap is unbounded (cf. [17]).

A. The Classic Multi-Commodity Formulation

The classic MCF formulation for the VNEP is presented
as Formulation 1 . We first describe its integer variant, which
computes a single valid mapping for each request by using
binary variables. The Linear Programming variant is obtained
by relaxing the binary variables’ domain to [0, 1].

The variable xr ∈ {0, 1} indicates whether request r ∈ R is
embedded or not. The variable yur,i ∈ {0, 1} indicates whether
virtual node i ∈ Vr was mapped on substrate node u ∈ VS .
Similarly, the flow variable zu,vr,i,j ∈ {0, 1} indicates whether
the substrate edge (u, v) ∈ ES is used to realize the virtual
edge (i, j) ∈ Er. The variable ax,yr ≥ 0 denotes the cumulative
allocations of request r ∈ R induced on resource (x, y) ∈ RS .

By Constraint 2, the virtual node i ∈ Vr of request r ∈ R
must be placed on any of the suitable substrate nodes in V r,iS

iff. xr = 1 holds and Constraint 3 forbids the mapping on
nodes which may not host node i. Constraint 4 induces an

Formulation 1: Classic MCF Formulation for the VNEP
max

∑
r∈R

brxr (1)∑
u∈V r,i

S

yur,i= xr ∀r ∈ R, i ∈ Vr (2)∑
u∈VS\V r,i

S

yur,i= 0 ∀r ∈ R, i ∈ Vr (3)

∑

(u,v)∈δ+(u)

zu,vr,i,j

−
∑

(v,u)∈δ−(u)
zv,ur,i,j

=

[
yur,i
−yur,j

]
∀

[
r ∈ R, (i, j) ∈ Er,
u ∈ VS

]
(4)

zu,vr,i,j= 0 ∀

[
r ∈ R, (i, j) ∈ Er,
(u, v) ∈ ES \ Er,i,jS

]
(5)∑

i∈Vr,τr(i)=τ

dr(i) · yur,i= aτ,ur ∀r ∈ R, (τ, u) ∈ RVS (6)∑
(i,j)∈Er

dr(i, j) · zu,vr,i,j= au,vr ∀r ∈ R, (u, v) ∈ ES (7)∑
r∈R

ax,yr ≤ dS(x, y) ∀(x, y) ∈ RS (8)

unsplittable unit flow for each virtual edge (i, j) ∈ Er from
the substrate location to which i was mapped to the substrate
location to which j was mapped. By Constraint 5 virtual edges
may only be mapped on allowed substrate edges. Constraints 6
and 7 compute the cumulative allocations and Constraint 8
guarantees that the substrate resource capacities are respected.
The following lemma states the connectivity property enforced
by Formulation 1 (see [17] for the proof).

Lemma 5 (Local Connectivity Property of Formulation 1).
For any virtual edge (i, j) ∈ Er and any substrate node
u ∈ V r,iS with yur,i > 0, there exists a path Pu,vr,i,j in GS from u

to v ∈ V r,jS with yvr,j > 0, such that the flow along any edge
of Pu,vr,i,j with respect to the variables z·,·r,i,j is greater 0.

The path Pu,vr,i,j can be computed in polynomial time.

B. Decomposing Solutions for Tree Requests

Given Lemma 5, we now present Algorithm 1 to decompose
solutions to the LP Formulation 1 into convex combinations of
valid mappings Dr = {(fkr ,mk

r)|mk
r ∈Mr, f

k
r > 0} (cf. Sec-

tion I-C), if the request’s underlying undirected graph is a
tree. Recall that in the LP formulation the binary variables are
relaxed to take any value in the interval [0, 1].

Given a request r ∈ R, the algorithm processes all vir-
tual edges according to an arbitrary acyclic representation
GAr = (Vr, E

A
r , rr) of the undirected interpretation of Gr

being rooted at rr ∈ Vr. Concretely, the edge set EAr is
obtained from Er by reorienting (some of the) edges, such
that any node i ∈ Vr can be reached from rr. Considering tree
requests for now, GAr is an arborescence and can be computed
by a simple graph search of the underlying undirected graph
starting at rr. We denote by

←−
EAr = Er \EAr the edges whose

orientations were reversed in the process of computing GAr .
The algorithm extracts mappings mk

r of value fkr iteratively,
as long as xr > 0 holds. Initially, in the k-th iteration, none of
the virtual nodes and edges are mapped. As xr > 0 holds, there
must exist a node u ∈ V r,rrS with yrrr,i > 0 by Constraint 2
and the algorithm accordingly sets mV

r (rr) = u. Given this
initial fixing, the algorithm iteratively extracts nodes from the
queue Q which have been already mapped and considers all
outgoing virtual edges (i, j) ∈ EAr . If an outgoing edge (i, j)
is contained in Er, Lemma 5 can be readily applied to obtain
a joint mapping of the edge (i, j) and its head j. If the edge’s
orientation was reversed, i.e. if (i, j) ∈

←−
EAr holds, Lemma 5 is

applied while reversing the flow’s direction (see Lines 13-16).
First, note that by the repeated application of Lemma 5,

the mapping of virtual nodes and edges is valid. As GAr
is an arborescence, each edge and each node of GAr will
eventually be mapped and hence mk

r is a valid mapping. The
mapping value fkr is computed as the minimum of the mapping
variables Vk used for constructing mk

r . Reducing the values
of the mapping variables together with the allocation variables
~ar (Lines 20-21), the Constraints 2-7 continue to hold.

As the decomposition process continues as long as xr > 0
holds and in the k-th step at least one variable’s value is set
to 0, the algorithm terminates with a complete decomposition

372

Algorithm 1: Decompositioning MCF solutions for Tree Requests
Input : Tree request r ∈ R, solution (xr, ~yr, ~zr,~ar) to LP

Formulation 1, acyclic reorientation GAr = (Vr, E
A
r , rr)

Output: Convex combination Dr = {Dk
r = (fkr ,m

k
r)}k

1 set Dr ← ∅ and k ← 1
2 while xr > 0 do
3 set mk

r = (mV
r ,m

E
r) ← (∅, ∅)

4 set Q = {rr}
5 choose u ∈ V r,rrS with yur,rr > 0 and set mV

r (rr) ← u
6 while |Q| > 0 do
7 choose i ∈ Q and set Q ← Q \ {i}
8 foreach (i, j) ∈ EAr do
9 if (i, j) ∈ Er then

10 compute
−→
P u,v
r,i,j connecting mV

r (i) = u to v ∈ V r,jS

11 according to Lemma 5
set mV

r (j) = v and mE
r (i.j) =

−→
P u,v
r,i,j

12 else
13 let ←−z v

′,u′

r,i,j , zu
′,v′

r,j,i for all (u′, v′) ∈ ES
14 compute

←−
P v,u
r,i,j connecting mV

r (i) = v to u ∈ V r,jS

15 according to Lemma 5
set
−→
P u,v
r,j,i = reverse(

←−
P v,u
r,i,j)

16 set mV
r (i) = u and mE

r (j, i) =
−→
P u,v
r,j,i

17 set Q ← Q∪ {j}

18 set Vk ←

(
{xr} ∪ {y

mV
r (i)

r,i |i ∈ Vr}
∪ {zu,vr,i,j |(i, j) ∈ Er, (u, v) ∈ mE

r (i, j)}

)
19 set fkr ← minVk
20 set v ← v − fkr for all v ∈ Vk
21 set ax,yr ← ax,yr − fkr ·A(mk

r , x, y) for all (x, y) ∈ RS
22 add Dk

r = (fkr ,m
k
r) to Dr and set k ← k + 1

23 return Dr

for which
∑
k f

k
r = xr holds. Furthermore, the algorithm has

polynomial runtime, as in each iteration at least one variable is
set to 0 and the number of variables for request r is bounded
by O(|Er| · |ES |). Hence, we obtain the following:

Lemma 6. Given a virtual network request r ∈ R, whose
underlying undirected graph is a tree, Algorithm 1 decomposes
a solution (xr, ~yr, ~zr,~ar) to the LP Formulation 1 into valid
mappings Dr = {(mk

r , f
k
r)}k, such that the following holds:

• The decomposition is complete, i.e. xr =
∑
k f

k
r holds.

• The decomposition’s resource allocations are bounded by
~ar: ax,yr ≥

∑
k f

k
r ·A(mk

r , x, y) holds for (x, y) ∈ RS .

C. Limitations of the Classic MCF Formulation

Above it was shown that LP solutions to the classic MCF
formulation can be decomposed into convex combinations of
valid mappings if the underlying graph is a tree. This does
not hold anymore when considering cyclic virtual networks:

Theorem 7. Solutions to the standard LP Formulation 1 can
in general not be decomposed into convex combinations of
valid mappings if the virtual networks contain cycles.

Proof. In Figure 2 we visually depict an example of a solution
to the LP Formulation 1 from which not a single valid mapping
can be extracted. The validity of the depicted solution follows
from the fact that the virtual node mappings sum to 1 and

Request Gr

i

jk

Substrate GS LP Solution

u1

u2

u3

u4

u5

u6

0:5i

0:5j

0:5k

0:5i

0:5j

0:5k

0:5i

0:5j

0:5k

Decomposition Attempt

0:5k

0:5k

Fig. 2. Example showing that solutions to the LP Formulation 1 can in general
not be decomposed into convex combinations of valid mappings. Request r
is a simple cyclic graph which shall be mapped on the substrate graph GS .
We assume following node mapping restrictions V r,i

S = {u1, u4}, V r,j
S =

{u2, u5}, V r,k
S = {u3, u6}. The LP solution with xr = 1 is depicted

as follows. Substrate nodes are annotated with the mapping of virtual nodes.
Hence, 0.5i at node u1 indicates yu1

r,i = 1/2, i.e. that virtual node i is mapped
with 0.5 on substrate node u1. Substrate edges are colored according to the
color of virtual links mapped onto it. Virtual links are all mapped using flow
values 1/2. Accordingly, for example zu1,u2

r,i,j = 1/2 holds.

each virtual node connects to its neighboring node with half
a unit of flow. Assume for the sake of contradiction that the
depicted solution can be decomposed. As virtual node i ∈ Vr
is mapped onto substrate node u1 ∈ VS , and u2 ∈ VS is
the only neighboring node with respect to variables zr,i,j that
hosts j ∈ Vr, there must exist a mapping (mV

r ,m
E
r) with

mV
r (i) = u1 and mV

r (j) = u2. Similarly, mV
r (k) = u3 must

hold. However, for mV
r (i) = u1, the virtual node k must be

mapped to u6, as otherwise the embedding of (k, i) cannot
lead to substrate node u1. Hence the virtual node k ∈ Vr must
be mapped both on u6 and u3. As this is not possible, and
the same argument holds when considering the mapping of i
onto u4, no valid mapping can be extracted.

This non-decomposability also induces large integrality
gaps, as proven in our extended technical report [17].

Theorem 8. The integrality gap of the MCF formulation is
unbounded. This even holds under infinite substrate capacities.

III. NOVEL DECOMPOSABLE LP FORMULATION

In this section, we present a novel LP formulation and its
accompanying decomposition algorithm for the class of cactus
request graphs, i.e. graphs for which cycles intersect in at most
a single node (in its undirected interpretation). Accordingly,
these graphs can be uniquely decomposed into cycles and a
single forest (cf. Lemma 9 below).

Before delving into the details of our novel LP formula-
tion, we discuss our main insight on how to overcome the
limitations of the MCF formulation and accordingly how to
derive decomposable formulations. To this end, it is instruc-
tive, to revisit the non-decomposable example of Figure 2
by applying the decomposition Algorithm 1 on the depicted
LP solution. Concretely, we consider the acyclic reorientation
GAr = (Vr, E

A
r , rr) with EAr = {(i, k), (i, j), (j, k)}, such

that i is the root, rr = i. Assuming that i is initially mapped
on node u1, Algorithm 1 will map edges (i, k) and (i, j)
first, setting mV

r (k) = u6 and mV
r (j) = u2 However, when

the edge (j, k) is processed, k must be mapped on substrate
node u3 6= mV

r (k) and the algorithm hence fails to produce
a valid mapping. Accordingly, to avoid such diverging node
mappings, our key idea is to decide the mapping location of
nodes with more than one incoming edge (with respect to the
request’s acyclic reorientation) a priori.

373

By considering only cactus request graphs, this can be
implemented rather easily as exactly one node of each cycle
has more than one incoming edge: one only needs to ensure
compatibility of node mappings for this node. To resolve po-
tential conflicts for the mapping of this unique cycle target, our
formulation employs multiple copies of the MCF formulation
for the respective cycle subgraph. Specifically, considering
a cycle with virtual target node k, we instantiate one MCF
formulation per substrate node w ∈ V r,kS onto which k can be
mapped. Accordingly, this yields at most |VS | many copies and
for each of these copies k is fixed to one specific (substrate)
mapping location. Accordingly, as the mapping location of k
is fixed to a specific node, valid mappings for the respective
cycles can always be extracted from such a MCF copy: the
mappings of k cannot possibly diverge.

A. Cactus Request Graph Decomposition and Notation

We decompose cactus request graphs as follows (cf. [17]).
Lemma 9. Consider a cactus request graph Gr and its acyclic
reorientation GAr of Gr. The graph GAr can be uniquely
partitioned into subgraphs {GA,C1

r , . . . , GA,Cn
r }tGA,Fr , s.t.:

1) The subgraphs {GA,C1
r , . . . , GA,Cn

r } correspond to the
(undirected) cycles of Gr and GA,Fr is the forest remain-
ing after removing the cyclic subgraphs. We denote the
index set of the cycles by Cr = {C1, . . . , Cn}.

2) The subgraphs partition the edges of EAr : an edge
(i, j) ∈ EAr is contained in exactly one of the subgraphs.

3) The edge set EA,Ck
r of each cycle Ck ∈ Cr can itself be

partitioned into two branches BCk
1 and BCk

2 , such that
both lead from sCk

r ∈ V A,Ck
r to tCk

r ∈ V A,Ck
r .

Additionally, we denote by GCk
r and GFr the subgraphs that

agree with Er on the edge orientations and use V Ck

S,t = V r,t
Ck
r

S

to denote the substrate nodes on which tCk
r can be mapped.

B. Novel LP Formulation for Cactus Requests

Our novel Formulation 2 uses the a priori partition of GAr
into cycles GA,Ck

r and the forest GA,Fr to construct MCF
formulations for the respective subgraphs: for the subgraph
GFr a single copy is used (cf. Constraint 10) while for the
cyclic subgraphs a single MCF formulation is employed per
potential target location V Ck

S,t (cf. Constraint 11). We index the
variables of these sub-LPs by employing square brackets.

To bind together these (at first) independent MCF formu-
lations, we reuse the variables ~x, ~y, and ~a introduced already
for the MCF formulation. We refer to these variables, which
are defined outside of the sub-LP formulations, as global
variables and do not index these. As we only consider the
LP formulation, all variables are continuous.

The different sub-formulations are linked as follows. We
employ Constraint 12 to enforce the setting of the (global)
node mapping variables (cf. Constraint 2 of Formulation 1).
By Constraints 13 and 14, the node mappings of the sub-
LPs for mapping the subgraphs must agree with the global
node mapping variables. With respect to cyclic subgraphs, we
note that Constraint 14 allows for distributing the global node

mappings to any of the |V Ck

S,t | formulations: only the sum of
the node mapping variables must agree with the global node
mapping variable. Constraint 15 is of crucial importance for
the decomposability: considering the sub-LP for cycle Ck and
target node w ∈ V Ck

S,t , it enforces that the target node tCk
r of the

cycle Ck must be mapped on w. Thus, in the sub-LP [Ck, w]
both branches BCk

1 and BCk
2 of cycle Ck are pre-determined

to lead to the node w. Lastly, for computing node allocations
the global node mapping variables are used (cf. Constraint 16)
and for computing edge allocations the sub-LP formulations’
allocations are considered (cf. Constraint 17).
C. Decomposing Solutions to the Novel LP Formulation

We now show how to adapt the decomposition Algorithm 1
to decompose solutions to Formulation 2.

To decompose the LP solution for a request r the acyclic
reorientation GAr , which was also used for constructing the
LP, must be handed over to the decomposition algorithm.

As the novel LP formulation does not contain (global)
edge mapping variables, the edge mapping variables used
in Lines 10 and 13 of Algorithm 1 must be substituted by
edge mapping variables of the respective sub-LP formulations.
Concretely, as each edge of the request graph Gr is covered
exactly once, it is clear whether a virtual edge (i, j) ∈ Er
is part of GFr or a cyclic subgraph GCk

r . If (i, j) ∈ GFr
holds, then the edge mapping variables z·,·r,i,j [Fr] are used.
If on the other hand the edge (i, j) ∈ Er is covered in the
cyclic subgraph GCk

r , then there exist |V Ck

S,t | many sub-LPs to
choose the respective edge mapping variables from. To ensure
the decomposability, we proceed as follows.

If the edge (i, j) ∈ EAr is the first edge of GCk
r to be mapped

in the k-th iteration, the mapping variables z·,·r,i,j [Ck, w] be-

Formulation 2: Novel LP for Cactus Requests

max
∑
r∈R

brxr (9)

Cons. (2) - (7) for GFr on
variables (xr, ~yr, ~zr,~ar)[Fr]

∀r ∈ R (10)

Cons. (2) - (7) for GCk
r on

variables (xr, ~yr, ~zr,~ar)[Ck, w]
∀r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t (11)

xr=
∑

u∈V r,i
S

yur,i ∀r ∈ R, i ∈ Vr (12)

yur,i= yur,i[F] ∀r ∈ R, i ∈ V Fr , u ∈ V
r,i
S (13)

yur,i=
∑
w∈tCk

r

yur,i[Ck, w] ∀

[
r ∈ R, i ∈ Vr, u ∈ V r,iS ,

Ck ∈ Cr : i ∈ V Ck
r

]
(14)

0= yu
r,t

Ck
r

[Ck, w] ∀

[
r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t ,

u ∈ V Ck

S,t \ {w}

]
(15)

aτ,ur =
∑

i∈Vr,τr(i)=τ

dr(i) · yur,i ∀r ∈ R, (τ, u) ∈ RVS (16)

au,vr = au,vr [F] +
∑

Ck∈Cr,w∈V
Ck
S,t

au,vr [Ck, w] ∀r ∈ R, (u, v) ∈ ES (17)

∑
r∈R

ax,yr ≤ dS(x, y) ∀(x, y) ∈ RS (18)

374

longing to an arbitrary target node w, with ym
V
r (i)

r,i [Ck, w] > 0,
are used. Such a node w exists by Constraint 14.

If another edge (i′, j′) of the same cycle was already
mapped in the k-th iteration, the same sub-LP as chosen before
is considered. Accordingly, the mapping of cycle target nodes
cannot conflict and as these are the only nodes with potential
mapping conflicts, the returned mappings are always valid.

To successfully iterate the extraction process, the steps
taken in Lines 18 - 21 of Algorithm 1 must be adapted to
consider the sub-LP variables. Again, as in each iteration at
least a single variable of the LP is set to 0 and as the novel
Formulation 2 contains at most O(|VS |) times more variables
than the MCF Formulation 1, the decomposition algorithm still
runs in polynomial-time. Hence, we conclude that the result
of Lemma 6 carries over to the novel LP Formulation 2 for
cactus request graphs and state the following theorem.
Theorem 10. Given a solution (xr, ~yr, ~zr,~ar) to the novel LP
Formulation 2 for a cactus request graph Gr, the solution can
be decomposed into a convex combination of valid mappings
Dr={(mk

r , f
k
r)}k in polynomial-time, such that:

• The decomposition is complete, i.e. xr =
∑
k f

k
r holds.

• The decomposition’s resource allocations are bounded by
~ar: ax,yr ≥

∑
k f

k
r ·A(mk

r , x, y) holds for (x, y) ∈ RS .

IV. APPROXIMATION VIA RANDOMIZED ROUNDING

Above we have shown how optimal convex combinations
for the VNEP can be computed for cactus requests. Given
these convex combinations, the pseudo-code of our approxi-
mation for the VNEP is presented as Algorithm 2.

The algorithm first performs a preprocessing in Lines 1-3
by removing all requests which cannot be fully (fractionally)
embedded in the absence of other requests, as these can never
be part of any feasible solution. In Lines 4-6 an optimal
solution to the novel LP Formulation 2 is computed and
afterwards decomposed into convex combinations. Then, in
Lines 7-9, the rounding is performed: for each request r a
mapping mk

r is selected with probability fkr . Importantly, the
sum of probability may not sum to 1, i.e. with probability
1−

∑
k f

k
r the request r is not embedded.

The rounding procedure is iterated as long as the constructed
solution is not of sufficient quality or until the number of
maximal rounding tries is exceeded. Concretely, we seek
(α, β, γ)-approximate solutions which achieve at least a factor

Algorithm 2: Randomized Rounding for the VNEP

1 foreach r ∈ R do // preprocess requests
2 compute LP Formulation 2 for request r maximizing xr
3 if xr < 1 then remove request r from the set R
4 compute LP Formulation 2 for R maximizing

∑
r∈R br · xr

5 foreach r ∈ R do // perform decomposition
6 compute Dr = {(fkr ,mk

r)}k from LP solution

7 do // perform randomized rounding
8 foreach r ∈ R select mk

r with probability fkr
9 while

(
solution is not (α, β, γ)-approximate and
maximal rounding tries are not exceeded

)

of α ≤ 1 times the optimal (LP) profit and exceed node and
edge capacities by at most factors of β ≥ 1 and γ ≥ 1,
respectively. In the following we derive parameters α, β, and
γ for which solutions can be found with high probability.

Note that Algorithm 2 is indeed a polynomial-time algo-
rithm, as the size of the novel LP Formulation 2 is polynomi-
ally bounded and can hence be solved in polynomial-time.

A. Probabilistic Guarantee for the Profit

For bounding the profit achieved by the randomized round-
ing scheme, we recast the profit achieved in terms of random
variables. The discrete random variable Yr ∈ {0, br} models
the profit achieved by the rounding of request r ∈ R. Accord-
ing to our rounding scheme, we have P(Yr = br) =

∑
k f

k
r

and P(Yr = 0) = 1−
∑
k f

k
r . We denote the overall profit by

B =
∑
r∈R Yr with E(B) =

∑
r∈R br ·

∑
k f

k
r . Denoting the

profit of an optimal LP solution by BLP, we have BLP = E(B)
due to the decomposition’s completeness (cf. Theorem 10).

By preprocessing the requests and confirming that each
request can be fully embedded, the LP will attain at least the
maximal profit of any of the considered requests:
Lemma 11. E(B) = BLP ≥ maxr∈R br holds.

We employ the following Chernoff bound over continuous
variables to bound the probability of achieving a small profit.
Theorem 12 (Chernoff Bound [19]). Let X =

∑n
i=1Xi,

Xi ∈ [0, 1], be a sum of n independent random variables.
For any 0 < ε < 1, the following holds:

P
(
X ≤ (1− ε) · E(X)

)
≤ exp(−ε2 · E(X)/2)

Theorem 13. Let BIP denote the profit of an optimal solution.
Then P(B < 1/3 · BIP) ≤ exp(−2/9) ≈ 0.8007 holds.
Proof. Let b̂ = maxr∈R br be the maximum benefit among the
pre-processed requests. We consider random variables Y ′r =
Yr/b̂, such that Y ′r ∈ [0, 1] holds. Let B′ =

∑
r∈R Y

′
r = B/b̂.

As E(B) = BLP ≥ b̂ holds (cf. Lemma 11), we have
E(B′) ≥ 1. Choosing ε = 2/3 and applying Theorem 12 on
B′ we obtain P

(
B′ ≤ (1/3) · E(B′)

)
≤ exp(−2 · E(B′)/9).

Plugging in the minimal value of E(B′), i.e. 1, into the
equation we obtain: P

(
B′ ≤ (1/3) · E(B′)

)
≤ exp(−2/9)

and by linearity P
(
B ≤ (1/3) · E(B)

)
≤ exp(−2/9).

Denoting the profit of an optimal solution by BIP and
observing that BIP ≤ BLP holds as the linear relaxation yields
an upper bound, we have BIP/3 ≤ E(B)/3. Accordingly, we
conclude that, P

(
B ≤ (1/3) · BIP

)
≤ exp(−2/9) holds.

B. Probabilistic Guarantee for Resource Augmentations

In the following, we analyze the probability that a rounded
solution exceeds substrate capacities by a certain factor.

We first note that dmax(r, x, y) ≤ dS(x, y) holds for
all resources (x, y) ∈ RS and all requests r ∈ R. We
model the allocations on resource (x, y) ∈ RS by re-
quest r ∈ R as random variable Ar,x,y ∈ [0, Amax(r, x, y)].
By definition, we have P(Ar,x,y = A(mk

r , x, y)) = fkr
and P(Ar,x,y = 0) = 1−

∑
k f

k
r . Furthermore, we denote by

Ax,y =
∑
r∈RAr,x,y the random variable capturing the

overall allocations on resource (x, y) ∈ RS .

375

E(Ax,y) =
∑
r∈R

∑
k f

k
r ·A(r, x, y) holds by Theorem 10,

we obtain E(Ax,y) ≤ dS(x, y) for all resources (x, y) ∈ RS .
We employ Hoeffding’s inequality to upper bound Ax,y .

Theorem 14 (Hoeffding’s inequality [19]). Let X=
∑n
i=1Xi,

Xi ∈ [ai, bi], be a sum of n independent random variables.
The following holds for any t ≥ 0:

P(X − E(X) ≥ t) ≤ exp(−2t2/(
∑

i
(bi − ai)2))

Lemma 15. Consider a resource (x, y) ∈ RS and 0 < ε ≤ 1,
such that dmax(r, x, y)/dS(x, y) ≤ ε holds for r ∈ R. Let
∆(x, y) =

∑
r∈R:dmax(r,x,y)>0(Amax(r, x, y)/dmax(r, x, y))2.

P(Ax,y ≥ δ(λ) · dS(x, y)) ≤ λ−4 (19)

holds for δ(λ) = 1 + ε ·
√

2 ·∆(x, y) · log(λ) and any λ > 0.

Proof. We apply Hoeffding with t = (1− δ(λ)) · dS(x, y):

P(Ax,y − E(Ax,y) ≥ (1− δ(λ)) · dS(x, y))

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2S(x, y)∑

r∈R
(Amax(r, x, y))2

)

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2S(x, y)∑

r∈R:dmax(r,x,y)>0

(Amax(r, x, y))2

)

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2S(x, y)∑

r∈R:dmax(r,x,y)>0

(ε · dS(x, y) ·Amax(r, x, y)/dmax(r, x, y))2

)

≤ exp
(−4 · log(λ) ·∆(x, y)∑

r∈R:dmax(r,x,y)>0

(Amax(r, x, y)/dmax(r, x, y))2

)
= λ−4

The second inequality holds, as Amax(r, x, y) > 0
implies dmax(r, x, y) > 0. For the third inequality,
Amax(r, x, y)≤ ε ·dS(x, y) ·Amax(r, x, y)/dmax(r, x, y) is used,
which follows from the assumption dmax(r, x, y) ≤ ε ·dS(x, y)
and dmax(r, x, y) > 0. In the next step, ε2 ·d2S(x, y) is reduced
from the fraction. As the denominator equals ∆(x, y) by
definition, the final equality follows. Lastly, we utilize that
the expected allocation E(Ax,y) is upper bounded by the
resource’s capacity dS(x, y) to obtain Equation 19.

Given Lemma 15, we obtain the following corollary.

Corollary 16. Let ε ≤ 1 be chosen minimally, such that
dmax(r, x, y)/dS(x, y) ≤ ε holds for all resources (x, y) ∈ RS
and all requests r ∈ R. Let ∆(X) = max(x,y)∈X ∆(x, y),

β =(1 + ε ·
√

2 ·∆(RVS) · log(|VS | · |T |)) , and

γ =(1 + ε ·
√

2 ·∆(ES) · log(|ES |)) .
The following holds for all node resources (τ, u) ∈ RVS and
edge resources (u, v) ∈ ES , respectively:

P(Aτ,u ≥ β · dS(τ, u)) ≤(|VS | · |T |)−4 (20)

P(Au,v ≥ γ · dS(u, v)) ≤|ES |−4 (21)

Proof. First, note that ε is chosen over all resources and
requests and that ∆(RVS) ≥ ∆(τ, u) and ∆(ES) ≥ ∆(u, v)
hold for (τ, u) ∈ RVS and (u, v) ∈ ES , respectively. Equa-
tions 20 and 21 are then obtained from Lemma 15 by setting
λ = |VS | · |T | for nodes and λ = |ES | for edges.

C. Approximation Result

Given the probabilistic bounds established above, the main
approximation result is obtained via a union bound.

Theorem 17. Assume |VS | ≥ 3. Let β and γ be defined as
in Corollary 16. Algorithm 2 returns (α, β, γ)-approximate
solutions for the VNEP (restricted on cactus request graphs)
of at least an α = 1/3 fraction of the optimal profit, and
allocations on nodes and edges within factors of β and γ of
the original capacities, respectively, with high probability.

Proof. We employ the following union bound argument. Em-
ploying Corollary 16 and as there are at most |VS | · |T | node
resources and at most |VS |2 edges, the joint probability that
any resource exceeds their respective capacity by factors of β
or γ is upper bounded by (|VS | · |T |)3 + |VS |2 ≤ 1/27 + 1/9
for |VS | ≥ 3. By Theorem 13 the probability of not finding a
solution achieving an α = 1/3 fraction of the optimal objective
is upper bounded by exp(−2/9). Hence, the probability to not
find a (α, β, γ)-approximate solution within a single round is
upper bounded by exp(−2/9) + 1/9 + 1/27 ≤ 19/20. The
probability to return a suitable solution within N ∈ N rounding
tries is lower bounded by 1−(19/20)N and Algorithm 2 yields
approximate solutions for the VNEP with high probability.

D. Discussion & Proposed Heuristics

Theorem 17 yields the first approximation algorithm for
the profit variant of the VNEP. However, the direct ap-
plication of Algorithm 2 to compute (α, β, γ)-approximate
solutions is made difficult by the cumbersome definition
of the terms ∆(RVS) and ∆(ES). Specifically, computing
β and γ exactly requires enumerating all valid mappings,
which is not feasible. Hence, to directly apply Algorithm 2,
the respective values have to be estimated. Considering
∆(RVS), the following upper bound can be easily established:
∆(RVS) ≤ |R| ·maxr∈R |Vr|. However, plugging this bound
into the definition of β yields rather large resource violations
of β ∈ O(ε ·

√
|R| ·maxr∈R |Vr| · log(|VS | · |T |)).

To overcome estimating β and γ, we propose the following:
Vanilla Rounding: A fixed number of solutions is

rounded at random as in Line 7 of Algorithm 2. Afterwards,
the best solution is returned according to some metric. In
particular, in Section V we study the metric returning the
solution of highest profit among the solutions minimizing the
maximal resource augmentation.

Heuristical Rounding: In most settings resource augmen-
tations are to be avoided based on their negative impact on
the customer’s Quality-of-Service. Hence, to obtain solutions
not violating any resource’s capacity, we propose to adapt
the rounding scheme by simply discarding selected mappings,
whose addition would exceed resource capacities. To increase
the diversity of found solutions, the order in which requests
are processed is permuted before each rounding iteration.

V. EXPLORATIVE COMPUTATIONAL STUDY

We now complement our formal approximation result in
the standard multi-criteria model with resource augmentation

376

with an extensive computational study. Specifically, we study
the performance of vanilla rounding and heuristical rounding
without resource augmentations as introduced above.

As we are not aware of any systematic evaluation of
the profit maximization in the offline settings, we present a
synthetic but extensive computational study. Specifically, we
have generated 1,500 offline VNEP instances with varying
request numbers and varying demand-to-capacity ratios. For
all instances, baseline solutions were computed by solving the
Mixed-Integer Programming Formulation 1.

We restrict our discussion to our main results and refer the
reader to our technical report at [17] for additional details.
We have implemented all presented algorithms in Python 2.7
employing Gurobi 7.5.1 to solve Mixed-Integer Programs and
Linear Programs. Our source code is freely available at [20].
All experiments were executed on a server equipped with Intel
Xeon E5-4627v3 CPUs running at 2.6 GHz.

A. Instance Generation

We use the GÉANT topology1 as substrate network. It
consists of 40 nodes and 122 edges. We consider a single
node type and set node and edge capacities uniformly to 100.

a) Request Topology Generation: Cactus graph requests
are generated by (i) sampling a random binary tree of maxi-
mum depth 3, (ii) adding additional edges randomly as long
as they do not refute the cactus property as long as such edges
exist, and (iii) orienting edges arbitrarily.

We only consider requests containing at least 3 nodes.
According to our generation parameters, the expected number
of nodes and edges is 6.54 and 7.28, respectively. On average,
61% of the edges lie on a cycle.

b) Mapping Restrictions: To force the virtual networks
to span across the whole substrate network, we restrict the
mapping of virtual nodes to one quarter of the substrate nodes:
each virtual node can be mapped on ten substrate nodes. The
mapping of virtual edges is not restricted.

c) Demand Generation: We control the demand-to-
capacity ratio of node and edge resource using a node resource
factor NRF and an edge resource factor ERF. The request’s
demands are drawn from an exponential distribution and
afterwards normalized, such that the following holds:∑

r∈R

∑
i∈Vr

dr(i) =NRF ·
∑

u∈VS

dS(u)

ERF ·
∑

r∈R

∑
(i,j)∈Er

dr(i, j) =
∑

(u,v)∈ES

dS(u, v)

The resource factors can be best understood under the
assumption that all requests are embedded. Under this assump-
tion, a resource factor NRF = 0.6 implies that the node load
– averaged over all substrate nodes – equals exactly 60%. As
virtual edges can be mapped on arbitrarily long paths (even
of length 0), the edge resource factor should be understood as
follows: the ERF equals ‘the number of substrate edges that
each virtual edge may use’. In particular, a factor ERF = 0.5
implies that if each virtual edge spans exactly 0.5 substrate
edges, then edge resource utilization equals exactly 100%.

1Obtained from http://www.topology-zoo.org/ (version March 2012) .

Hence, while increasing the NRF renders node resources more
scarce, increasing the ERF reduces edge resource scarcity.

d) Profit Computation: To correlate the profit of a re-
quest with its size, its resource demands, and its mapping re-
strictions, we compute for each request its minimal embedding
costs as follows. The cost c(u, v) of using an edge (u, v) ∈ VS
equals the geographical distance of its endpoints. The cost of
nodes is set uniformly to c(·, u) =

∑
(u,v)∈ES

c(u, v)/|VS |
for all u ∈ VS . Hence, the total node cost equals the
total edge cost. Defining the cost of a mapping mr to be∑

(x,y)∈RS
A(mr, x, y) · c(x, y), we compute the minimum

cost embedding for each request r ∈ R using an adaption
of Mixed-Integer Program 1 and set br accordingly.

e) Parameter Space: We consider the following param-
eters |R| ∈ {40, 60, 80, 100}, NRF ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
ERF ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and generate 15 instances per
parameter combination, yielding 1, 500 instances overall.

B. Computational Results

We first present our baseline results and then study the
performance of vanilla rounding and heuristical rounding.

a) Baseline MIPMCF: To obtain a near-optimal baseline
solution for each of the 1,500 instances, we employ Gurobi
7.5.1 to solve the Mixed-Integer Programming Formulation 1
(using a single thread). We terminate the computation after 3
hours or when the objective gap falls below 1%, i.e. when the
constructed solution is provably less than 1% off the optimum.
On average the runtime per instance is 129.8 minutes [17].

Figure 3 gives an overview on these baseline solutions. In
particular, based on the a priori profit computation, the number
of requests which can be feasibly embedded is shown together
with the acceptance ratio which on average lies around 75%.
The rightmost plot depicts the objective gap, i.e. the quality
guarantee proven by Gurobi, which is (on average) 6.8%.

b) Solving LP Formulation 2: To apply the rounding
algorithms presented in Section IV-D, our novel LP Formula-
tion 2 needs to be solved. Again, we employ Gurobi 7.5.1,
specifically its Barrier algorithm with crossover. Figure 4
depicts the averaged runtime to solve the LP as well as to
construct the LP. The latter is not negligible as the formulation
contains up to 1,000k variables for some instances. The
runtime increases from around 2 minutes for |R| = 40 to
around 7 minutes for |R| = 100. The maximally observed
runtime in our experiments amounted to roughly 18 minutes.

c) Vanilla Rounding RRMinLoad: We first consider the
performance of vanilla rounding. Concretely, we report on
the best solution found within 1,000 rounding iterations, i.e.
the solution minimizing resource augmentations and breaking
ties among these by returning the solution of highest profit.
Figure 5 (left) depicts the results. As can be seen, the al-
gorithm achieves a profit between 50% and 140% compared
to the best solution constructed by the MIP, while exceeding
resource capacities mostly by 25% to 125% of the resource’s
capacity. The edge resource factor has a distinctive impact: for
ERF = 4.0 maximal resource loads mostly lie below 75%.

377

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc
e
Fa

ct
or

MIPMCF: #Feasible Requests

0

20

40

60

80

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc
e
Fa

ct
or

MIPMCF: #Embedded / #Feasible [%]

0

20

40

60

80

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc
e
Fa

ct
or

MIPMCF: Objective Gap [%]

0
2
4
6
8
10
12
14
16

Fig. 3. Overview on baseline results computed using the MIP Formulation 1. Each cell averages the results over
75 instances. The feasibility of requests is obtained from (cost-optimally) embedding the requests to compute the
profit a priori. The center plots depicts the acceptance ratio restricted to the feasible requests. The solution’s quality
is depicted on the right: the gap heavily depends on the edge resource factor but is on average less than 7%.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

LPnovel: Total Runtime [min]

0

2

4

6

8

10

Fig. 4. Solution time of the novel
LP Formulation 2 (including the con-
struction time for the LP) using the
Barrier algorithm of Gurobi 7.5.1.

60 80 100 120 140
Profit(RRMinLoad)/Profit(MIPMCF) [%]

100

125

150

175

200

225

M
ax

Lo
ad

(R
R M

in
Lo

ad
) [

%
]

Vanilla Rounding Performance

ERF
0.25
0.5
1.0
2.0
4.0

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge
 R
es
ou
rc
e
Fa
ct
or

Heuristic Rounding Performance
Profit(RRHeuristic)/Profit(MIPMCF) [%]

50

60

70

80

90

100

Fig. 5. Overview on results obtained using vanilla and heuristical rounding.
Left: Solutions obtained via vanilla rounding minimizing the load. Each point
corresponds to a single instance and is colored according to the instance’s edge
resource factor. 7 of 1,500 results lie outside the depicted area.
Right: The averaged profit of solutions obtained via heuristical rounding
compared to the best baseline solution. Each cell averages 75 instances.

d) Heuristical Rounding RRHeuristic: The results of the
heuristical rounding are presented in Figure 5 (right). Again,
1,000 rounding iterations were considered. While for low
edge resource factors, i.e. scarce edge resources, the solutions
achieve around 65% of the profit of the MIP baseline, for
larger edge resource factors, the relative performance exceeds
80%. Furthermore, the performance improves when increasing
the number of requests. Overall, the average relative perfor-
mance with respect to the baseline solutions is 73.8%, with
the minimal one being 22.3%.

VI. CONCLUSION

This paper has initiated the study of approximation algo-
rithms for the Virtual Network Embedding Problem supporting
arbitrary substrate graphs and supporting virtual networks
containing cycles. To obtain the approximation, we have
derived a strong LP formulation for cactus request graphs.
Our computational evaluation shows the practical significance
of our work: obtained solutions achieve (on average) around
74% of the baseline’s profit while not augmenting capacities.

We note that the developed approximation framework is
independent of the how LP solutions are computed and de-
composed. In particular, while the LP formulation presented
in this paper is only applicable for cactus request graphs, our
formulation can be generalized to arbitrary request graphs [18].

ACKNOWLEDGEMENTS

This work was partially supported by Aalborg University’s
PreLytics project as well as by the German BMBF Software
Campus grant 01IS1205.

We thank Elias Döhne, Alexander Elvers, and Tom Koch
for their significant contribution to our implementation [20].

REFERENCES

[1] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” ACM SIGCOMM CCR, vol. 42, no. 5, 2012.

[2] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. 3rd IEEE CloudNet, October
2014.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4. ACM, 2011, pp. 242–253.

[4] J. Napper, W. Haeffner, M. Stiemerling, D. R. Lopez, and
J. Uttaro, “Service Function Chaining Use Cases in Mobile
Networks,” Internet-Draft, Apr. 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

[5] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Comm. Surveys Tutorials, IEEE,
vol. 15, no. 4, 2013.

[6] M. Rost and S. Schmid, “Charting the Complexity Landscape of Virtual
Network Embeddings,” in Proceedings IFIP Networking, 2018.

[7] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network em-
bedding with coordinated node and link mapping,” in Proc. IEEE
INFOCOM, 2009.

[8] R. Hartert et al., “A declarative and expressive approach to control
forwarding paths in carrier-grade networks,” in SIGCOMM, 2015.

[9] A. Jarray and A. Karmouch, “Decomposition approaches for virtual
network embedding with one-shot node and link mapping,” IEEE/ACM
Transactions on Networking, vol. 23, no. 3, pp. 1012–1025, 2015.

[10] M. Rost, S. Schmid, and A. Feldmann, “It’s About Time: On Optimal
Virtual Network Embeddings under Temporal Flexibilities,” in Proc.
IEEE IPDPS, 2014, pp. 17–26.

[11] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” in Proc. ACM SIGCOMM Computer Communica-
tion Review (CCR), 2015.

[12] G. Even, M. Medina, and B. Patt-Shamir, “Online path computation
and function placement in sdns,” in Proc. International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), 2016.

[13] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in sdns,” in Proc. SIROCCO, 2016.

[14] T. Lukovszki and S. Schmid, “Online admission control and embedding
of service chains,” in Proc. 22nd SIROCCO, 2015.

[15] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer, “Minimum conges-
tion mapping in a cloud,” in Proc. ACM PODC, 2011.

[16] M. Rost and S. Schmid, “Service chain and virtual network em-
beddings: Approximations using randomized rounding,” Tech. Rep.
arXiv:1604.02180 [cs.NI], April 2016.

[17] ——, “Virtual Network Embedding Approximations: Leveraging Ran-
domized Rounding,” Tech. Rep. arXiv:1803.03622 [cs.NI], March 2018.

[18] ——, “(FPT-)Approximation Algorithms for the Virtual Network Em-
bedding Problem,” Tech. Rep. arXiv:1803.04452 [cs.NI], March 2018.

[19] D. P. Dubhashi and A. Panconesi, Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009.

[20] E. Döhne, A. Elvers, T. Koch, and M. Rost, “Source code for
the evaluation presented in this work,” https://github.com/vnep-approx/
evaluation-ifip-networking-2018.

378

AHAB: Data-Driven Virtual Cluster Hunting
Johannes Zerwas∗, Patrick Kalmbach∗, Carlo Fuerst†, Arne Ludwig†, Andreas Blenk∗,

Wolfgang Kellerer∗, Stefan Schmid‡
∗Technical University of Munich, Germany †Technical University of Berlin, Germany ‡University of Vienna, Austria

Abstract—Virtual clusters are an important concept to provide
isolation and predictable performance for multi-tenant applica-
tions in shared data centers. The problem of how to embed
virtual clusters in a resource efficient manner has received
much attention over the last years. However, existing virtual
cluster embedding algorithms typically optimize the embedding
of a single request. We demonstrate that this can lead to
fragmentation and suboptimal data center resource utilization
over time. We propose an alternative in two stages: First, we
describe a novel embedding algorithm, called TETRIS, which, in
an effort to avoid resource fragmentation over time, takes into
account the specific node-to-link resource ratios of the individual
requests. While TETRIS can be suboptimal when embedding only
one request, we find that it performs much better than the state-
of-the-art algorithms over time. Second, we allow the algorithm to
strategically reject individual requests, even if there are sufficient
resources: our proposed algorithm, AHAB, hence selects (“hunts”)
useful requests over time. An important property of AHAB is
that it is data-driven: it uses information about previous requests
and embeddings. We report on extensive simulations, which
demonstrate the optimization potential of TETRIS (+4%) and
AHAB (+13%), compared to existing solutions such as KRAKEN
and OKTOPUS. Furthermore, AHAB illustrates how data-driven
algorithms can replace man-made heuristics.

Index Terms—Network Virtualization, Embedding, Admission
Control

I. INTRODUCTION

Today’s data analysis frameworks and cloud applications
generate large amounts of traffic; hence, their overall perfor-
mance depends on the network. Indeed, it has been shown
that cloud applications suffer from resource interference on the
network, to the extent that the application execution times may
become unpredictable [1]. To overcome this, several systems
have been introduced that provide isolation among different
customers and ensure network conditions as required by data
center applications [2]–[6].

A common resource reservation abstraction provided to the
tenant is the virtual cluster (VC) [2]. A VC connects a number
of virtual machines (VM) to a virtual switch at a guaranteed
bandwidth. The problem of how to embed virtual clusters
has already received much attention [2], [7]–[10]. Proposed
systems typically optimize the embedding of a single request:
Minimizing the physical resource footprint of a single VC is
often stated as the goal of the algorithms [7]–[9]. However,
VC embedding is usually applied in an online environment
where requests arrive over time. Focusing only on a single
VC while neglecting the impact on future embeddings may
fragment the reserved physical resources. This can in turn
harm the resource utilization over time. Instead of looking

only at single VCs, we propose to leverage information
about the embedded request characteristics. Indeed, recent
analysis of data center traces show that request characteristics
can be estimated with sufficient quality to make scheduling
decisions [11]; an invaluable source to optimize data center
resource utilization. By integrating information about VCs into
the embedding decision, this work makes two steps to surpass
the drawbacks of existing VC embedding algorithms.

First, we present a novel embedding algorithm, TETRIS,
which aims to reduce fragmentation over time by accounting
for the ratio of requested node and link resources (which
can differ from request to request), compared to the available
resources in the substrate.

Second, we extend our study to admission control algo-
rithms: we allow algorithms to strategically reject requests
even though the substrate would provide enough resources
to host the current to-be-embedded VC. In particular, this
paper proposes AHAB1 — a data-driven approach to admission
control. The key idea of the data-driven paradigm is to base
the decisions on observations from collected data instead of
relying on manually designed strategies and it has recently
drawn attention in networking research [12].

AHAB exploits knowledge about the characteristics of VCs.
More specifically, it uses distributions of the VC attributes
(VMs, bandwidth) to generate requests and evaluate the impact
of the new VC on the feasibility of future embeddings.
Concretely, AHAB answers the question whether the current
VC will negatively affect the data center utilization in the
future. To do so, AHAB performs several small simulations
and compares their outcomes for two cases: one where the new
VC is accepted and one where it is not. As it relies on a data-
driven concept only, AHAB is independent from embedding
algorithms, i.e., any VC embedding algorithm can be used in
combination with AHAB. Hence, it can easily extend existing
cluster management systems.

Simulations show that TETRIS outperforms state-of-the-
art single-request embedding algorithms, enabling providers
to host more VCs and hence use their infrastructure more
efficiently. Moreover, the evaluation demonstrates that data-
driven admission control can greatly improve the resource
utilization in data centers by integrating knowledge about
the distributions of the requests’ attributes into the admission
decision. Even when facing mismatched distributions, AHAB
provides higher cluster utilizations than existing algorithms.

1The name AHAB refers to Moby Dick’s captain Ahab, hunting sea mon-
sters like KRAKEN or OKTOPUS (the systems upon which AHAB improves).ISBN 978-3-903176-08-9 ©2018 IFIP

II. REVISITING VIRTUAL CLUSTER EMBEDDINGS

This section describes our considered scenario and VC
abstraction. We also revisit the VC embedding problem, and
list two state-of-the-art algorithms to optimize the embedding
of a single VC.

A. Virtual Cluster Abstraction: State-of-the-art

Virtual clusters [2] are the most prominent abstraction for
batch-processing applications. Using VC abstraction, tenants
can specify their networking demands, which introduces pre-
dictable performance guarantees. A VC request consists of the
number of VMs and the bandwidth that should be reserved for
each VM. If the provider embeds the request, it creates the
number of equally-sized VMs and allocates them on the hosts
of the substrate network. Additionally, the provider creates
bandwidth reservations on the physical links such that every
VM can use the requested bandwidth. Hence, the tenant is
provided with the illusion of a dedicated network.

Besides this basic abstraction, extended versions have been
proposed [6], [7], [10], [13]. However, existing algorithms do
not specifically account for the fact that different requests
can have different ratios of node and link resources: virtual
cluster specifications are likely to come with different re-
quirements [14], e.g., some requests have high requirements
for computational resources but do not transfer much data
while others are more network-intensive and require less
computational resources.

B. Scenario Description

Table I summarizes the mathematical names and conven-
tions in notation that are used throughout this study.
Substrate. The considered substrate networks (physical clus-
ter) C hosting VCs employ a tree-like topology, e.g. Fat-
Tree [15], a common data center architecture today. A set
of pods is connected via core switches. Each pod consists of
several racks which are connected to the aggregation switch of
the pod. The racks are constituted by several hosts (or servers)
that are interconnected by the top of rack (ToR) switch. The
capacities of the links of the aggregation levels equal the
accumulated bandwidths of the corresponding child nodes. The
computational size of a physical server is measured in integer-
valued compute units (CU). Similarly, the capacity of the
physical hosts’ links are normalized to denote the bandwidth
in integer-valued bandwidth units (BU).

According to the physical cluster modeling in [2], [9],
we approximate the Fat-Tree by a simple tree. The Fat-Tree
depicted in Fig. 1a consists of two pods, containing two racks
each; there are two hosts per rack. A host has a capacity of
4 CUs and the hosts’ link capacities are 6 BUs. The links on
aggregation and core level have capacities of 12 BUs and 24
BUs respectively.
Virtual Cluster. The VC abstraction should reflect the de-
scribed observations from Sec. II-A. Customers should be able
to specify their computation and communication requirements
separately. Concretely, a VC is the triple R = (N,S,B),
where N is the number of VMs, S is the computational

TABLE I
NOTATION AND ABBREVIATIONS.

Symbol Description

Substrate

C Substrate network with a tree-like topology
CU Compute unit: Abstract unit to measure computation

requirements or capacity
BU Bandwidth unit: Abstract unit to measure bandwidth

requirements or capacity
Ch Available computing capacity on host h [CU]
Bh Available bandwidth on up-link of host h [BU]

FreeCapacity(C) Number of free CUs in the substrate C
TotalCapacity(C) Total number of CUs in the substrate C

Hosts(C) Single hosts of C in groups of 1 sorted by avail. CUs.
Racks(C) Hosts of C grouped by their racks
Pods(C) Hosts of C grouped by their pods
Root(C) Hosts of C in one large group

Virtual Cluster Request

N Number of VMs that a request has
S Size of the VMs of a request [CU]
B Bandwidth requirement per VM of a request [BU]

R = (N,S,B) Virtual cluster request with N VMs of size S inter-
connected with bandwidth B

VMs(R) Virtual machines of request R
host(vm) Host which is assigned to the VM vm or NULL if

no host is assigned

ρ(h,R) = Ch−S
Bh−B

, ratio of available resources on host h
after allocating one VM of request R

4 4 4 4 4 4 4 4

6

12

24

Rack Pod

Host

Aggregation

Switch
Core Switch

ToR Switch

(a) Fat-Tree with two pods, two racks per pod
and two hosts per rack.

4 4 4

2

VM

Virtual Switch

(b) VC with N = 3, S =
4 and B = 2.

Fig. 1. Examples for Fat-Tree and VC.

requirement (size) of a VM and B is the bandwidth of a virtual
link. All VMs are of the same computational size S, and are
connected to a virtual switch at bandwidth B. For instance,
the VC in Fig. 1b requests 3 VMs with a size of 4 CUs and a
bandwidth of 2 BUs between the VMs and the virtual switch.
Online Cluster Arrival Process. Requests arrive in an online
fashion and the provider must decide if a new request is
embedded or rejected. In order to embed a VC, the provider
has to fulfill all its specifications.

C. Existing VC Embedding Algorithms

In this study, we focus on two prominent VC embedding
algorithms: OKTOPUS and KRAKEN.
OKTOPUS. Ballani et al. [2] proposed a first algorithm
(henceforth called OKTOPUS) to embed VCs in Fat-Tree data-
center topologies. Its heuristic approach aims at minimizing

380

0

3

Kraken

3

0

3

0

3

0

0

3

0

3

2

2

Tetris

1

1

1

1

1

1

2

2

2

2

Fig. 2. Embedding behavior of KRAKEN and TETRIS. Six hosts (6 CUs, 6
BUs) are connected to a switch. Requested VCs are R1 = (9, 1, 2), R2 =
(9, 2, 1). The upper number in a host represents mapped VMs of R1 and the
lower number those of R2.

the allocation costs, but it does not always achieve optimal
results. OKTOPUS iterates through the levels of the tree and
searches for the first group of hosts (single host, hosts of a
rack, hosts of a pod, all hosts) where the VC is feasible.
KRAKEN. An optimal solution to the single request em-
bedding problem has been presented in [9], as part of the
KRAKEN system. In contrast to OKTOPUS, KRAKEN returns
the embedding with the minimal allocation cost for the given
request and cluster state. To do so, KRAKEN does not return
the first feasible solution, but checks all feasible solutions and
returns the optimal solution for the VC. To maintain linear
complexity w.r.t. the number of physical hosts, it uses the
center of gravity concept, which corresponds to the location
of the abstract virtual switch. It further allows to modify the
size of the VC online.

Both algorithms (as well as algorithms lying between the
two, like Proteus [7]) focus on single VCs and serve as
comparables to the embedding algorithm presented in this
study, which sacrifices quality of single embeddings to obtain
better overall results. To the best of our knowledge, the
challenge of fragmentation over time and the systematic study
of the benefits of admission control has not been considered
in the literature before.

III. TETRIS: ON THE POTENTIAL OF NON-GREEDY VC
EMBEDDING

TETRIS is a VC embedding algorithm that, in an effort
to perform better over time and in the long run, accounts
for the specific resource ratios (and hence potential undesired
resource fragmentations). As we will see, despite its simplicity,
TETRIS already outperforms state-of-the-art VC embedding
algorithms, which do not account for such fragmentation over
time.

A. Key Idea: Sacrificing Footprint for Fragmentation

The main idea is to utilize the different resource dimensions
of single hosts in a more balanced fashion, in order to avoid
fragmentation (and hence poor resource utilization) over time.
OKTOPUS and KRAKEN find embeddings which are dense and
use low amount of bandwidth. The problem of such dense
embeddings is that requests with a resource ratio S/B 6= 1
are collocated which wastes physical resources. Fig. 2 gives
an example. For KRAKEN, R1 is embedded on the right three
hosts. Thus, there are 3 CUs left on the host but no capacity
on the up-link, which renders it unlikely that those free CUs
are used in the future. On the other hand, R2 only uses half

of the link capacity of the left three hosts. Using TETRIS, the
VMs of both VCs are distributed over the hosts more evenly
such that no host has capacity left for only one resource.

The ratio ρ(h,R) = (Ch−S)/(Bh−B) serves as a score to
determine the placement of the VMs, i.e., TETRIS prefers hosts
with ratio. Ch and Bh are the currently available resources
on host h. As Ch is in the nominator, hosts that have much
compute resources available, but only little bandwidth, are
more likely chosen as location for the next VM than hosts
with few compute resources available and much bandwidth.

B. Algorithm Details

Algorithm 1 shows the procedure of TETRIS. After checking
the general feasibility of the request (l.1f), the algorithm
iterates over the levels of the tree topology starting at the host
level (similar to OKTOPUS and KRAKEN).
Trying Hosts. TETRIS iterates over every single host and tries
to place all requested VMs on the same host (ll.4-9). At this
stage, the resource ratio does not matter since hostGroup has
only one element (l.5). If the request fits on a single host, no
bandwidth reservation is needed and TETRIS returns.
Trying Racks/Pods/Cluster. If the request does not fit on
a single host, TETRIS iterates over the racks of the cluster
(sorted by the fraction of available compute capacity). But
instead of collocating as many VMs on a single host as
possible (like OKTOPUS and KRAKEN), TETRIS distributes the
VMs over several hosts depending on the ratio of the residual
resources per host. For each VM of the request, TETRIS
chooses the feasible host with the highest ratio ρ(h,R) as
location from all hosts of the current rack (l.5). Then TETRIS
reserves resources for the VM on the host and the hosts’ link
(l.9). Bandwidth reservations on higher layers (aggregation,
core) cannot be performed because the location of the virtual
switch is not known yet. If any of the VM allocations fails,
TETRIS resets the previously allocated VMs and proceeds with
the hosts of the next rack (ll.6-8) — no host of the current
rack will be used.

When all VMs are placed, TETRIS determines the virtual
switch’s location and performs the final bandwidth reserva-
tions (l.10f). The previous steps (l.4-9) do not guarantee the
feasibility of the bandwidth reservations on the aggregation
and core layer and the reservations may fail, e.g., if the Fat-
Tree is oversubscribed. If this is the case, TETRIS removes the
embeddings of the VMs and starts over using the hosts of the
next rack (l.14f).

The same procedure is applied for the pod and root levels,
if the algorithm has not found any feasible embedding after
having evaluated all racks. If TETRIS does not find any feasible
solution, the VC is rejected. TETRIS’ complexity is linear in
the number of topology host like OKTOPUS and KRAKEN.

IV. AHAB: THE CASE FOR DATA-DRIVEN ADMISSION
CONTROL

We now take the idea of thinking strategically and being
less greedy in how a single request is embedded one step
further and initiate the study of algorithms which can even

381

Algorithm 1 Virtual Cluster Embedding: TETRIS

Input: Substrate C, VC R = (N,S,B)
Output: Embedding success

1: if FreeCapacity(C) < N · S then
2: return False
3: for hostGroup ∈ {Hosts(C), Racks(C), Pods(C), Root(C)}

do
4: for vm ∈ VMs(R) do
5: host(vm)← argmax ρ(h,R), h ∈ hostGroup: vm

is feasible on h
6: if host(vm)== NULL then
7: Reset host(vm) ∀vm ∈ VMs(R)
8: Continue with next hostGroup
9: Reserve S,B on host(vm)

10: success←reserveBandwidth(R)
11: if success then
12: return True
13: else
14: Reset C and host(vm) ∀vm ∈ VMs(R)
15: Continue with next hostGroup
16: return False

reject individual requests entirely, although there are sufficient
resources available.

A. Key Idea: Admission Control and Leveraging Data

The admission control algorithm AHAB (Algorithm 2) shall
“hunt” for the best VCs to embed. It can be configured with
many single-request embedding algorithms, including TETRIS.
Similar to DeepMind’s AlphaGo [16] and other Monte Carlo
Tree Searches [17], AHAB performs a lookahead search to
make its decision. The idea is to get the impact of the
embedding of a new VC on future arrivals. To do so, AHAB
uses knowledge about the distributions of the VCs’ attributes
N,S,B to generate potential sequences of requests and tries
to allocate these along with the actually arrived VC. The data
collected with these small simulations is then the basis for
the decision. The knowledge can be easily obtained from past
requests and as a first step, we expect perfect knowledge about
the distributions of N,S,B, which is an acceptable assumption
as recent work has shown [11].

B. Algorithm Details

AHAB starts with checking the feasibility of the request. If
the cluster is only lightly loaded, AHAB accepts the request
(l.3f). This step reduces computational efforts as the proba-
bility of acceptance is high in this situation. If current load
is > 50%, AHAB performs the lookahead search. Given the
current substrate state C and the new VC R, AHAB generates
a number of sequences (numSeq) of length numV Cs con-
taining possible future requests and embeds them using the
embedding algorithm A, e.g. KRAKEN (Algorithm 3). One half
contains R while the other half does not (l.5f). Each allocated
VC gives a reward of N · S. AHAB uses the accumulated
reward of the single sequences as a performance indicator and

Algorithm 2 Admission Control: AHAB

Input: Substrate C, VCR = (N,S,B), Embedding algorithm
A, numSeq, numV Cs, Distributions for N,S,B

Output: Decision: Accept=True, Reject=False
1: if A cannot find a feasible solution then
2: return False
3: if FreeCapacity(C)> 0.5 TotalCapacity(C) then
4: return True
5: avgAccept = RunSequences(C, R, A, numSeq,
numV Cs, true)

6: avgReject = RunSequences(C, R, A, numSeq,
numV Cs, false)

7: return avgReject < avgAccept

Algorithm 3 RunSequences
Input: Substrate C, VCR = (N,S,B), Embedding algorithm

A, numSeq, numV Cs, embedV C
Output: Average reward per sequence

1: rewards = {}
2: for i = 1 to numSeq do
3: C′ ← Copy C
4: if embedV C then
5: A.embed(C′, R)
6: rewards[i] = 0
7: for j = 1 to numV Cs do
8: R′ ← Generate new VC
9: if A.embed(C′, R′) == True then

10: rewards[i] += SR′ ·NR′

11: return Average(rewards)

determines the mean values for the sequences with and without
R (Algorithm 3 - ll.9-11). The comparison of these two values
gives the decision of acceptance (Algorithm 2 - l.7).

The complexity of AHAB depends on the complexity of the
embedding algorithm and the total number of VC allocations
(= numV Cs · numSequences) in one call, which are a
tunable parameters.

V. EVALUATION

In order to analyze TETRIS and AHAB in different settings,
we evaluate the results obtained using event-based simulations.
Besides elaborating the differences in performance (Sec. V-B
& V-C), we also look at the attributes of VCs that are accepted
and try to understand why AHAB outperforms the other algo-
rithms (Sec. V-D & V-E). Furthermore, we evaluate the impact
of sequence length and number of sequences (Sec. V-F).
This section closes with investigating the robustness of AHAB
against errors in the distributions used to generate requests and
varying host capacities (Sec. V-G & V-H).

A. Setup

Substrate. The physical cluster C is a three-layer Fat-Tree with
construction number k = 12 resulting in 432 hosts in total.
A host has a compute capacity of 8 CUs and 8 BUs on the
connecting link which leads to a total of 3 456 CUs available
in the cluster. The links between the ToR switches and the

382

aggregation switches and the links between the aggregation
switches and the core are not oversubscribed.
Virtual Cluster Requests. The VCs arrive according to a
Poisson process with an arrival rate λ and have exponentially
distributed durations, such that they induce system load levels
of 78.5% (λ = 4), 234% (λ = 12) and 390% (λ = 20). Based
on the analyses of traces from Microsoft [11] and Google [18],
the number of requested VMs N is exponentially distributed
with mean 20 in the interval [3, 60]. B and S both follow a
discrete distribution with P (1) = 0.45, P (2) = 0.3, P (4) =
0.2, P (8) = 0.05. All outcomes are sampled independently.
We run every setup 30 with 1000 arriving VCs. To avoid
artifacts related to the initially empty data center, we start
evaluating our metrics after 100 requests.
Metrics. Various works [7], [10], [13] have used the accep-
tance ratio of an embedding algorithm in order to measure
its performance. This metric, however, is biased towards algo-
rithms that accept a large number of small requests instead of
few bigger ones. Therefore, the first objective of this analysis
is the maximization of the used CUs in the substrate. One
sample is the average of this fraction over a whole run.

As second objective the minimization of the footprint
F (V C) of the embedded VCs is evaluated. The footprint of a
VC is the amount of bandwidth of that VC that is reserved on
the physical links (see Fuerst et al. [9]). For instance, the VC
in Fig. 1 occupies one host per VM. The optimal embedding
fills up one rack and uses one host of another rack. Bandwidth
reservations are made on 5 physical links and F (V C) = 10.
Baseline Algorithms. The evaluation compares TETRIS with
OKTOPUS and KRAKEN, all without admission control. Be-
sides setups without admission control, the benchmark of
AHAB also takes an observation-based strawman algorithm
(STRAWMAN) into consideration, which simply rejects all VCs
with B > 4 and uses KRAKEN to embed the VCs. This
approach is based on the observations from TETRIS.

B. Is it worth playing TETRIS?

Fig. 3 compares the embedding algorithms for different
arrival rates with admission control (AHAB with OKTOPUS,
KRAKEN, TETRIS and STRAWMAN) and without admission
control (OKTOPUS, TETRIS, KRAKEN). It shows the mean
values over 30 runs with 95% confidence intervals. Unless
otherwise stated, AHAB runs 20 sequences of 15 VCs.

Fig. 3a shows the cluster utilization w.r.t. CUs, the main
objective of TETRIS and AHAB. For λ = 4, the cluster is not
overloaded and all algorithms achieve similar values around
0.6. However, higher system loads, e.g., for λ = 12, allow
to be more selective and make differences in the algorithms’
performances visible. Considering TETRIS first, we observe
that it outperforms OKTOPUS and KRAKEN for λ ≥ 12 and
achieves a mean CU usage of 0.83.

Yet, Fig. 3b suggests that this improvement does come at
a certain cost. It shows the mean footprint of a single VC,
i.e., the average number of physical link resources that are
reserved for one VC. Generally, the mean values decrease with
increasing arrival rates. For small arrival rates, the footprints

obtained by OKTOPUS, KRAKEN and TETRIS are in a similar
range (≈ 75 BUs), but for arrival rates around 12 the values for
TETRIS are larger. This emphasizes the approach of TETRIS
to sacrifice the footprint of the VCs to improve the utilization
of the substrate. However, we observe that the gap between
the average footprints of TETRIS and OKTOPUS and KRAKEN
decreases further as the arrival rate increases towards 20.

The reason for this is highlighted by Fig. 3c, which shows
the average number of concurrently embedded VCs. For all
algorithms, this number significantly rises from 50 to ≈ 90
when the system transitions into overload and then only
slightly increases further for OKTOPUS and KRAKEN. For
TETRIS, it continues to grow with the arrival rate to values
around 110 even though, the fraction of used CUs does not
increase that much for arrival rates around 20. This implies
that the average number of CUs per embedded VC decreases,
i.e., TETRIS allocates more aggressively only small requests
for high arrival rates while OKTOPUS and KRAKEN behave
more moderately. A more detailed analysis follows later.

STRAWMAN pushes the performance of KRAKEN up and
achieves cluster utilization values slightly worse than those of
TETRIS (Fig. 3a). The VC footprints are smaller since requests
with large bandwidth requirements are rejected; otherwise the
minimal footprint for a VC is obtained. STRAWMAN trades
off resource efficient embeddings with cluster utilization.

C. How useful is knowledge?

Adding admission control significantly improves the perfor-
mance in terms of mean fractions of used CUs (Fig. 3a), when
the system is overloaded (λ ≥ 12). OKTOPUS and KRAKEN
in combination with AHAB perform similar and the utiliza-
tion exceeds 90%. A detailed explanation why both outreach
TETRIS follows in Sec. V-F. Considering the average footprint
of a single VC, AHAB(OKTOPUS) and AHAB(KRAKEN) show
the best results with an average < 50 BUs for λ ≥ 12.
The other algorithms obtain mean values > 55 BUs. For
λ = 4, the STRAWMAN dominates. AHAB(TETRIS) again
results in increased footprints compared to AHAB(OKTOPUS)
and AHAB(KRAKEN), e.g., for λ = 12, the mean value is ≈ 62
BUs. Fig. 3c suggests that AHAB also accepts more smaller
requests as the number of concurrent VCs continues to rise
with the arrival rate; however, it increases less than TETRIS
without admission control.

To summarize, TETRIS improves the utilization of the
substrate but is outperformed by solutions that incorporate
admission control based on knowledge of the request gen-
eration process, i.e., the distributions of the VC attributes
N,S,B. TETRIS is a credible alternative in case no knowledge
is available or inaccessible.

D. Why is AHAB better?

In order to shed light on the reason behind AHAB’s good
performance, we look at the acceptance patterns of the al-
gorithms. Fig. 4 visualizes the acceptance ratio of different
request sizes for KRAKEN, TETRIS and AHAB(KRAKEN). The
values are obtained from all requests of all runs.

383

4 12 20
Arrival Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
se

d
C

U
s

/T
ot

al
C

U
s

Oktopus
Kraken
Tetris

Strawman
AHAB(Oktopus)

AHAB(Kraken)
AHAB(Tetris)

(a) CU utilization

4 12 20
Arrival Rate

40

50

60

70

80

A
vg

.F
(V

C
)

Oktopus
Kraken
Tetris

Strawman
AHAB(Oktopus)

AHAB(Kraken)
AHAB(Tetris)

(b) VC footprint

4 12 20
Arrival Rate

60

80

100

120

N
um

.c
on

cu
rr

en
tV

C
s

Oktopus
Kraken
Tetris

Strawman
AHAB(Oktopus)

AHAB(Kraken)
AHAB(Tetris)

(c) Num. concurrent VCs

Fig. 3. Performance comparison between embedding algorithms without admission control, with strawman admission control (only KRAKEN) and with
AHABagainst the different requests’ arrival rates. The subfigures show results for the fraction of used CUs, the average weighted footprint of a VC and the
number of concurrently allocated VCs. The figures show the mean values with the 95% confidence intervals.

KRAKEN The color of a pixel corresponds to the acceptance
ratio derived from the requests with that size. For instance,
the upper left pixel of the block B = 1 in Fig. 4a means that
KRAKEN accepts 80% of the requests with VM size S = 1,
bandwidth requirement B = 1 and 3 ≤ N < 9. Somehow
intuitive, higher acceptance ratios show up for smaller requests
and the values decrease for larger requests. Especially for B =
8 or S = 8, KRAKEN is not able to embed many requests,
as these occupy a whole host link or host. Still, KRAKEN
allocates some of these requests. A higher number of requested
VMs also decreases the acceptance ratio. For small VM sizes
(S ≤ 2), this effect is moderated by the requested bandwidth:
For B ≤ 2, the acceptance ratio is ≥ 0.4 for all bins of Num.
VMs. For B = 4, the acceptance drops for requests with more
than 33 VMs and for B = 8, the acceptance already drops to
0.2 for requests with 10 VMs.

TETRIS Fig. 4b shows the same representation for TETRIS. It
supports the observations from Sec. V-B. Generally, TETRIS
obtains higher acceptances ratios for VCs with small VM sizes
and lower number of VMs. For instance, the acceptance ratio
is ≥ 0.6 for requests with B = 1 and S = 1 regardless of N ,
while KRAKEN achieves these ratios only for requests with
less than 27 VMs. But KRAKEN allocates more requests that
occupy whole hosts or host links (S = 8 and B = 8). In
particular for B = 8, the acceptance ratio of TETRIS and is
less or equal to that of KRAKEN for almost all cases. This
observation is the basis of the strawman admission control
algorithm that was introduced before. Additionally for S = 8,
TETRIS allocates only ≤ 40% of the requests.

AHAB The behavior of TETRIS might not be optimal, as
TETRIS does not perform best among the algorithms. Indeed,
AHAB(KRAKEN) selects different VCs as Fig. 4c illustrates.
For small bandwidths (B = 1), AHAB admits and embeds at
least as many requests as KRAKEN without admission control.
For B > 1, we observe that it embeds less requests with small
VMs (S = 1). In this case, the acceptance ratio drops below
20% for requests with more than 15 VMs. But for VCs with
larger VMs, AHAB obtains an acceptance ratio that is 5− 10

percentage points higher compared to KRAKEN in many cases.
In conclusion, TETRIS and AHAB increase the utilization of

the substrate network but employ different acceptance patterns
to do so.

E. Which requests are valuable?

To understand why AHAB’s acceptance pattern performs
better than that of TETRIS, we look at the acceptance ratio
from a different point of view: the value of a VC to the cluster
utilization. Fig. 5 shows the acceptance ratio grouped by the
resource ratio ρ̃ = S

B of a request and compares the values
for KRAKEN and TETRIS without admission control and
AHAB(KRAKEN). The previous observation is only weakly
affected by the number of VMs in a request, which allows to
reduce the dimensionality of the representation.

Small ratios mean that the allocation increases the target
metric (used CUs) only little while occupying many network
resources. Regardless the difference in absolute values, we
note that KRAKEN and TETRIS have higher acceptance for
VCs with ρ̃ ≤ 1 and reject VCs with ρ̃ > 1 more likely. This
is somehow counterintuitive as the benefit is low, while the
probability for high allocation costs is high and further reflects
that no explicit admission control is performed. In contrast to
this, AHAB(KRAKEN) picks VCs with ρ̃ > 1 as indicated
by the acceptance ratios. For ρ̃ < 1, the average acceptance
ratio is 0.23, while it is 0.45 for VCs with ρ̃ > 1. Thus,
AHAB(KRAKEN) admits more valuable requests and thereby
compensates the drawbacks of OKTOPUS and KRAKEN in
comparison to TETRIS.

F. Optimization Opportunities: Can we save data?

The parameters that AHAB has used up to now
(numV Cs = 15, numSeq = 20), obtain the best results.
However, it is generally desirable to minimize the computa-
tional overhead of AHAB. Therefore, we analyze the impact of
the number of requests per sequence (numV Cs) on AHAB’s
performance and also evaluate how sensitive the results are
against the number of sequences (numSeq) that AHAB runs.

384

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s
B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

(a) KRAKEN

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s

B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

(b) TETRIS

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s

B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

(c) AHAB(KRAKEN)

Fig. 4. Comparison of acceptance ratio separated by VC specification. Each pixel of the heatmaps shows the value for the corresponding group of VCs.
Subfigures allow to compare KRAKEN, TETRIS and AHAB(KRAKEN) and illustrate the differences in selection behavior. Arrival rate is 20. Note that Num.
VMs is grouped into bins of size 6.

0.125 0.25 0.5 1.0 2.0 4.0 8.0
S / B

0.0

0.2

0.4

0.6

A
cc

ep
ta

nc
e

R
at

io
pe

rg
ro

up
w

ith
S/

B Kraken Tetris AHAB(Kraken)

Fig. 5. Acceptance ratio per group of VCs with same resource ratio.
Comparison between KRAKEN, TETRIS and AHAB(KRAKEN). Arrival rate
is 20.

Furthermore, we assess if the embedding algorithm affects the
performance of AHAB.

Fig. 6a visualizes how the fraction of used CUs changes
with the number of requests per sequence. It shows the per-
formance of AHAB admission control for all three embedding
algorithms (OKTOPUS, KRAKEN and TETRIS). The number of
sequences is fixed to 20. First, we observe that the utilization
is positively affected by AHAB’s sequence length. It grows
from 0.8 for numV Cs = 1 to 0.93 for numV Cs = 20 and
KRAKEN. The benefit of adding more requests vanishes as
the sequences become longer. Additionally, the differences be-
tween the three embedding algorithms do not vary significantly
for numV Cs > 5. However, for small sequence lengths, the
inherent performance of the embedding algorithm dominates:
TETRIS is better than OKTOPUS and KRAKEN. The difference
diminishes with increasing numV Cs and the break even is
around 5 requests per sequence where AHAB produces the
same utilization for all three embedding algorithms. For longer
sequences the allocation with OKTOPUS or KRAKEN leads to
higher substrate utilization. The implicit selection that TETRIS
performs, limits the improvement, but the use of admission
control still raises the fraction of used CUs by 0.08.

Fig. 6b shows in a similar way how the number of sequences

1 5 10 15 20
Num. Requests / Sequence

0.6

0.7

0.8

0.9

1.0

U
se

d
C

U
s

/T
ot

al
C

U
s

Oktopus
Kraken

Tetris

(a) Num. requests / sequence
(numSequences = 20)

1 5 10 20 30
Num. Sequences

0.6

0.7

0.8

0.9

1.0

U
se

d
C

U
s

/T
ot

al
C

U
s

Oktopus
Kraken

Tetris

(b) Num. sequences (numV Cs = 15)

Fig. 6. Fraction of used CUs obtained by AHAB against the two parameters
of AHAB. Comparison of results for OKTOPUS, KRAKEN and TETRIS. The
sequence length positively affects the metric. 20 sequences containing 15
requests are enough for a high substrate utilizations (> 90%).

affects the performance of AHAB. The sequence length is fixed
to numV Cs = 15. Except for the steps from 1 to 5 and from
5 to 10 sequences, we observe only very little change with
increasing number of sequences. Thus, 10− 20 sequences are
sufficient to obtain good results with AHAB. More sequences
do not increase the quality of the decisions. This conclusion
is not affected by the embedding algorithm.

In summary, looking more steps into the future improves
the performance of AHAB at the cost of computation time.
However, very long sequences do not further increase the
substrate utilization, which allows to find good trade-offs.
TETRIS performs an implicit selection of requests and its
interference with AHAB leads to worse results compared to
KRAKEN and OKTOPUS. The performance is not sensitive to
the number of sequences which suffices to be in the range of
several 10’s.

G. What is the estimation error AHAB can cope with?

Sec. IV we assumed perfect knowledge about the generation
process of VCs. This section relaxes the preceding assumption
and evaluates how AHAB behaves, when it uses different distri-
butions for generating the requests. The modified distributions
have the same support as the original ones, but have a uniform
shape.

385

perfect uniform
Distribution

0.80

0.85

0.90

0.95

1.00
U

se
d

C
U

s
/T

ot
al

C
U

s

Kraken Oktopus

(a) CU utilization

perfect uniform
Distribution

90

100

N
um

.c
on

cu
rr

en
tV

C
s

Kraken Oktopus

(b) Num. concurrent VCs

Fig. 7. Comparison of AHAB’s performance between different distributions
for request generation through 95% confidence intervals. In both figures, the
left group shows the results for the distributions as described in Sec. V-A.
The right group uses uniform distributions with the same boundaries.

Fig. 7 compares how the substrate utilization and the
number of concurrent VCs are affected by this change. The
left group shows the results for perfect distribution estimation
while the right ones contain the results obtained with the uni-
form distributions. AHAB runs 20 sequences with 15 requests
each. Considering the fraction of used CUs, we observe that
using a uniform distribution has no impact on AHAB.

However, Fig. 7b emphasizes that less VCs are embedded
concurrently. This implies that larger requests are admitted
by AHAB. An explanation for this is that using a uniform
distribution instead of a geometric one results in a higher
mean values of N,S,B. The mean number of VMs per request
increases from 20 to 31.5 and the means for the bandwidth
and VM size rise from 2.25 to 3.75. The higher mean value
leads to an overestimation of the rewards obtained from future
requests, when AHAB calculates the score for a sequence.
As a consequence, it is less likely that the mean score of
the sequences with accepted request is larger than the mean
score of the sequences without the request. This is especially
the case, when the arriving request is small and leads to
more rejected small requests and a slightly higher number of
accepted larger requests.

Fig. 8 underlines this. It shows the difference in acceptance
ratio of the runs with perfect distribution estimation by AHAB
and the runs with the uniform distribution used for request
generation. In particular for B = 1, we observe that there are
several groups of small requests with higher acceptance ratio
when AHAB has access to perfectly fitted distributions (light,
positive values). Furthermore, several dark bins (negative
values) indicate higher acceptance of larger requests, when
uniform distributions are used, e.g., B = 2 and S = 4.

In conclusion, AHAB’s performance seems to be robust
against small deviations in the request generation process. But
the acceptance pattern changes. Larger deviations are unlikely
given today’s estimation methodologies but would require a
more extensive analysis of AHAB’s behavior.

H. How should we design the cluster?

Finally, this section evaluates how the results are affected by
the host capacities. Fig. 9 illustrates the CU utilization of the
different algorithms for varying computation (Ĉ) and network
(B̂) capacities of the hosts. The arrival rate is λ = 12 for all
setups with Ĉ = 8 and λ = 20 for all setups with Ĉ = 16

1 2 4 8
VM Size

3
9

15
21
27
33
39
45
51
57
63

N
um

.V
M

s

B = 1

1 2 4 8
VM Size

B = 2

1 2 4 8
VM Size

B = 4

1 2 4 8
VM Size

B = 8

−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15

D
iff

.A
cc

ep
ta

nc
e

R
at

io

Fig. 8. Difference of acceptance ratio between AHAB(KRAKEN) with
perfectly matched distributions and with mismatched/uniform distributions for
request generation. Values are grouped by VC specification. Positive values
show higher acceptance with matched distributions.

to keep the offered load similar. In both cases, the system
is overloaded and > 15% of the requests are rejected. The
leftmost group of confidence intervals shows the results for
Ĉ = 8, B̂ = 8 which are already evaluated in Sec. V-B. We
recall the significant dominance of AHAB(KRAKEN). When
the capacity of the hosts’ up-link is doubled (Ĉ = 8, B̂ =
16), a first observation is that the utilization increases for
all algorithms. However, OKTOPUS, KRAKEN and TETRIS
close the gap to AHAB. The performance difference is only
≤ 0.05 compared to ≈ 0.1 in the previous case. Moreover,
OKTOPUS, KRAKEN and TETRIS perform now similar as
AHAB(KRAKEN) with B̂ = 8 but at the cost of doubling
the physical link capacity. This observation implies that the
high utilization of the host link limits the embedding of
VCs and leads to fragmented computation resources. With the
increased up-link capacity, the resource ratio of a host is now
Ĉ
B̂

= 0.5 < 1, which is similar to the ratio of the requests that
are preferably picked by KRAKEN and TETRIS (see Sec. V-D).
Furthermore, a single VM can no longer block an entire host’s
link. This increases the probability of multiple allocated VMs
at one host and reduces the fragmentation of computational
resources. A second point is that TETRIS performs worse
than OKTOPUS and KRAKEN. Thus, with sufficient network
resources available, the benefit of mapping communication
intensive with computation intensive requests vanishes.

Doubling Ĉ while keeping B̂ = 8, leads in total to lower
utilization for all algorithms. In particular, the gap between
OKTOPUS and KRAKEN grows as OKTOPUS embeds less
efficiently and wastes more resources on the hosts’ up-links.

The results for the case Ĉ = 16, B̂ = 16 show that
again the bandwidth is the limiting factor and one main
reason why AHAB performs better than the algorithms without
admission control. For this case, the utilization obtained with
TETRIS and AHAB is almost the same and also OKTOPUS
and KRAKEN close the gap to AHAB. Thus, the advantage
of AHAB diminishes when the maximum size of the VMs
decreases in comparison to the available CUs on a host and
the trade-off between performance gain and computational
overhead has to be done more carefully. However, further

386

(8, 8) (8, 16) (16, 8) (16, 16)

Host Capacity (Ĉ, B̂)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
U

se
d

C
U

s
/T

ot
al

C
U

s

Oktopus
Kraken

Tetris
AHAB(Kraken)

Fig. 9. Performance comparison between embedding algorithms using 95%
confidence intervals of CU utilization against host capacities. Note, that the
arrival rate for Ĉ = 8 is 12, while it is 20 for Ĉ = 16.

evaluations are necessary to analyze this more in detail.

VI. CONCLUSIONS

Virtual clusters are one of the most prominent abstractions
that guarantee network performance and isolation in batch-
processing and cloud computing. Their efficient embedding on
the physical topology is crucial for the economical operation
of such systems. This work presented TETRIS, a new VC
embedding algorithm that sacrifices the embedding efficiency
of a single request in order to maximize the reward in the long
run. TETRIS tries to balance the utilization of resources along
different dimensions by mapping together computation and
communication intensive requests. The evaluations show that
this approach beats algorithms such as OKTOPUS or KRAKEN.

As a second step to increase the performance of cluster
embedding over time, this work proposed AHAB, a data-driven
approach to admission control for VC embedding. AHAB is
based on the idea of looking into the future and evaluating
the benefit of the current embedding using knowledge about
the distributions of the requests’ attributes. AHAB shows
better performance than algorithms without or with only very
simple admission control. This improvement comes at the
cost of higher computational complexity which however, can
be controlled by AHAB’s parametrization. Furthermore, the
evaluation shows that the performance difference is impacted
by the size of the substrate network.

In future research, it is interesting to look into the pos-
sibility provided by machine learning to reduce the online
computational effort of AHAB by learning from experience
as in [19], [20]. Additionally, within the prediction sequences
that AHAB runs, no admission control is applied. The use of
more sophisticated policies, as provided by deep learning, can
enhance the decision quality of AHAB. Furthermore, we be-
lieve that cluster planning that integrates algorithm behaviors,
application specifications and demands is another interesting
angle for future investigation.

ACKNOWLEDGMENT

This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation program (grant
agreement No 647158 - FlexNets).

REFERENCES

[1] J. C. Mogul and L. Popa, “What we talk about when we talk about
cloud network performance,” ACM SIGCOMM CCR, vol. 42, no. 5, pp.
44–48, 2012.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in Proc. ACM SIGCOMM 2011, Toronto,
Ontario, Canada, 2011, pp. 242–253.

[3] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang, “SecondNet: A Data Center Network Virtualization
Architecture with Bandwidth Guarantees,” in Proc. CoNEXT 2010,
Philadelphia, USA, 2010, pp. 15:1–15:12.

[4] K. C. Webb, A. Roy, K. Yocum, and A. C. Snoeren, “Blender: Upgrading
tenant-based data center networking,” in 2014 ACM/IEEE ANCS, Los
Angeles, CA, USA, 2014, pp. 65–75.

[5] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in Proc. 3rd Conference on I/O Virtualization, Portland, OR,
USA, 2011, pp. 1–8.

[6] D. Li, J. Zhu, J. Wu, J. Guan, and Y. Zhang, “Guaranteeing Hetero-
geneous Bandwidth Demand in Multitenant Data Center Networks,”
IEEE/ACM Trans. Netw., vol. 23, no. 5, pp. 1648–1660, 2015.

[7] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The Only Constant
is Change: Incorporating Time-varying Network Reservations in Data
Centers,” in Proc. ACM SIGCOMM 2012, vol. 42, Helsinki, Finland,
2012, pp. 199–210.

[8] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” ACM SIGCOMM CCR, vol. 45, no. 3, pp. 12–18,
2015.

[9] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
Elastic Resource Reservations for Cloud Datacenters,” IEEE/ACM Trans.
Netw., vol. PP, no. 99, pp. 1–14, 2017.

[10] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers,” in Proc.
IEEE INFOCOM 2017, Atlanta, GA, USA, 2017, pp. 1–9.

[11] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large Cloud Platforms,”
in Proc. SOSP '17, Shanghai, China, 2017, pp. 153–167.

[12] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Unleashing the potential of
data-driven networking,” in Proc. COMSNET 2017, Bengaluru, India,
2017, pp. 1–8.

[13] L. Yu and H. Shen, “Bandwidth Guarantee under Demand Uncertainty
in Multi-tenant Clouds,” in Proc. IEEE ICDCS 2014, Madrid, Spain,
2014, pp. 258–267.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center.” in Proc. 8th NSDI, vol. 11,
Boston, MA, USA, 2011, pp. 295–308.

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM 2008, vol. 38,
Seattle, WA, USA, 2008, pp. 63–74.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[17] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” vol. 4, no. 1, pp. 1–49,
2012.

[18] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Towards understanding heterogeneous clouds at scale: Google trace
analysis,” Intel Sci. Technol. Cent. Cloud Comput. Tech Rep, vol. 84,
2012.

[19] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer, “Boost
online virtual network embedding: Using neural networks for admission
control,” in Proc. 12th CNSM, Montreal, Canada, 2016, pp. 10–18.

[20] A. Blenk, P. Kalmbach, W. Kellerer, and S. Schmid, “O’zapft is: Tap
Your Network Algorithm’s Big Data!” in Proc. ACM Big-DAMA, Los
Angeles, CA, USA, 2017, pp. 19–24.

387

ISBN 978-3-903176-08-9 c©2018 IFIP

Controlling software router resource sharing
by fair packet dropping

Vamsi Addanki, Leonardo Linguaglossa, James Roberts and Dario Rossi
Telecom ParisTech, Paris, France – first.last@telecom-paristech.fr

Abstract—The paper discusses resource sharing in a software
router where both bandwidth and CPU may be bottlenecks.
We propose a novel fair dropping algorithm to realize per-
flow max-min fair sharing of these resources. The algorithm is
compatible with features like batch I/O and batch processing
that tend to make classical scheduling impractical. We describe
an implementation using Vector Packet Processing, part of
the Linux Foundation FD.io project. Preliminary experimental
results prove the efficiency of the algorithm in controlling
bandwidth and CPU sharing at high speed. Performance in
dynamic traffic is evaluated using analysis and simulation,
demonstrating that the proposed approach is both effective and
scalable.

I. INTRODUCTION

Controlling how bandwidth is shared between concurrent
flows is a classical issue in networking. While there are mul-
tiple objectives in this field and many proposed mechanisms,
we concentrate in this paper on max-min fair sharing between
a dynamically changing population of flows in progress.

The advantages of imposing bandwidth fairness have been
repeatedly discussed since Nagle’s pioneering observations
[22]. See [23, Sec. 7] for a very clear summary. Satisfactory
performance is maintained even when end-systems do not
comply with TCP-like congestion control. More efficient
high speed transport protocols can be introduced without
requiring them to be friendly to legacy TCP. Implicit service
differentiation is realized in that low rate streaming flows
naturally experience negligible packet loss and delay.

In emerging high-speed software routers, flow throughput
may additionally be impeded by resources other than band-
width. We concentrate in this paper on the CPU executing
virtualized network functions for packet forwarding and
processing. CPU capacity is measured in cycle/s and flows
may differ widely in their per-packet requirements depending
on the functions they execute. The considered objective here
is max-min fair flow rates in cycle/s, the product of the
packet/s rate and the number of cycles needed to process
each packet.

In Ghodsi et al. [12], fair bit/s bandwidth sharing and fair
cycle/s CPU sharing are coupled in the notion of dominant
resource fairness (DRF). In this work, we propose rather
to control fair sharing of bandwidth and CPU resources
independently (i.e., without using weights that depend on the
dominant resource). This is both simpler to implement than
DRF and fulfils a multi-resource sharing objective that is in
significant ways preferable [8].

The mechanism envisaged in [12] and [8] for imposing fair
shares is a scheduler like start time fair queuing (STFQ) [13].
However, this approach is hardly compatible with the hard-
ware and software optimizations that are necessary to keep up
with line speeds of 10 Gbps and more on a single CPU core.
These optimizations notably require packets to be batched for
both I/O and processing making implementation of classical
scheduling algorithms problematic if not impossible, as ar-
gued in [28]. We therefore propose a more flexible software
oriented solution based on fair packet dropping.

A number of approximate fair dropping algorithms have
already been proposed for fair bandwidth sharing, such as
FRED [17], CHOKe [24], RED-PD [21] and AFD [23]. In a
preliminary evaluation, we found these algorithms imprecise
and difficult to implement, especially in the present context of
a software router. We have preferred to explore an original
exact fair dropping algorithm. This algorithm is shown to
be scalable since it operates only on the limited number of
flows that would currently be backlogged in a fair queuing
scheduler [18].

Despite strong current interest in network function vir-
tualization, there is still little published work on how one
might control CPU sharing between concurrent flows. A
recent paper by Vasilescu et al. recognizes the need for
fair sharing and advocates a differential congestion marking
scheme to account for flows with different cycle/packet
costs [29]. Shin et al. have previously advocated a similar
congestion marking scheme [26]. Marking is less robust than
fair dropping since, to achieve fairness, it is necessary that
end-systems respond correctly to the congestion notification.
In environments where this is a reasonable assumption, our
proposed algorithm could be trivially modified to perform
accurate fair marking instead of fair dropping.

Our main contributions here are to define an original
algorithm to control CPU sharing using fair dropping and
to evaluate its performance by analysis, simulation and ex-
perimentation. Application of the same approach to control
bandwidth sharing is also novel but does not differ radically
from earlier proposals. Successive presentation of algorithms
and results for bandwidth sharing and CPU sharing usefully
highlights the additional complexity in controlling the latter.

We first discuss salient features of software routers (Sec.II)
before introducing the proposed fair dropping algorithms
and illustrating their behavior by simulation (Sec. III). A
prototype implementation in the FD.io software router is

Fig. 1. Sketch of software router: core A forwards flows from input buffer
a, core X handles all packets destined to output x.

then described and experimentally evaluated (Sec.IV). Fi-
nally, simulations in dynamic traffic confirm the scalability
of the proposed approach and demonstrate its throughput
performance (Sec. V).

II. SOFTWARE ROUTERS

We highlight features of emerging high-speed software
routers that are significant for controlled resource sharing. For
a more complete discussion, see [1], [5], [11], for instance.

A. Throughput bottlenecks

Flow throughput may be momentarily impeded by multiple
bottlenecks in a software router. We consider here just two,
output link bandwidth and CPU forwarding capacity. Note
that CPU forwarding includes basic forwarding operations
but also more complex tasks like encryption or a range of
virtualized network functions.

Controlling bandwidth sharing by scheduling and buffer
management is a classical function in networking with many
proposed solutions. In software routers a notable example
is the DPDK QoS framework that includes a variety of
mechanisms ranging from the token bucket to a hierarchical
weighted fair queuing scheduler [2]. These mechanisms are
necessarily implemented in a CPU core that sees all packets
destined for a given output port. In Fig. 1, the core in question
for output port x is labelled X . The fair dropping algorithm
we propose would similarly be implemented in core X (of
course, the same core could process multiple outputs). It is
an efficient alternative to scheduling.

The flexibility of software routers means packet processing
capacity can be more closely matched to demand than in
a hardware router and CPU can be a bottleneck. In Fig. 1
core A handles flows from input buffer a but, depending on
demand, it might handle more buffers from multiple NICs.
A CPU core becomes a bottleneck when flows emit packets
too fast yielding a compute load greater than capacity and
leading therefore to packet drops. In the absence of any
control, the most aggressive flows will seize more CPU
cycle/s than the others. Unfairness is exacerbated by the
unequal per-packet costs of flows with different protocols
[1] or middlebox function requirements [12]. We demonstrate
that a lightweight fair dropping mechanism ensures flows get
their fair share of CPU cycles. Implementing a scheduler like
DRR [27] or STFQ [13] in this context, on the other hand,
appears problematic to say the least.

B. Flow-awareness

High-speed software routers are intrinsically flow-aware.
Flow-awareness is facilitated by NICs implementing receive
side scaling (RSS). RSS performs a hash of packet header
fields (e.g., the usual 5-tuple) and maps this to distinct
queues, mainly for the purpose of load balancing over mul-
tiple CPU cores. Individual threads of packet processing ap-
plications are bound to a CPU core and, using kernel-bypass
stacks (such as DPDK [3], netmap [25], PF_RING [10] or
pfq [9]), threads consume independent streams of packets,
each from a different RSS queue. In Fig. 1, the splitting
of incoming traffic over multiple input buffers is flow-
aware. Importantly for the implementation of flow-aware
functionality, the hash is recorded in packet metadata and
can be accessed by router software.

A significant advantage of flow-awareness in a software
router is that all packets of the same flow are processed by
the same core bringing efficiencies and enabling limited per-
flow state. FIB lookup efficiency is enhanced, for instance,
since only the first packet of a flow will typically require a
RAM memory access while the result will remain in cache for
subsequent packets. Flow state is necessary for mechanisms
like the present fair dropping proposal.

C. Batch-mode processing

It is significant that high-speed software routers and their
NICs generally deal with packets in batches rather than
individually. This is a necessary optimization for line-speed
I/O and greatly improves the efficiency of packet processing.
In kernel bypass stacks, batching significantly reduces in-
terrupt pressure compared to per-packet operation. The CPU
handling an input buffer therefore typically polls for available
packets. It visits the buffer, grabs all waiting packets up to
a maximum number and processes the entire batch before
returning to grab another batch.

The most recent high-speed software routers also perform
forwarding tasks successively on batches of packets [16], [5],
[1]. Each task in the processing graph is performed on all
packets in the batch before the CPU moves to the next task.
Batched processing optimizes the use of the CPU instruction
cache as code for a task only needs to be fetched once for
the entire batch. In addition, the overhead of managing graph
traversal (counters, pointers, calls,...) is minimized since
most operations need be performed once only for the entire
batch. Processing efficiency improves with the size of the
batch and mechanisms beyond simple polling are generally
employed to ensure the batch is large enough. Batching
makes it impossible to implement classical schedulers that
rely on dequeue operations being triggered by individual
packet departures [28].

III. FAIR DROPPING

We present the fair dropping algorithm and numerically
illustrate how it realizes per-flow fair bandwidth and CPU
sharing under static demand.

389

A. Fair rates by dropping
Suppose packets are handled simultaneously by two ser-

vice systems, one the actual buffer management system
implemented in the router (e.g., FIFO), the other a shadow
system implementing a more sophisticated scheduler (e.g.,
per-flow FQ). Packets that are dropped in one system are
also dropped by the other so that both systems yield exactly
the same rate over the lifetime of a flow.

The shadow system in our proposal is virtual and makes
dropping decisions based on a measure of per-flow virtual
queue occupancy. This measure is depleted between packet
arrivals, at a rate that varies depending on the number
of active flows, and incremented by packet length on the
arrival of every batch. If we correctly track the virtual queue
occupancies at arrival instants, and make drop decisions in
the shadow system aggressively enough to avoid additional
drops due to buffer overflow in the real system, flow rates are
entirely determined by the shadow system. In particular, if the
shadow system implements per-flow head-of-line processor
sharing, the long-term flow rates will be max-min fair.

Fair dropping, as a software solution, is inherently more
flexible than scheduling. In particular, the shadow system can
be readily turned off when not needed, economizing CPU
usage. If the sum of rates of flows in progress is currently
less than the capacity of the resource in question, there is no
need to impose fairness. This may be the usual case (e.g., for
a backbone link, or a CPU that only performs forwarding)
with fair dropping ready to be turned on as necessary (e.g.,
when a high rate server-to-server flow starts up, or a new
IPSec flow suddenly saturates the CPU).

B. The algorithms
Algorithm 1 is used for fairly sharing either bandwidth or

CPU capacity. It uses a table called ActiveList, containing the
current virtual queue size (flow.vq) for all backlogged flows
(i.e., flow.vq > 0) indexed by identifiers flow (typically a
hash of header fields). Following the arrival of a batch of
packets, ActiveList is updated using lines 3 to 15. Virtual
queue occupancies flow.vq are reduced by their max-min
fair share of service capacity accumulated since the last call.
If flow.vq goes to zero, the flow is removed from ActiveList.

Lines 16 to 28 deal with the newly arrived packet or
packets. Packets are dropped if the virtual queue of their flow
exceeds a threshold θ. New flows are added to ActiveList and
virtual queues are incremented by the size of the new packet.
For bandwidth sharing packet.length is measured in bytes
while for CPU sharing it is an estimate of the number of
cycles needed to process the packet.

For bandwidth sharing Algorithm 1 is sufficient and must
be performed in a CPU receiving all packets destined to the
considered output link. For CPU sharing, it is necessary to
perform additional instructions to account for the fact that
packet.length, the number of cycles needed to process the
packet is not known a priori. Moreover, the number of cycles
used to process a batch includes an overhead accounting for
the cycles expended on dropped packets.

Algorithm 1 Virtual queue updates and dropping performed
on arrival of a batch of packets.

1: Given: ∆t - time since last update, C - service rate,
B - ActiveList of backlogged flows, P - batch of new
packets, θ - a threshold.

2: input P
3: credit = C∆t
4: while credit > 0 and |B| > 0 do
5: share = credit/ |B|
6: credit = 0
7: for each flow ∈ B do
8: if share < flow.vq then
9: flow.vq −= share

10: else
11: credit += share− flow.vq
12: B = B \ flow
13: end if
14: end for
15: end while
16: for each packet ∈ P do
17: if flow(packet) ∈ B then
18: if flow.vq > θ then
19: drop packet
20: P = P \ packet
21: else
22: flow.vq += packet.length
23: end if
24: else
25: B = B ∪ flow
26: flow.vq = packet.length
27: end if
28: end for

Algorithm 2 Cost calculation for CPU sharing for flows of
different types.

1: Given: P - batch of packets, ∆c - cycles consumed to
process P , wk - relative weight of type k

2: sumw =
∑

packet∈P wtype(packet)

3: for each packet ∈ P do
4: packet.cost = (wtype(packet)/sumw)∆c
5: flow.vq = flow.vq + packet.cost− packet.length
6: end for

Algorithm 2 apportions the measured overall batch pro-
cessing cost ∆c in proportion to weights giving the relative
number of cycles needed to process packets of given type
(e.g., a packet needing to consult an ACL may need more
than ten times as many cycles as a packet that is simply
forwarded). This cost calculation can only be performed after
processing is complete while Algorithm 1 uses an assumed
packet.length to make drop decisions. The latter might be
an average cost estimate derived by prior measurement or a
real time updated average based on packet.cost estimated
by Algorithm 2 for packets of the given type for previous

390

TABLE I
BANDWIDTH SHARING

Utilization breakdown Latency
FQ TD 0.59 / 0.35 / 0.06 47.2 / 3.54 / 2.03
FIFO TD 0.59 / 0.35 / 0.06 29.2 / 29.1 / 28.9
FQ FD 0.45 / 0.45 / 0.10 22.1 / 19.6 / 2.70
FIFO FD 0.45 / 0.45 / 0.10 18.9 / 18.9 / 19.4

batches. The virtual queue lengths must be corrected (line
5) to ensure they accurately track the actual numbers of
expended cycles. Algorithm 2 can be performed at the start
of a new processing cycle, before Algorithm 1, using data
for the packets P processed in the previous cycle. ∆c is the
total number of cycles consumed between successive polling
events.

Algorithm 1 realizes per-flow max-min fairness. It could
easily be extended to realize more general objectives like
hierarchical weighted fairness [7], for instance. Parameters
identifying flow classes and weights would be stored in the
flow table along with current virtual queue lengths. These
would be used to derive flow specific shares in place of the
common value computed in line 5.

C. Scalability

It is commonly believed that per-flow fair scheduling is not
scalable since compute time grows with the number of flows
and this number can attain many thousands on high speed
links. This reasoning would apply similarly to Algorithms
1 and 2. In fact, the algorithms are scalable since, though
the number of flows in progress may be very large, the set
of active flows B includes only those that currently have a
backlog. Under reasonable assumptions about the stochastic
process of flow arrivals this number is small with high
probability even for very high speed links, as demonstrated
analytically and by trace driven simulation in [18].

The underlying analytical model is a processor sharing
(PS) system with Poisson flow arrivals that has simple and
robust performance characteristics [6]. Let ρ denote the PS
server load, ρ = flow arrival rate × flow size / server capacity,
with ρ < 1 for stability. The number of active flows has
a geometric distribution (i.e., P[active flows ≥ x] = ρx) and
the expected completion time of a flow of size s is s/(1−ρ).
As a measure of flow throughput we use the reciprocal of the
normalized flow completion time, (1−ρ). These results apply
for a wide range of stochastic demand models, as discussed
in [6]. In particular, they do not depend on any assumption
about the distribution of flow size.

Scalability in the present context is demonstrated by sim-
ulation in Sec. V while in this and the following section we
illustrate algorithm performance for static sets of concurrent
flows.

D. Bandwidth sharing

For bandwidth sharing, fair dropping can be implemented
before buffering packets at the output port. Bandwidth shar-

Fig. 2. Dropper for CPU sharing is placed after the buffer but uses times
packets arrive at the buffer.

ing is then as fair as that realized with fair queuing schedulers
like DRR [27] or STFQ [13].

Table I illustrates through simulation results for a toy
example, that FQ scheduling is not necessary for fairness
while FD is essential. Three flows emit unit size packets as
a Poisson process at respective rates 1, 0.6 and 0.1 and share
a unit rate link using FQ or FIFO. Excess packets suffer
tail drop (TD) in the buffer preceding the link, or fair drop
(FD) using Algorithm 1. ActiveList updates are performed
here after every packet arrival. Buffer capacity is 30 packets
and, for fair dropping, we set threshold θ to 10. Latency is
measured in packet transmission times.

The results confirm that FD is sufficient for fair throughput
while significantly increasing the latency of the low rate
third flow. The negative impact of higher latency, for VoIP
applications say, can be removed by replacing the link FIFO
by a priority scheduler where packets belonging to flows
absent from ActiveList on their arrival are served first [19],
[14]. Latency could also be reduced by operating the drop
algorithm with a rate C somewhat less than the link rate (e.g.,
as in [4]).

E. CPU sharing

To share CPU capacity, dropping can only take place after
the input buffer. To emulate a fair scheduler, the shadow
system must however make drop decisions based on packet
arrival times at the buffer as recorded in a time stamp. These
‘fair drops’, based on the size of the per-flow virtual queues,
are in addition to any ‘tail drops’ due to buffer saturation. The
relative proportions of tail drops and fair drops depends on
the choice of threshold θ. It is also necessary here to account
for the fact that the act of dropping a packet consumes CPU
cycles that are otherwise to be shared fairly.

a) An adaptive threshold: To illustrate how fair drop-
ping realizes fair CPU sharing, consider the toy example of
Fig. 2. N flows (N = 2 in the figure) bring processing
requirements λi (packet/s × cycle/packet) and are served by
a unit capacity CPU. A fraction p of each flow is lost due to
buffer overflow. The remaining (1−p) fractions of each flow
share the CPU in max-min fashion, thanks to fair dropping,
and suffer additional drops at rates di.

This queuing system is particularly complicated and we
have no analytic results to determine the impact on p and the
di of particular choices of buffer size b and drop threshold θ.
Note, however, that while b is system dependent and fixed,
θ is simply a program parameter and can be set and reset as

391

 0

 0.2

 0.4

 0.6

 0 1 2 3 4

n
o
rm

al
iz

ed
 c

y
cl

e/
s

load

cost 5
cost 3
cost 1

Fig. 3. CPU flow throughput as a function of load for 3 flows with equal
packet/s rates and respective CPU costs 5, 3 and 1 and drop overhead 0.5;
dotted lines show throughput without fair dropping.

necessary. It is possible, in particular, to adapt θ from one
batch to the next based on observations of a performance
objective.

A first performance objective is to make the probability
of buffer saturation negligibly small. This is necessary to
avoid undue loss for flows emitting at a rate less than the fair
rate or flows consisting of a single packet like DNS queries.
A second objective is to maintain processing efficiency by
making batches as large as possible (cf. Sec. II-C). We
therefore adapt θ as follows: if the polled vector is maximal
(suggesting impending saturation), multiply θ by a factor
α < 1 to induce more fair drops; if the polled vector is
not maximal, multiply θ by β > 1. The choice of parameters
α and β is not highly critical. In our simulations, setting
α = .5 and β = 1.2 gave satisfactory results.

b) Dropping overhead: Any dropped packet consumes
cycles and this overhead reduces flow throughput. The over-
head includes the cycles used to run Algorithms 1 and 2 but
is mainly due to the cost of bringing packets into the CPU,
as is necessary to determine their flow identity.

Fig. 3 presents per-flow cycle/s throughput for a toy system
with 3 flows, each emitting packets as a Poisson process at
the same rate, as a function of load. The flows have different
relative per-packet processing requirements: flow 1 packets
cost 5 units, flow 2 packets 3 and flow 3 packets 1 (the value
of the cost unit in compute cycles is not significant, only their
ratio matters). Dropped packets consume 0.5 units of CPU.
Offered load on the x axis is the sum of the products (packet
rate × cost) divided by the CPU capacity (i.e.,

∑
λi).

The figure plots normalized cycle/s throughputs (the sum
of throughputs is 1 at load 1) against load. Dotted lines show
throughputs realized in the absence of fair dropping. These
results confirm that fair dropping realizes max-min fairness,
e.g., the cost 1 flow suffers no loss until its input rate exceeds
the fair rate when all flows have the same throughput. On the
other hand, the sum of throughputs decreases with increasing
load due to the cost of dropping. Throughputs go to zero
at load 6 when the CPU is entirely busy dropping packets.
Throughput can be bounded away from zero by setting a

minimum threshold at the cost, however, of significant loss
for low rate and single-packet flows.

IV. IMPLEMENTATION

We have implemented the fair dropping algorithms on a
real software router. In the following we describe the testbed,
outline the software architecture and present experimental
results.

A. Experimental setup

Algorithms 1 and 2 run in the Vector Packet Processing
(VPP) software router that is part of the Linux Foundation’s
FD.io project [1]. The VPP router is deployed in a server
platform based on two Intel Xeon E52690 processors, each
with 24 cores running at 2.60 GHz, equipped with two
10 Gbps Intel X520 NICs directly connected with SFP+
interfaces. The two processors and two line cards are isolated
to logically create two independent nodes. This is realized
using non-uniform memory access, to make portions of RAM
accessible to only one line card, and CPU core binding
where particular cores are mapped to a specific process and
interrupts are deactivated.

Of the two nodes, one acts as traffic generator and sink
(TGS) while the other is the system under test (SUT), the
software router equipped with our FD algorithms. The TGS
continuously sends a stream of packets to the SUT which
processes them and sends them back to the TGS. We can
measure the throughput of the SUT as the return input rate to
the TGS. To validate the FD algorithm and its scalability, the
TGS sends traffic consisting of 64-byte packets at 10 Gbps
(corresponding to an input rate of 14.88 Mpps). IP addresses
and port numbers are set to emulate a number of distinct
constant rate flows. To stress the system, the FD algorithms
are executed on a single core handling all traffic.

B. Software architecture

Our implementation1 works on bandwidth and CPU shar-
ing. The fair dropper is currently implemented within an
FD.io node [1], but could alternatively be implemented as
a lower-level primitive of the DPDK QoS framework [2].
Porting Algorithm 1 to DPDK is straightforward and would
be sufficient for bandwidth sharing. However, per-packet cost
estimates derived in Algorithm 2, as necessary for CPU
sharing, must be made available to DPDK and this requires
further work. Thus, while the experimental results presented
below are specific to the FD.io implementation, they may be
considered as a more general proof-of-concept for a software
line-rate implementation of fair dropping.

Vector Packet Processing (VPP) [20], is a kernel-bypass
application that reads and processes packets in batches. VPP
consists of a set of software functions that logically abstract
network operations of different layers of the protocol stack
(examples of functions are l2_input or ip4_lookup).
VPP links such functions to form a processing graph and

1https://github.com/TeamRossi/vpp-bench

392

each function (represented by a node in the graph) is ap-
plied to packets as necessary in order to implement packet
processing and forwarding. Batched reads are performed
by DPDK drivers accessing NIC hardware and significantly
reduce interrupt pressure (I/O batching). Processing is also
performed in batches of packets – called vectors – optimizing
usage of the underlying CPU architecture. In other words,
during graph traversal, each node function is applied to a
full vector of packets (compute batching) before continuing
to the next node. For bandwidth sharing, Algorithm 1 runs in
the final output nodes of the VPP processing graph while, for
CPU sharing, both algorithms are implemented in the initial
node called dpdk-input.

In our implementation, FD operations are performed once
per batch thus matching the typical work-flow of a VPP
router. This reduces the induced overhead without unduly
impacting realized fairness (cf. Sec. III). To reduce computa-
tional complexity, we identify the flow using the 5-tuple hash
computed by the NIC for RSS queues. This is accessible via
the hash.rss variable within the mbuf DPDK structure.

Flows are stored in a flow table. The data structure used
is a hash-table with 4K rows each receiving up to 4 24-
byte flow records. The row is addressed by 12 bits of the
RSS hash and the flow record uses 8 more bits of the hash
to distinguish up to 4 flows mapped to the same row. The
row size is aligned to fit two cache lines in our platform.
In view of the scalability results discussed in Sec. III-C, the
flow table size is largely sufficient to ensure the probability
of misidentifying a flow is negligible.

We additionally maintain a separate data structure identi-
fying the active flows, that is, the flows that currently have
a positive virtual queue. This structure has two roles: it
identifies the small set of flows to which the FD algorithm
must be applied, and it enables data for this set to be
maintained in CPU L1 or L2 cache. Flow state in the present
implementation is confined to the flow identifier and the
current virtual queue length. However, space remains for
additional state needed by more complex objectives, like
hierarchical weighted fairness for instance.

Implementation of Algorithm 1 for CPU sharing requires
access to packet arrival times using a timestamp. NIC
time stamping is currently available through the DPDK
rxtx_callback function. When the callback is executed,
the Time Stamp Counter (TSC) is accessed2 and the TSC
register value is written to the DPDK mbuf user data field
udata64.

C. Bandwidth sharing

To illustrate FD induced bandwidth sharing we generate a
workload consisting of 20 flows with progressively decreas-
ing arrival rates: the flow with rank 1 has an arrival rate 10
times higher than that of flow 20. We produce a bottleneck
by rate limiting the output port to a fraction α of the input
rate.

2TSC is a 64-bit register whose purpose is to count the CPU clock cycles

0

4
.
10

5

8
.
10

5

1 5 10 15 20

F
lo

w
 r

at
e

[p
p

s]

Flow rank

FD (α=0.1)
TD (α=0.1)
FD (α=0.4)
TD (α=0.4)
FD (α=0.6)
TD (α=0.6)

Fig. 4. Performance of bandwidth sharing: experiments for different output
rates α×10 Gbps (10Gbps line card, 1 CPU core, IPv4 forwarding, skewed
packet rates).

Fig. 4 presents experimental results for 3 values of α. Per-
flow output rates are plotted with either FD or TD (i.e.,
without differential dropping). With α = 0.1, all flows
are able to attain the fair rate under FD while rates are
proportional to input rates under TD. With α = 0.4 the
available bandwidth increases and FD affects only those flows
(of rank 1 to 10) that exceed the fair rate. In both cases, the
overall drop rate under TD and FD is exactly the same, only
which packets are dropped differs.

With α = 0.6 the output link is no longer a bottleneck
and flow rates are limited by the CPU processing capacity3.
This implies flow rates are reduced proportionally due to
input buffer saturation. The difference between the top two
black lines in the figure is due to the overhead of our current
non-optimized implementation of the FD algorithm (which
doesn’t actually drop any packets in this case).

D. CPU sharing

In our experiments on CPU sharing, the TGS creates 20
equal packet rate flows belonging to one of two different
types: packets of type-L flows require “light” processing,
while packets of type-H flows have a “heavy” cost, con-
suming r times more cycles than type-L. Per-packet cost
depends on the amount of processing in the VPP graph
for both I/O and computation and can be readily measured
using VPP primitives [20]. In the experiments, 18 type-
L flows send IPv4 packets requiring standard processing:
longest prefix matching and next hop forwarding. Two high-
cost flows additionally pass via a busy loop whose length
can be precisely controlled to modulate the ratio r of H to
L type costs.

Experimental results are represented as Sankey diagrams
in Figure 5 where TD and FD are compared for r = 10 with
an input rate of 14.88 Mpps. With tail drop, 11.02 Mpps are
dropped at the NIC interface, and the rest is processed by
the SUT. Tail drop makes no explicit decision as to which

3This corresponds to about 8.5 Mpps IPv4 forwarding throughput

393

(a) TailDrop

(b) FairDrop

Fig. 5. Sankey diagrams for Tail Drop (a) and Fair Drop (b) experiments

packets should be dropped and, since packet rates are equal
among flows, drops affect equally the H and L classes (74%).
It follows that all flows have the same bit rate while each of
the H flows individually consumes 25% of the CPU cycles.

FD radically changes the operational point. The NIC drops
8.19 Mpps (55%) increasing the traffic processed by the SUT
to 6.69 Mpps. The FD decision consumes 0.17 G cycle/sec
(the overhead of the FD algorithm) and affects 0.74 Mpps
of packets. As expected, 98% of the dropped packets are of
type-H. This differentiation realizes fairness in terms of CPU
cycles, since each of the 20 flows now receives exactly the
5% fair share of CPU. Notice also that, in this particular
scenario, the overall rate of packets forwarded by the SUT
increases: throughput is 5.95 Mpps with FD, compared to
3.86 Mpps with TD).

The drop threshold θ is fixed in these experiments. The
packet arrival rate is such that it is not possible to eliminate
buffer saturation. With respect to the overhead due to drop-
ping packets, we measured the following average costs. To
successfully send a type-L packet requires 350 cycles while
a dropped packet costs 208 cycles made up of 120 for I/O,
50 for freeing packet memory and 38 for executing the drop
algorithms.

To further illustrate the difference in fairness between FD
and TD we repeat the above experiment with the value
of r ranging from 1 to 14. For each value we compute
the Jain fairness index between types L and H for both

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14

J=
(r+1)

2

2(r
2
+1)

J
F

ai
rn

es
s

in
d

ex

Fair Drop (FD)

CPU Cycles
Throughput

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14

J=
(r+1)

2

2(r
2
+1)

Ratio of max/min flow costs (r)

Tail Drop (TD)

CPU Cycles
Throughput

Fig. 6. Throughput and CPU fairness indices for FD (left) and TD (right)
as a function of the ratio r of type-H to type-L costs.

average flow cycle/s and packet/s throughputs [15]. With 2
types and respective metrics xL and xH , the Jain index is
(xL + xH)2/(2(x2L + x2H)). Results for FD and TD, with
x representing cycle/s and packet/s throughputs, are shown
in Figure 6. The figure confirms that FD fairly shares CPU
cycles while TD is fair in terms of packets/s (only because the
input rates are equal). In contrast, FD packet/s throughputs
and TD cycle/s throughputs are unfair in the ratio r with
index (r + 1)2/2(r2 + 1).

V. PERFORMANCE IN DYNAMIC TRAFFIC

We evaluate throughput performance in dynamic traffic and
demonstrate scalability by simulation.

A. Demand model

Traffic demand is modeled as a Poisson process of flows
of finite size of different types. Packets have constant size in
bytes. Per-packet processing cost depends on the flow type
and is assumed constant for all packets of the same flow.

We distinguish full-rate flows and single-packet flows.
Full-rate flows last until 30000 unit size packets are suc-
cessfully transmitted. As noted in Sec. III-C, we expect per-
formance to be insensitive to the size distribution. Constant
size is chosen for faster convergence of the simulations. The
stream of single-packet flows is intended to include traffic
from flows emitting packets at a rate less than the typical
fair rate, possibly because of other bottlenecks on their path.
The packets of such flows appear to buffer management as a
succession of distinct single-packet flows.

Rather than simulating a transport protocol like TCP, we
suppose full-rate flows emit packets as a Poisson process.
They continue emitting packets until the number of success-
fully transmitted packets equals the flow size. The Poisson
rate may be large and constant when flows are assumed
unresponsive to congestion. To represent responsive flows
we assume the Poisson rate is set to a value somewhat
larger (10% here) than the rate that would be realized by
a hypothetical ideal transport protocol. This simplification
facilitates the evaluation of salient features of the considered
algorithms, as presented below.

394

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 10

 20

 30

 40

 50

 60
fl

o
w

 t
h
ro

u
g

h
p

u
t

(b
/s

)

A
ct

iv
eL

is
t

9
9
 p

er
ce

n
ti

le

load

Fig. 7. Performance of bandwidth sharing: normailized throughput and
ActiveList 99thpercentile with per packet updates; lines plot analytical
results (1− ρ) and d−2/ log10 ρe.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 40

 80

 120

 160

 200

fl
o
w

 t
h

ro
u
g

h
p

u
t

(c
/s

)

A
ct

iv
eL

is
t

9
9

 p
er

ce
n

ti
le

load

Fig. 8. Performance of CPU sharing: normalized cycle/s throughput with
fair dropping (black) and tail dropping (red) for 2 flow classes, class 2
(×) requires 10 times more cycles/packet than class 1(+), relative cost of
dropped packets 0.5; ActiveList 99thpercentile for fair dropping (blue �).

B. Bandwidth bottleneck

Let λf be the arrival rate of full-rate flows and λs the
arrival rate of single-packet flows. The load of the unit
capacity link is then ρ = 30000λf + λs. Given ρ, λf and
λs are set so that full-rate flows contribute 80% of link load
while single-packet flows make up the remaining 20%. Full-
rate flows are unresponsive and emit packets at a constant
rate such that total instantaneous demand largely exceeds link
capacity.

Fig. 7 plots throughput (left y-axis) and the 99thpercentile
of the distribution of the number of flows in ActiveList (right
y-axis) as functions of load ρ (flow arrival rate × mean
flow size / link capacity). The measure of throughput is the
ratio of average flow size to average flow duration (equal to
1− ρ for processor sharing, as discussed in Sec. III-C). The
99th percentile of the PS model is d−2/ log10 ρe. The close
agreement between analysis and simulation confirms that fair
dropping is an effective control for bandwidth sharing even
when flows are unresponsive.

C. CPU bottleneck

To evaluate the effectiveness of fair dropping in sharing
a CPU bottleneck we simulate a mix of single-packet flows
with unit per-packet cost and two types of full-rate flows

with respective per-packet costs 1 and 10. The relative cost
of dropping a packet of any type is 0.5. Single-packet flows
contribute 20% of load while the full-rate flow types each
contribute 40%. The buffer size is 512 packets and maximum
batch size is 256. Fair dropping threshold θ is adaptive
between 20 and 50000 cost units using multipliers α = .5
and β = 1.2 (cf. Sec. III-E).

If the cost of dropping were null, our simulation results
(not shown here) confirm that, as for bandwidth sharing, fair
dropping yields a common cycle/s flow throughput equal to
1− ρ, even when all flows are unresponsive. Unfortunately,
this is not the case when the drop overhead is not negligible.
In dynamic traffic, at some point the number of active flows
will attain a level at which the CPU is saturated even when
all packets are dropped (cf. Sec. III-E). Flow throughput then
goes to zero and cannot recover since flows in progress do
not complete while new flows continue to arrive. The impact
can be mitigated by imposing a minimum threshold θ but at
the cost of significant tail drops affecting single-packet flows.

It is important to note that this instability would occur with
any active queue management or scheduling algorithm that
selectively drops packets within the CPU. To effectively con-
trol unresponsive flows it would be necessary to selectively
discard packets before they are polled by the CPU. We intend
in future work to investigate the possibility of piloting such a
mechanism using the fair dropping algorithm to identify the
unresponsive flows in question.

Fair dropping remains an effective means for controlling
CPU sharing between responsive flows with different per-
packet costs. When fair dropping is employed, we know
concurrent flows are allocated the same cycle/s throughput.
We therefore assume responsive flows emit packets at a rate
such that their cycle/s rate (packet/s × cost/packet) is 10%
greater than the current fair rate. When fair dropping is
absent, all packet loss is through tail drop and concurrent
flows experience the same drop rate. As flow packet rate
is determined by this drop rate (e.g., by TCP congestion
control), we therefore derive a common packet/s rate for
flows such that the sum of cycle/s rates is 10% greater than
capacity. The 10% excess is meant to approximately capture
the impact of a transport protocol like TCP that progressively
increases flow rate until drops occur.

Fig. 8 plots throughput on the left y-axis, for tail dropping
(red) and fair dropping (black), and the ActiveList 99th

percentile on the right y-axis for fair dropping as functions
of load (ρ = flow arrival rate × mean flow cycles cost / CPU
capacity). Throughput behavior is broadly as expected: fair
dropping yields almost ideal PS throughput for both flow
types while tail dropping severely degrades the performance
of the flows with lower CPU cycle cost, especially at high
loads.

To explain observed unfairness of FD at low load, consider
the throughput of an isolated full-rate flow emitting packets
at 10% above the nominal CPU rate. The drop rate d1 for
cost-1 flows would be such that 1.1(.5d1 + (1 − d1)) = 1,

395

i.e., the drop rate is such that packet arrival rate × average
cost is equal to CPU capacity. This yields d1 = 2/11 and a
corresponding flow throughput of 0.9. A similar calculation
for cost-10 flows yields a throughput of 0.99. The loss rate
for single-packet flows is negligible with fair dropping but
rises to around 10% with tail dropping.

Results for the ActiveList 99thpercentile are quite different
to those of Fig. 7. This is due to batch processing and the
impact of single-packet flows. All single-packet flows in a
batch bring a new ActiveList flow (that will be removed on
the next batch arrival). The number of such flows depends on
the batch size and is added to the small number of active full-
rate flows that is accurately predicted by the PS model. Fair
dropping remains scalable in that the number of active flows
remains very small compared to the possibly large number
of flows in progress.

VI. CONCLUSION

Applying proposed fair dropping algorithms in a software
router has been shown to realize per-flow fair sharing of both
bandwidth and CPU. The algorithms are scalable because
the number of flows to be managed is small (less than 200
with high probability at normal loads) whatever the link
speed or CPU capacity. It is compatible with batch I/O and
batch processing, optimizations which significantly impede
the implementation of classical schedulers.

The algorithms have been successfully implemented in
the VPP software router that is part of the FD.io Linux
Foundation project. Preliminary experimental results show
them to be effective and relatively lightweight in terms of
induced overhead.

There is, however, a significant overhead involved in
selectively dropping packets within the CPU, due mainly to
packet I/O, whatever the algorithm employed. This overhead
can compromise performance when flows are non-responsive
to congestion. We are currently investigating extensions to
our approach where non-responsive flows can be effectively
dealt with before their packets are polled by the CPU.

ACKNOWLEDGMENTS

This work has been carried out at LINCS (http://www.
lincs.fr) and benefited from support of NewNet@Paris,
Cisco’s Chair “NETWORKS FOR THE FUTURE” at Telecom
ParisTech (http://newnet.telecom-paristech.fr).

REFERENCES

[1] https://fd.io/wp-content/uploads/sites/34/2017/07/
FDioVPPwhitepaperJuly2017.pdf.

[2] http://dpdk.org/doc/guides/prog_guide/qos_framework.html.
[3] Data plane development kit. http://dpdk.org.
[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and

M. Yasuda. Less is more: Trading a little bandwidth for ultra-low
latency in the data center. In USENIX NSDI, 2012.

[5] T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet process-
ing. In ACM/IEEE ANCS, 2015.

[6] S. Benfredj, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts.
Statistical bandwidth sharing: A study of congestion at flow level. In
ACM SIGCOMM, 2001.

[7] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing
algorithms. In ACM SIGCOMM, 1996.

[8] T. Bonald and J. Roberts. Multi-resource fairness: Objectives, algo-
rithms and performance. In ACM SIGMETRICS, 2015.

[9] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi. On multi–
gigabit packet capturing with multi–core commodity hardware. In
Passive and Active Measurement, pages 64–73. Springer, 2012.

[10] F. Fusco and L. Deri. High Speed Network Traffic Analysis with
Commodity Multi-core Systems. In ACM IMC, 2010.

[11] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle.
Comparison of frameworks for high-performance packet io. In
ACM/IEEE ANCS, 2015.

[12] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource fair
queueing for packet processing. In ACM SIGCOMM, 2012.

[13] P. Goyal, H. Vin, and H. Cheng. Start-time fair queueing: a schedul-
ing algorithm for integrated services packet switching networks.
IEEE/ACM Trans. on Netw., 5(5):690–704, Oct 1997.

[14] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Du-
mazet. The Flow Queue CoDel Packet Scheduler and Active Queue
Management Algorithm. RFC 8290, Jan. 2018.

[15] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
DEC Research Report TR-301, 1984.

[16] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon. NBA (Network
Balancing Act): A High-performance Packet Processing Framework for
Heterogeneous Processors. In ACM European Conference on Computer
Systems (EuroSys), 2015.

[17] W.-J. Kim and B. G. Lee. Fred-fair random early detection algorithm
for tcp over atm networks. Electronics Letters, 34(2):152–154, Jan
1998.

[18] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts. Evaluating
the number of active flows in a scheduler realizing fair statistical
bandwidth sharing. In ACM SIGMETRICS, 2005.

[19] A. Kortebi, S. Oueslati, and J. Roberts. Implicit service differentiation
using deficit round robin. In Proceedings of ITC19, 2005.

[20] L. Linguaglossa, D. Rossi, D. Barach, D. Marjon, and P. Pfiester.
High-speed software data plane via vectorized packet processing. Tech
report, 2017.

[21] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth
flows at the congested router. In Proceedings Ninth International
Conference on Network Protocols. ICNP 2001, pages 192–201, Nov
2001.

[22] J. Nagle. On packet switches with infinite storage. RFC 970, 1985.
[23] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness

through differential dropping. ACM SIGCOMM Comput. Commun.
Rev., 33(2):23–39, Apr. 2003.

[24] R. Pan, B. Prabhakar, and K. Psounis. Choke - a stateless active queue
management scheme for approximating fair bandwidth allocation. In
INFOCOM, 2000.

[25] L. Rizzo. netmap: A novel framework for fast packet i/o. In USENIX
Annual Technical Conference, pages 101–112, 2012.

[26] M. Shin, S. Chong, and I. Rhee. Dual-resource tcp/aqm for processing-
constrained networks. IEEE/ACM Trans. Netw., 16(2):435–449, Apr.
2008.

[27] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit
round robin. ACM SIGCOMM Comput. Commun. Rev., 25(4):231–242,
Oct. 1995.

[28] K. To, D. Firestone, G. Varghese, and J. Padhye. Measurement based
fair queuing for allocating bandwidth to virtual machines. In ACM
HotMiddlebox, 2016.

[29] L. Vasilescu, V. Olteanu, and C. Raiciu. Sharing cpus via endpoint
congestion control. In Proceedings of the Workshop on Kernel-Bypass
Networks, KBNets ’17, pages 31–36, New York, NY, USA, 2017.
ACM.

396

A New Dependence Model for Heterogeneous
Markov Modulated Poisson Processes

Fang Dong, Kui Wu, Venkatesh Srinivasan
Department of Computer Science, University of Victoria, B.C., Canada

Abstract—Markov Modulated Poisson Process (MMPP) has
been extensively studied in random process theory and widely
applied in various applications involving Poisson arrivals whose
rate varies following a Markov process. The most general form of
aggregated MMPP is the superposition of heterogeneous MMPPs
(HeMMPP), in which each constituent MMPP has different
parameters. Due to the generality of HeMMPP, studying its
temporal dependence will benefit network traffic monitoring
and traffic prediction. Modeling the temporal dependence of
HeMMPP, however, is extremely hard because the total number
of states in a HeMMPP increases exponentially with the number
of states in constituent MMPPs. This paper tackles the above
challenge with copula analysis. It not only presents a novel
framework to capture the functional dependence structure of
HeMMPP, but also provides a recursive algorithm to effectively
calculate HeMMPP copula values. The theoretical analysis and
the algorithms together offer a complete solution for modeling the
temporal dependence of HeMMPP. Another contribution of the
paper is the application of HeMMPP copula for traffic prediction.

I. INTRODUCTION

Markov modulated Poisson process (MMPP) is a doubly
stochastic Poisson process whose arrival rate is modulated
by an irreducible continuous time Markov chain (CTMC)
independent with the arrival process [6]. MMPP was first
proposed by Yechiali and Naor to model non-homogeneous
Poisson arrival process in queueing systems [17]. Specifically,
the arrival process is a Poisson process with arrival rate �j

whenever the CTMC is in state j. MMPP can effectively
capture burst arrivals and sudden changes in arrivals since it
can integrate significantly different rates into one model. This
advantage makes MMPP a widely applied model for the arrival
processes of network systems [13]. When multiple indepen-
dent MMPP flows, each having a different set of parameters,
arrive in a system, the total arrivals become the superposition
of independent heterogeneous MMPPs (HeMMPP).

From the theoretical aspect, HeMMPP is the most general
form of MMPP aggregate, because single MMPP and the su-
perposition of independent homogeneous MMPPs (HoMMPP)
are both special cases of HeMMPP. Therefore, the study
of HeMMPP can benefit both real-world applications and
theoretical performance analysis. From the practical aspect,
HeMMPP traffic exists in many real-world applications. For
instance, HeMMPP has been applied to generate self-similar
traffic to Internet backbone [19]. HeMMPP can be used to
capture multiple multimedia sources to a multimedia server

ISBN 978-3-903176-08-9 c�2018 IFIP

because each multimedia traffic can be reasonably modeled
with MMPP [16].

The temporal dependence of HeMMPP can help develop
fitting methods that model real network traffic trace with
HeMMPP [1] or predict the trend of arrivals [19]. Despite its
importance, however, the dependence structure of HeMMPP
is largely unknown. It can be shown that HeMMPP is still an
MMPP [6], but analysing HeMMPP as one MMPP becomes
intractable due to the exponential increase in the number of
states [8]. For instance, modeling a HeMMPP consisting of
two 20-state MMPPs is computationally difficult [8]. In other
words, simply treating the superposition of MMPPs as one
MMPP with a larger number of states will not work well. As
such, we need to develop a different method to analyse the
temporal dependence of HeMMPP.

Fig. 1: Motivating example: a content delivery system relies on
software-defined network and a pool of virtual network functions
(e.g., VRouters) to adjust network bandwidth aligning with demand
of the multimedia flows (denoted by red curves)

Astute readers may observe an alternative method to avoid
the need of analysing HeMMPP: we may simply track and
study each constituent MMPP, and in the context of traf-
fic prediction, we predict the future arrivals of each con-
stituent MMPP and aggregate them as the prediction of
future HeMMPP arrivals. We call this alternative the predict-
individual method. This method, however, poses extra burden
in practice. In an example shown in Fig. 1, a content delivery
system relies on software-defined networks and a pool of
virtual network functions (e.g., VRouters) to adjust network

bandwidth aligning with the multimedia flows, each labelled
by a red curve and modeled as an MMPP [16]. Using the
predict-individual method, the controller needs to keep record
of arrivals of each MMPP and makes prediction on each
MMPP. In contrast, with a HeMMPP model, the controller
tracks arrivals of each MMPP only during the HeMMPP
modeling process. Once the HeMMPP model is built, the
controller does not need to track individual MMPP flows and
instead uses the aggregated arrivals to predict future HeMMPP
arrivals. Clearly, the HeMMPP model greatly simplifies the
tasks of the controller. In addition, using HeMMPP model
for prediction leads to more accurate results than using the
predict-individual method, as shown in our later evaluation.

In the state-of-art temporal dependence model of HeMMPP,
the covariance between number of arrivals in different time
slots (called arrival counts) in constituent MMPP is derived
asymptotically in [1]. The summation of asymptotic covari-
ance of constituent MMPPs turns to be the approximate covari-
ance between arrival counts in HeMMPP. Nevertheless, there
is a large gap towards obtaining a complete temporal depen-
dence model of HeMMPP for two reasons. First, most papers
consider HeMMPP where its constituent MMPPs have only
two states [1], [15]. The temporal dependence of HeMMPP,
whose constituent MMPPs have a higher number of states,
needs further study. Second, covariance or autocovariance is
only capable of measuring linear dependence over time, but
the network traffic traces may exhibit much more complex
dependence than that. We are thus motivated to search for a
functional dependence structure of HeMMPP, which carries
richer and more complete information of dependence.

We tackle the problem with copula, an advanced dependence
measure that links marginals into joint distribution. This paper
analyses the functional dependence between arrival counts in
HeMMPP and makes the following contributions:

1) It uses a new dependence measure, copula, to analyse the
dependence structure of HeMMPP. The copula-based de-
pendence reveals functional temporal dependence, which
is more powerful than the commonly-used measures for
linear dependence, covariance and correlation.

2) The copula-based analysis can effectively deal with the
difficulty in modeling HeMMPP, where each constituent
MMPP may have an arbitrary number of states.

3) It not only presents a recursive algorithm to compute the
theoretical copula values of HeMMPP, but also adopts
parametric copulas to model the temporal dependence
of HeMMPP.

4) It demonstrates an application of HeMMPP dependence
model in traffic prediction.

II. PRELIMINARIES

A. Markov Modulated Poisson Process
We introduce the definition and key concepts of MMPP and

HeMMPP.

Definition 1. A Markov-modulated Poisson Process
(MMPP) [6] is constructed by varying the arrival rate

of a Poisson process according to an m-state irreducible
continuous-time Markov chain (CTMC). In particular, when
the Markov Chain is in state j, the arrivals follow a Poisson
process of rate �j . Therefore, an MMPP can be parameterized
by the Q matrix [14] of CTMC and the m Poisson arrival
rates, ⇤ = (�

1

, . . . ,�m).

We thus denote an MMPP by parameters (Q,⇤).

Definition 2. Environment-stationarity of an MMPP [6]: An
MMPP (Q,⇤) is considered to be environment-stationary if
its associated CTMC Q is stationary.

For an environment-stationary MMPP, the stationary dis-
tribution of the states, ⇧ = (⇡

1

, . . . ,⇡m), is determined by
solving the equation ⇧Q = 0.

Definition 3. HeMMPP: An MMPP is called HeMMPP if
it is a superposition of multiple independent heterogeneous
MMPPs. The constituent MMPPs carry different parameters
(

1

Q,
1

⇤), ..., (rQ, r⇤)..., (lQ, l⇤), where (rQ, r⇤) denotes the
parameters of the r-th constituent MMPP.

To distinguish regular MMPP with superposition of
MMPPs, we use the term single MMPP to refer to an MMPP
not created from superposition, the term HeMMPP to refer
to aggregate MMPPs containing multiple single MMPPs, and
each single MMPP in HeMMPP is called constituent MMPP.
In this paper, we only consider stationary MMPPs, which
means each constituent MMPP in HeMMPP is environment-
stationary.

For ease of reference, the main notations used in the paper
are listed in Tables I, II and III. Note that we consider
HeMMPP with l number of constituent MMPPs. When l = 1,
HeMMPP degrades to single MMPP, and in this case l can be
omitted from notation. Thus Ai, M , C and Ci0 are notations
for single MMPP.

Remark 1. Due to the intricate composition of HeMMPP,
a complicate and slightly unconventional notation system is
necessary. We, however, adopt the following rules to make the
notations easy to follow: the superscript denotes the number of
constituent MMPPs, the right hand-side subscript denotes the
time slot-related information (or random variables from the
context), and the left hand-side subscript denotes the index of
a specific constituent MMPP in consideration.

B. Copulas

A copula is a function that links univariate marginals to
their multivariate distribution. The definition of 2-copula is:

Definition 4. (Copula) A 2-dimensional copula is a function
C having the following properties [10]:

1) Its domain is [0, 1]⇥ [0, 1];
2) C is 2-increasing, i.e., for every u

1

, u
2

, v
1

, v
2

2 [0, 1]
and u

1

 u
2

, v
1

 v
2

, we have C(u
2

, v
2

)�C(u
2

, v
1

)�
C(u

1

, v
2

) + C(u
1

, v
1

) � 0.
3) C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = v, for

every u, v 2 [0, 1].

398

TABLE I: Parameters for Single MMPP

Notation Explanation
Q The transition rate matrix of associated CTMC
⇤ The vector of Poisson arrival rates
⇧ The stationary distribution of asscoiated CTMC

P (t) The transition matrix after time t of associated CTMC

TABLE II: Notations of HeMMPP

Notation Explanation
A

l

i

The arrival count in i-th time slot of HeMMPP
consisting of l number of consituent MMPPs

M

l(x) The marginal distribution of Al

i

C

l(u, v) The copula between A

l

i

and A

l

i+1

rC

l(u, v) The copula gradient of Cl(u, v)
Cl The copula matrix for Cl(u, v)
Rl The copula gradient matrix for rC

l(u, v)
C

l

i

0 (u, v) The copula between A

l

i

and A

l

i+i

0

C

l

i

0 (u, v; ✓) The parametric copula between A

l

i

and A

l

i+i

0

Theorem 1. (Sklar’s theorem) [10] Let H be a joint distri-
bution function with marginals FX and FY , then there exists
a copula C such that for for all x and y,

H(x, y) = Pr(X x, Y y) = C(FX(x), FY (y)).

Sklar’s theorem is the core of the copula theory. First,
it shows how the copula connects marginals with joint dis-
tribution. This property is especially useful since the joint
distribution of random variables is hard to find directly in many
applications [10]. In this situation, integration of a copula
model and marginals makes it easy to understand the joint
behaviour. Second, Sklar’s theorem implies that copula, as a
dependence measure, is entirely separated from both marginals
and joint distribution.

The dependence in terms of copula is stable when the
marginals changes functionally. This beautiful feature is for-
mally stated in the following theorem:

Theorem 2. (The invariant property of copulas) [10] Let X
and Y be continuous random variables with copula CXY . If
↵
1

and ↵
2

are strictly increasing functions on the range of X
and the range of Y , respectively, then C↵1(X)↵2(Y)

= CXY .
In other words, CXY is invariant under strictly increasing
transformations of X and Y .

There are mainly two methods to build a copula model. The
first method is to construct a theoretical copula for the problem
at hand. The inversion method belongs to this category.

Theorem 3. (Inversion method) [10] Let H be a joint
distribution function with marginals FX and FY . Let F�1

X

and F�1

Y be the inverse function of FX and FY . Then the
copula between X and Y can be constructed as

C(u, v) = H(F�1

X (u), F�1

Y (v)) 8u, v,

such that

H(x, y) = C(FX(x), FY (y)) 8x, y.

The other method to build a copula model is to fit real data
into known parametric copulas. A large variety of parametric

TABLE III: Notations of the r-th Constituent MMPP

Notation Explanation
(
r

Q,

r

⇤) The parameters of the r-th MMPP
r

A

i

The arrival count in i-th time slot of r-th MMPP
trace

r

M(x) The marginal distribution of
r

A

i

r

p(x) The probability mass function of
r

A

i

r

C(u, v) The copula between
r

A

i

and
r

A

i+1

r
r

C(u, v) The copula gradient of
r

C(u, v)
r

C

i

0 (u, v) The copula between
r

A

i

and
r

A

i+i

0

copulas are available for parametric copula modeling, for
instance, Gaussian copula, Student’s copula, Clayton copula,
Frank copula, and Gumbel copula. Since the theoretical copula
is not always easy to derive, parametric copula modeling has
become popular in practice [7]. A copula model built with this
method is also called an parametric copula.

Copula-based dependence is tightly associated with tail
dependence measure. The tail dependence comprises upper tail
dependence given by

⇢+t = lim

u!1

Pr(X > F�1

X (u)|Y > F�1

Y (u))

= lim

u!1

1� 2u+ C(u, u)

1� u
;

(1)

and the lower tail dependence given by

⇢�t = lim

u!0

Pr(X < F�1

(u)|Y < F�1

(u)) = lim

u!0

C(u, u)

u
.

(2)
Copula is promising for modeling temporal dependence of

HeMMPP for the following reasons: copula can be constructed
theoretically or by parametric copula modeling; copula is a
functional dependence model and captures rounded depen-
dence information beyond linear scope; the invariant property
keeps copula structure stable when HeMMPP scales func-
tionally. In this paper, we will study both theoretical copula
(Section III) and parametric copula of HeMMPP (Section IV).

III. THEORETICAL COPULA ANALYSIS FOR HEMMPP

A. Theoretical Results for Single MMPP

A functional dependence model of single MMPP has been
investigated in [4], from which some results are useful for
our study of HeMMPP. To make this paper self-contained, we
summarize these results below.

In the analysis of single MMPP with parameters (Q,⇤) [4],
the time is divided into equal-sized small intervals, called time
slots. The length of each time slot is denoted as �, which is
short enough such that the state transition of MMPP within
one time slot is negligible1. Denote the sequence of time slots
as I

1

, I
2

, . . . , In, and the number of arrivals in Ii as Ai. The
sequence {Ai} is also called arrival counts as introduced in
Section I. Denote the transition matrix by P (t) = [pj1j2(t)],
where pj1j2(t) is the probability that the CTMC switches from
state j

1

to state j
2

after time t. The transition matrix P (t)
can be calculated with well-known methods such as those

1This assumption is justified since the arrival rate in one time slot is
(approximately) stable when � is small.

399

introduced in Chapter 6.8 of [14]. The stationary distribution
of CTMC is ⇧ = (⇡

1

,⇡
2

, ...,⇡m). The marginal distribution
function of Ai is given in Theorem 4, and the copula between
Ai and Ai+1

is given in Theorem 5. The multi-step copula
between Ai and Ai+i0 is given in Theorem 6. These theoretical
marginals and copulas can be applied to the constituent MMPP
in HeMMPP.

Theorem 4. [4] The marginal distribution of Ai is

M(x) ⌘ Pr(Ai x) =
mX

j=1

⇡jGj(x) (3)

where Gj(x) = e��
j

�

Pk=x
k=0

(�
j

�)

k

k!

Theorem 5. (MMPP copula) [4] The copula of Ai and Ai+1

can be calculated as:

C(u, v) = G(M�1

(u))diag(⇧)P (�)G(M�1

(v))T , (4)

where
• G(x) ⌘ [G

1

(x), · · · , Gm(x)] is a vector,
• M�1 is the inverse function of M defined by (3),
• diag(⇧) is a square diagonal matrix with the elements

of vector ⇧ on the main diagonal,
• G(M�1

(v))T is the transpose of G(M�1

(v)).

Theorem 6. (Multi-step MMPP copula) [4] The copula of
Ai and Ai+i0 in a single MMPP can be calculated as:

Ci0(u, v) = G(M�1

(u))diag(⇧)P (i0�)G(M�1

(v))T . (5)

B. Theoretical Copula for HeMMPP

1) Theoretical Analysis for HeMMPP Copula: Since the
constituent MMPPs in HeMMPP possess different parameters,
we have to differentiate the constituent MMPPs by numbering
them. We randomly select an order of constituent MMPPs, i.e.,
(

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (rQ, r⇤)..., (lQ, l⇤), where (rQ, r⇤)
represents the parameters of the r-th constituent MMPP (r =

1, 2, · · · , l). For constituent MMPPs, rAi, rM , rp, rC, rrC
denote arrival counts, marginal CDF, marginal probability
mass function (PMF), copula and copula gradient of r-th
MMPP, respectively. In HeMMPP, Al

i, Cl, M l are notations of
the superposition of the first l number of constituent MMPPs.
Note that we introduce this ordering for ease of explanation,
and the order will not influence our analytical results. The
following theorems show how to analyse theoretical marginal
and copula of HeMMPP.

Theorem 7. The HeMMPP marginal distribution function has
recursive relationship between M l and M l�1

(l � 2) as

M l
(x) =

xX

x0
=0

M l�1

(x� x0
) ⇤ lp(x

0
), (6)

where lp is the probability mass function (PMF) of the arrival
count from l-th MMPP, lp(x0

) = lM(x0
)� lM(x0 � 1).

Proof. The key idea of the proof is to divide the arrivals from
l number of MMPPs into the arrivals from the first l � 1

number of MMPPs plus the arrivals from the l-th MMPP, i.e.,
Al

i = Al�1

i + lAi. Thus, we have

M l
(x) = Pr(Al

i x) =
xX

x0
=0

Pr(Al
i x|lAi = x0

)Pr(lAi = x0
)

=

xX

x0
=0

Pr(Al�1

i x� x0
)Pr(lAi = x0

)

=

xX

x0
=0

M l�1

(x� x0
) ⇤ lp(x

0
)

Theorem 8. The HeMMPP copula has the recursive relation-
ship between Cl and Cl�1 as shown below:

Cl
(M l

(x),M l
(y)) =

xX

x0
=0

yX

y0
=0

rlC(lM(x0
), lM(y0))

⇤ Cl�1

(M l�1

(x� x0
),M l�1

(y � y0)),
(7)

where rlC is the copula gradient of the l-th MMPP. The
copula gradient of r-th MMPP (r = 1, 2, · · · , l) is defined as

rrC(rM(x0
), rM(y0))

⌘rC(rM(x0
), rM(y0)) + rC(rM(x0 � 1), rM(y0 � 1))

� rC(rM(x0
), rM(y0 � 1))� rC(rM(x0 � 1), rM(y0)).

(8)

Proof. The proof is also on the basis of Al
i = Al�1

i + lAi.

Cl
(M l

(x),M l
(y))

=Pr(Al
i x,Al

i+1

 y)

=

xX

x0
=0

yX

y0
=0

Pr(Al
i x,Al

i+1

 y|lAi = x0, lAi+1

= y0)

⇤ Pr(lAi = x0, lAi+1

= y0)

=

xX

x0
=0

yX

y0
=0

Pr(Al�1

i x� x0, Al�1

i+1

 y � y0)

⇤ Pr(lAi = x0, lAi+1

= y0)

=

xX

x0
=0

yX

y0
=0

Cl�1

(M l�1

(x� x0
),M l�1

(y � y0))

⇤ Pr(lAi = x0, lAi+1

= y0)

Since the arrival counts follow discrete distribution and the
domain is non-negative integers, for all non-negative integer
x0 and y0, and 8r 2 {1, 2, · · · , l}, we have

Pr(rAi = x0, rAi+1

= y0)

=Pr(rAi x0, rAi+1

 y0) + Pr(rAi x0 � 1, rAi+1

 y0 � 1)

�Pr(rAi x0, rAi+1

 y0 � 1)� Pr(rAi x0 � 1, rAi+1

 y0)

=rC(rM(x0
), rM(y0)) + rC(rM(x0 � 1), rM(y0 � 1))

�rC(rM(x0
), rM(y0 � 1))� rC(rM(x0 � 1), rM(y0))

=rrC(rM(x0
), rM(y0)).

400

Therefore, by replacing Pr(lAi = x0, lAi+1

= y0) with
rlC(lM(x0

), lM(y0)), we can calculate the copula Cl as:

Cl
(M l

(x),M l
(y)) =

xX

x0
=0

yX

y0
=0

rlC(lM(x0
), lM(y0))

⇤ Cl�1

(M l�1

(x� x0
),M l�1

(y � y0)).

Theorems 7 and 8 reveal the relationship between M l and
M l�1 and relationship between Cl and Cl�1. Even with
these relationships, it is still hard to derive the closed-form
HeMMPP copula. However, they are sufficient for developing
recursive algorithms to numerically calculate HeMMPP cop-
ula, as introduced in the next section.

2) Recursive Algorithms for Calculating HeMMPP Copula:
To design algorithms to calculate HeMMPP copula efficiently,
we narrow down the interesting range of Al

i from its infinite
domain to finite range with an upper threshold â. In other
words, although the range of Al

i is on the whole non-negative
integer domain, we only need to compute the copula values
Cl

(M l
(x),M l

(y)) for x < â and y < â. The selection of â is
application dependent and can be set appropriately based on
the trace data. Narrowing down the interesting range makes the
computation feasible and still meets practical needs, because
the arrival counts in real traffic flows always fall within a
limited range.

On the interesting range [0, â), we define seven matrices
in Table IV. Ml, Cl and Rl are for HeMMPP, and they
represent HeMMPP marginal values, HeMMPP copula val-
ues and HeMMPP copula gradient values, respectively. For
instance, the number in row x of matrix Ml represents the
value of M l

(x�1), i.e., Ml
x ⌘M l

(x�1). For the constituent
MMPPs, their values in PMF, marginal values, copula values
and copula gradient values are represented by rP, rM, rC
and rR, respectively, as shown in Table IV. To emphasize the
matrices’ dimension, we mark dimensions on the bottom right,
such as [Ml

]â and [Cl
]â⇥â. We also use a notation [Cl

]x⇥y to
represent the submatrix of [Cl

]â⇥â with its first x rows and
first y columns.

With HeMMPP parameters (

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (lQ, l⇤)
and a properly-set threshold value â, we design Algorithm 1
(with the time complexity as O(â⇥ l)) to calculate HeMMPP
marginal matrix [Ml

]â and Algorithm 2 (with the time com-
plexity as O(â⇥ â⇥ l)) to calculate HeMMPP copula matrix
[Cl

]â⇥â. The recursive procedure in Algorithm 1, MARG,
implements Theorem 7; the recursive procedure in Algo-
rithm 2, CPA, implements Theorem 8. With matrices [Ml

]â

and [Cl
]â⇥â computed, the theoretical copula of HeMMPP is

revealed in Theorem 9:

Theorem 9. (HeMMPP copula) Given HeMMPP with
marginal matrix [Ml

]â and copula matrix [Cl
]â⇥â, its copula

value of Cl
(u, v) can calculated by

Cl
(u, v) = Cl

(argmax

x

Ml

x

u)(argmax

y

Ml

y

v) (9)

for any u and v satisfying u Ml
â , v Ml

â.

Algorithm 1 An algorithm to compute marginal matrix Ml

Require: the upper threshold â, HeMMPP parameters
(

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (lQ, l⇤),
Ensure: [Ml

]â

1: return MARG([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)

2: procedure MARG([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)
3: l the vector length of [

1

Q, ..., lQ] or of [
1

⇤, ..., l⇤]
4: // Base Case
5: if l == 1 then
6: [M1

]â compute with parameters
1

⇤ and
1

Q
based on Theorem 4

7: return [M1

]â

8: end if
9: // Inductive Step

10: [Ml�1

]â MARG([
1

Q, ..., l�1

Q], [
1

⇤, ..., l�1

⇤], â)
11: [lM]â compute with parameters l⇤ and lQ based

on Theorem 4
12: [lP]â compute from [lM]â based on its definition
13: for x 1, â do
14: Rotate matrix [lP]x 180 degree clockwise as [lP0

]x

15: Calculate Hadamard product of [Ml�1

]x and [lP0
]x

as [T]x
16: Ml

x sum of all elements in matrix [T]x
17: end for
18: return [Ml

]â

19: end procedure

C. Multi-step Theoretical Copulas for HeMMPP
Theorem 10. (Multi-step HeMMPP copula). The copula of
Al

i and Al
i+i0 in HeMMPP can be constructed by integrating

the multi-step MMPP copula in Theorem 6 into the recursive
method in Theorem 8. Specifically, all copulas Cl in the
recursive method are replaced by multi-step copulas Cl

i0 , and
all constituent copulas rC are replaced by rCi0 .

IV. PARAMETRIC COPULA MODELING FOR HEMMPP
In this section, we construct parametric copulas for

HeMMPP. The parametric copulas we investigated include the
following three Archimedean copulas [10]:

1) Clayton copula (✓ 2 [�1,1) \ {0})

C(u, v; ✓) = [max{u�✓
+ v�✓ � 1, 0}]�1/✓,

2) Frank copula (✓ 2 [�1,1) \ {0})

C(u, v; ✓) = � 1

✓ log[1 +
(exp(�✓u)�1)(exp(�✓v)�1)

exp(�✓)�1

],

3) Gumbel copula (✓ 2 [1,1))

C(u, v; ✓) = exp[�((� log u)✓ + (� log v)✓)1/✓].

We investigate the above parametric copulas due to two
reasons. First, they are all one-parameter copulas which make
modelling easy. Second, they capture different types of tail
dependence efficiently. The tail dependence features of the
three copulas are distinct with each other: Clayton copula

401

TABLE IV: Definition of Matrices in HeMMPP

Matrix

Denotation
Matrix name Number in row x (and column y)

[Ml]
â

marginal matrix of HeMMPP Ml

x

⌘ M

l(x� 1)

[Cl]
â⇥â

copula matrix of HeMMPP Cl

xy

⌘ C

l(M l(x� 1),M l(y � 1))

[Rl]
â⇥â

copula gradient matrix of HeMMPP Rl

xy

⌘ rC

l(M l(x� 1),M l(y � 1))

[
r

M]
â

marginal matrix of r-th MMPP
r

M
x

⌘
r

M(x� 1) = Pr(
r

A

i

 x� 1)

[
r

P]
â

PMF matrix of r-th MMPP
r

P
x

⌘
r

p(x� 1) =
r

M
x

�
r

M
x�1

[
r

C]
â⇥â

copula matrix of r-th MMPP
r

C
xy

⌘
r

C(
r

M(x� 1),
r

M(y � 1))

[
r

R]
â⇥â

copula gradient matrix of r-th MMPP
r

R
xy

⌘ r
r

C(
r

M(x� 1),
r

M(y � 1))

Algorithm 2 An algorithm to compute copula matrix Cl

Require: the upper threshold â, HeMMPP parameters
(

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (lQ, l⇤)
Ensure: [Cl

]â⇥â

1: return CPA([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)

2: procedure CPA([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)
3: l the vector length of [

1

Q, ..., lQ] or of [
1

⇤, ..., l⇤]
4: // Base Case
5: if l == 1 then
6: [C1

]â⇥â compute with parameters
1

⇤ and
1

Q
based on Theorem 5

7: return [C1

]â⇥â

8: end if
9: // Inductive Step

10: [Cl�1

]â⇥â CPA([
1

Q, ..., l�1

Q], [
1

⇤, ..., l�1

⇤], â)
11: [lC]â⇥â compute with parameters l⇤ and lQ based

on Theorem 5
12: [lR]â⇥â compute from [lC]â⇥â based on its defini-

tion
13: for x 1, â do
14: for y 1, â do
15: Rotate matrix [lR]x⇥y 180 degree clockwise to

be [lR0
]x⇥y

16: Calculate Hadamard product of [Cl�1

]x⇥y and
[lR0

]x⇥y as [T]x⇥y

17: Cl
xy sum of all elements in matrix [T]x⇥y

18: end for
19: end for
20: return [Cl

]â⇥â

21: end procedure

models lower tail dependence; Gumbel copula models upper
tail dependence; and Frank copula captures symmetric upper
and lower tail dependence. Therefore, these three copulas are
investigated as simple alternatives of theoretical copulas. To
further improve copula fitting of HeMMPP, a mixture of these
copulas or some other types of parametric copulas might be
needed for modelling, which is, however, beyond the scope of
this paper and a possible topic for extended research.

We follow three main steps to model the parametric copula:

1) Compute the tail dependence by definitions in Eq.(1)
and Eq. (2).

2) Choose the parametric copula for HeMMPP modeling
based on tail dependence:

a) choose Clayton copula if ⇢+t ⇡ 0 and ⇢�t > 0;
b) choose Frank copula if ⇢+t ⇡ ⇢�t ;
c) choose Gumbel copula if ⇢+t > 0 and ⇢�t ⇡ 0.

3) Determine the value of the parameter ✓ for the chosen
parametric copula. The parameter ✓ is learnt by fitting
the HeMMPP trace into the chosen copula with the max-
imum likelihood estimation method. Specifically, ✓ of
parametric HeMMPP copula Cl

i0(u, v; ✓) is determined
by fitting the sample pairs of (Al

i, Al
i+i0) of trace.

V. APPLICATION: TRAFFIC PREDICTION BASED ON
HEMMPP COPULA

So far, we have shown how the full temporal dependence
structure of HeMMPP can be captured with copulas. A
deep understanding of the temporal dependence structure of
HeMMPP can benefit many applications, e.g., dynamic re-
source provisioning, and self-similar traffic modeling. Another
obvious application is to predict future traffic based on the
temporal dependence in arrivals. This section illustrates a
method to achieve this goal.

The problem of traffic prediction could be in different forms.
In this paper, we focus on estimating the future arrival count
Al

i+i0 based on the current observation of arrival count Al
i. The

prediction is made by maximizing the conditional probability
Pr(Al

i+i0 |Al
i). When i0 = 1, the prediction is made one-

step forward; when i0 > 1, the prediction is made multi-step
forward. In this section, we introduce the prediction methods
with both theoretical and parametric HeMMPP copula.

Prediction based on theoretical HeMMPP copula is made
according to Theorem 11:

Theorem 11. (1) Consider a HeMMPP having theoretical
copula Cl between Al

i and Al
i+1

. If Al
i = x is the current

observation from the arrival process and if the prediction is
made by maximizing the conditional probability Pr(Al

i+1

|Al
i),

the predicted arrival count ˆAl
i+1

is:

ˆAl
i+1

= argmax

y
rCl

(M l
(x),M l

(y)). (10)

402

(2) Consider a HeMMPP having theoretical copula Cl
i0 be-

tween Al
i and Al

i+i0 . If Al
i = x is the current observation from

the arrival process and if the prediction is made by maximizing
the conditional probability Pr(Al

i+i0 |Al
i), the predicted arrival

count ˆAl
i+i0 is:

ˆAl
i+i0 = argmax

y
rCl

i0(M
l
(x),M l

(y)). (11)

rCl and rCl
i0 are copula gradients defined in the same way

as in Eq.(8) by replacing rC with Cl or Cl
i0 and rM with M l.

Proof. We only prove part (1), because part (2) can be proved
in the same way. Since the prediction is made by maximizing
the conditional probability Pr(Al

i+1

|Al
i), we have

ˆAi+1

=argmax

y
Pr(Al

i+1

= y|Al
i = x)

= argmax

y

Pr(Al
i = x,Al

i+1

= y)

Pr(Al
i = x)

= argmax

y

rCl
(M l

(x),M l
(y))

Pr(Al
i = x)

= argmax

y
rCl

(M l
(x),M l

(y))

Prediction based on parametric HeMMPP copula is made
in the similar way of theoretical HeMMPP copula, as shown
in Theorem 12. The proof is omitted because the proof idea
is the same as that of Theorem 11.

Theorem 12. Consider a HeMMPP having parametric copula
Cl

i0(u, v; ✓) between Al
i and Al

i+i0 . If Al
i = x is the current

observation from the arrival process and if the prediction is
made by maximizing the conditional probability Pr(Al

i+i0 |Al
i),

the predicted arrival count ˆAl
i+i0 is:

ˆAl
i+i0 = argmax

y
rCl

i0(M
l
(x),M l

(y); ✓), (12)

where rCl
i0(M

l
(x),M l

(y); ✓) is copula gradient defined
in the same way as in Eq. (8) by using copula
Cl

i0(M
l
(x),M l

(y); ✓) and marginal M l.

VI. EXPERIMENTAL EVALUATION

A. Evaluation Methods
We have proposed both theoretical copula modeling and

parametric copula modeling for traffic prediction in Section V.
To evaluate the new model, we implement another prediction
model, linear predictive coding (LPC(1)), for comparison.
LPC(1) will be constructed from trace data. With LPC(1), the
multi-step prediction from Al

i is made as

ˆAl
i+1

= �Al
i, ˆAl

i+2

= � ˆAl
i+1

, · · · , ˆAl
i+i0 = � ˆAl

i+i0�1

,

where � is the parameter of LPC(1) model.
LPC(1) model predicts data based on the dependence

information in terms of autocorrelation. Thus it is set as
the benchmark predictor to show how functional dependence
modeling with copulas improves over linear dependence. Note
that the first order of LPC model is used here for a fair

comparison: our copula-based prediction model is first order
in the sense that only dependence between two arrival counts
is considered each step. It has been shown that copula models
outperform AR(1) model in MMPP traffic prediction [4]. Due
to space limit, however, we omit this comparison.

We also implement and compare the predict-individual
method, where we predict the future arrivals of each con-
stituent MMPP separately and aggregate them as the prediction
of future HeMMPP arrivals.

When applying any of the prediction models on a traffic
trace, the trace is divided into two parts, the training set and
the testing set. The training set comes from the first certain
percentage data of the trace, and the rest of the trace constitutes
the testing set. The prediction accuracy is measured by root-
mean-square error (RMSE) across the testing set:

RMSE =

vuut 1

n

nX

i=1

(

ˆAl
i �Al

i)
2, (13)

where Al
i is arrival counts from testing set at timeslot i, ˆAi

denotes the corresponding predicted value, and n is the total
number of time slots in the testing period. For a prediction
model, its performance is measured by its average RMSE
(aRMSE) on a trace with different training percentages. The
performance improvement ratio (IMP RATIO) over benchmark
model (LPC(1)) are defined as Eq.(14).

IMP RATIO =

aRMSEbenchmark � aRMSE
aRMSEbenchmark

⇤ 100%. (14)

B. Evaluation Results

We evaluate the benefit of using HeMMPP dependence
model for traffic prediction with synthetic data. We generate
a HeMMPP trace using two MMPP models, each obtained
by fitting the model to real-world trace. For this purpose, we
follow the work [4] and use the same Bellcore traces2, that
record millions of packet arrivals on an Ethernet at Bellcore
Morristown Research and Engineering facility. The traces are
well known in network traffic modeling, and many papers
have shown that Bellcore traces are well characterized by
MMPP [1], [9]. We choose two of these traces to determine
reasonable parameters for simulation of synthetic HeMMPP
trace. With the fitting algorithm in [8], BCpAug89 trace
is well fitted into a 12 state MMPP [4] with parameters
(QA,⇤A) as shown in Eq. (15); BCpOct89 trace is fitted
into a 13 state MMPP with parameters (QO,⇤O) listed in
Eq. (16). We generate synthetic HeMMPP data consisting of
two MMPP traces, by simulating each MMPP trace using the
learnt parameters and aggregating the two MMPP traces.

The length of time slots is set as � = 1 second. Al
i denotes

the number arrival of the aggregate trace in i-th second. We
will study one-step dependence between Al

i and Al
i+1

and two-
step dependence between Al

i and Al
i+2

, and conduct one-step
prediction and two-step prediction accordingly.

2available from the website http:// ita.ee.lbl.gov/html/contrib/BC.html

403

QA =

0

BBBBBBBBBBB@

�0.857 0.286 0.429 0.143 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.067 �0.900 0.267 0.233 0.233 0.067 0.033 0.000 0.000 0.000 0.000 0.000
0.023 0.078 �0.836 0.336 0.203 0.102 0.078 0.000 0.016 0.000 0.000 0.000
0.000 0.026 0.140 �0.720 0.274 0.153 0.085 0.029 0.007 0.007 0.000 0.000
0.002 0.008 0.051 0.173 �0.650 0.244 0.122 0.041 0.006 0.002 0.002 0.000
0.000 0.001 0.027 0.073 0.173 �0.696 0.303 0.094 0.014 0.009 0.001 0.000
0.000 0.001 0.004 0.019 0.099 0.233 �0.616 0.200 0.048 0.012 0.001 0.000
0.000 0.000 0.008 0.023 0.049 0.184 0.409 �0.775 0.084 0.015 0.003 0.000
0.000 0.000 0.008 0.015 0.015 0.120 0.301 0.218 �0.805 0.113 0.015 0.000
0.000 0.020 0.000 0.000 0.059 0.059 0.235 0.078 0.275 �0.824 0.098 0.000
0.000 0.000 0.000 0.000 0.000 0.077 0.231 0.231 0.154 0.077 �0.846 0.077
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 �1.000

1

CCCCCCCCCCCA

,

⇤A = (782.069, 674.207, 574.345, 482.483, 398.621, 322.759, 254.897, 195.035, 143.173, 99.311, 63.449, 35.587).

(15)

QO =

0

BBBBBBBBBBBB@

�1.00 0.75 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 �0.64 0.26 0.25 0.06 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00
0.00 0.13 �0.72 0.34 0.16 0.03 0.03 0.02 0.00 0.00 0.00 0.00 0.00
0.01 0.06 0.12 �0.68 0.31 0.13 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.10 0.25 �0.74 0.20 0.11 0.06 0.01 0.00 0.00 0.00 0.00
0.00 0.00 0.04 0.09 0.23 �0.71 0.20 0.10 0.03 0.02 0.00 0.00 0.00
0.00 0.00 0.00 0.03 0.06 0.31 �0.68 0.16 0.08 0.02 0.01 0.00 0.00
0.00 0.00 0.01 0.02 0.04 0.19 0.34 �0.81 0.16 0.05 0.01 0.01 0.01
0.00 0.00 0.00 0.01 0.04 0.09 0.23 0.29 �0.83 0.14 0.04 0.00 0.00
0.00 0.00 0.00 0.00 0.03 0.02 0.07 0.22 0.28 �0.80 0.13 0.05 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.21 0.33 �0.71 0.04 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.50 0.17 �0.83 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 �1.00

1

CCCCCCCCCCCCA

,

⇤O = (1125.89, 995.67, 873.46, 759.24, 653.02, 554.81, 464.59, 382.37, 308.15, 241.94, 183.72, 133.50, 91.28).

(16)

1) One-step Prediction on HeMMPP trace: Theoretical
HeMMPP copula, parametric HeMMPP copula and LPC(1)
model are constructed for one-step prediction. Theoretical
HeMMPP copula is computed with Algorithms 1 and 2. Based
on the observations of the HeMMPP trace, the threshold
for marginal and copula matrix computation is chosen as
â = 1500. The probability that the arrival count Al

i exceeds
the threshold is less than 0.01, i.e., Pr(Al

i > â) < 0.01,
indicating that there are very few observations appearing
beyond the chosen threshold. Fig. 2 shows the contour of the-
oretical one-step HeMMPP copula calculated with parameters
(QA,⇤A, QO,⇤O).

0.1
0.1

0.1 0.1 0.1

0.2
0.2

0.2 0.2 0.2

0.3
0.3

0.3 0.3

0.4

0.4 0.4

0.5

0.5
0.5

0.6

0.6

0.7

0.7

0.8

0.9

U

V

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Fig. 2: The contour of theoretical one-step HeMMPP copula

Parametric HeMMPP copula is constructed through the
modeling steps illustrated in Section IV. As the upper tail
dependence is close to lower tail dependence (⇢+t = 0.3212,
⇢�t = 0.2228), Frank copula is chosen and its parameter is
determined by fitting the training set of trace. Similarly, the
parameter of LPC(1) model is determined according to the
training set of the HeMMPP trace.

0 500 1000 1500
Time

0

500

1000

1500

2000

Ar
riv

al
 C

ou
nt

The testing sequence of synthetic HeMMPP trace
Prediction on testing sequence

Fig. 3: One-step prediction with theoretical HeMMPP copula.
TABLE V: One-Step Prediction RMSE on the HeMMPP trace
with Different Training Percentage.

Training

Percentage

Theoretical

Copula

Parametric

Copula

Predict

Individual
LPC(1)

50% 129.8456 129.9517 133.2521 190.6223

60% 129.1777 127.7076 132.0675 190.2156

70% 130.7527 129.9172 134.2631 193.6528

80% 129.4203 128.5920 133.5243 191.6844

90% 124.9783 125.2756 128.6330 188.7742

aRMSE 128.8349 128.2888 132.3480 190.9899

IMP RATIO 32.54% 32.83% 30.70% —

With different percentage of trace data for training, three
models are constructed accordingly and applied for one-
step prediction. Fig. 3 shows the prediction with theoretical
HeMMPP copula on the test set of the last 20% arrival counts.
The detailed prediction errors are shown in terms of RMSE in
Table V. The smaller value of RMSE represents the more ac-
curate prediction. aRMSE shows the average performance over
different training percentage (from 50% to 90%). IMP RATIO
shows that copula-based predictions, including theoretical

404

copula model and parametric copula model, have more
than 30% improvement over the LPC(1) model, showing
the advantage of functional dependence modeling (such as
copulas) over linear dependence measurement (such as au-
tocorrelation). In addition, we can see that HeMMPP-based
prediction works better than the predict-individual method.
This is because any prediction includes errors and the predict-
individual method may aggregate the errors from predictions
in individual MMPP. This phenomenon is more obvious in the
two-step prediction results shown in Table VI.

2) Two-step Prediction on HeMMPP trace: Two-step pre-
diction is also performed to evaluate multi-step dependence
modeling. Similar to the previous section, theoretical copula,
parametric copula and LPC(1) models are constructed for two-
step prediction. Table VI compares the two-step prediction
performance of copulas with LPC(1) model. Our copula
models have a great improvement ratio (nearly 30%) over
LPC(1) model regarding the two-step predictions.

TABLE VI: Two-Step Prediction RMSE on the HeMMPP
trace with Different Training Percentage.

Training

Percentage

Theoretical

Copula

Parametric

Copula

Predict

Individual
LPC(1)

50% 174.8214 175.6217 195.0492 246.4333

60% 174.4992 174.4648 192.8411 245.1160

70% 176.9906 176.0216 197.3482 252.5563

80% 174.9567 174.0762 194.7852 247.4094

90% 170.2201 169.0609 194.4664 246.7953

aRMSE 174.2976 173.8490 194.8980 247.6621

IMP RATIO 29.62% 29.80% 21.30% —

VII. RELATED WORK

The research related to our work applies covariance to
model the temporal dependence among single MMPP or
HeMMPP. The covariance between arrival counts in single
MMPP is derived in [11]. The closed-form covariance between
arrival counts in two-state MMPP is given in [1]. The work
closest to ours is [4], where temporal dependence in single
MMPP and in superposition of homogeneous MMPPs has
been investigated. Nevertheless, HeMMPP is more compli-
cated and more general, and its temporal dependence has not
been studied in [4].

In the case of HeMMPP, the constituent MMPPs can be
combined into one MMPP with formula given in [6]. Even
though some efforts have made to reduce the number of states
to approximate HeMMPP [8], [18], very few works consider
HeMMPP as one MMPP for calculation of covariance. In [1],
asymptotic covariance of two-state MMPPs is summed to get
an approximate covariance of the superposition of MMPPs.
Our work is different from the above work as we build the
functional temporal dependence of arrival counts in HeMMPP
with copula.

Copula models have been broadly used in the domain of
financial analysis, for multivariate dependence modeling [3] as

well as for time series modeling [12]. It has attracted attention
in the domain of networks in recent years [2], [4], [5].

VIII. CONCLUSION

With copula analysis, this paper is the first that theo-
retically derives the intricate temporal dependence structure
in HeMMPP. It not only presents a complete solution for
modeling functional dependence in HeMMPP, but also intro-
duces parametric copulas as fast approximation of theoretical
copulas. Using the theoretical and parametric copulas, we
show the value of our research in an example application,
i.e., traffic prediction. While the study of MMPP has a long
history and the topic of MMPP might not be trending, the
novel theoretical results and the new algorithms developed
in this paper will benefit a broad class of current and future
network applications involving MMPP traffic flows.

REFERENCES

[1] A. T. Andersen and B. F. Nielsen. A markovian approach for modeling
packet traffic with long-range dependence. IEEE Journal on Selected
Areas in Communications, 16(5):719–732, 1998.

[2] K. Avrachenkov, N. M. Markovich, and J. K. Sreedharan. Distribution
and dependence of extremes in network sampling processes. Computa-
tional Social Networks, 2(1):1, 2015.

[3] M. Beil. Modeling dependencies among financial asset returns using
copulas. PhD thesis, Technische Universität München, 2013.

[4] F. Dong, K. Wu, and V. Srinivasan. Copula analysis of temporal
dependence structure in markov modulated poisson process and its ap-
plications. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, 2(4), 2017.

[5] F. Dong, K. Wu, and S. Venkatesh. Copula analysis for statistical
network calculus. In Proceedings of INFOCOM, pages 1535–1543,
Hong Kong, 2015. IEEE.

[6] W. Fischer and K. Meier-Hellstern. The markov-modulated poisson
process (mmpp) cookbook. Performance Evaluation, 18(2):149–171,
1993.

[7] C. Genest, B. Rémillard, and D. Beaudoin. Goodness-of-fit tests for
copulas: A review and a power study. Insurance: Mathematics and
Economics, 44(2):199–213, 2009.

[8] D. P. Heyman and D. Lucantoni. Modeling multiple ip traffic streams
with rate limits. IEEE/ACM Transactions on Networking, 11(6):948–
958, 2003.

[9] L. Muscariello, M. Mellia, M. Meo, M. A. Marsan, and R. L. Cigno.
Markov models of internet traffic and a new hierarchical mmpp model.
Computer Communications, 28(16):1835–1851, 2005.

[10] R. B. Nelsen. An introduction to copulas. Springer, New York, 2006.
[11] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their

Applications. Taylor & Francis, New York, USA, 1989.
[12] A. Patton. Copula methods for forecasting multivariate time series.

Handbook of economic forecasting, 2:899–960, 2012.
[13] A. Rajabi and J. W. Wong. Provisioning of computing resources for web

applications under time-varying traffic. In 2014 IEEE 22nd International
Symposium on MASCOTS, pages 152–157, Paris, France, 2014. IEEE.

[14] S. M. Ross. Introduction to probability models. Academic Press,
Burlington, 2003.

[15] P. Salvador, R. Valadas, and A. Pacheco. Multiscale fitting procedure
using markov modulated poisson processes. Telecommunication Systems,
23(1-2):123–148, 2003.

[16] S. Shah-Heydari and T. Le-Ngoc. Mmpp models for multimedia traffic.
Telecommunication Systems, 15(3-4):273–293, 2000.

[17] U. Yechiali and P. Naor. Queuing problems with heterogeneous arrivals
and service. Operations Research, 19(3):722–734, 1971.

[18] M. Yu and M. Zhou. A model reduction method for traffic described
by mmpp with unknown rate limit. IEEE Communications Letters,
10(4):302–304, 2006.

[19] M. Yuksel, B. Sikdar, K. Vastola, and B. Szymanski. Workload
generation for ns simulations of wide area networks and the internet.
In Proceedings of Communication Networks and Distributed Systems
Modeling and Simulation Conference, pages 93–98, 2000.

405

Improving Output Bounds in the Stochastic
Network Calculus Using Lyapunov’s Inequality

Paul Nikolaus
Distributed Computer Systems (DISCO) Lab

TU Kaiserslautern, Germany
nikolaus@cs.uni-kl.de

Jens Schmitt
Distributed Computer Systems (DISCO) Lab

TU Kaiserslautern, Germany
jschmitt@cs.uni-kl.de

Abstract—Giving tight estimates for output bounds is key to an
accurate network analysis using the stochastic network calculus
(SNC) framework. In order to upper bound the delay for a flow
of interest in the network, one typically has to calculate output
bounds of cross-traffic flows several times. Thus, an improvement
in the output bound calculation pays off considerably. In this
paper, we propose a new output bound calculation in the
SNC framework by making use of Lyapunov’s inequality. We
prove the bound’s validity and also show why it is always
at least as accurate as the state-of-the-art method. Numerical
evaluations demonstrate that even in small heterogeneous two
server topologies, our approach can improve a delay bounds’
violation probability by a factor of 340. For a set of randomly
generated parameters, the bound is still decreased by a factor
of 1.33 on average. Furthermore, our approach can be easily
integrated in existing end-to-end analyses.

I. INTRODUCTION

A. Motivation

Providing delay bounds in packet-switched networks is a
timeless challenge with recent sample applications as, e.g.,
Internet at the speed of light [1], Tactile Internet [2], Internet
of Things [3], or the envisioned cyber-physical systems [4],
which often face real-time requirements.

The Network Calculus (NC) holds the promise to enable
tight end-to-end delay analysis in such advanced applications
building on a modular and uniform mathematical framework
based on min-plus algebra [5]. Starting from the 1990s with
two papers by Cruz [6], [7], NC demonstrated its benefits
providing tight bounds for deterministic worst-case end-to-end
delay bounds. In the following, the Deterministic Network
Calculus (DNC) was further elaborated and mathematically
cast into a min-plus algebra setting [8], [9]. More recently,
NC was generalized into a stochastic setting providing prob-
abilistic worst-case bounds: the Stochastic Network Calculus
(SNC) framework [8], [10]–[13]. SNC’s main features can be
summarized as providing a very general scheduling abstraction
(the service curve) and the ability to enable system-wide end-
to-end analysis (the concatenation theorem) [13].

SNC results can be categorized into different branches
such as tail-bound based [10], [12], [14], moment generating
functions (MGF) based [8], [11], and martingale based [15]
approaches. Recent work evidences its applicability to modern

Fig. 1. Full binary sink tree with seven nodes.

problems, e.g., in the analysis of parallel systems (using the
fork-join pattern) or multi-tenancy [16]–[18].

Typically a DNC/SNC network analysis proceeds along the
following steps:

1) Reducing the network to a tandem of servers traversed
by the flow of interest (foi) by invoking the output
bound calculation to characterize cross-traffic flows at
the servers where they join the foi.

2) Reducing the tandem of servers traversed by the flow of
interest (foi) to a single server representing the whole
system.

3) Calculating the delay bound of the foi at the single server
representing the whole system.

Most of the existing NC literature has mainly focused on
steps 2) and 3). In DNC, step 1) has seen some advanced
treatment recently [19], but in SNC it has been largely
neglected in the sense that no work beyond the standard
output bound calculation was invested. In contrast to this, we
focus on step 1) and, in particular, try to improve the SNC
output bound calculation in this paper. As the output bound
calculation has to be invoked numerous times in step 1), we
believe its accuracy to be key in larger network analyses. For
example: Assume a full binary tree of height h where each
node represents a server and each of these servers has an
arrival flow that is transmitted to the sink; let the foi be starting
from one of the leaf nodes (see also Figure 1), then the number
of output bound calculations is 2h � h� 1, whereas we onlyISBN 978-3-903176-08-9 c� 2018 IFIP

need to invoke the delay bound calculation once (in step 3)).
Thus, any improvement in the output bound calculation pays
off tremendously in larger network analyses.

Yet, how can we improve upon the standard SNC output
bound calculation? The tail bound and MGF SNC analy-
ses have the application of the so-called Union bound or
Boole’s inequality in common. In a series of publications,
[15], [20]–[22], the authors emphasized its poor performance
and suggested an appealing martingale-based approach. It
provides tight single hop lower and upper bounds on the
delay for different scheduling disciplines. Yet, to the best of
our knowledge, so far there is no concatenation result in the
martingale-based SNC and thus step 2) from above cannot be
performed and, thus, an elegant end-to-end analysis remains
elusive. Hence, we decided to remain within the standard SNC
framework and, yet, try to counteract the inherent problems of
the Union bound.

B. Main Contribution

In this paper, we present a modification of the MGF-based
SNC that mitigates the Union bound’s effect in the output
bound calculation. It consists of the application of Lyapunov’s
inequality just before the invocation of the Union bound
and does not impose any additional assumptions. It is thus
minimally invasive and all existing results and procedures of
the SNC are literally still applicable while, as we see below,
it improves the performance bounds. In fact, we prove this
new bound to be always at least as good as the state-of-the-
art method and show that in a very simple heterogeneous two
server setting, it can improve the delay bound already by a
factor of up to 340.

It comes, however, at the price of an additional parameter
per invocation of Lyapunov’s inequality. Thus, we trade higher
computational effort in the optimization of these parameters
for improved bounds. However, as we also show this effort is
moderate if the optimization is done carefully.

C. Outline

The rest of the paper is structured as follows: In Section II,
we introduce the necessary notations for SNC and its main
results as we need them in this paper. In Section III, we present
our new output bound calculation and prove its validity. A
numerical evaluation is given in Section IV: we compare
output bounds for a single server and delay bounds for a
two server setting as well as a fat tree topology with the
current state of the art method. In Section V, we prove that
Lyapunov’s inequality cannot be applied directly to delay
bounds. Section VI concludes the paper.

II. SNC BACKGROUND AND NOTATION

In this section, we introduce some of the basic terms and
concepts in SNC.

We use the MGF-based SNC in order to calculate per-
flow delay bounds. To be precise, we bound the probability
that the delay exceeds a given value, typically denoted by

T . The connection between probability bounds and MGFs is
established by Chernoff’s bound

P(X > a) e�✓a E
⇥
e✓X

⇤
, ✓ > 0, (1)

with E
⇥
e✓X

⇤
as the moment-generating function (MGF) of a

random variable X . We define an arrival flow by the stochastic
process A with discrete time space N and continuous state
space R+

0 as A(s, t) :=
Pt

i=s+1 a (i) , with a(i) as the traffic
increment process in time slot i. Network calculus provides
an elegant system-theoretic analysis by employing min-plus
algebra:

Definition 1 (Convolution in Min-Plus Algebra). The min-plus
(de-)convolution of real-valued, bivariate functions x(s, t) and
y(s, t) is defined as

(x⌦ y) (s, t) := min
sit

{x (s, i) + y(i, t)} ,

(x↵ y) (s, t) := max
0is

{x(i, t)� y(i, s)} .
(2)

The characteristics of the service process are captured by
the notion of a dynamic S-server.

Definition 2 (Dynamic S-Server). Assume a service element
has an arrival flow A as its input and the respective output is
denoted by A0. Let S(s, t), 0 s t, be a stochastic process
that is nonnegative and increasing in t. The service element is
a dynamic S-server iff for all t � 0 it holds that:

A0(0, t) � (A⌦ S) (0, t) = min
0it

{A(0, i) + S(i, t)} .

The analysis in this paper is based on a per-flow perspective.
I.e., we consider a certain flow, the so-called flow of interest
(foi). Throughout this paper, for the sake of simplicity, we
assume the servers’ scheduling to be arbitrary multiplexing
[23]. That is, if flow f2 is prioritized over flow f1, the leftover
service for the corresponding arrival A1 is Sl.o. = [A2 � S]+.
Furthermore, we require the server to be work-conserving.

In the following definition, we introduce (�, ⇢)-constraints
[8] as they enable us to give stationary bounds under stability
conditions.

Definition 3 ((�, ⇢)-Bound). An arrival flow is
(�A(✓), ⇢A(✓))-bounded for some ✓ > 0, if its MGF
exists and for all 0 s t

E
h
e✓A(s,t)

i
 e✓(⇢A(✓)(t�s)+�A(✓)).

A dynamic S-server is (�S(✓), ⇢S(✓))-bounded for some ✓ >
0, if its MGF exists and for all 0 s t

E
h
e�✓S(s,t)

i
 e✓(⇢S(✓)(t�s)+�S(✓)).

Definition 4 (Virtual Delay). The virtual delay at time t � 0
is defined as

d(t) := inf {s � 0 : A(0, t) A0(0, t+ s)} .

It can briefly be described as the time it takes for the cu-
mulated departures to “catch up with” the cumulated arrivals.

407

Theorem 5 (Output and Delay Bound). [11] [24] Consider
an arrival process A(s, t) with dynamic S-server S(s, t).

The departure process A0 is upper bounded for any 0
s t according to

A0(s, t) (A↵ S) (s, t).

The delay at t � 0 is upper bounded by

d(t) inf {s � 0 : (A↵ S) (t+ s, t) 0} .

We focus on the analogue of Theorem 5 for moment
generating functions:

Theorem 6 (Output and Delay MGF-Bound). [11] [24] For
the assumptions as in Theorem 5, we obtain:

The MGF of the departure process A0 is upper bounded for
any 0 s t according to

E
h
e✓A

0(s,t)
i
 E

h
e✓(A↵S) (s,t)

i
. (3)

The violation probability of a given stochastic delay bound T
at time t is bounded by

P(d(t) > T) E
h
e✓(A↵S) (t+T,t)

i
. (4)

III. NEW OUTPUT BOUND CALCULATION

In this section, we derive our new approach to compute
the MGF-output bound. Furthermore, we apply this idea to
(�(✓), ⇢(✓))-bounded arrivals and service.

A. Insertion of Lyapunov’s Inequality
The most intuitive way to bound (3) is to continue with

E
h
e✓(A↵S) (s,t)

i
(2)
= E

h
e✓max0is{A(i,t)�S(i,s)}

i

sX

i=0

E
h
e✓(A(i,t)�S(i,s))

i
, (5)

where the max is always less than or equal to the sum since
we have only non-negative terms. Inequality (5) is similar to
the application of the Union bound1,

P

✓
max

i=1,...,n
Xi > a

◆

nX

i=1

P(Xi > a) . (6)

It has been shown to often perform poorly, in particular for
correlated increments. The authors of [25] suggested instead a
martingale-based approach that allows for significantly more
accurate delay bounds. To the best of our knowledge, however,
achieving a concatenation property to enable an end-to-end
analysis remains an elusive goal in the martingale-based
approach.

1For probability bounds such as the backlog or the delay, it is even
equivalent to the Union bound, as

P

✓
max

i=1,...,n
Xi > a

◆
(6)

nX

i=1

P(Xi > a)
(1)
 e�✓a

nX

i=1

E
h
e✓Xi

i

,P

✓
max

i=1,...,n
Xi > a

◆
(1)
 e�✓a E

max

i=1,...,n
e✓Xi

�
(5)
 e�✓a

nX

i=1

E
h
e✓Xi

i

Therefore, we call inequality (5) in the following “quasi-Union bound.”

In this paper, we use Lyapunov’s inequality to mitigate the
Union bound’s effect. Yet, as we see in Subsection III-B,
existing end-to-end analyses are still applicable.

Proposition 7 (Lyapunov Inequality). Let X � 0 be in Ll

with l � 1. Then it holds that

E[X]
�
E
⇥
X l
⇤� 1

l . (7)

Remark 8. Proposition 7 is a special case of Jensen’s inequal-
ity [26]:

h(E[X]) E[h(X)] , (8)

where h is a differentiable convex function on R. The fact that
X must be in Ll has a negligible effect since l = 1 should
always be feasible, i.e., E[X] exists. As the random variables
of our interest have existing MGF bounds, this should be a
very mild assumption.

Since l = 1 is feasible for X 2 L1, (7) can be rewritten as

E[X] = inf
l�1

n�
E
⇥
X l
⇤� 1

l

o
. (9)

Using (9) one step before the quasi-Union bound’s invoca-
tion (5) leads to

E
h
e✓A

0(s,t)
i
E

h
emax0is{A(i,t)�S(i,s)}

i

(9)
= inf

l�1

⇢⇣
E
h
el✓max0is{A(i,t)�S(i,s)}

i⌘ 1
l

�

(5)
 inf

l�1

8
<

:

sX

i=0

E
h
el✓(A(i,t)�S(i,s))

i! 1
l

9
=

; . (10)

This new bound is obviously always at least as accurate as
the quasi-Union bound (5), since l = 1 is feasible. The
reason why this can improve over previous estimation lies in
the subadditivity of the root function. It yields the following
relation:

inf
l�1

8
<

:

sX

i=0

E
h
el✓(A(i,t)�S(i,s))

i! 1
l

9
=

;

 inf
l�1

(
sX

i=0

⇣
E
h
el✓(A(i,t)�S(i,s))

i⌘ 1
l

)
.

The infimum on the right hand side is achieved at l = 1,
which proves again that Lyapunov’s inequality cannot worsen
the bound’s tightness. Yet, the subadditivity also implies that
the insertion of Lyapunov’s inequality can mitigate the effect
of the quasi-Union bound (5), since we take the root outside
of the sum. As our numerical evaluation in Section IV shows,
in some cases a significant improvement for the output bound
is achieved despite this method’s minimal invasiveness.

B. Application to (�, ⇢)-Bounds
The bounds in (5) and (10) give an estimate for the min-plus

operators in Theorem 6, but are computationally infeasible for
larger networks. Since the number of sums in these calcula-
tions typically scales linearly with the number of invoked min-
plus operators, one usually seeks for stationary closed-form

408

Fig. 2. One server topology.

solutions. Using (�, ⇢)-bounds (Definition 3) conveniently
solves this problem by letting these sums converge, as the
next proposition together with its corresponding remark show.

Proposition 9. [24] Consider a (�A(✓), ⇢A(✓))-bounded ar-
rival process A(s, t) with (�S(✓), ⇢S(✓))-bounded dynamic
S-server S(s, t). If the stability condition ⇢A(✓) < �⇢S(✓)
holds, then the output A0 is (�A0(✓), ⇢A0(✓))-bounded with

�A0(✓) =�A(✓) + �S(✓)�
1

✓
log
⇣
1� e✓(⇢A(✓)+⇢S(✓))

⌘
,

⇢A0(✓) =⇢A(✓).

Remark 10. The computational advantage can be observed as
follows:
The quasi-Union bound yields E

h
e✓A

0(s,t)
i (5)

Ps

i=0 E
⇥
e✓(A(i,t)�S(i,s))

⇤
, i.e., we have to compute a

sum with s+1 summands. With the additional assumption of
(�, ⇢)-constraints, the output can be bounded by the closed
form e✓(⇢A(✓)(t�s)+�A(✓)+�S(✓))

1�e✓(⇢A(✓)+⇢S(✓)) (see Subsection (III-C) for
details).

By an analogous calculation, we obtain for our new output
bound the following result:

Proposition 11. Under the same assumptions as in Propo-
sition 9, under the stability condition ⇢A(l✓) < �⇢S(l✓) we
obtain that the output A0 is (�A0(✓), ⇢A0(✓))-bounded with

�A0(✓) =�A(l✓) + �S(l✓)�
1

l✓
log
⇣
1� el✓(⇢A(l✓)+⇢S(l✓))

⌘
,

⇢A0(✓) =⇢A(l✓),

where l � 1.

Proof: See Appendix A.
Thus, this new output bound can be also used within (�, ⇢)-

constraints. I.e., it can easily be integrated in existing end-to-
end analyses.

C. Single Server Example
Assume a single flow - single server setting as in Figure 2.

We have already deduced that

E
h
e✓(A

0(s,t))
i (3)
E

h
e✓(A↵S) (s,t)

i

(5)

sX

i=0

E
h
e✓(A(i,t)�S(i,s))

i
.

Given that the arrivals and the service have (�, ⇢)-constraints,
for ⇢A(✓) < �⇢S(✓) we continue with

E
h
e✓(A

0(s,t))
i

sX

i=0

E
h
e✓(A(i,t)�S(i,s))

i

Fig. 3. MMOO Model.

=
sX

i=0

E
h
e✓A(i,t)

i
E
h
e�✓S(i,s)

i

sX

i=0

e✓⇢A(✓)(t�i)+✓�A(✓)e✓⇢S(✓)(s�i)+✓�S(✓)

=e✓(⇢A(✓)(t�s)+�A(✓)+�S(✓))

·
sX

j=0

e✓(⇢A(✓)+⇢S(✓))j

e✓(⇢A(✓)(t�s)+�A(✓)+�S(✓))

1� e✓(⇢A(✓)+⇢S(✓))
, (11)

where we have used the independence of arrivals and service
in the second line, (�, ⇢)-bounds in the third line and the
convergence of the geometric series in the last line.

If we used Lyapunov inequality instead, we would obtain
in comparison

E
h
e✓A

0(s,t)
i

 inf
l�1

(✓
el✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

1� el✓(⇢A(l✓)+⇢S(l✓))

◆ 1
l
)

 inf
l�1

8
<

:
e✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

�
1� el✓(⇢A(l✓)+⇢S(l✓))

� 1
l

9
=

; . (12)

IV. EVALUATION

In this section, we investigate the increased accuracy of
our new output bound introduced in Section III. That is, we
evaluate the gain of the output bound calculation in a single
server setting in conjunction with the delay bound for a two
server topology and a fat tree. The improvement factor is
measured by calculating

Bound standard approach
Bound new method

,

where clearly larger values are desirable.
The formulae are implemented in the general-purpose pro-

gramming language Java2, version 8.
The arrivals are either exponentially distributed with param-

eter �, i.e.,

E
h
e✓A(s,t)

i
=

✓
�

�� ✓

◆t�s

, 0 < ✓ < �,

or follow the Markov-Modulated On-Off (MMOO) traffic
model. That is, it consists of a continuous-time Markov chain
with two states, 0 and 1, together with transition rates µ and

2https://java.com

409

● ● ● ● ● ● ● ● ● ● ●

1

2

3

4

5

6 9 12
Delta Time

O
ut

pu
t B

ou
nd

●

Standard Bound
New Bound

(a) Exponential arrivals with � = 3.8, service rate r = 3

●
●

●
●

●

●

●

●

●

●

●

10

20

30

40

6 9 12
Delta Time

O
ut

pu
t B

ou
nd

●

Standard Bound
New Bound

(b) Exponential arrivals with � = 0.5, service rate r = 10

● ● ● ● ● ● ● ● ● ● ●

0

50

100

150

200

6 9 12
Delta Time

O
ut

pu
t B

ou
nd

●

Standard Bound
New Bound

(c) MMOO with µ = 8, � = 12, b = 3, service rate r = 1.5

● ● ● ● ● ● ● ● ● ● ●

0

10

20

30

40

6 9 12
Delta Time

O
ut

pu
t B

ou
nd

●

Standard Bound
New Bound

(d) MMOO with µ = 4, � = 12, b = 3, service rate r = 1.5

Fig. 4. Output bound comparison in the single server setting.

�. If it is in state 0, it means that no traffic arrives, whereas
in state 1, data with burst rate b are sent (see Figure 3). It has
been shown in [27] that, for this arrival model, the MGF can
be bounded by

E
h
e✓A(s,t)

i
 e✓!(✓)·(t�s), ✓ > 0,

where !(✓) =
�d+

p
d2+4µ✓b
2✓ and d = µ+��✓b. The service

is always chosen to be work-conserving and of constant rate.
If not stated otherwise, ✓ and the Lyapunov parameters li

are optimized by a naive grid search, i.e, we define points
along a grid for each parameter, calculate the bound for each
combination, and take the one with the best objective value.

With each application of this new inequality, an additional
parameter has to be optimized. On the other hand, since
the costs of incorporating Lyapunov’s inequality in a given
implementation are rather moderate, it gives us convenient
new options: Either we prioritize accuracy and optimize all
li (at the cost of higher computational effort), or focus more
on speed setting many li = 1 (setting all li equal to 1 would
yield the old approach). Hence, we gain more flexibility while
being minimally invasive at the same time.

A. Single Server
For the single hop topology (Figure 2), we calculated

the bounds in (11) and (12). For exponentially distributed

Distribution Average gain Maximum gain
Exponential 1.30 1025.0

MMOO 1.34 381.9

Distribution Average gain Maximum gain
Exponential 1.23 233.7

MMOO 1.62 3449.9

TABLE I
OUTPUT BOUND IMPROVEMENT FOR A SINGLE SERVER (ABOVE: UNIFORM

SAMPLING, BELOW: EXPONENTIAL SAMPLING).

Fig. 5. Two server topology.

arrivals and Markov-Modulated On-Off (MMOO) traffic, two
examples for each distribution are depicted in Figure 4. As
we can observe from these examples, the actual gain from our
new output bound calculation can vary strongly depending
on the scenarios’ parameters. For that reason, we decided
to systematically sample the parameter spaces in a Monte
Carlo-type fashion. That is, we took samples from a uniform
distribution as well as an exponential distribution (since the
parameter space is only lower bounded) and computed the

410

●

●

●

●

●

●

●

1e−04

1e−03

1e−02

1e−01

1e+00

4 6 8 10
Delay

Vi
ol

at
io

n
Pr

ob
ab

ilt
y

●

Standard Bound
New Bound
Simulation

(a) Exponential arrivals with (�1,�2) = (0.2, 8.0), service rates (r1, r2)
= (8.0, 0.2)

●

●

●

●

●

●

●

1e−04

1e−03

1e−02

1e−01

1e+00

4 6 8 10
Delay

Vi
ol

at
io

n
Pr

ob
ab

ilt
y

●

Standard Bound
New Bound
Simulation

(b) Exponential arrivals with (�1,�2) = (0.4, 3.5), service rates (r1, r2)
= (4.5, 0.4)

●

●

●

●

●

●

●

1e−03

1e−02

1e−01

1e+00

1e+01

4 6 8 10
Delay

Vi
ol

at
io

n
Pr

ob
ab

ilt
y

●

Standard Bound
New Bound
Simulation

(c) MMOO with (µ1, µ2) = (1.2, 3.7), (�1,�2) = (2.1, 1.5), (b1, b2) =
(3.5, 0.4), service rates (r1, r2) = (2.0, 0.3)

●

●

●

●

●

●

●

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

4 6 8 10
Delay

Vi
ol

at
io

n
Pr

ob
ab

ilt
y

●

Standard Bound
New Bound
Simulation

(d) MMOO with (µ1, µ2) = (1.0, 3.6), (�1,�2) = (2.2, 1.6), (b1, b2) =
(3.4, 0.4), service rates (r1, r2) = (2.0, 0.3)

Fig. 6. Delay bound comparison in the two server setting.

average and largest improvement. The results are given in
Table I.

We observe the possible gain to vary strongly with a
maximum ratio Standard Bound / New Bound of three orders
of magnitude. The overall average improvement factor is about
1.37, where exponentially distributed samples lead to larger
improvements than the uniform ones.

B. Two Server Topology

In the previous subsection, we show that vast improvement
on the output bound is possible in some cases. Next, we
investigate the effect on the delay bound. Therefore, we extend
the previous setting by an additional server (Figure 5). Here,
a cross flow f2 enters server S2 and its output ((A2↵S2))
is prioritized over the flow of interest f1 at server S1. The
improved output bound impacts the delay by being more
accurate in terms of the foi’s leftover service. Mathemati-
cally speaking, this leftover service at S1 is described by
S1,l.o. = [S1 � (A2↵S2)]

+. In this topology, we calculate the
delay bound (4) but take the new output bound invocation into
account. Again, we display exponentially distributed arrivals
and MMOO traffic. The plot is complemented by delay
measurements in a packet-level simulation. Here, the violation
probability is estimated by the empirical distribution comput-

Distribution Average gain Maximum gain
Exponential 1.14 255.2

MMOO 1.23 100.7

Distribution Average gain Maximum gain
Exponential 1.76 85.5

MMOO 1.81 342.0

TABLE II
IMPROVEMENT OF THE DELAY’S VIOLATION PROBABILITY FOR THE TWO
SERVER SETTING (ABOVE: UNIFORM SAMPLING, BELOW: EXPONENTIAL

SAMPLING).

ing the average number of occurred delays. All parameters are
again randomly sampled by the Monte-Carlo type approach
from the previous subsection.

As for the output bound, we often observe an improved
delay bound, as one can see in the examples of Figure 6.
It shows that even in the delay space (the difference in the
delay bound for a given probability), the difference is up
to 50%. Depending on the parameters, the gap between the
simulation results and the analytically derived bounds can be
closed considerably. Average behavior on the other hand is
less significant. Table II indicates a highly non-linear behavior
where some violation probabilities are improved by a factor
of 342.0, whereas average gain is moderate with a total mean
of 1.33.

411

Fig. 7. Fat tree topology.

2 3 4 5 6 7 8
Number of Servers

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

25

Fig. 8. Delay bound improvement for different numbers of servers.

C. Fat Tree

Starting off with the two server topology in Figure 5, we
investigate the delay bound’s scaling behavior for multiple
invocations of Lyapunov’s inequality. We now take a look
at n flows, where n � 1 are cross flows with corresponding
server and their outputs jointly enter server S1 (see Figure 7).
The flow of interest is again, due to arbitrary multiplexing,
assumed to be served after the cross traffic. In terms of
leftover service provided for the foi, this means S1,l.o. =
[S1 �

Pn
i=2 (Ai↵Si)]

+
.

We calculated the delay’s violation probability for the
following setting: The foi is exponentially distributed with
parameter �1 = 0.5 and enters server S1 with rate 4.5. The
n� 1 cross flows are also exponentially distributed, but with
parameters �i = 8, i = 2, . . . , n and corresponding servers
Si with rates ri = 2, i = 2, . . . , n. The accuracy gain for
different numbers of servers is depicted in Figure 8.

We observe that the ratio increases quickly to 25.6 in the
case of 8 servers, even though only an improvement of 1.59
was achieved for the two server setting. This shows that the
Lyapunov approach can fully develop its strengths in larger
networks, when more output bound calculations have to be
invoked.

2 4 6 8 10 12
Number of Servers

R
at

io
 o

f C
om

pu
ta

tio
n

Ti
m

e

0

2

4

6

8

10

12

14

2.1 1.9

4.3
3.7

6.5

5.6

8.6

7.6

10.8

9.7

12.9

11.7

Linear Scaling

Exponential Arrivals
MMOO Arrivals

Fig. 9. Computation time comparison for the state-of-the-art and Lyapunov
approach.

D. Runtime

So far, we focused on the Lyapunov bound’s accuracy gain
and observed favorable outcomes. Yet, the other side of the
coin is the computational effort the new output bound cal-
culation must invest to optimize over the higher-dimensional
parameter space. To investigate this in more detail, we ran
104 experiments for exponentially distributed arrivals as well
as MMOO-traffic in the two server topology (Figure 5) and
the fat tree (Figure 7) with 2, 4, . . . , 12 flows. In this scenario,
the aforementioned naive grid optimization runs quickly into
computational problems, as a computation for 4 flows already
took approximately a day. Therefore, we implemented the so
called Pattern Search [28]. Here, a function is minimized by
changing arguments only in a single direction. If multiple
modifications lead to a descent, a step in the direction of all
successful intermediate steps is attempted. The results of the
ratio

Computation time new method
Computation time standard approach

for these experiments are depicted in Figure 9.
Under Pattern Search, we observe that computational over-

head scales only linearly with the number of invocations of
the Lyapunov inequality. This indicates that a good trade-
off between cost and accuracy gain can be achieved, if
optimization is done carefully.

V. DIRECT APPLICATION TO DELAY BOUNDS

At first glance, it is tempting to apply Lyapunov’s inequality
to the delay bound calculation as well. That is, we would
modify the computation of the delay’s violation probability as
follows:

P(d(t) > T)
(4)
E

h
e✓(A↵S) (t+T,t)

i

(2)
=E

h
e✓max0it+T {A(i,t)�S(i,t+T)}

i

=E
h
e✓max0it{A(i,t)�S(i,t+T)}

i

412

(9)
= inf

l�1

⇢⇣
E
h
el✓max0it{A(i,t)�S(i,t+T)}

i⌘ 1
l

�

(5)
 inf

l�1

8
<

:

tX

i=0

E
h
el✓(A(i,t)�S(i,t+T))

i!
1
l

9
=

; ,

(13)

where we used that A(s, t) = 0 for s � t in the third line
and the quasi-Union bound in the last inequality. Owing to
the fact that this estimates a probability, only values below
1 are of interest for (13). Disappointingly for this case, no
improvement can be obtained, as the next theorem states.

Theorem 12. Let a delay bound T according to (13) exist
such that

tX

i=0

E
h
el✓(A(i,t)�S(i,t+T))

i
< 1. (14)

If l and ✓ are optimized (denoted by l⇤ and ✓⇤), then l⇤ = 1,
i.e., no improvement can be achieved.

Proof: Assume that l⇤ and ✓⇤ are the optimal parameters
for (13) and that l⇤ > 1. This means that there exist 1 l0 < l⇤

and ✓0 > ✓⇤ such that l0✓0 = l⇤✓⇤. But this means

tX

i=0

E
h
el

⇤✓⇤(A(i,t)�S(i,t+T))
i!

1
l⇤

=

tX

i=0

E
h
el

0✓0(A(i,t)�S(i,t+T))
i!

1
l⇤

>

tX

i=0

E
h
el

0✓0(A(i,t)�S(i,t+T))
i!

1
l0

,

where we inserted l⇤✓⇤ = l0✓0 in the second line. In the third
line, we used that x

1
l⇤ > x

1
l0 holds for all x 2 (0, 1) and

l⇤ > l0 � 1. Clearly, this is a contradiction to our assumption
that we had an optimal solution. Thus, the optimal l⇤ must be
equal to 1.

As a consequence, the Lyapunov approach can only indi-
rectly decrease delay bounds via the output bound calculation.
The same holds for the backlog bound (the proof follows along
the same lines).

VI. CONCLUSION

In this paper, we proposed a novel approach to improve
the MGF output bound calculation in the Stochastic Network
Calculus using Lyapunov’s inequality. We also gave a proof
that shows why this is a valid bound and that it is always
at least as accurate as the state-of-the-art method. It is also
shown in comprehensive numerical evaluations that the delay’s
violation probability can be improved for two server topologies
as well as fat trees. Our evaluation indicated a significant gain
in some cases while leading to more moderate improvements
on average. For a fat tree, we observed a very high gain as
the number of cross flows is increased. These gains come
conceptually for free, as no additional constraints have to
be imposed, thus making our approach minimally invasive.

Yet, from a computational perspective the gain comes at the
price of a higher-dimensional optimization in the last stage of
computing the bounds. Fortunately, our experiments indicate
that the computational overhead only scales linearly with
the invocations of the Lyapunov inequality under a carefully
chosen optimization method.

Taking into account the crucial role of the output bound,
we believe that we have made a significant contribution to
the SNC network analysis. On the other hand, there are still
many open challenges in the analysis of larger and more
complex networks, e.g., dealing effectively with correlations
in the traffic flows, which are left for future work.

REFERENCES

[1] A. Singla, B. Chandrasekaran, P. B. Godfrey, and B. Maggs, “The
internet at the speed of light,” in Proc. ACM Workshop on Hot Topics
in Networks’14, ser. HotNets-XIII, 2014, pp. 1–7.

[2] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[3] A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of things–a
survey of topics and trends,” Springer Information Systems Frontiers,
vol. 17, no. 2, pp. 261–274, 2015.

[4] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical sys-
tems: the next computing revolution,” in Proc. ACM Design Automation
Conference’10, 2010, pp. 731–736.

[5] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization
and linearity: an algebra for discrete event systems. John Wiley &
Sons Ltd, 1992.

[6] R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation,” IEEE Transactions on information theory, vol. 37, no. 1, pp.
114–131, 1991.

[7] ——, “A calculus for network delay, part II: Network analysis,” IEEE
Transactions on information theory, vol. 37, no. 1, pp. 132–141, 1991.

[8] C.-S. Chang, Performance guarantees in communication networks.
London: Springer-Verlag, 2000.

[9] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deter-
ministic queuing systems for the internet. New York: Springer-Verlag,
2001.

[10] F. Ciucu, A. Burchard, and J. Liebeherr, “A network service curve
approach for the stochastic analysis of networks,” in Proc. ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’05), vol. 33, no. 1, 2005, pp. 279–290.

[11] M. Fidler, “An end-to-end probabilistic network calculus with moment
generating functions,” in Proc. IEEE IWQoS’06, Jun. 2006, pp. 261–270.

[12] Y. Jiang and Y. Liu, Stochastic network calculus. Springer, 2008, vol. 1.
[13] F. Ciucu and J. Schmitt, “Perspectives on network calculus – no free

lunch, but still good value,” in Proc. ACM SIGCOMM’12 Conference,
New York, NY, USA, Aug. 2012, pp. 311–322.

[14] C. Li, A. Burchard, and J. Liebeherr, “A network calculus with effective
bandwidth,” IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp.
1442–1453, 2007.

[15] F. Ciucu, F. Poloczek, and J. Schmitt, “Sharp per-flow delay bounds
for bursty arrivals: The case of FIFO, SP, and EDF scheduling,” in
Proc. IEEE International Conference on Computer Communications
(INFOCOM’14), Toronto, Canada, 2014.

[16] A. Rizk, F. Poloczek, and F. Ciucu, “Computable bounds in fork-
join queueing systems,” in Proc. ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’15),
vol. 43, no. 1, 2015, pp. 335–346.

[17] T. Zhu, D. S. Berger, and M. Harchol-Balter, “SNC-meister: Admitting
more tenants with tail latency SLOs,” in Proc. ACM Symposium on
Cloud Computing (SoCC’16), 2016.

[18] M. Fidler and Y. Jiang, “Non-asymptotic delay bounds for (k, l) fork-join
systems and multi-stage fork-join networks,” in Proc. IEEE International
Conference on Computer Communications (INFOCOM’16), 2016, pp.
1–9.

[19] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus - design and evaluation of an accurate and
fast analysis,” in Proc. ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS’17), 2017.

413

[20] F. Poloczek and F. Ciucu, “Scheduling analysis with martingales,”
Elsevier Performance Evaluation, vol. 79, pp. 56–72, 2014.

[21] ——, “Service-martingales: Theory and applications to the delay analy-
sis of random access protocols,” in Proc. IEEE Conference on Computer
Communications (INFOCOM’15), 2015, pp. 945–953.

[22] F. Ciucu, F. Poloczek, and J. Schmitt, “Stochastic upper and lower
bounds for general markov fluids,” in Proc. IEEE International Tele-
traffic Congress (ITC 28’16), vol. 1, 2016, pp. 184–192.

[23] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under
arbitrary multiplexing: When network calculus leaves you in the lurch ...”
in Proc. IEEE International Conference on Computer Communications
(INFOCOM’08), Phoenix, AZ, USA, Apr. 2008.

[24] M. A. Beck, “Advances in theory and applicability of stochastic network
calculus,” Ph.D. dissertation, TU Kaiserslautern, 2016.

[25] F. Ciucu, F. Poloczek, and J. B. Schmitt, “Sharp bounds in stochastic
network calculus,” CoRR, vol. abs/1303.4114, 2013. [Online]. Available:
http://arxiv.org/abs/1303.4114

[26] R. Nelson, Probability, stochastic processes, and queueing theory: the
mathematics of computer performance modeling. Springer, 1995.

[27] C. Courcoubetis and R. Weber, “Buffer overflow asymptotics for a buffer
handling many traffic sources,” Journal of Applied Probability, vol. 33,
pp. 886–903, 1996.

[28] R. Hooke and T. A. Jeeves, “”Direct Search” Solution of Numerical
and Statistical Problems,” Journal of the ACM (JACM), vol. 8, no. 2,
pp. 212–229, 1961.

APPENDIX

A. Proof of Proposition 11
We have already seen in Subsection III-A that

E
h
e✓A

0(s,t)
i

 inf
l�1

8
<

:

sX

i=0

E
h
el✓(A(i,t)�S(i,s))

i! 1
l

9
=

; ,

which can be continued with

inf
l�1

8
<

:

sX

i=0

E
h
el✓(A(i,t)�S(i,s))

i! 1
l

9
=

;

= inf
l�1

8
<

:

sX

i=0

E
h
el✓A(i,t)

i
E
h
e�l✓S(i,s)

i! 1
l

9
=

;

 inf
l�1

8
<

:e✓(�A(l✓)+�S(l✓))

·

sX

i=0

el✓(⇢A(l✓)(t�i)+⇢S(l✓)(s�i))

! 1
l

9
=

; ,

where we, again, used the independence of arrivals and service
in the second line and the (�(✓), ⇢(✓))-constraints for arrivals
and service in the third line.

Since we assume that ⇢A(l✓) < �⇢S(l✓), we obtain by
convergence of the geometric series

· · · = inf
l�1

8
<

:e✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

·

0

@
sX

j=0

el✓(⇢A(l✓)+⇢S(l✓))j

1

A

1
l

9
>=

>;

 inf
l�1

(
e✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

·
✓

1

1� el✓(⇢A(l✓)+⇢S(l✓))

◆ 1
l

)
.

This finishes the proof, as this is equal to

· · · = inf
l�1

⇢
e✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

·e✓
⇣
� 1

l✓ log
⇣
1�el✓(⇢A(l✓)+⇢S(l✓))

⌘⌘�
,

which yields

�A0(✓) =�A(l✓) + �S(l✓)�
1

l✓
log
⇣
1� el✓(⇢A(l✓)+⇢S(l✓))

⌘
,

⇢A0(✓) =⇢A(l✓)

as the theorem states.

414

Hierarchical Layer Selection with Low Overhead in
Prioritized Network Coding

Marie Schaeffer, Roman Naumann, Stefan Dietzel, and Björn Scheuermann
Humboldt-Universität zu Berlin, Germany

Email: {marie.schaeffer, roman.naumann, stefan.dietzel}@hu-berlin.de, scheuermann@informatik.hu-berlin.de

Abstract—Network coding simplifies routing decisions, im-
proves throughput, and increases tolerance against packet loss. A
fundamental limitation, however, is delay: decoding requires as
many independent linear combinations as data blocks. Prioritized
network coding reduces this delay problem by introducing a
hierarchy of prioritization layers. What remains is the problem
of choosing a layer to approach two often-contradicting goals:
reduce delay until prioritized layers can be decoded and keep
the total number of transmissions low. In this paper, we propose
an algorithm for this problem that – based on limited feedback –
primarily minimizes per-layer delay but identifies opportunities
to reduce the required transmissions when per-layer delay is
unaffected. Our evaluation shows that our algorithm improves
per-layer delay compared to hierarchical network coding and is
close to the theoretical optimum number of total transmissions.

I. INTRODUCTION

Network coding (NC) is a widely studied approach to com-
munication systems [1]. Originally introduced by Ahlswede et
al. [2] as a technique to improve the throughput in networks,
NC has been proven to benefit many fields since, e. g., peer-to-
peer applications [3]–[5], network streaming [6], and combina-
tions thereof [7]. NC also improves robustness, which means
that the system better copes with packet loss. Distributed algo-
rithms can be simplified, and link capacities can be saturated
more effectively [1]. To implement these benefits, NC breaks
with traditional routing paradigms. Namely, nodes combine
two or more incoming packets and send these newly built
combinations instead of just forwarding the original packets.
In this paper, we discuss an improvement for the most broadly
studied class of network coding, linear network coding, where
original packets are combined into linear combinations [8].

One restriction inherent to NC is that it introduces additional
delay. With high probability, a receiver cannot retrieve any of
the original content as long as the number of received linear
combinations is lower than the number of messages that were
combined [9], [10]. Prioritized network coding (PNC) [11]
builds on linear network coding and reduces decoding delay
by introducing a hierarchy of priority layers on the original
messages. Linear combinations are computed per priority layer
rather than using the full message set. Consequently, a receiver
is able to decode a prioritized subset of messages with fewer
linear combinations. This encoding technique is also known
as expanding window random linear coding [12]. The order
in which different layers’ linear combinations are sent has
a direct impact on individual layers’ achievable decoding

performance and principal decodability at any given point in
time [13], [14]. In order to achieve a reduced delay and at the
same time avoid significant additional overhead, combinations
have to be built and sent in a sequence that reflects the layers’
individual priorities.

In summary, PNC can reduce per-message delay, but it only
does so under the right circumstances: all senders need to
carefully choose the correct layers for use in their next linear
combination. Otherwise, linear combinations either have an
increased chance of being linearly dependent, which results
in increased message overhead, or they introduce additional
per-packet decoding delay, which results in less effective
prioritization. This selection problem of PNC has not yet
been studied in detail for scenarios with limited knowledge
about the receivers’ decoder state. Existing approaches select
layers uniformly at random (e. g., [11], known as hierarchical
network coding (HNC)), or they use a weighted random
choice, giving higher weight to prioritized layers [12]. Both
strategies cause overhead, since they result in an increased
probability of non-innovative content being sent.

In this paper, we take a more structured approach to the
selection problem and analyze – based on limited feedback
messages –, which selection of layers (a) reduces the total
number of transmissions and (b) improves per-message de-
coding delay. We derive performance indicators that allow
a node to classify layer choices based on these two criteria
and propose an algorithm, eNhanced Prioritized nEtwork
Coding (iNsPECt), which implements a deterministic strategy
for choosing the layer that is used to generate the next
linear combination. Based on these performance indicators,
we instantiate a wireless multi-hop protocol that is based on
single-hop feedback messages, which concisely summarize
each node’s decoder matrix state. Our protocol thereby im-
plements prioritization with much less overhead than existing
approaches while retaining the low decoding delay.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work, and Section III introduces our
system model. In Section IV, we approach the layer selection
problem with two performance indicators that guide layer
choices. We further introduce an algorithm that yields optimal
results under an analytical model, which we instantiate as
a practical network protocol in Section V. Our simulative
evaluation compares the protocols iNsPECt, HNC, and NC
in Section VI before Section VII concludes the work.ISBN 978-3-903176-08-9 c© 2018 IFIP

II. RELATED WORK

NC was introduced by Ahlswede et al. [2] to improve
throughput in communication networks. In their work, the
network model is a directed graph with one node as the source
and multiple nodes as receivers. Ahlswede et al. demonstrate
that the optimal throughput, which is given by the “minimum
cut” between the source node and any receiver in a network
graph, can be achieved when the nodes send linear combina-
tions of the original messages. Later, Ho et al. [9] showed
that randomly chosen linear coefficients c1, c2, . . . over a
finite field Fq are sufficient to achieve optimal flow rates;
this approach is called random linear network coding (RLNC).
With RLNC, linear combinations are built by multiplying the
n original messages m(1),m(2), . . . ,m(n) with the random
coefficients, the j-th linear combination X(j) being:

X(j) =

n∑
i=1

c
(j)
i m(i). (1)

When multiple such combinations are received, they form
a system of linear equations. The original messages can be
retrieved by solving the system with, for example, Gaussian
elimination (GE), once sufficient combinations have been
received. In general, it is not possible to decode a subset of
messages with fewer than n linear combinations. However,
all messages can be decoded immediately once enough linear
combinations were received. This has been described as the
“all-or-nothing property” [15].

As Nguyen et al. [11] note, for many applications, NC’s
delay is not tolerable. Consequently, Nguyen et al. propose
PNC, which is based on RLNC and reduces per-packet delay.
PNC introduces hierarchical layers R1, R2, . . . , R|R| of prior-
itized packets. That is, linear combinations of the l-th layer
encode only messages from m(1),m(2), . . . ,m(Rl):

x(j) =

Rl∑
i=1

c
(j)
i m(i), for a layer-l combination. (2)

An important question is how to determine which layer to
choose for generating new linear combinations. The most basic
approach, used by HNC [11], is to choose layers uniformly
at random. HNC generally provides lower per-packet delay
than RLNC, but increases the overhead due to non-informative
linear combinations, i. e., linear combinations from layers that
can already be decoded.

Esmaeilzadeh et al. [14] explicitly studied the layer selec-
tion problem both for systems without any knowledge about
the receivers’ decoder states and for systems with perfect
knowledge about the decoder states. The proposed layer selec-
tion algorithm is based on an exhaustive search through packet
erasures. In addition, finite-horizon Markov decision processes
are proposed for the perfect-knowledge system model. The
authors describe their perfect-knowledge model as idealistic,
since perfect knowledge is usually unavailable. Additionally,
both algorithms’ high computational complexity makes them
unusable for practical applications with greater numbers of
layers and/or users, but they may serve as a theoretical upper

bound. We, different to [14], assume limited knowledge of the
neighbors’ decoder states and derive a simpler performance
indicator that does not require exhaustive searching.

Naumann et al. [13] denote that all efficient layer selection
schemes for PNC will send linear combinations roughly in
order of priority, which they exploit to implement specialized
Gaussian-elimination-based decoders. Such decoders improve
both memory footprint and computational decoding complex-
ity by reordering rows and inverting certain GE elimination
steps in a joint decoder matrix for all layers. Our approach is a
natural fit for such decoders, as it is based on a greedy strategy
that sends in order of prioritization most of the time. Even
more so, we provide an upper bound on the limit of deviation
from this greedy strategy so that the asymptotic bounds on
computational decoding overhead described in [13] hold.

Shenglan Huang et al. [16] build upon HNC with uniform
random layer selection to minimize the amount of redundant
packets sent in a multi-sender use case. Their algorithm
estimates, according to loss rates and information about links,
the ideal number of linear combinations that each sender
should produce to reduce linearly dependent combinations.
The algorithm does not, however, provide layer selection
capabilities different from HNC.

Chau et al. [17] also use the HNC coding technique but
propose an additional coding scheme that combines messages
from more than one HNC-coded generation. Thereby, the
scheme provides additional redundancy, which protects against
packet loss, and reduces the number of transmissions until all
layers can be decoded. Our proposed layer selection technique
could be used in conjunction with their HNC-based coding
scheme, since it does not modify the coding format.

Approaches different from hierarchical PNC have been
proposed to reduce per-packet delay in NC: Shrader et al.
[18], for example, propose to employ a systematic coding
approach. Namely, a subset of the network’s nodes sends
uncoded packets in some circumstances. Due to the selection
of nodes, the level of error protection is not reduced, but the
non-encoded packets reduce per-packet delay as they do not
require decoding. Yan et al. [15] instead trade correctness of
decoded information for an increased chance of rank-deficient
decoding by regarding the decoder matrix as a collection
of underdetermined systems and implementing rank-deficient
decoders. Finally, Claridge et al. [19] demonstrate that rank
deficient decoding without chance of error is feasible when
using a small enough finite field. Such a small field, however,
also reduces the level of error protection and increases the
chance of linear dependency.

III. SYSTEM MODEL

A. Information model

We assume that the information to be transmitted by a
source node can be split into equally sized messages M =
(m(1),m(2), . . . ,m(n)). Each message m(i) consists of b

symbols (m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
b) over a finite field Fq . We are

concerned with prioritized messages, i. e., some messages
convey more information than others. In the following, and

416

w. l. o. g., we assume m(i) has higher priority than m(j) for
all 1 ≤ i < j ≤ n. PNC introduces hierarchical layers that
we formalize as the vector r = (r1, r2, . . . , r|r|) ∈ N|r|. Each
entry rl denotes the number of messages that the layer l adds,
so it holds that n =

∑|r|
l=1 rl. Analogously, we define R as

the cumulated layer vector with Ri =
∑i

l=1 rl.
To transmit information, each source creates a sequence

of network-coded packets; the j-th packet has the form
(c(j),x(j)). Here, c(j) is called the encoding vector and
consists of randomly chosen coefficients (c

(j)
1 , c

(j)
2 , . . . , c

(j)
n),

i. e., random symbols over Fq . The second component, x(j),
is called the information vector and contains the actual linear
combination. An information vector of the l-th (1 ≤ l ≤ |r|)
layer and j-th coded packet is encoded as follows [1], [12]:

x
(j)
k =

Rl∑
i=1

c
(j)
i m

(i)
k ∀1 ≤ k ≤ b (3)

Since finite field operations are generally performed over
all symbols of a message or information vector, we usually
omit the symbol index k, which reduces Equation (3) to
Equation (2). Multiple generations or multiple source nodes
fit the above definitions by executing the encoding mechanism
repeatedly in sequence or in parallel, respectively.

The finite field F28 is a typical choice for network coding
[1], [20] and is used in the following. With F28 , linear
dependencies between randomly generated combinations are
unlikely [9], and the elements’ binary representations occupy
one byte each, which is advantageous in practical systems.

B. Network model

Our network model is a wireless network with multiple
nodes. Nodes transmit information as broadcast messages.
Such messages may be received or lost by multiple nodes
independently. We allow several nodes to be source nodes,
which generate new messages M . Both source nodes and non-
source nodes receive, re-encode, and transmit information.

Before any transmission starts, a source node holds the
complete data set, which is to be transmitted via PNC to the
sink nodes. To simplify the system model, we assume in this
work that all nodes in the network are sink nodes, which is
a typical simplification for network coding. It alleviates the
need to share topology information and improves the network
capacity utilization [21]. The generality of our results is not
affected by this simplification: if all nodes within the network
receive the data, then any single sink or few sinks trivially
have the information, too. As a consequence, a source node
of one transmission is a sink node to other nodes, as well.

C. Problem statement

According to our information model, data to be transmitted
is partitioned into different priority layers. Given this partition,
the problem statement is to find an efficient transmission pro-
cess that implements the prioritization scheme that is defined
by the layers. Here, “efficient” comprises two aspects: low
per-layer delay and low number of total transmissions. The

per-layer delay for prioritized layers describes the prioritiza-
tion performance, whereas the total number of transmissions
describes the overhead that is introduced. Ideally, both aspects
are jointly optimized by implementing effective prioritization
without introducing overhead.

It is impossible, however, to achieve low delay at the same
time as low overhead in all situations, as these goals may
conflict. Rather, we propose a protocol that jointly optimizes
both whenever possible and prioritizes low delay in conflict
situations. To understand the connection between delay and
total transmission number, consider an example topology with
one source node S and three non-source nodes N1, N2, and
N3. Assume a simple PNC system with a generation size n =
4 and two priority layers r = (2, 2). We will now discuss two
scenarios: one where delay and overhead are in conflict and
one where both can jointly be optimized.

As the first scenario, assume nodes N1, N2, and N3 have
received 1, 1, and 0 linearly independent combinations of the
first layer, respectively, and only N3 has received 1 linear
combination of the second layer. Now, S sends two more linear
combinations of the first layer. Then, N1 and N2 can decode
the first layer after having received the first linear combination,
and node N3 can decode after having received both linear
combinations. However, two more linear combinations of the
second layer must be sent before all nodes can retrieve the
second priority layer. If, instead, S immediately starts sending
linear combinations of the second layer, all nodes must wait
for one more transmission before they can decode the first
layer. After only three transmissions in total (instead of four,
as before), all nodes can decode layer one and two.

As the second scenario, consider nodes N1, N2, and N3

have initially received 2, 1, and 0 independent combinations
of the first layer and 1, 2, 3 independent linear combinations
of the second layer, respectively. In this case, sending only
one combination of the (lower priority) second layer from the
beginning saves one transmission and achieves minimal per-
layer delay.

The important observation here is that the goals of pri-
oritization and not introducing extraneous transmissions can
conflict, but this is not always the case. Our goal is to provide
optimal prioritization first, but identify such occasions where
we can save transmissions without introducing per-layer delay.

IV. PROPOSED ALGORITHM

In this section, we approach the problem statement with
a simplified, theoretical model: nodes have knowledge of
their neighbors’ decoder matrix rank and each layer’s linear
subspace dimension. There are no packet losses or delays.
We describe the proposed algorithm, iNsPECt, from the per-
spective of an individual node. In Section V, we incorporate
packet losses, delays, and the need for feedback messages in
the design of a network protocol based on this algorithm.

Our proposed algorithm combines two complementary
strategies, which we term “Ord” and “SL,” that are used
to decide which layer to select for transmission of the next
linear combination. Both strategies (and our algorithm) make

417

use of the fact that when one node’s decoder matrix for a
given layer has a higher rank than its neighbor’s, sending a
linear combination is with high probability innovative. “Ord,”
short for in order, is a greedy strategy that selects layers in
strict order of prioritization; “SL” sends linear combinations
of a single layer only. Our key idea is to use strategy Ord
by default to minimize delay for prioritized layers. But we
resort to sending a lower priority layer (with strategy SL)
if it reduces the required total transmissions and does not
negatively affect per-layer delay. Strategy SL takes a target
layer i as a parameter; SL(i) sends only linear combinations
of layer i until layer i – and thus all higher priority layers, as
well – can be decoded. Obviously, SL(i) requires the minimum
number of transmissions until layer i can be decoded; and
strategy SL(|r|) equals RLNC. Strategy Ord instead sends
linear combinations of the highest priority non-decodable layer
until each neighbor can decode that layer. It then continues
with the next layer. Therefore, Ord ensures that high priority
layers are always decoded before lower-priority layers.

To determine which strategy to use, our algorithm models
the benefits of choosing one strategy over the other at any
point in time with two performance indicators. Each indicator
takes a parameter i and returns the benefits or drawbacks that
result from choosing strategy SL(i) over Ord.

The first indicator, Qrt(i), counts the savings in total number
of transmissions until each neighbor of a node can decode
layer i. Positive values indicate that using SL(i) is beneficial
over choosing Ord. The second indicator, Qdc(i), analogously
counts the additional per-layer delay (in transmissions) until
a node’s neighbors can decode layers 1 to i, cumulated over
the layers and all neighbors. Positive values indicate additional
overhead introduced by choosing SL(i). In the following, we
first derive the two indicators from our simplified system
model and then define the selection algorithm.

A. Performance indicators

1) Reduction in transmissions: We define RT(∗)
SL (i) as the

number of required transmissions until all neighbors can
decode layer i using the SL strategy. Analogously, RT(∗)

Ord(i)
denotes the number of required transmissions using the Ord
strategy. Consequently, the savings in transmissions are:

Qrt(i) = RT(∗)
Ord(i)− RT(∗)

SL (i). (4)

Next, we derive RT(∗)
Ord(i) and RT(∗)

SL (i). Let γ(x)
l be the number

of independent linear combinations of layer l that neighbor x
has received (and equivalently, the number of dimensions of
the linear subspace that pertains to layer l), and let Γ(x)

l be the
accumulated number of received combinations from layer 1 to
l of neighbor x. Let RT(x)

SL (i) be the number of transmissions
required for a single node x to decode layer i. Layer i can
be decoded once layer i’s linear subspace has full rank, i. e.,
when Γ

(x)
i = Ri. Alternatively, layer i may be decoded when

a lower priority subspace has full rank, i. e., Γ(x)
j = Rj for

some j > i. Thus,

RT(x)
SL (i) = min

(
Ri − Γ

(x)
i ,

|r|
min
j=i+1

(
Rj − Γ

(x)
j

))

⇔ RT(x)
SL (i) =

|r|
min
j=i

(
Rj − Γ

(x)
j

)
. (5)

To generalize RT(x)
SL (i) to RT(∗)

SL (i), we take the maximum over
all neighbors:

RT(∗)
SL (i) = max

x∈ Neigh.
RT(x)

SL (i). (6)

We construct RT(∗)
Ord(i) recursively. Since strategies Ord and

SL are identical for i = 1, it holds that

RT(x)
Ord(1) = RT(x)

SL (1), and

RT(∗)
Ord(1) = max

x∈ Neigh.
RT(x)

SL (1) = RT(∗)
SL (1).

(7)

Counting the required transmissions for the (i+1)-th layer,
we first count the transmissions from the i-th layer and then
add the remaining, maximum missing matrix rank over all
neighbor nodes:

RT(∗)
Ord(i+ 1) =

RT(∗)
Ord(i) + max

x∈ Neigh.

(
RT(x)

SL (i+ 1)− RT(x)
SL (i)

)
, (8)

which, if we define RT(x)
SL (0) = 0, reduces to

RT(∗)
Ord(i) =

i−1∑
j=0

max
x∈ Neigh.

(
RT(x)

SL (j + 1)− RT(x)
SL (j)

)
. (9)

2) Per-layer delay: Analogously, we define DC(x)
SL (i) and

DC(x)
Ord(i) as the cumulative per-layer delay (in transmissions)

until node x can decode each layer up to i with the SL and
Ord strategies, respectively. Similarly, DC(∗)

SL (i) and DC(∗)
Ord(i)

define this delay cumulatively for all neighbor nodes. Our
indicator,

Qdc(i) = DC(∗)
SL (i)− DC(∗)

Ord(i), (10)

gives the additional per-layer delay that results from choosing
strategy SL over Ord.

With the SL strategy, each node waits a timespan that is in-
dependent from the other nodes’ decoder matrix states, as each
node’s rank of layer i increases independently until full rank is
obtained. As the SL strategy only sends linear combinations
of layer i, each non-decodable layer below i of neighbor x

will become decodable after exactly RT(x)
SL (i) transmissions.

Therefore, we count the number of non-decodable layers
(right-hand factor) multiplied by the number of transmissions
required for decoding each layer (left-hand factor):

DC(x)
SL (i) = RT(x)

SL (i) ·
i∑

k=1

min
(
RT(x)

SL (k), 1
)
, (11)

DC(∗)
SL (i) =

∑
x∈ Neigh.

DC(x)
SL (i). (12)

Again, we derive the per-layer delay for the Ord strategy re-
cursively and in two steps. First, we derive the non cumulated
per-layer delay NC(x)

Ord(i) so that

DC(x)
Ord(i) =

i∑
j=1

NC(x)
Ord(j). (13)

418

Again, for i = 1 both strategies behave identically, thus
DC(x)

Ord(1) = NC(x)
Ord(1) = DC(x)

SL (1) and DC(∗)
Ord(1) = DC(∗)

SL (1).
For i+1, we distinguish between two cases based on whether
the (i + 1)-th layer can be decoded if the i-th layer can be
decoded, which formally is the proposition:

RT(x)
SL (i+ 1) = RT(x)

SL (i). (14)

If eq. (14) holds, the induction step is trivial, as no additional
delay comes from layer i + 1: NC(x)

Ord(i + 1) = NC(x)
Ord(i).

If eq. (14) does not hold, node x requires exactly as many
independent linear combinations as it is short of full rank to
decode layer i + 1, i. e., RT(x)

SL (i + 1) − RT(x)
SL (i). Since the

Ord strategy will not start sending linear combinations of rank
i+1 until all other neighbors can decode layer i, we also have
to wait for RT(∗)

Ord(i) transmissions before the (i+1)-th layer’s
rank increases:

NC(x)
Ord(i+ 1) =

NC(x)
Ord(i), if eq. (14) holds, else

RT(∗)
Ord(i) + RT(x)

SL (i+ 1)− RT(x)
SL (i).

(15)

For all nodes, we obtain:

DC(∗)
Ord(i) =

∑
x∈ Neigh.

DC(x)
Ord(i). (16)

B. Algorithm

We have defined the two performance indicators Qrt(i),
which counts the required transmissions until layer i can be
decoded by all neighbor nodes, and Qdc(i), which counts the
per-layer delay over all neighbors and layers up to i. We now
use these indicators in an algorithm that takes a node’s state
as input and returns the layer choice as output. Whenever a
node generates and transmits a linear combination, it executes
the algorithm iNsPECt first, which is given in Figure 1.

To keep computational overhead low in practical systems,
iNsPECt introduces a system parameter kahead, which bounds
the number of layers that a node may deviate from the Ord
strategy. For large numbers of layers, bounding the deviation
with kahead not only improves our algorithm’s performance,
but allows to use optimized decoding techniques [13].

In Figure 1 line 1, the Ord strategy is employed by default.
That is, a node selects the layer with the highest priority that
any of its neighbors cannot decode. To reduce the total number
of transmissions, our algorithm uses the previously defined
performance indicators in two steps:
(1) check if a lower priority layer can save transmissions by

computing Qrt and
(2) check if the lower priority negatively affects per-layer

delay by computing Qdc.
These steps are repeatedly performed in the conditional at
line 4 for all kahead candidate layers in the loop at lines 3
to 8. Whenever a candidate layer in the loop further reduces
transmissions compared to the last candidate and does not
increase per-layer delay, it is selected as next candidate.
Finally, the selected layer is returned in line 9.

Input: for each neighbor x ∈ Neigh., γ(x) and Γ(x)

Output: layer index
Have: n, r,R, and system parameter kahead

1: choice← start← first non decodable layer of Neigh.
2: lastrt ← Qrt(start)
3: for i← start + 1, . . . ,min(start + kahead, |r|) do
4: if Qrt(i) > lastrt ∧Qdc(i) ≤ 0 then
5: choice← i
6: lastrt ← Qrt(i)
7: end if
8: end for
9: return choice

Fig. 1. iNsPECt.

Type

1 bit

Generation
number

15 bits

Origin ID

32 bits

Source ID

32 bits

Data

Fig. 2. Message format: general header and message specific data part.

Dependent on m, the number of neighbors from which
feedback has recently been received, the algorithm’s runtime
is in O(mkahead |r|). For three layers, a common choice in
multimedia streaming [11], the runtime is linear in the number
of neighbors.

V. PROTOCOL DESIGN

We now describe a simple yet effective network protocol
that instantiates the layer selection algorithm for practical
systems. We describe the protocol for a single network coding
generation and a single source. The protocol is executed in
parallel when multiple sources exist in the network, and it is
run repeatedly for subsequent generations.

A. Message types

The protocol requires only two types of messages: data
messages, which contain linear combinations, and feedback
messages, which concisely encode a node’s decoder state. We
use UDP as the underlying transport protocol, because relia-
bility is ensured by network coding’s forward error correction
properties.

The general message format is shown in Figure 2: a leading
bit is used to denote message type, and the remaining 15 bits of
the first two octets encode the generation number that the mes-
sage belongs to. Origin node and source node, each encoded
using 32 bits, are used to manage neighbor state and assign
linear combinations to the correct decoding system. Each node
is assigned a unique number in the system; alternatively, the
IP addresses can be used for local topologies.

Data messages contain linear combinations, which consist
of an encoding vector and an information vector, as described
in Section III-A. If a linear combination from a layer with

419

higher priority is sent, not all coefficients in the encoding
vector are used; in that case, the remaining coefficients are
set to the additive identity (i. e., “zeroes”) of the finite field.
Thus, encoding vectors contain n coefficients, whereas the
information vector consists of b symbols. Each coefficient and
symbol are elements of the finite field F28 and can be encoded
as a single byte. Data messages, therefore, have a length of
b+ n+ 10 bytes.

Feedback messages encode γ(x); that is, they encode how
many linearly independent combinations of each layer a node
x has received. This is identical to the rank of each layer’s de-
coder matrix or the dimension of each layer’s linear subspace.
A feedback message encodes each rank with two bytes; thus,
the total feedback message length is 2 · |r|+ 10 bytes, where
|r| is the total number of layers. Since the feedback messages’
size does not depend on the generation size n nor on the chunk
size b, feedback messages are usually much smaller than data
messages.

B. Transmission mechanism

We employ a constant-rate approach to sending linear com-
binations. That is, every data message transmission interval
λdata, a linear combination is built according to Equation (3),
encoded as a data message, and sent when the generation
is not marked as fully transmitted. First, the iNsPECt algo-
rithm is executed to determine the ideal layer i for building
the next linear combination. If that layer-i’s decoder matrix
has insufficient rank to generate a linear combination, i is
incremented repeatedly until a linear combination can be built.
If, initially, no feedback is available, we default to sending a
linear combination of the highest priority layer.

Whenever a layer-i linear combination is sent, the feedback
vector γ(x) for each neighbor x is incremented, presuming the
linear combination’s successful reception. In addition, a flag is
set that indicates that the feedback vector is assumed instead
of authoritative. If an assumed feedback vector indicates the
generation is fully transmitted, the node continues to send
linear combinations until an authoritative feedback message is
received as confirmation. Thereby, nodes avoid delays at the
end of each generation. By handling assumed and authoritative
feedback in this way, we ensure that layers of lower-than-ideal
priority may be selected, but never layers of higher priority.
This bias may lead to increased per-layer delay for the current
layer. It does not, however, cause additional overhead from
linearly dependent combinations, nor does it affect the lower
priority layers’ decoding delay.

On reception of a linear combination, a node first counts the
trailing number of additive identity elements in the encoding
vector to determine the combination’s layer. Next, the linear
combination is inserted into each decoder matrix that pertains
to a lower or equal priority than the linear combination’s layer.
Whether the newly received linear combination is innovative
is determined using GE. If the rank of the matrix increases,
the combination was innovative; otherwise, the new row is
reduced to additive identity elements [1].

C. Feedback mechanism

Feedback is broadcast periodically and cumulatively for
a generation’s layers: once every feedback interval λfb, a
feedback message is created for each incomplete generation.
Usually, feedback messages are only sent when the generation
is incomplete, i. e., the node’s decoder matrix state does not
have full rank for all layers. If, however, a linear combination
for a complete generation is received, a feedback message that
indicates successful reception of the whole generation (with
Γ|r| = R|r|) is sent once.

The feedback’s purpose is not only to inform other nodes
about the current decoder state, but it also allows other nodes
to learn about their neighborhood. When a node receives a
feedback message from a node x, it includes x in its neighbor
set (Neigh. in Figure 1) and updates γ(x) with the rank
vector that is included in the feedback message. If a feedback
message is received where the combination of origin identifier
and generation number is unknown, that message is ignored,
as the feedback contained is not helpful. Feedback vectors
and neighborhood states expire after a timeout that should
be chosen as a multiple of the feedback interval to avoid
incomplete neighbor sets.

The proportion between the data interval λdata and λfb is
important for the performance of the proposed algorithm. The
smaller the feedback interval, the better each node’s stored
feedback represents its neighbors’ decoder state, since it is
updated more often. On the other hand, even tough feedback
messages have a small size, more frequent feedback means
more network capacity is used for traffic that does not directly
contribute to the delivery of the sources’ information.

VI. EVALUATION

We compare iNsPECt to PNC’s HNC variant and RLNC,
which we both described in Section II. As a lower bound on
decoding delay, we additionally show the decoding time of the
first layer, which results from sending only linear combinations
of the first layer. We evaluate all protocols in three scenarios:
a small-scale topology with a single source and small gen-
erations that comprise few source messages to evaluate the
impact of varying feedback rates, a larger topology to show
multi-hop capabilities and support for multiple sources, and
finally a set of larger, randomized topologies to support the
generality of our results.

A. Methodology

We evaluate using the discrete event network simulator ns-3
(version 3.25) [22]. Wireless links between nodes are modeled
via YANS Wifi model [23] with 802.11g MAC and 2.4 GHz
PHY. We simulate the physical channel with the log-distance
propagation loss model1 and the Rayleigh fast fading model,
one superimposed on the other [24]. Nodes send actual linear
combinations in the simulation, so there is a (small) chance
for linear dependency even if a layer’s decoder matrix does

1We choose the path-loss exponent γ = 3.0 and configured path loss at
the reference distance 1 m according to Friis’ model for 2.4 GHz, which is in
line with a range of office and industrial environments [24], [25].

420

N1 N2

N3 S

N4

30 m

30 m

30 m 30 m

30 m

(a) Small scale topology

S1 S2 S3 S4

N5 N6 N7 N8

N9 N10 N11 N12

N13 N14 N15 N16

x x x

x x x

x x x

x x x

x

x

x

x

x

x

x

x

x

x

x

x

(b) Larger network topology

Fig. 3. Simulated topologies.

not have full rank. Each simulation is run for 200 s simulated
time and executed 5 times. Each repeated simulation uses
a separate sub-stream of ns-3’s MRG32k3a pseudo-random
number generator to ensure uncorrelated results [26]. Pseudo-
randomness is used in the simulation’s wireless fading model,
the ns-3 bit error model, which is affected by fading and
path loss, generation of NC coefficients, and exponentially
distributed variations in packet send times that we use to avoid
collisions and other synchronization effects. Since generations
take much less than 200 s to transmit, hundreds of transmitted
generations contribute to a statistically meaningful sample
size. All figures in this section show the sample mean and 95%
confidence intervals (assuming normal distribution). Error bars
may not be visible when the confidence is very high.

B. Small-scale topology

Figure 3a shows the small-scale topology: one source S
and four nodes N1 to N4 are arranged in a partial grid with
30 m grid width. Due to the grid layout, nodes N1 and N2

have 30 m distance from the center-positioned source, whereas
nodes N2 and N4 are 42 m away, which results in lower packet
delivery probability (PDR) for these nodes. We evaluate a
small generation (n = 10) with small layers r = (2, 2, 3, 3) to
highlight the effects of the layer selection and feedback rates.

The mean time until all sink nodes are able to decode layers
1 to 4, respectively, is given in Figure 4 for two different
feedback rates. Results for frequent feedback are shown in
Figure 4a: the y-axis shows the average time from beginning
to transmit the current generation until a layer can be decoded
by a node. The x-axis gives the individual layers, which
are inherently cumulative due to the hierarchical nature of
layers. It can be seen that using RLNC, the time until all
layers can be decoded is identical for all layers. Since RLNC
offers maximum protection against erasures and has the lowest
chance to send linearly dependent combinations, it gives us the
optimal decoding time for layer 4 (and thus all layers) in the
last column. The HNC strategy, being fully randomized and
independent of any feedback, provides faster recovery of the
highest prioritized first layer, identical decoding time for the
second layer, and significantly worse delay than RLNC for

Layer 1 Layer 1–2 Layer 1–3 All layers
0

1

2

1.22 1.22 1.22 1.22

0.91

1.24

1.76

2.23

0.25

0.58

1.01

1.43

0.24

Cumulative layers

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

(a) High feedback rate (λdata/λfb
= 1/1)

Layer 1 Layer 1–2 Layer 1–3 All layers
0

1

2

1.22 1.22 1.22 1.22

0.89

1.22

1.72

2.24

0.26

0.75

1.14

1.45

0.25

Cumulative layers

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

(b) Low feedback rate (λdata/λfb
= 1/3)

Fig. 4. Small topology results: per-layer delay for different feedback rates.

the third and fourth layer. The proposed algorithm, iNsPECt,
consistently outperforms HNC between 35.9 % and 72.3 %.
Also, the delay is just 4.5 % higher than the lower bound for
the most highly prioritized 1st layer (compared to 277.5 %
for HNC). The layer 4 decoding delay of iNsPECt is only
17.3 % higher than the optimal RLNC delay. These 17.3 %
analogously give the overhead imposed by the prioritization
scheme, since the additional delay corresponds to the number
of linearly dependent combinations that are due to prioritiza-
tion. In comparison, this overhead is 83.1 % for HNC.

In a second step, we lowered the feedback rate to 1/3 ·λdata,
which is quite low compared to the individual layer sizes: with-
out losses, another layer has to be selected every two or three
linear combinations or all subsequently sent combinations are
linearly dependent. The results are shown in Figure 4b in
a format identical to Figure 4a: RLNC and HNC, working
without feedback, are unaffected by the change. iNsPECt is
still faster than HNC for all layers, but due to the lack of recent
feedback and the resulting uncertainty about the neighbors’
decoder states, the algorithm resorts to sending layers of lower
priority than necessary, which have a much lower chance of

421

20 40
0

5

10

Distance in m

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

(a) Layer 1

20 40
0

5

10

Distance in m

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt

(b) Layers 1–2

20 40
0

5

10

15

Distance in m

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt

(c) All layers (1–4)

Fig. 5. Larger topology results: per-layer delay for different (cumulative) layers and varying distances.

Layer 1 Layer 1–2 Layer 1–3 All layers
0

2

4

6

8

4.99 4.99 4.99 4.99

3.65

4.27

5.75

6.56

0.93

2.03

3.64

5.24

0.93

Cumulative layers

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

Fig. 6. Random topology results: average per-layer delay.

linear dependency. The downside of this approach can best be
seen in the second and third layers, where decoding delay is
still 38.8 % and 33.8 % better than HNC, but also increases
by 28.6 % and 13.1 % compared to the better feedback rate
scenario. A positive aspect of resorting to lower priority linear
combinations is that linear dependency is less likely, which can
be seen best at the fourth layer, where decoding time is not
significantly different from the former scenario. This means
that albeit iNsPECt’s per-layer delay is not as low as before,
it is still better than HNC and total prioritization overhead
compared to RLNC does not increase at all.

C. Larger topology and random topology

We now demonstrate scalability to larger ad-hoc networks
with multi-hop requirements. The larger network topology is
shown in Figure 3b and has 16 nodes in total: 4 source nodes
and 12 non-source nodes. As before, nodes are arranged in a
grid, but now we have four nodes in each row. We simulate
a larger generation with n = 50 and 4 layers with layer
sizes r = (10, 10, 15, 15). Figure 5 shows the simulation
results for medium feedback rate (λdata/λfb = 1/2) and varying

grid distances x between neighbor nodes from 10 m to 50 m.
Figures 5a to 5c give decoding delay for layer 1, layers 1–2,
and layers 1–4, respectively.

iNsPECt allows nodes to retrieve the most highly prioritized
1st layer 74.1 %, 74.7 %, and 72.6 % faster than HNC for node
distances of 10 m, 30 m, and 50 m, respectively. Also, the first
layer’s retrieval time with iNsPECt almost matches the lower
bound; only at 40 m and 50 m distance, the results show 2.4 %
and 9.0 % delay for the 1st layer.

Results look similar for the second layer in Figure 5b, where
iNsPECt yields a 52.9 % to 51.2 % reduced per-layer delay
over HNC. Interestingly, the benefit of HNC over RLNC for
prioritized layers diminishes with greater distances between
nodes (and thus lower PDR): at 40 m distance between nodes,
HNC gives roughly the same per-layer delay as RLNC. We
attribute the poor performance of HNC with low PDR in the
large-scale scenario to inefficient multi-hop capabilities: when
the source has few opportunities to successfully transmit linear
combinations to the inner nodes in the network, low priority
linear combinations are more useful, because they have much
higher chance of being innovative.

As expected, Figure 5c shows that the last layer – and
thus all layers due to the hierarchical layer structure – is
decoded the fastest with RLNC, which has the highest level
of error protection against packet loss and the lowest chance
of sending linear combinations of layers that already have full
rank in neighbors. The delay given in Figure 5c is a direct
indicator for the total number of transmissions required for
sending one full generation. Therefore, it is also indicative
for achievable throughput. For distances at or below 30 m,
iNsPECt has at most 5.4 % overhead compared the optimum
RLNC. This overhead increases to 8.5 % at 40 m distance
between neighbors and 19.2 % at 50 m. HNC, in comparison,
results in a message overhead of 55.1 % over RLNC.

Last, we verify the system’s properties in a set of larger
randomized topologies. Figure 6 shows mean per-layer delay
for twenty different topologies where the nodes’ locations are
selected uniform at random in a 90m × 90m square. Again,

422

we see a better performance of iNsPECt than HNC for all
layers and a low total overhead of only 5.1 % compared to
RLNC. Notably, iNsPECt enables decoding the most highly
prioritized first layer 74.5 % faster than HNC.

D. Summary

We evaluated iNsPECt in both smaller and larger scenarios
and compared it to HNC and RLNC for different feedback
rates, distances, and topologies. iNsPECt significantly outper-
forms HNC in every scenario that we tested. Having only
sporadic feedback and thus outdated decoder state information
has no effect on the system’s overhead in terms of linear
dependency, but it increases decoding delay for some layers,
albeit keeping delay significantly lower than HNC. Remark-
ably, in all scenarios, that is, for small and large distances, for
high and low feedback rates, and for the small and larger-scale
scenarios, the most highly prioritized layer’s decoding delay
was within 10 % of the optimum. The overhead of iNsPECt
compared to RLNC over all scenarios is consistently less than
20 %, which we consider a low cost for having prioritization.

VII. CONCLUSION AND FUTURE WORK

We describe a protocol that addresses a principal problem
of existing prioritized network coding protocols. Namely, we
answer the question which layer to use for generating linear
combinations. Towards this end, we propose a novel, dis-
tributed algorithm, iNsPECt, that leverages limited feedback
containing each layer’s subspace dimension. iNsPECt defines
two performance indicators that enable it to deviate from
a greedy strategy in order to reduce prioritization overhead
without affecting prioritization performance. Our evaluation
shows that the proposed algorithm consistently outperforms
HNC and, under good network conditions, approaches the
lower bound on required transmissions that is achieved by
non-prioritized RLNC. In addition, the highest priority layer’s
decoding delay is nearly optimal in all scenarios. Our results
demonstrate that (1) prioritized network coding can be realized
with low overhead, and (2) that even small feedback messages
are sufficient for effective prioritization in such systems.

A future research direction is to observe the algorithm’s
performance in a more sophisticated network protocol: it
is conceivable that observed channel conditions and limited
network topology information supplied by such a protocol
could be utilized to better estimate neighbors’ decoder state if
recent feedback is unavailable. In particular, we would expect a
reduced per-layer delay for mid-priority layers when expected
packet-loss rates are incorporated into the layer selection
process that is used for generating linear combinations.

ACKNOWLEDGMENTS

We thank Sebastian Henningsen for helpful discussion.
Also, we thank our anonymous reviewers for their constructive
feedback.

REFERENCES

[1] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: An
instant primer,” 2006.

[2] R. Ahlswede, N. Cai, S. Y. R. Li, et al., “Network information flow,”
Jul. 2000.

[3] Baochun Li and Di Niu, “Random Network Coding in Peer-to-Peer
Networks: From Theory to Practice,” 2011.

[4] Christos Gkantsidis, John Miller, and Pablo Rodriguez, “Comprehen-
sive view of a live network coding P2P system,” presented at the
Internet Measurement Conference, 2006.

[5] X. Chu and Y. Jiang, “Random linear network coding for peer-to-peer
applications,” Jul. 2010.

[6] E. Magli, M. Wang, P. Frossard, et al., “Network coding meets
multimedia: A review,” 2013.

[7] M. Wang and B. Li, “Lava: A reality check of network coding in
peer-to-peer live streaming,” in IEEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications, May 2007.

[8] S.-Y. Li, Q. Sun, and Z. Shao, “Linear network coding: Theory and
algorithms,” Mar. 2011.

[9] T. Ho, R. Koetter, M. Medard, et al., “The benefits of coding over
routing in a randomized setting,” 2003.

[10] O. Trullols-Cruces, J. M. Barcelo-Ordinas, and M. Fiore, “Exact
Decoding Probability Under Random Linear Network Coding,” Jan.
2011.

[11] K. Nguyen, T. Nguyen, and S. c Cheung, “Peer-to-peer streaming with
hierarchical network coding,” in 2007 IEEE International Conference
on Multimedia and Expo, Jul. 2007.

[12] D. Vukobratović and V. Stanković, “Unequal error protection random
linear coding for multimedia communications,” in Multimedia Signal
Processing (MMSP), 2010 IEEE International Workshop On, IEEE,
2010.

[13] R. Naumann, S. Dietzel, and B. Scheuermann, “Best of both worlds:
Prioritizing network coding without increased space complexity,” in
2016 IEEE 41st Conference on Local Computer Networks (LCN), Nov.
2016.

[14] M. Esmaeilzadeh, P. Sadeghi, and N. Aboutorab, “Random Linear Net-
work Coding for Wireless Layered Video Broadcast: General Design
Methods for Adaptive Feedback-Free Transmission,” Feb. 2017.

[15] Z. Yan, H. Xie, and B. W. Suter, “Rank deficient decoding of linear
network coding,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013.

[16] Shenglan Huang, Michele Sanna, Ebroul Izquierdo, et al., “Optimized
scalable video transmission over P2P network with hierarchical net-
work coding,” presented at the ICIP, 2014.

[17] P. Chau, S. Kim, Y. Lee, et al., “Hierarchical random linear network
coding for multicast scalable video streaming,” in Asia-Pacific Signal
and Information Processing Association, 2014 Annual Summit and
Conference (APSIPA), IEEE, 2014.

[18] B. Shrader and N. M. Jones, “Systematic wireless network coding,”
in MILCOM 2009 - 2009 IEEE Military Communications Conference,
Oct. 2009.

[19] J. Claridge and I. Chatzigeorgiou, “Probability of Partially Decoding
Network-Coded Messages,” 2017.

[20] Y. Wu, P. Chou, K. Jain, et al., “A comparison of network coding and
tree packing,” in Information Theory, 2004. ISIT 2004. Proceedings.
International Symposium On, IEEE, 2004.

[21] S. Chachulski, M. Jennings, S. Katti, et al., “MORE: A network coding
approach to opportunistic routing,” 2006.

[22] T. R. Henderson, M. Lacage, G. F. Riley, et al., “Network simulations
with the ns-3 simulator,” 2008.

[23] M. Lacage and T. R. Henderson, “Yet another network simulator,”
in Proceeding from the 2006 Workshop on Ns-2: The IP Network
Simulator, ACM, 2006.

[24] H. Hashemi, “The indoor radio propagation channel,” 1993.
[25] S. Phaiboon, “Space Diversity Path Loss in a Modern Factory at

frequency of 2.4 GHz,” 2014.
[26] P. L’Ecuyer, R. Simard, E. J. Chen, et al., “An Object-Oriented

Random-Number Package with Many Long Streams and Substreams,”
Dec. 2002.

423

A Blockchain Consensus Protocol With
Horizontal Scalability

Kelong Cong
École Polytechnique Fédérale de Lausanne

Email: kelong.cong@epfl.ch

Zhijie Ren
Delft University of Technology

Email: z.ren@tudelft.nl

Johan Pouwelse
Delft University of Technology
Email: peer2peer@gmail.com

Abstract—Blockchain technology has the potential to decen-
tralise many traditionally centralised systems. However, scalabil-
ity remains a key challenge. A horizontally scalable solution,
where performance increases by adding more nodes, would
move blockchain systems one step closer to ubiquitous use. We
design a novel blockchain system called CHECO. Each node
in our system maintains a personal hash chain, which only
stores transactions that the node is involved in. A consensus is
reached on special blocks called checkpoint blocks rather than
on all transactions. Checkpoint blocks are effectively a hash
pointer to the personal hash chains; thus a single checkpoint
block may represent an arbitrarily large set of transactions.
We introduce a validation protocol so that any node can check
the validity of any transaction. Since transaction and validation
protocols are point-to-point, we achieve horizontal scalability.
We analytically evaluate our system and show a number of
highly desirable correctness properties such as consensus on the
validity of transactions. Further, we give a free and open-source
implementation of CHECO and evaluate it experimentally. Our
results show a strong indication of horizontal scalability.

I. INTRODUCTION

The first blockchain system—Bitcoin—is almost ten years
old. Its market capitalisation is nearly $200 billion USD at
the time of writing [1]. We can be reasonably sure that such
systems, even if their application is still somewhat limited, are
here to stay in the foreseeable future. Driven by the success of
Bitcoin, we see a renaissance of consensus research [2]–[4],
where the primary focus is to improve the scalability of
blockchain systems, which is due to the inefficiencies of
the consensus mechanism—proof-of-work (PoW). For exam-
ple, Bitcoin can only do 7 transactions per second (TPS)
at most [5]. While adjusting the block size (which Bitcoin
has recently done via SegWit [6]) and/or the block interval
may increase TPS, it also leads to centralisation as larger
blocks take longer to propagate through the network, putting
miners that do not have a fast network at a disadvantage [7].
Furthermore, due to the bandwidth and latency of today’s
network, it is not possible to achieve more than 27 TPS from
simply adjusting the block size or block interval [7].

Related work. Many approaches exist for improving the
scalability of early blockchain systems. Off-chain transactions
make use of the fact that if nodes make frequent transactions,
then it is not necessary to store every transaction on the block-
chain, only the net settlement is needed. The best examples

are Lightning Network [8] and Duplex Micropayment Chan-
nels [9]. It promises significant scalability improvements, but
complicates user experience and leads to centralisation. That
is, each node must deposit a suitable amount of Bitcoins into a
multi-signature account. A low deposit would not allow large
transactions. A high deposit locks the user from using much of
their Bitcoins outside the channel. In addition, the user must
proactively check whether the counterparty has broadcasted
an old channel state so that the user does not lose Bitcoins.
Moreover, creating channels with sufficient balance and also
keeping it online to act as a router is expensive. A casual user
is not capable of such tasks, leading to centralisation.

Another way to improve transaction rate is to use traditional
Byzantine consensus algorithms such as PBFT [10] in a per-
missioned ledger such as Hyperledger Fabric [11]. In essence,
such systems contain a fixed set of nodes, called validating
peers, that run a Byzantine consensus algorithm to decide on
new blocks. They can achieve much higher transaction rates,
e.g., 10,000 TPS if the number of validating peers is under
16 for PBFT [12, Section 5.2]. However, these systems do
not scale, e.g., the transaction rate drops to under 5000 TPS
when the number of validating peer is 64 [12, Section 5.2].
Moreover, the validating peers are predetermined which makes
the system unsuitable for the open internet.

Recent research has developed a class of hybrid systems
which uses PoW for committee election, and Byzantine con-
sensus algorithms to agree on transactions, e.g., ByzCoin [3]
and Solidus [13]. This design is primarily for permissionless
systems because the PoW leader election aspect prevents the
Sybil attack [14]. It overcomes the early blockchain scalability
issue by delegating the transaction validation to a Byzantine
consensus protocol. A tradeoff of such systems is that they
cannot guarantee a high level of fault tolerance when there is
a large number of malicious nodes (but less than a majority).
ByzCoin and Solidus all have some probability of electing
more than t Byzantine nodes into the committee, where t is
typically just under a third of the committee size (a lower
bound of Byzantine consensus [15]). Again, because these
systems must reach consensus on all transactions, none of
them achieves horizontal scalability.

Finally, a technique that does achieve horizontal scalability
is sharding, e.g., Elastico [2] and OmniLedger [4]. It involves
grouping nodes into multiple committees of constant size,
also known as shards, and nodes within a single shard run aISBN 978-3-903176-08-9 c© 2018 IFIP

Byzantine consensus algorithm to agree on a set of transactions
that belong to that specific shard. The number of shards grows
linearly with respect to the total computational power of the
network; hence the transaction rate also grows linearly. The
limitation of sharding is that it is only optimal if transactions
stay in the same shard. In fact, Elastico cannot atomically pro-
cess inter-shard transactions. OmniLedger has an inter-shard
transaction protocol but choosing a shard size that matches
the transaction characteristics of the network is difficult. An
inadequate shard size would result in a large number of inter-
shard transactions which would hinder scalability.

Research question. Thus far, there are no systems that
achieve horizontal scalability in the general case, which leads
to the goal of this work. Hence, the research question which
we wish to answer is as follows.

How can we design a horizontally scalable block-
chain consensus protocol?

Concretely, a blockchain consensus protocol should be ap-
plication neutral. For example, PoW is application neutral
because transaction semantics does not affect it, i.e. it can
be applied in different applications such as cryptocurrency
(Bitcoin) and domain name system (Namecoin [16]). Further,
we are interested in horizontal scalability in the general case
as it enables ubiquitous use. That is, adding more nodes to the
network should result in higher transaction throughput.

Contribution. The key insight is not to reach consensus
using an existing consensus algorithm on transactions them-
selves, but on special blocks called checkpoint blocks, such
that transactions are nevertheless verifiable at a later stage
by any node in the network. Our main contributions are the
following.
• We formally introduce a blockchain system—CHECO1.

It uses individual hash chains and checkpoints on every
node to achieve horizontal scalability in the general case
for the first time.

• We analyse CHECO to ensure correctness according to
our definition.

• We provide an implementation and then experiment with
up to 1200 nodes, our results show strong evidence of
horizontal scalability.

Roadmap. In Section II, we give the problem description
and our system model. Section III gives the formal system
architecture. In Section IV, we discuss a few design variations
and their tradeoffs. We argue the correctness and fault toler-
ance properties of our system in Section V. Then we evaluate
our system experimentally in Section VI. Finally, we conclude
our work in Section VII.

II. PROBLEM DESCRIPTION

We introduce the problem as a modified Byzantine consen-
sus problem. The modification is primarily derived from the
need of horizontal scalability, which is not a part of a typical
Byzantine consensus problem. In our model, we consider N
nodes, t of which are Byzantine. Nodes in our system make

1Derived from “CHEckpoint COnsensus”.

transactions with each other. Transactions can be in one of
three states—valid, invalid and unknown. We seek a protocol
that satisfies the following properties.
• Agreement: If any correct node decides on the validity of

a transaction, except when it is unknown, then all other
correct nodes are able to reach the same conclusion or
decide unknown.

• Validity: If a transaction is valid, then it must have been
created by two honest nodes.

• Scalability: If every node makes transactions at the same
rate, then as N increases, the global transaction rate
should increase linearly w.r.t. N .

Note that the agreement property is similar, but a relaxed
version of what is often seen in a Byzantine consensus
problem. Namely, the property only holds if honest nodes do
not output unknown. For example, for a transaction, it is fine if
two honest nodes output valid and unknown, but they should
never output valid and invalid. Our problem does not have a
termination property. Instead, nodes are incentivised to com-
plete the protocol execution otherwise they risk economical
loss; we describe this phenomenon in Section V-B.

The problem is purposefully made to be application neutral,
i.e. there are no constraints on the semantics of transactions.
This formulation is so that the protocol can act as a building
block to many applications. Thus, we do not consider global
fork prevention or detection, as some application may not
need such strong guarantees such as the accounting of internet
traffic in Tribler [17], [18]. On the other hand, we give
two alternative constructions that do perform fork detection
in Section IV-C.

System model. We assume purely asynchronous channels
with eventual delivery. Thus, in no stage of the protocol are
we allowed to make timing assumptions. The adversary has
full control of the delivery schedule and the message ordering
of all messages.

Security assumptions. The malicious nodes are Byzan-
tine, meaning that there are no restrictions on the type of
failure. We use a static, round-adaptive corruption model. That
is, if a round has started, the corrupted nodes cannot change
until the next round. We assume there exists a Public Key
Infrastructure (PKI), and nodes are identified by their unique
and permanent public key. This assumption implies that we
work in the permissioned model. Finally, we use the random
oracle (RO) model, i.e. calls to the random oracle are denoted
by H : {0, 1}∗ → {0, 1}λ, where {0, 1}∗ denotes the space
of finite binary strings and λ is the security parameter. Under
the RO model, the probability of successfully computing the
inverse of the hash function is negligible with respect to λ [19].

III. SYSTEM ARCHITECTURE

To describe CHECO, we first give an informal overview and
then move on to the formal description.

Early blockchain systems that use a global ledger are
difficult to scale because every node must reach consensus on
all the transactions that ever existed. Instead, we introduce an
alternative architecture where every node has their own genesis

425

block and hash chain. The nodes only store transactions (TX)
that they are involved in on their hash chains. Transactions
are stored in TX blocks, and every block only contains
one transaction. A transaction between two nodes should,
therefore, result in two TX blocks on their respective hash
chains. We introduce a special block called checkpoint (CP)
block, which represents the state of a hash chain in the form of
a hash pointer. Then, a collection of CP blocks from all nodes
would represent the state of the whole system. A visualisation
can be seen in Figure 1.

ta,5

ta,7

ta,8

tb,6

tb,5

tb,3

tc,7

tc,9

tc,10

ca,6

cb,7

cb,4

cc,8

cc,11

ca,0 cb,0 cc,0

Fig. 1: Visualisation of the data structure used in CHECO. tu,i
represents a TX block on u’s chain with a sequence number
i. cv,j represents a CP block on v’s chain with a sequence
number j. The blocks at the ends of the dotted lines are pairs
of each other. Blocks of sequence number 0 (e.g., cc,0) are
genesis blocks.

CHECO consists of three protocols—consensus protocol,
transaction protocol and validation protocol—all interacting
with the distributed hash chain data structure described above.
The primary protocol is the consensus protocol, which can
be seen as a technique of running infinitely many times of
an existing Byzantine consensus algorithm (in this work we
use the asynchronous common subset protocol described in
HoneyBadgerBFT [12]), starting a new execution immedi-
ately after the previous one is completed. Nodes create new
CP blocks at the end of every execution. This approach is
necessary because blockchain systems always need to reach
consensus on new values proposed by the nodes in the system,
or CP blocks in our case.

The communication complexity of Byzantine consensus
algorithms typically grows polynomially w.r.t the number
of nodes, which prohibits us from running it on a large
network. Thus, at the beginning of every Byzantine consensus
algorithm execution, we randomly elect a set of nodes—called
facilitators—to collect CP blocks from every other node and

use those blocks as the input to the Byzantine consensus al-
gorithm. After the algorithm completes, the facilitators output
a set of CP blocks which we call the consensus result, which
is then propagated to the network. Using the result, nodes are
allowed to create new CP blocks, and then the next algorithm
execution begins.

The transaction protocol is a simple request and response
protocol. The nodes exchange one round of messages and
create new TX blocks on their respective chains. Thus, as
we mentioned before, one transaction should result in two TX
blocks.

The consensus and transaction protocol by themselves do
not provide a mechanism to detect malicious behaviour such as
tampering. Thus, we need a validation protocol to counteract
such behaviour. When a node wishes to validate one of its
transactions, it asks the counterparty for the agreed fragment
of the transaction. Which is a section of the counterparty’s
chain beginning and ending with CP blocks but contains the
TX block belonging to that transaction, where the CP blocks
must be in consensus. Upon the counterparty’s response, the
node checks whether the CP blocks are, in fact, in some con-
sensus result and among other conditions. The transaction is
valid if these conditions are satisfied. Since the transaction and
validation protocols only make point-to-point communication,
we achieve horizontal scalability.

The following sections give the formal description.

A. CHECO data structure

Each node u has a public and private key pair—pku and
sku, and a hash chain Bu. The chain consist of blocks Bu =
{bu,i : i ∈ {0, . . . , h − 1}}, where bu,i is the ith block of u,
and h is the height of the block (i.e. h = |Bu|). We use bu,h−1
to denote the latest block. There are two types of blocks, TX
blocks and CP blocks. If Tu is the set of all TX blocks in Bu
and Cu is the set of all CP blocks is Bu, then Tu ∪Cu = Bu
and Tu ∩Cu = ∅. The notation bu,i is generic over the block
type.

Definition 1 (Transaction block). The TX block is a six-tuple,
i.e

tu,i = 〈H(bu,i−1), sequ, txid, pkv,m, sigu〉.

We describe each item in turn.
1) H(bu,i−1) is the hash pointer to the previous block.
2) sequ is the sequence number which should equal i.
3) txid is the transaction identifier, it should be generated

using a cryptographically secure pseudo-random num-
ber generator by the initiator of the transaction.

4) pkv is the public key of the counterparty v.
5) m is the transaction message, which can be seen as an

arbitrary string.
6) sigu is the signature created using sku on the con-

catenation of the binary representation of the five items
above.

TX blocks come in pairs. In particular, for every block

tu,i = 〈H(bu,i−1), sequ, txid, pkv,m, sigu〉

426

there exists one and only one pair

tv,j = 〈H(bv,j−1), seqv, txid, pku,m, sigv〉,

if the nodes follow the transaction protocol (described in Sec-
tion III-C). Note that the txid and m are the same, and the
public keys refer to each other. Thus, given a TX block, these
properties allow us to identify its pair.

Definition 2 (Checkpoint block and genesis block). The CP
block is a five-tuple, i.e.

cu,i = 〈H(bu,i−1), sequ,H(Cr), r, sigu〉,

where Cr is the consensus result (which we describe next in
Definition 3) in round r, the other items are the same as the
TX block definition.

The genesis block in the chain must be a CP block in the
form of

cu,0 = 〈H(ε), 0,H(ε), 0, sigu〉,

where ε is the empty string. The genesis block is unique
because every node has a unique public and private key pair.

Definition 3 (Consensus result). Our consensus protocol runs
in rounds, where the first round is defined to be 1 and it is
incremented after every execution of the consensus protocol.
The consensus result, output of the consensus protocol, is a
tuple, i.e.

Cr = 〈r, C〉,

where C is a set of CP blocks agreed by the facilitators of
round r.

Next we define a property which results from the interleav-
ing nature of CP and TX blocks. It is used in our validation
protocol (discussed in Section III-D).

Definition 4 (Enclosure and agreed enclosure). If there exists
a tuple 〈cu,a, cu,b〉 for a TX block tu,i, where
• cu,a is the closest CP block to tu,i with a lower sequence

number and
• cu,b is the closest CP block to tu,i with a higher sequence

number,
then 〈cu,a, cu,b〉 is the enclosure of tu,i. Some TX blocks may
not have any enclosure, then their enclosure is ⊥. Agreed
enclosure is the same as enclosure with an extra constraint
where the CP blocks must be in some consensus result Cr.

Definition 5 (Fragment and agreed fragment). If the enclosure
of some TX block tu,i is 〈cu,a, cu,b〉, then its fragment Fu,i is
defined as {bu,i : a ≤ i ≤ b}. Similarly, agreed fragment has
the same definition as fragment but using agreed enclosure.
For convenience, the function agreed fragment(tu,i) outputs
the agreed fragment of tu,i if it exists, otherwise ⊥.

B. Consensus Protocol

Our scalable consensus protocol Πc uses an asynchronous
common subset (ACS) protocol as the key building block.
The objectives of the protocol are to allow honest nodes
always make progress (in the form of creating new CP blocks),

compute correct consensus result in every round and have
an unbiased election of facilitators. We formally define the
desired properties below.

Definition 6 (CHECO consensus protocol). A CHECO consen-
sus protocol is correct if the following holds for every round
r.

1) Agreement: If one correct node outputs a set of facili-
tators Fr, then every node outputs Fr

2) Validity: If any correct node outputs Fr, then
a) |Cr| ≥ N − t2, and
b) |Fr| = n.

3) Termination: Every correct node eventually outputs
some Fr.

1) Bootstrap Phase: To bootstrap, imagine that there is
some bootstrap oracle that initiates the correct program on
every node, meaning that it satisfied the properties in Defini-
tion 6. In practice, the bootstrap oracle is most likely a group
of software developers (representing different organisations)
that agreed to work together to set up the system and assign
the facilitators of round 1. The number of facilitators is n, we
discuss the trade-offs for different values of n in Section VI.
This concludes the bootstrap phase. For any future rounds, the
consensus phase is used.

2) Consensus Phase: For any node u, the consensus phase
begins when Fr is available and the latest block is cu,h−1.
Note that Fr indicates the facilitators that were elected using
results of round r and are responsible for driving the ACS
algorithm in round r + 1. The goal is to reach agreement on
a set of new facilitators Fr+1 that satisfies the four properties
in Definition 6.

There are two scenarios in the consensus phase. First, if
u is not the facilitator, it sends 〈cp_msg, cu,h−1〉 to all the
facilitators. Second, if u is a facilitator, it waits for N − t
messages of type cp_msg. Invalid messages are removed,
which are blocks with invalid signatures and blocks signed by
the same key. With a sufficient number of cp_msg messages,
it begins the ACS algorithm and some C′r+1 should be agreed
upon by the end of it. Duplicates and blocks with invalid
signatures are again removed from C′r+1 and we call the
final result Cr+1. We have to remove invalid blocks a second
time because the adversary may send different CP blocks to
different facilitators, which results in invalid blocks in the ACS
output, but not in any of the inputs.

The core of the consensus phase is the ACS algorithm,
which is described in HoneyBadgerBFT [12]. We do not use
the full HoneyBadgerBFT due to the following. First, the
transactions in HoneyBadgerBFT are first queued in a buffer
and the main consensus algorithm starts only when the buffer
reaches an optimal size. We do not have an infinite stream of
CP blocks, thus buffering is unsuitable. Second, HoneyBad-
gerBFT uses threshold encryption to hide the content of the
transactions. But we do not reach consensus on transactions,

2Cr is a tuple but we abuse the notation here by writing |Cr| to mean the
number of CP blocks in the second element of Cr .

427

only CP blocks; the content of the CP blocks are not sensitive
so there is no need to hide it.

When Fr finish the ACS execution and reach agreement
on Cr+1, they immediately broadcast two messages to all
the nodes—first the consensus message 〈cons_msg, Cr+1〉,
and second the signature message 〈cons_sig, r, sig〉. The
reason for sending cons_sig is the following. The channels
are not authenticated, and there are no signatures in Cr+1.
If a non-facilitator sees some Cr+1, it cannot immediately
trust it because it may have been forged. Thus, to guarantee
authenticity, every facilitator sends an additional message that
is the signature of Cr+1.

Upon receiving Cr+1 and at least n − t valid signatures,
u performs two tasks. First, it creates a new CP block using
new cp(Cr+1), described in Algorithm 1. Second, it computes
the new facilitators using get facilitator(Cr+1, n), described
in Algorithm 2, and updates its facilitator set to the result.
This concludes the consensus phase and brings us back to the
state at the beginning of the consensus phase, so a new round
can be started.

Our protocol has some similarities with synchronizers [20,
Chapter 10] because it is effectively a technique to introduce
synchrony in an asynchronous environment. If we consider
the facilitators as a collective authority, then it can be seen
as a synchronizer that sends pulse messages (in the form of
cons_msg and cons_sig) to indicate the start of a new
clock pulse. Every node then sends a completion messages
(in the form of cp_msg) to the new collective authority to
indicate that they are ready for the next pulse.

Algorithm 1 Function new cp(Cr) runs in the context of the
caller u. It creates a new CP block and appends it to u’s chain.

〈r, 〉 ← Cr
h← |Bu|
cu,h ← 〈H(bu,h−1), h,H(Cr), r, sigu〉
Bu ← Bu ∪ cu,h

Algorithm 2 Function get facilitator(Cr, n) takes the consen-
sus result Cr and an integer n, then sorts the CP blocks C by
the luck value (the λ-expression), and outputs the smallest n
elements.
〈r, C〉 ← Cr
return take(n, sort by(λx.H(Cr||pk of x), C))

C. Transaction Protocol
The TX protocol Πt, shown in Algorithm 4, is run by

all nodes. Nodes that wish to initiate a transaction calls
new tx(pkv,m, txid), described in Algorithm 3, with the
intended counterparty v identified by pkv and message m.
txid should be a uniformly distributed random value, i.e.
txid ∈R {0, 1}256. Then the initiator sends 〈tx_req, tu,h〉
to v.

A key feature of Πt is that it is non-blocking. At no time in
Algorithm 3 or Algorithm 4 do we need to hold the chain state

Algorithm 3 Function new tx(pkv,m, txid) generates a new
TX block and appends it to the caller u’s chain. It is executed
in the private context of u, i.e. it has access to the sku and
Bu.

h← |Bu|
tu,h ← 〈H(bu,h−1), h, txid, pkv,m, sigu〉
Bu ← Bu ∪ {tu,h}

Algorithm 4 Πt runs in the context of node u.

Upon 〈tx_req, tv,j〉 from v
〈 , , txid, pkv,m, 〉 ← tv,j
new tx(pku,m, txid)
store tv,j as the pair of tu,h
send 〈tx_resp, tu,h〉 to v

Upon 〈tx_resp, tv,j〉 from v
〈 , , txid, pkv,m, 〉 ← tv,j
store tv,j as the pair of the TX with identifier txid

and wait for some message to be delivered before committing
a new block to the chain. This allows for a high level of
concurrency where we can call many new tx(·) and send
multiple tx_req messages simultaneously without waiting
for the corresponding tx_resp messages.

D. Validation Protocol

Up to this point, we do not provide a mechanism to detect
tampering. The validation protocol Πv aims to solve this
issue. The protocol is also a request-response protocol. Before
explaining the protocol itself, we first define what it means for
a transaction to be valid.

1) Validity Definition: A transaction can be in one of
three states in terms of validity—valid, invalid and unknown.
Given a fragment Fv,j , the validity of the TX block tu,i with
its corresponding fragment Fu,i is captured by the function
get validity(tu,i, Fu,i, Fv,j) in Algorithm 5. Note that tu,i and
Fu,i are assumed to be valid, otherwise the node calling the
function would have no point of reference. This is not difficult
to achieve because typically the caller is u, so it knows its own
TX block and the corresponding agreed fragment. If the caller
is not u, it can always query for the agreed fragment that
contains the transaction of interest from u.

We stress that the unknown state means that the verifier
does not have enough information to make progress in Πv . If
enough information is available at a later time, then the verifier
will output either valid or invalid.

Note that the validity is on a transaction, i.e. two TX blocks
that form a pair. It is defined this way because the malicious
sender may create new TX blocks in their own chain but
never send tx_req messages. In that case, it may seem
that the counterparty, who is honest, purposefully omitted TX
blocks. But in reality, it was the malicious sender who did not
follow the protocol. Thus, in such cases, the whole transaction
identified by its txid is marked as invalid.

428

Algorithm 5 Function get validity(tu,i, Fu,i, Fv,j) validates
the transaction represented by tu,i. We assume Fu,i is always
correct and contains tu,i. Fv,j is the corresponding fragment
received from v.

if Fv,j is not a fragment created in the same round as Fu,i
then

return unknown
〈 , , txid, pkv,m, 〉 ← tu,i
if number of blocks of txid in Fv,j 6= 1 then

return invalid
tv,j ← the TX block with txid in Fv,j
〈 , , txid′, pku,m′, 〉 ← tv,j
if m 6= m′ ∨ txid 6= txid′ then

return invalid
if tu,i is not signed by pku∨tv,j is not signed by pkv then

return invalid
return valid

2) Validation Protocol: Our validation protocol Πv , shown
in Algorithm 6, is designed to classify transactions according
to the aforementioned validity definition. If u wishes to
validate some TX with ID txid and counterparty v, it sends
〈vd_req, txid〉 to v. The desired properties are as follows.

Definition 7 (CHECO validation protocol). A CHECO valida-
tion protocol is correct if the following properties hold.

1) Agreement: If any correct node decides on the validity of
a transaction, except when it is unknown, then all other
correct nodes are able to reach the same conclusion or
decide unknown.

2) Validity: The validation protocol outputs the correct
result according to the validity definition above.

3) Liveness: Any valid (invalid) transaction is marked as
valid (invalid) eventually.

Algorithm 6 Πv which runs in the context of u

Upon 〈vd_req, txid〉 from v
tu,i ← the transaction identified by txid
Fu,i ← agreed fragment(tu,i)
send 〈vd_resp, txid, Fu,i〉 to v

Upon 〈vd_resp, txid, Fv,j〉 from v
tu,i ← the transaction identified by txid
if Fu,i and Fv,j are available and Fu,i is the agreed fragment
of tu,i then

set the validity of tu,i to get validity(tu,i, Fu,j , Fv,j)

We make two remarks. First, just like Πt, we do not block
any part of the protocol. Second, suppose some Fv,j validates
tu,i, then that does not imply that tu,i only has one pair tv,j .
Our validity requirement only requires that there is only one
tv,j in the correct consensus round. The counterparty may
create any number of fake pairs in later consensus rounds. But
these fake pairs only pollutes the chain of v and can never be
validated.

IV. DESIGN VARIATIONS AND TRADEOFFS

In this section, we explore a few design variations, some
of them require a relaxed version of our original model. They
enable better performance and allow us to apply our design in
the fully permissionless setting.

A. Open membership using timing assumption

At the start of our consensus phase (Section III-B2), facili-
tators must wait for N − f cp_msg messages. The use of N
makes our system unsuitable for the open membership setting,
where nodes may join and leave at will (churn). We over come
this problem by introducing a timing assumption. Concretely,
instead of waiting for N−f messages, we wait for some time
D, such that D is sufficiently long for honest nodes to send
their CP blocks to the facilitators. Consequently, this removes
the need for a PKI because the collected CP blocks may be
from nodes that nobody has seen in the past.

The new protocol handles churn as follows. Suppose a new
node wish to join the network and the facilitators are known
(this can be done with a public registry). It simply sends its
latest CP block to the facilitators. Then, in the next round,
the node will have a chance to become a facilitator just like
any existing node. To leave the network, nodes simply stop
submitting CP blocks. There is a subtlety here which happens
when the node is elected as a facilitator in the following round.
In this case, the node must fulfil its obligation by completing
the consensus protocol, but without proposing its own CP
block, before leaving. Otherwise, the n ≥ 3t + 1 condition
may be violated.

B. Optimising Validation Protocol Using Cached Agreed
Fragments

One more way to improve the efficiency of Πv is to use
a single agreed fragment to validate multiple transactions.
Concretely, for node A, upon receiving an agreed fragment
from node B, rather than validating a single transaction, A
attempts to validate all transactions performed with B, which
are in the unknown state but also in that fragment.

The benefit of this technique is maximised when a node only
transacts with one other node. In this case, the communication
of one fragment is sufficient to validate all transactions in that
fragment. In the opposite extreme, if every transaction that
the node makes is with another unique node, then the caching
mechanism would have no effect.

C. Total Fork Detection

The validation algorithm guarantees that there are no forks
within a single agreed fragment, which is sufficient for some
applications such as proving the existence of some informa-
tion. However, for applications such as cryptocurrency where
every block depends on one or more previous blocks, our
scheme is not suitable. For such applications, we need to
guarantee that there are no forks from the genesis block
leading up to the TX block of interest.

We offer two approaches to do total fork detection. First
and the easiest solution is to ask for the complete hash chain

429

of the counterparty. The verifier can be sure that there are no
forks if the following conditions hold.

1) The hash pointers are correct.
2) All the CP blocks are in consensus.
3) The TX of interest is in the chain.

We use this approach in our prior work on Implicit Consen-
sus [21]. Nodes employ caching to minimise communication
costs, and we call this effect spontaneous sharding.

The second approach is probabilistic but with only a con-
stant communication overhead over our current design. For
a node, observe that if all of its agreed fragments has a
transaction with an honest node, then the complete chain is
effectively validated in a distributed manner. The only way
for an attacker to make a fork is to ensure that the agreed
fragment containing the fork has no transactions with honest
nodes. Such malicious behaviour is prevented probabilistically
using a challenge-response protocol as follows. Suppose node
A wish to make a transaction with node B. A first sends a
challenge to B asking it to prove that it holds a valid agreed
fragment between some consensus round specified by A. If
B provides a correct and timely response, then they run the
transaction protocol as usual. Otherwise, A would refuse to
make the transaction.

D. Unbiased Facilitator Election
Our consensus protocol does not guarantee unbiased facili-

tator election when dedicated attackers are present. If a mali-
cious facilitator is elected, it can delay, eavesdrop and collect
all CP block messages before sending its own. Effectively, it
can generate a CP block such that it has an unfair advantage
of being elected as a facilitator in the next round.

To address the issue above, the facilitators run an extra pro-
tocol after the consensus protocol to produce some unbiased
randomness. Concretely, they invoke RandHound [22] and
then propagated the randomness and the signatures in the same
way as the consensus result. Upon receiving the randomness,
every node uses it in the hash function of Algorithm 2
(i.e. H(randomness||Cr||pk of x)) to compute the new set of
facilitators.

V. CORRECTNESS AND FAULT TOLERANCE ANALYSIS

We evaluate our system analytically to ensure the desired
properties (Definition 6 and Definition 7) hold. An informal
argument is given in this section. We refer to [23, Chapter 4]
for an in-depth analysis.

A. Correctness of the Consensus Protocol
Πc correctly implements the CHECO consensus protocol

(Definition 6) due to the following. The agreement, validity
and termination properties hold because:
• The CP blocks sent to the facilitators are eventually

delivered, and then ACS eventually starts.
• Agreement, validity and termination hold for ACS as they

are the properties of ACS and are proven to hold in [12].
• The consensus result and signatures are eventually dis-

seminated to all the nodes, so honest nodes must hold
the same result as the honest facilitators.

B. Correctness of the Validation Protocol

Using the previous result, we show that Πv implements
the agreement and validity properties of a CHECO validation
protocol (Definition 7).

The validity property holds because we use get validity(·)
in the validation protocol. The agreement property holds
because we model H(·) as a query to a random oracle. That
is, suppose two honest nodes decided on two different states,
valid and invalid for the same transaction. For that to happen,
two agreed fragments must exist for the same transaction, but
these fragments must also have the same agreed enclosure.
Recall that blocks form a hash chain. So this is not possible
unless the adversary can compute the inverse of H(·) with high
probability.

Liveness, unfortunately, does not hold in our model. A
malicious node can act honestly when running the transaction
protocol, but then never respond to any validation requests.
Therefore some transactions can never be validated. Never-
theless, the malicious node will be at an economic loss if it is
not responsive because honest nodes are less likely to make
contact with nodes that do not respond to validation requests.
If the probabilistic fork detection proposal (Section IV-C) is
used, the uncooperative nodes will have more incentive to
participate in the protocol.

VI. IMPLEMENTATION AND EVALUATION

A free and open source implementation can be found
on GitHub: https://github.com/kc1212/checo. It implements
the three protocols and the Extended TrustChain. We also
implement the caching optimisation discussed in Section IV-B.
The cryptography primitives we use are SHA256 for hash
functions and Ed25519 for digital signatures.

We run the experiment on the DAS-53 with up to 1200
nodes. Every node makes transactions at 2 per second. Since
Bitcoin transactions are approximately 500 bytes [24], we use
a uniformly random transaction size sampled between 400 and
600 bytes.

The global throughput results are shown in Figure 2. We
consider Figure 2a as the ideal case, where nodes only make
transactions with a fixed node. Figure 2b is the worst case,
where nodes make transactions with random nodes and the
caching mechanism is unlikely to be used. Observe that the
transaction rate is much lower in Figure 2b, which is because
the communication of an agreed fragment is necessary to
verify every transaction (no caching), putting a strain on our
network infrastructure.

For Figure 2a, the magnitude of our throughput may not be
self-evident at first glance. Recall that we fixed the transaction
rate to 2 TPS, but how is it possible to have around 4800
transactions per second for 1200 nodes (which is 4 TPS)?
It is due to the way validated transactions are calculated.
Transactions are between two parties, hence if every node
makes two transactions per second, every node also expects to
receive two transactions per second. Hence, for every node, the

3https://www.cs.vu.nl/das5/

430

200 400 600 800 1000 1200
Population size N

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
 (v

al
id

at
ed

 tx
 /

s)

facilitators
4
8
12
16
20
24
28
32

(a) Every node make transactions with a fixed node.

200 400 600 800 1000 1200
Population size N

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (v

al
id

at
ed

 tx
 /

s)

facilitators
4
8
12
16
20
24
28
32

(b) Every node make transactions with a random node.

Fig. 2: Global throughput increases as the population increases when every node transact at the same rate. Making transactions
with fixed nodes results in a higher throughput because of the caching mechanism.

5 10 15 20 25 30
Number of facilitators n

0

10

20

30

40

50

60

70

80

Ro
un

d
du

ra
tio

n
(s

ec
on

ds
)

population
200
300
400
500
600
700
800
900
1000
1100
1200

Fig. 3: The consensus duration increases polynomially with
respect to the number of facilitators.

TX blocks are created at 4 per second. Validation requests are
sent at the same rate, which explains the magnitude. Overall,
the throughput has a linear relationship with the population
size. This result is a strong indication of the horizontal
scalability which we aimed to achieve.

The downside of our design is that the communication
complexity of the consensus protocol grows polynomially with
respect to the number of facilitators. Hence, the consensus
protocol will take longer to complete, and larger fragments
must be sent for transaction verification. On the other hand,
it does not significantly impact the throughput; only the
transaction verification delay is affected. The experimental
results in Figure 3 demonstrates this issue, it uses the same
experimental-setup as before. We refer the reader to [23,

Chapter 5] for additional analysis of the effect of the number
of facilitators as well as other experimental results.

VII. CONCLUSION

In this work, we described CHECO, an application neutral
blockchain system with horizontal scalability. Our novel data
structure allows nodes to efficiently store transactions and
record state using CP blocks. The round based consensus
protocol uses ACS as a building block to reach consensus
on CP blocks. The consensus result lets nodes elect new
facilitators and create new checkpoint blocks. To make trans-
actions, nodes use the simple and non-blocking transaction
protocol. Finally, we introduce a validation protocol which
ensures that if an agreed fragment for some transaction exists,
then nodes reach agreement on the validity of that transaction.
The novelty of CHECO is that it decouples consensus and
transaction validation, which enables the desirable horizontal
scalability property, without employing sharding.

We achieve the properties described in Section II. Namely,
our protocol achieves agreement on transactions as we argued
in Section V-B. Validity is achieved because honest nodes
run the get validity(·) function, which, in fact, is the validity
definition. Further, the horizontal scalability is demonstrated
in Section VI, in the ideal case as well as the worst case.

In the future, we hope to apply our system to a concrete
application and evaluate its performance. Furthermore, we
plan to explore a few useful design alternatives such as open
membership, total fork detection and fair facilitator election.

REFERENCES

[1] CoinMarketCap. (Jun. 2017). Cryptocurrency mar-
ket capitalizations, [Online]. Available: https : / /
coinmarketcap . com / currencies / bitcoin/ (visited on
08/05/2017).

431

[2] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena, “A secure sharding protocol for open
blockchains,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
ACM, 2016, pp. 17–30.

[3] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L.
Gasser, and B. Ford, “Enhancing bitcoin security and
performance with strong consistency via collective sign-
ing,” in 25th USENIX Security Symposium (USENIX
Security 16), USENIX Association, 2016, pp. 279–296.

[4] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
and B. Ford, “Omniledger: A secure, scale-out, de-
centralized ledger.,” IACR Cryptology ePrint Archive,
vol. 2017, p. 406, 2017.

[5] M. Vukolić, “The quest for scalable blockchain fab-
ric: Proof-of-work vs. bft replication,” in International
Workshop on Open Problems in Network Security,
Springer, 2015, pp. 112–125.

[6] E. Lombrozo, J. Lau, and P. Wuille. (Dec. 2015). Seg-
regated witness (consensus layer), [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0141.
mediawiki (visited on 06/25/2017).

[7] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels,
A. Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer, et
al., “On scaling decentralized blockchains,” in Interna-
tional Conference on Financial Cryptography and Data
Security, Springer, 2016, pp. 106–125.

[8] J. Poon and T. Dryja, “The bitcoin lightning network,”
Jan. 2016. [Online]. Available: https : / / lightning .
network/lightning-network-paper.pdf.

[9] C. Decker and R. Wattenhofer, “A fast and scalable
payment network with bitcoin duplex micropayment
channels,” in Symposium on Self-Stabilizing Systems,
Springer, 2015, pp. 3–18.

[10] M. Castro, B. Liskov, et al., “Practical byzantine fault
tolerance,” in OSDI, vol. 99, 1999, pp. 173–186.

[11] C. Cachin, “Architecture of the hyperledger blockchain
fabric,” in Workshop on Distributed Cryptocurrencies
and Consensus Ledgers, 2016.

[12] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song,
“The honey badger of bft protocols,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2016, pp. 31–42.

[13] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A.
Spiegelman, “Solidus: An incentive-compatible crypto-
currency based on permissionless byzantine consensus,”
arXiv preprint arXiv:1612.02916, 2016.

[14] J. R. Douceur, “The sybil attack,” in International
Workshop on Peer-to-Peer Systems, Springer, 2002,
pp. 251–260.

[15] M. Pease, R. Shostak, and L. Lamport, “Reaching
agreement in the presence of faults,” Journal of the
ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

[16] Namecoin Developers. (). Namecoin, [Online]. Avail-
able: https : / / www . namecoin . org/ (visited on
06/25/2017).

[17] P. Otte, “Sybil-resistant trust mechanisms in distributed
systems,” Master’s thesis, Delft University of Technol-
ogy, Dec. 2016. [Online]. Available: http : / / resolver .
tudelft . nl / uuid : 17adc7bd - 5c82 - 4ad5 - b1c8 -
a8b85b23db1f.

[18] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J.
Yang, A. Iosup, D. H. Epema, M. Reinders, M. R. Van
Steen, and H. J. Sips, “Tribler: A social-based peer-to-
peer system,” Concurrency and computation: Practice
and experience, vol. 20, no. 2, pp. 127–138, 2008.

[19] M. Bellare and P. Rogaway, “Random oracles are prac-
tical: A paradigm for designing efficient protocols,” in
Proceedings of the 1st ACM conference on Computer
and communications security, ACM, 1993, pp. 62–73.

[20] R. Wattenhofer, Principles of distributed computing,
2016. [Online]. Available: http://dcg.ethz.ch/lectures/
podc allstars/lecture/podc.pdf.

[21] Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin, Im-
plicit consensus: Blockchain with unbounded through-
put, 2017. eprint: arXiv:1705.11046.

[22] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L.
Gasser, I. Khoffi, M. J. Fischer, and B. Ford, “Scalable
bias-resistant distributed randomness,” in Security and
Privacy (SP), 2017 IEEE Symposium on, IEEE, 2017,
pp. 444–460.

[23] K. Cong, “A blockchain consensus protocol with hori-
zontal scalability,” Master’s thesis, Delft University of
Technology, Aug. 2017. [Online]. Available: http : / /
resolver. tudelft . nl / uuid : 86b2d4d8 - 642e - 4d0f - 8fc7 -
d7a2e331e0e9.

[24] TradeBlock. (Oct. 2015). Analysis of bitcoin transaction
size trends, [Online]. Available: https://tradeblock.com/
blog/analysis-of-bitcoin-transaction-size-trends (visited
on 07/14/2017).

432

On the Delay Performance of Browser-based
Interactive TCP Free-viewpoint Streaming

Tilak Varisetty, Markus Fidler
Institute of Communications Technology

Leibniz Universität Hannover

Email: firstname.lastname@ikt.uni-hannover.de

Matthias Ueberheide, Marcus Magnor
Computer Graphics Lab

Technische Universität Braunschweig

Email: lastname@cg.cs.tu-bs.de

Abstract—In free-viewpoint video arbitrary views of a scene or
an object are rendered from a 3-dimensional scene representation
that is obtained using multiple cameras or generated by computer
graphics. The interactivity that is due to the viewpoint selection is
particularly challenging in case of networked applications, where
a server renders the scene from a viewpoint that is chosen by
a remote client. Relying on widely-used standard browser-based
video streaming technology, data transport is performed by the
Transmission Control Protocol (TCP), implying an anticipated
risk of potentially large delays. The magnitude, frequency, and
origin of such delays are the focus of this work. To investigate
the tail distribution of the delays, we use a controlled testbed
environment and instrument the entire video streaming chain
from the server-side renderer to the display at the client using
various measurement points. We identify three major sources of
delays: the video coders, the protocol stack, and the network. We
investigate the causes of these delays and show a strong impact
of network parameters, such as round-trip time and packet loss
probability, on protocol stack delays. While stack delays can
significantly exceed network delays, we find that stack delays
can be reduced effectively by adapting the parameters of the
video encoder.

I. INTRODUCTION

Multiview video arises in many situations where a scene is

captured simultaneously by multiple cameras from different

viewpoints. The cameras can be configured as specific camera

arrays, or they can be naturally located at various positions,

e.g., cameras in a sports stadium or the cameras of mobile

phones that may be used to record a public event. Applications

of multiview video include immersive telepresence systems,

3-dimensional stereoscopic films, or free-viewpoint television,

where the viewer can freely navigate the viewpoint [1]. The

selected viewpoint may either coincide with a given camera

position or otherwise it may be rendered using the views of

nearby cameras. The rendering of a scene or an object from a

given viewpoint is also performed in many other application

areas of computer graphics such as gaming or Computer Aided

Design (CAD).

In a video streaming application a server encodes the video

and transmits it to one or more clients for simultaneous

reproduction. Due to varying network latencies referred to as

delay jitter, the client first stores the received data in a de-jitter

This work was supported in part by the European Research Council (ERC)
under StG 306644.

 0.001

 0.01

 0.1

 1

 120 150 180 210 240 270 300 330 360 390 420 450

C
C

D
F

Time (ms)

14msec RTT
28msec RTT
42msec RTT

Fig. 1. End-to-end delay of interactive TCP streaming of a free-viewpoint
application with server-side rendering. Different network RTTs of 14, 28, and
42 ms are evaluated. The packet loss rate is 1%. In the distribution tail, delays
exceed the RTT by an order of magnitude.

buffer, and then displays it from the buffer after a defined

playout delay that considers, e.g., a certain quantile of the

network latencies.

Streaming of multiview video is particularly challenging

due to the high bandwidth requirements when transmitting

multiple video streams [2]. Compression techniques such as

Multiview Video Coding (MVC) have been developed that use

prediction to take advantage of the temporal correlation within

the streams of the individual views (intra-view prediction) as

well as the spatial correlation between different views (inter-

view prediction).

Providing the entire set of all views to a client enables

non-interactive multiview video streaming, where viewpoint

selection or rendering of the viewpoint can be performed

locally, i.e., by the client. A significant reduction of the data

rate can be achieved, however, if only a selected subset of

the available views needs to be transmitted. This is done in

interactive streaming that uses a control channel from the

client to the server to notify the server about the client’s

viewpoint selection [2]. Using this information, the server may

either transmit a range of (potentially) relevant views, so that

selection or rendering of the viewpoint remains with the client,

or alternatively the server may perform the rendering itself

and transmit only the single selected view [3]. Server-side

rendering has the additional benefit that only a view but not the

source data, for example a CAD model, need to be disclosed.ISBN 978-3-903176-08-9 © 2018 IFIP

The reduction in bandwidth that is achieved by interactive

streaming entails, however, more stringent latency require-

ments. Given a subset of the views, the client’s viewpoint

navigation is constrained by the boundaries of this subset [4],

[5]. To prevent the client from selecting a viewpoint outside

of this subset, the server has to continuously keep track of

the viewpoint or even make a prediction of future viewpoints

to adapt the range of views that it provides accordingly [5]–

[7]. In case of server-side rendering, client and server have to

interact in real-time, as the client’s selection of the viewpoint

has to be considered immediately by the server.

To explore the feasibility of interactive free-viewpoint

streaming we investigate the delay performance of a reference

implementation [8] in a controlled network testbed. We im-

plement a server-side application that takes a 3-dimensional

model to render selected viewpoints without disclosing the

source data. We employ open source video coders and stream-

ing servers and consider a browser-based implementation of

the client that uses only standard HTML5 streaming without

requiring any additional plugins. As HTML5 streaming is

an emerging technology, the availability is still limited by

constraints such as codec, browser, operating system, and type

of video streaming [9]. The choice of HTML5 streaming also

implies the use of the Transmission Control Protocol (TCP).

Fig. 1 shows an example of the Complementary Cumulative

Distribution Function (CCDF) of the end-to-end delay of video

frames from the server-side renderer to the display at the

client. The end-to-end delays comprise the time needed for

encoding and decoding of the video as well as the transmission

of the video frames over the network. The measurements are

performed using different network configurations with Round

Trip Times (RTTs) of 14, 28, and 42 ms. Other parameters

have not been changed and the packet loss rate is 1% in all

experiments. The effect of the RTT is clearly visible in the

upper part of Fig. 1, where the curves are spaced 14 ms apart

from each other, as expected. A much stronger impact, that

exceeds the RTT by an order of magnitude, is visible in the

tail distribution of the end-to-end delays.

This paper reports the results of an extensive measurement

study. We investigate the occurrence of large tail delays, show

their causes and how they may be circumvented. To identify

where delays occur, we instrument the video encoding and

transmission chain and perform logging at various measure-

ment points. Given that video frames are segmented into

several packets, i.e., TCP segments, we implement a frame

logging mechanism that identifies video frame boundaries in

a packet stream with packet loss and retransmissions to be

able to measure the delivery of entire video frames.

The remainder of the paper is structured as follows. In

Sec. II we discuss related works on multiview and free-

viewpoint streaming and the performance of TCP streaming.

We show our experimental setup in Sec. III. Our measurement

results obtained from the network experiments are presented

in Sec. IV and Sec. V, where we investigate the impact of

network and video parameters, respectively. Brief conclusions

are provided in Sec. VI.

II. RELATED WORK

We first discuss related works in multiview and free-

viewpoint streaming and focus on the streaming performance

of TCP afterwards.

A. Multiview and Free-viewpoint Video Streaming

Specific to multiview video streaming systems are multiple

cameras, e.g., a camera array, that capture a scene from

different viewpoints. The content that is generated by the

cameras is encoded and streamed by a server over a network to

one or more clients that can choose the viewpoint individually

from the set of views that are available. Using techniques from

computer graphics, the client may also render arbitrary new

views, thus enabling a free-viewpoint navigation. Significant

work has been dedicated to the quality and the complexity

of the view synthesis. For an introduction to multiview video

streaming see [2] and to free-viewpoint video [1].

One of the main challenges in multiview video streaming

is the bandwidth that is required to transmit a potentially

large set of views to the client. Various techniques have been

developed to reduce the amount of data that is needed. In

source coding, considerable works have taken advantage of the

spatial correlation of the individual views to achieve a higher

compression rate. A prominent example is the H.264/MPEG-

4 extension MVC [10] that makes efficient use of temporal

as well as spatial prediction. Using MVC, all views can be

jointly encoded and transmitted, so that the client can choose

the viewpoint without further interaction with the server.

Interactive multiview streaming, on the other hand, uses

a control channel from the client to the server to report

the viewpoint that is chosen by the client [2]. Using this

information, the server can transmit only the selected view

to the client to save bandwidth. Switching to a different view

implies a random access that can be supported by insertion

of intracoded frames. Since intracoded frames achieve less

compression gain, more efficient frame structures, so-called

merge frames, that enable view switching at defined intervals

T , are presented in [11].

A concern with interactive multiview streaming is the view

switching delay, that occurs if the user switches to a new

view that is not streamed currently. In addition to the view

switching interval T that can be small, i.e., in the order of

a few frames [5], the network RTT of up to hundreds of

milliseconds may have a considerable impact on the view

switching delay [5], [12]. An approach to avoiding view

switching delays is transmitting additional views, possibly

with a higher compression [7], that are likely to be requested

by the client within one RTT [4], [5], [7]. This creates a

general tradeoff between bandwidth and latency [12] and

requires a good anticipation of the viewpoint navigation of

the user [5], [6]. Similar aspects concern free-viewpoint video

streaming, where rendering can be performed at the client or

at the server, requiring either sufficient bandwidth to transmit

multiple views or small RTTs, respectively [3].

The importance of the RTT for view switching in interactive

video streaming is emphasized in [2]–[5], [12]–[14]. While

434

a number of works use an assumption of a deterministic

RTT [4], [5], [7], mostly as a constant to determine a range

of viewpoints that need to be prefetched, real networks ex-

hibit large delay variations, as observed, e.g., in experiments

in [12]. Further, recent works employ Dynamic Adaptive

Streaming over HTTP (DASH) and TCP for free-viewpoint

streaming with client-side rendering [14] and for multiview

streaming [13], where delays are observed that exceed the RTT

by orders of magnitude. For an example, [13] implements a

number of techniques like buffer control, server push schemes,

and parallel streaming to reduce the average view switching

delay from 3.2 s to 380 ms given a network RTT of 4 ms.

B. TCP Streaming Performance

Despite the fact that TCP may cause large delays, it has

become popular for streaming for other reasons, e.g., to

circumvent firewalls. Extensive literature is available on the

performance of TCP in multimedia streaming and specifically

DASH. Relevant performance measures include the throughput

and different types of delays that impact the users’ Quality of

Experience [15].

A major source of difficulty in TCP streaming is the vari-

ability of TCP’s throughput. A common approach is to adapt

the data rate of the encoded video to react to fluctuations of

the available network bandwidth [16]. To reduce delays, [17]

improves the adaptation based on TCP throughput predictions.

To what extent the achievable TCP throughput can be utilized

at all is investigated using an analytical model in [18]. An

important conclusion is that good streaming performance is

attained when the achievable TCP throughput is at least twice

the video data rate.

Regarding TCP delays, different types of delays have to

be distinguished. While there exist numerous studies that

investigate network delays of TCP packets, fewer works have

focused on TCP protocol delays [19]–[25]. TCP protocol

delays are defined as the time difference from a write on the

sender side socket to the corresponding read on the receiver

side socket [19]. They comprise network delays plus potential

transport layer queueing delays at the sender and at the

receiver [23].

The works [19]–[22] present Cumulative Distribution Func-

tions (CDFs) of protocol delays that for certain relevant

network parameters show a long distribution tail due to heavy

sender-side buffering. The authors of [19], [20] conclude that

large tail delays may be avoided by reducing the sender’s

socket buffer size. Based on a testbed measurement study, [21]

develops a parametric model of the CCDF of TCP protocol de-

lays. The CCDFs show a characteristic exponential tail decay

that depends on the relation of the average TCP throughput

and the source data rate. The importance of this relation was

already discussed above as it is also observed in [18].

An analytical model of TCP delays is derived for Constant

Bit Rate (CBR) sources and the TCP version NewReno

in [23]. The model gives working regions, i.e., RTTs and

packet loss rates, that provide acceptable delay performance

for streaming applications. The work [22] estimates service

Network

Encoder

Web server

Client
browser

Streaming
server

Renderer
Application

Fig. 2. System overview. The renderer application generates images at a fixed
frame rate using the viewpoint that is selected by the mouse coordinates of
the client. The images are encoded and streamed to the client browser by a
webserver using HTTP and TCP.

curves of different TCP versions and shows how the different

algorithms for adaptation of the Congestion Window (CWND)

affect the video streaming performance. Queueing models of

TCP’s finite state machine are used to analyze its performance

in [26], [27].

III. EXPERIMENTAL SETUP

In today’s Internet, TCP became a de facto standard for

video streaming that has recently been adopted for more

demanding applications such as multi-view [13] and free-

viewpoint video streaming [14]. While [13], [14] use DASH

with view switching delays of several hundreds of milliseconds

up to seconds and client-side free-viewpoint rendering [14],

we consider an interactive free-viewpoint video streaming

system with server-side rendering that has significantly more

demanding delay requirements. Like [13], [14] we implement

a browser-based solution that also uses TCP but not DASH

for streaming. In this section, we first give a brief overview of

our implementation of free-viewpoint video streaming [8]. We

then introduce our Emulab testbed configuration that we use

for experimentation, and give details on our instrumentation

of the application and network that enables us to distinguish

different causes of delays.

A. Free-viewpoint Video Application

An overview of the system that we implemented is given

in Fig. 2. The setup uses a client-server model where the

server executes the necessary software for rendering, encoding,

streaming, and hosting of the video. The view that is generated

by the server-side renderer application is selected by the client.

The renderer application is programmed using OpenGL

libraries. It uses libwebsockets on a specified TCP port to

receive the coordinates of the viewpoint, i.e., the mouse

coordinates, from the client. The renderer application peri-

odically creates new images based on the selected viewpoint.

Rendering is performed at a configurable rate of up to 50

frames per second (fps).

435

TABLE I
SOFTWARE VERSIONS.

Software Version No.
Ubuntu 12.04.5 LTS

ffmpeg, ffserver 2.1.git
lighttpd 1.4.28
OpenGL 2.1 Mesa 8.0.4

libwebsocket 1.0.8
libvpx 1-3.0

Whenever the renderer creates a new image, it is encoded

by the open source software ffmpeg using the libvpx video

codec. The encoded image is streamed by ffserver and made

available to the client as an HTML5 file by a lighttpd web-

server. The client sends an HTTP GET request to receive the

HTML5 stream from the webserver. Streaming is performed

via TCP, specifically the TCP version Cubic with selective

acknowledgements (SACK) option. The client runs Google’s

Chrome browser to play the video. As our setup only uses

standard HTML5 streaming technology, the client’s browser

does not require any plugins.

For the purpose of the following measurements, we have

configured the video encoder to produce constant-sized frames,

specifically intracoded frames, to ease the interpretation of the

results by avoiding delay variations that are due to the size of

the frames. The size of video frames is approximately 12.6

kByte if not specified otherwise.

Tab. I summarizes the versions of the software used. Further

details on our implementation can also be found in [8].

B. Network Testbed Configuration

We use the Emulab installation at our institute to evaluate

the performance of our free-viewpoint video streaming ap-

plication. Emulab1 is a well-known framework for network

emulation that can configure arbitrary network topologies

consisting of nodes, i.e., hosts and routers, and links for

controlled experimentation. Each node is put into effect by

a physical machine that is booted with a defined operating

system to act either as a router or as a host that runs the

intended network application.

The machines have several network interfaces for experi-

mentation, in our case a minimum of four 1 Gbps Ethernet

interfaces, that are connected to a central switch. The switch

creates Virtual LANs (VLANs) between the nodes to form the

desired topology. Link parameters such as capacity, delay, and

packet loss are emulated by the system using additional nodes,

e.g., a link with a fixed delay comprises two VLAN links

connected to a delay node that forwards packets only after the

defined amount of time. The ipfw utility on freebsd is used for

this purpose2. Capacity limits and packet loss are emulated in

the same way. The machines have additional interfaces that are

connected to a separate control network that is used to execute

and monitor the experiments and to synchronize the clocks of

the different machines using the Network Time Protocol (NTP)

and the institute’s NTP server.

1https://www.emulab.net/
2https://www.freebsd.org/cgi/man.cgi?ipfw(8)

TABLE II
UTILIZATION WITH RESPECT TO THE GREEDY TCP THROUGHPUT FOR A

VIDEO FRAME RATE OF 10 FPS, DIFFERENT RTTS, AND LOSS RATES.

Loss rate (%) RTT (ms) Throughput (Mbps) Utilization (%)
0.5 28 5.03 20.0
1 14 7.29 13.8
1 28 3.57 28.2
1 42 2.58 39.0
2 28 2.57 39.1

In our experiments, we use 1 Gbps Ethernet links to connect

the video client and server. The Maximum Transmission Unit

(MTU) of the Ethernet is 1500 Byte such that the TCP

Maximum Segment Size (MSS) is 1460 Byte and video frames

of 12.6 kByte size result in 9 TCP segments. The central

link is configured to emulate a wide area network with RTTs

of 14, 28, and 42 ms, respectively. In addition, the link has

independent Bernoulli random packet losses of 0.5, 1, and

2%, respectively. Given the link parameters, the throughput

of a TCP connection is limited by TCP’s congestion control

algorithm. We measured the throughput that is achieved by

a greedy TCP Cubic source for these network parameters

using iperf3. The results are detailed in Tab. II. We define the

utilization of the TCP connection by the video source as the

quotient of the video data rate and the greedy TCP throughput.

The greedy TCP throughput is the maximal throughput of

the TCP connection, that is achieved in case of a greedy

data source. Tab. II gives the utilizations for a frame rate of

10 fps. The utilization for other rates of x fps follows by

multiplication with x/10.

C. Measurement Points and Delays

To identify and evaluate the causes of large end-to-end de-

lays, as observed in Fig. 1, we instrument the video application

and the network using a number of Measurement Points (MP)

as shown in Fig. 3. The trace files that are recorded contain

tuples of timestamp and value, where the value is either

a unique video frame identifier or an entire TCP segment,

depending on whether the MP is in the application or in the

network.

In detail, MP-A denotes the timestamp after an image has

been created by the renderer application glrender. The image is

written to a pipe file and MP-B denotes the time when ffmpeg

fetches the image from the pipe. After encoding, ffmpeg writes

the corresponding video frame to a localhost socket, that is

MP-C. The frame is picked up from the localhost by ffserver

at MP-D and written to the TCP socket where MP-E is the

timestamp before the TCP send call. MP-F denotes the time

when the first TCP segment of the video frame is transmitted

on the network and MP-G is the time when the first TCP

segment of the video frame arrived at the client. Once all TCP

segments of the frame are received, the frame is delivered to

the browser for reproduction at MP-H. Since TCP delivers

data in order, the delivery of a complete frame is delayed if

one of the preceding frames is not yet complete.

3http://software.es.net/iperf/

436

Fig. 3. The streaming pipeline is instrumented using measurement points A
to H. We distinguish coding delays (A→C and D→E), stack delays (C→D
and E→F), and transfer delays (F→H).

The logging framework is implemented in the source code

of the software of the glrender application, ffmpeg, and

ffserver. The glrender application generates a video frame

number which is unique for every frame. It is mapped to the

ffmpeg input and used for logging from MP-A up to MP-

E. After MP-D, the ffserver assigns a unique Presentation

Time Stamp (PTS) to the header of each video frame that is

transmitted to the client. We note the correspondence of frame

number and PTS at MP-E and use the PTS for identification

of frames up to MP-H. Since TCP divides the video frames

into smaller segments, the TCP segments are captured at MP-

F and MP-G in the network using libpcap, respectively, the

wireshark software4. We postprocess the network trace files to

identify the video frame boundaries using the TCP sequence

number and the PTS from the recorded TCP segments.

The different types of delays that each video frame incurs

in the streaming pipeline from the rendering application to the

client browser can be classified as follows:
Coding delays: The coding delays comprise the loading

time of the image from the pipe (A→B), FFM encoder delays

(B→C), and delays due to packaging into the FFM container

format (D→E). In our measurements, the average delay be-

tween A→B is 18 ms, and B→C is 14 ms, respectively. The

delay between D→E is dependent on the frame rate as we

observed that ffserver generally buffers one video frame to

send the current frame on the TCP socket. Hence, the delay is

100, 50, and 33 ms for 10, 20, and 30 fps, respectively. The

coding delays observed in the experiments are not dependent

on the network conditions.
Stack delays: Delays in the sender’s protocol stack occur

whenever the transmission is throttled by TCP congestion

control so that frames have to wait for transmission in the

sender’s TCP stack (E→F), specifically in the socket buffer.

In our experiments, the socket buffer is configured to have a

size of 3 MByte. While the authors of [19], [20] argued that

4https://www.wireshark.org/

delays in the sender’s TCP stack can be avoided by reducing

the socket buffer size, we note that this approach shifts the

problem to the next higher entity that would have to adapt

accordingly. Precisely, if the socket buffer is full, the write call

to the TCP socket by ffserver (E) blocks so that ffserver cannot

fetch further frames from the localhost interface causing

additional delays there (C→D). In the following evaluation

we will generally show the combined stack delays of each

frame (C→D plus E→F).

Transfer delays: The transfer delay of a video frame

comprises the time to transmit all packets of the frame via the

network (F→G). In case of packet loss, retransmissions are

required in addition that can cause additional waiting times

at the receiver until all packets are received in sequence and

the frame can be delivered to the browser (G→H). In the

evaluation we will show the entire transfer delay until the last

TCP segment of the current video frame is delivered. (F→H).

IV. IMPACT OF NETWORK DELAYS AND LOSS

We conducted a large number of experiments with different

network configurations and parameter sets. For clarity of

exposition, we report experiments with selected parameter

sets that enable us to separate and identify certain effects

most clearly. In our evaluation, we first consider the impact

of the network delay, specifically different RTTs of 14, 28,

and 42 ms, on the transfer and stack delays experienced by

the video frames. The network discards packets randomly to

realize a loss rate of 1%. Different packet loss rates of 0.5%

and 2% are considered afterwards. The frame rate is 10 fps and

the frame size of 12.6 kByte corresponds to 9 TCP segments.

The video bit rate at 10 fps is about 1 Mbps, i.e., compared to

the greedy TCP throughput reported in Tab. II the utilization

is moderate in all cases with a maximum of 39.1%.

A. RTT-induced Delays

The network RTT has an obvious impact on the transfer

delay as it takes at least RTT/2 to deliver a video frame to

the client. Frequently, the transfer delay is, however, larger

as not all packets of a frame may be transmitted at once

due to TCP congestion control. Further, packets may require

retransmission in the case of packet loss. In addition, the RTT

may result in stack delays and blocking of the sender’s TCP

socket.

1) Per-frame Transfer Delays: In Fig. 4(a), we show the

dependence of the CCDF of the transfer delay (F→H) on

the RTT. We notice that all curves show the same stepped

trend, where the first step at 7, 14, and 21 ms, respectively,

corresponds to RTT/2 and the following steps have a width

of 14, 28, and 42 ms, respectively, corresponding to the RTT.

The step height, on the other hand, shows little influence of

the RTT and is almost identical for the first steps.

The behavior is explained by the CDF of the CWND that

is shown in Fig. 4(b). First, we notice that the CDF of the

CWND exhibits no significant influence of the RTT. As the

CDF indicates the probability that the CWND does not exceed

a given value, we see that a CWND of less than 9 MSS, that

437

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240

C
C

D
F

Time (ms)

14 ms RTT
28 ms RTT
42 ms RTT

Constant step height

Varying step width

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
D

F

Congestion window size in MSS

14 ms RTT
28 ms RTT
42 ms RTT

Required CWND

(b) CWND

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

C
C

D
F

Time (ms)

14 ms RTT
28 ms RTT
42 ms RTT

(c) Stack delay

Fig. 4. Impact of the RTT. The packet loss rate is 1%. The CCDF of the transfer delay exhibits first a minimum delay of RTT/2 followed by steps of a
width of RTT. The CDF of the CWND shows only a marginal influence of the RTT. A CWND of at least 9 MSS permits sending a video frame at once. The
probability that the CWND falls below 9 MSS corresponds to the probability to see transfer delays of more than RTT/2. Stack delays are observed when the
transfer of a frame takes longer than 100 ms so that the next frame, at a frame rate of 10 fps, has to wait for transmission.

is the minimum CWND that is required to be able to transmit

a video frame at once without waiting for acknowledgements,

occurs with probability 0.77. In this case only a part of the

video frame, i.e., CWND packets, can be transmitted before

the transmission is paused. The transmission is resumed after

one RTT when the first acknowledgements appear at the

sender. We observe that the probability of 0.77 corresponds

to the first step of a width of RTT in Fig. 4(a). The following

steps can be explained in a similar way, e.g., in case of a

CWND of less than 5 MSS it takes another round of one

RTT. In addition, retransmissions that also take one RTT start

to have an influence. In the given case of 9 TCP segments

per frame and 1% packet loss, the transfer of a frame requires

retransmission of one or more packets with a probability of

almost 0.09.

We conclude that the RTT has only a minor effect on

the CDF of the CWND in our experiments. Hence, the

probabilities of observing transfer delays of several RTTs are

similar irrespective of the RTT. In contrast, the magnitude of

the transfer delays grows linearly with the RTT.

2) Stack Delays and Blocking: If the transfer of one or

more video frames is not completed when the next video

frame is ready for transmission, additional buffering applies

at the sender resulting in stack delays and possibly blocking

of the sender’s TCP socket. Given the frame rate of 10 fps,

this applies if video frames do not complete transfer within

100 ms. From Fig. 4(a), we find that transfer delays exceed

100 ms with a probability of slightly less or more than 0.01

in case of an RTT of 14 and 28 ms, and about 0.1 in case

of an RTT of 42 ms. The CCDFs of the stack delays (C→D

plus E→F) presented in Fig. 4(c) confirm these probabilities.

Again, the effect is due to the probability that the CWND falls

below a critical value. This critical value depends, however,

on the RTT, so that the probability of incurring stack delays

is also RTT dependent. For example, assume that the CWND

is small, e.g., less than 5 MSS, so that it takes 3 rounds to

deliver a video frame. In case of an RTT of 42 ms but not in

case of 28 or 14 ms the transfer delay exceeds 100 ms and

the next frame has to wait in the protocol stack.

The stack delays may also be interpreted as queueing delays

at a system with random service [22] and the magnitude of the

delays can be related to the utilization. Since the greedy TCP

throughput depends on the RTT, see Tab. II, we have different

utilizations of 13.8%, 28.2%, and 39.0% in case of an RTT of

14, 28, and 42 ms, respectively. We note that the stack delays

are significant already at a moderate utilization of 39.0%.

B. Loss-dependent Delay Probabilities

Next, we evaluate the impact of the packet loss probability.

For the experiments, we set the loss rate to 0.5, 1, and 2%,

respectively. The RTT is fixed to 28 ms.

1) Role of the CWND Distribution: Fig. 5(a) displays the

CCDFs of the transfer delays. All curves show the same

characteristic stepped shape as in Fig. 4(a) with a step width

that is determined by the RTT of 28 ms. The curves differ,

however, with respect to their step height that decreases in case

of a larger packet loss rate, i.e., transfer delays that exceed the

minimal transfer delay of RTT/2 by one or more RTTs become

more frequent if the packet loss rate is larger.

The effect is caused by the CWND that is stochastically

decreasing in the packet loss rate. The CWND falls with a

higher probability below certain critical values if the packet

loss rate is increased. The CDFs of the CWND are presented

in Fig. 5(b). As before, a CWND of at least 9 MSS is required

to be able to transmit an entire video frame at once, whereas it

takes at least one additional round of one RTT if the CWND

falls below 9 MSS. This happens with probability 0.5, 0.77,

and 0.95 in case of a packet loss rate of 0.5, 1, and 2%,

respectively. The probabilities correspond to the step heights

of the first step of the transfer delay CCDFs in Fig. 5(a). The

following steps are explained similarly.

2) Effect on Stack Delays: The CWND distribution also

affects the probability and the magnitude of stack delays. With

increasing packet loss rate, the CWND falls more frequently

below the critical value that is required to deliver a frame

within the frame generation interval of 100 ms. Likewise, the

utilization increases with the loss rate, i.e., in the experiments

the utilization is 20.0%, 28.2%, and 39.1% given the packet

438

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

C
C

D
F

Time (ms)

0.5% packet loss
1% packet loss
2% packet loss

RTT/2

Varying step height

Constant step width

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
D

F

Congestion window size in MSS

0.5% packet loss
1% packet loss
2% packet loss

Required CWND

(b) CWND

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

C
C

D
F

Time (ms)

0.5% packet loss
1% packet loss
2% packet loss

(c) Stack delay

Fig. 5. Impact of the packet loss rate. The RTT is 28 ms. The packet loss rate determines the height of the steps of the transfer delay CCDF. The effect is
via the CWND, that is stochastically decreasing with the packet loss rate. For increasing packet loss rates, large tail delays are observed in the stack.

loss rates of 0.5%, 1%, and 2%, respectively, causing larger

queueing delays in the stack.

V. ADAPTATION OF VIDEO PARAMETERS

The RTT and the packet loss rate determine the TCP

throughput as well as transfer and stack delays, as observed for

a defined video traffic profile in Sec. IV. In order to mitigate

delays, the video traffic can be adapted using a variety of

encoding parameters that determine the compression gain and

hence the data rate. Common options are adaptation of the

temporal resolution, the spatial resolution, or the quantizer,

i.e., the quality. While the first option determines the frame

rate, the other two options influence the frame size. Generally,

the goal of adapting the video data rate is to control the

utilization to avoid load-dependent delays. In our evaluation,

we discover that the interaction with the TCP protocol stack

causes a number of relevant other effects.

A. Frame Rate

To investigate the impact of the frame rate, we adapt the ren-

derer application to generate 10, 20, and 30 fps, respectively.

First, we consider the effect of the utilization on delays before

we turn to an artifact that is caused by TCP’s fast retransmit

algorithm.

1) Effect of the Utilization: In Figs. 6(a) and 6(b) we show

the impact of the frame rate on the transfer and the stack

delay, respectively. The RTT is 28 ms and the loss rate 1%.

In relation to the greedy TCP throughput the utilization is

28.2%, 56.4%, and 84.6% for 10, 20, and 30 fps, respectively.

While we notice little change in the transfer delay in Fig. 6(a),

a significant impact of the frame rate on the stack delay is

observed in Fig. 6(b). As before, the stepped transfer delay

curves in Fig. 6(a) are caused by the size of the CWND, e.g.,

if the CWND falls below the frame size of 9 MSS it takes

one or more additional RTT-sized rounds to transfer a frame,

see Fig. 4(b) and the explanation in Sec. IV-A1. This effect is

independent of the frame rate.

If the transfer of a frame exceeds the time until the next

frame is ready for transmission, that is the reciprocal of

the frame rate, stack delays occur. Fig. 6(b) confirms that

the probability of non-zero stack delays corresponds to the

probability to see transfer delays of more than 100, 50, and

33 ms for 10, 20, and 30 fps, respectively. The magnitude of

the stack delays in Fig. 6(b) demonstrates the effectiveness

of rate adaptation and supports earlier observations [18], [22]

that good delay performance is achieved only if the video data

rate is smaller than the greedy TCP throughput by a factor of

about two or more.

2) Issue of Last Segment Lost: In Fig. 6(a), the tail delay

at a probability of 0.01 shows an opposing effect: the transfer

delay is larger by almost 50 ms in case of a smaller frame rate

of 10 fps. The effect persists if the RTT is reduced from 28 ms

in Fig. 6(a) to 14 ms in Fig. 7, where additionally a difference

of about 17 ms is noticed between the curves obtained for

frame rates of 30 and 20 fps.

The reason for this is packet loss, specifically loss of

the last TCP segment of a video frame. In general, TCP’s

fast retransmit algorithm, that is triggered by three duplicate

acknowledgements, as well as selective repeat of missing

segments indicated by SACKs deal effectively with loss. An

exception is the loss of the last TCP segment of a video

frame after which the transmission pauses. It resumes when

the next video frame is available and eventually duplicate

acknowledgements or a SACK indicate the missing TCP

segment and trigger the retransmission. In the experiments,

the loss rate is 1% and the frame generation period is 100, 50,

and 33 ms in case of a frame rate of 10, 20, and 30 fps,

respectively. Consequently, if the frame rate is smaller, it

takes longer until the next frame resumes transmission and the

retransmission is triggered. The time differences 100−50 = 50
and 50 − 33 = 17 ms are observed in Fig. 7 roughly at the

loss probability of 0.01.

In more detail, if the last TCP segment of a frame is lost, it

takes up to one frame generation period plus at least one RTT

until duplicate acknowledgements or a SACK appear at the

sender. Once there are three duplicate acknowledgements or a

SACK, the retransmission is triggered. It arrives earliest after

another RTT/2 at the receiver. In case of an RTT of 14 ms

the numbers add up to 54, 71, and 121 ms for a frame rate

of 30, 20, and 10 fps, respectively. The arrows in Fig. 7 mark

these numbers approximately. For Fig. 6(a), where the RTT is

28 ms, the numbers are 75, 92, and 142 ms. The reason why

439

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

C
C

D
F

Time (ms)

10 fps
20 fps
30 fps

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900

C
C

D
F

Time (ms)

10 fps
20 fps
30 fps

(b) Stack delay

Fig. 6. Impact of the frame rate. The RTT is 28 ms and the packet loss rate 1%. The frame rate determines the utilization that is 28.2%, 56.4%, and 84.6%
for 10, 20, and 30 fps, respectively. The CCDF of the transfer delay shows little influence of the frame rate with significant deviations only in the tail. In
contrast, the frame rate has a major impact on the stack delays. The probability to see non-zero stack delays corresponds to the probability that the transfer
delay exceeds the frame generation interval of 100, 50, and 33 ms, respectively.

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

C
C

D
F

Time (ms)

10 fps
20 fps
30 fps

Fig. 7. Impact of the frame rate on the transfer delay. The RTT is 14 ms
and the packet loss rate 1%. The tail transfer delays increase with decreasing
frame rate. The effect is due to packet loss of the last TCP segment of a
video frame. In this case duplicate acknowledgements or SACKs trigger TCP
fast retransmit or selective repeat, respectively, only when the next frame is
transmitted. The arrows indicate the differences between the frame generation
intervals of 100, 50, and 33 ms.

the transfer delays in Fig. 6(a) show no difference between 30

and 20 fps is that due to the small CWND at probability 0.01,

the tail delay to deliver a frame is 3.5 RTT, i.e., 98 ms, and

hence larger than the estimated delays of 75 and 92 ms for

retransmission of the last TCP segment.

B. Frame Size

Given that a reduction of the video frame rate can lead

to larger transfer delays, we now investigate whether an

adaptation of the frame size is more effective. We modify the

quantizer to generate video streams with different frame sizes,

where we specify the frame size relative to the one that we

used in the previous experiments. We show results for frame

sizes of 80%, 100%, and 120%. The frame rate is 10 fps and

the network has an RTT of 28 ms and a loss rate of 1%.

1) Impact on the Transfer Delays: In Fig. 8(a), we consider

the CCDF of the transfer delay. As before, we notice that

the curves have distinct steps. The width of the steps is

independent of the frame size and determined by the RTT.

The height of the steps increases with decreasing frame size.

This means that reducing the frame size effectively improves

the transfer delay.

2) Relation with the CWND: The way in which the frame

size helps reduce the transfer delay is via its relation to the

CWND. First, we notice that the frame size has little effect on

the CDF of the CWND, that is presented in Fig. 8(b), where

larger frame sizes tend to result in slightly larger CWNDs.

A possible reason for this is TCP’s Congestion Window

Validation algorithm [28], that freezes the CWND if it is not

fully utilized. Hence, the CWND only rarely grows to large

values if the frame size is small.

Given the similarity of the CWND CDFs in Fig. 8(b),

the improvement of the transfer delay is due to the different

CWND requirements given frames of different size. In the

above case, the frame sizes correspond to 7, 9, and 11 TCP

segments, respectively. If the CWND falls below any of these

values, frames of the respective size cannot be transmitted in

one round, resulting in one or more additional RTTs of transfer

delay. The required CWNDs are marked in Fig. 8(b) and the

probabilities that the CWND falls below any of these values

are clearly visible as the height of the first step of the different

transfer delay CCDFs in Fig. 8(a).

Regarding the stack delays, we observe relatively moderate

values that do not show strong differences for the frame sizes

above. The reason is the low utilization of 22.7%, 28.2%, and

33.8%, respectively. We omit showing the results and note,

however, that the adaptation of the frame size can effectively

reduce stack delays if the utilization is high.

VI. CONCLUSIONS

We investigated interactive TCP streaming of a free-

viewpoint rendering application. We instrumented the entire

streaming chain to identify delays and performed a compre-

hensive measurement study in a controlled network testbed

to analyze the impact of relevant network and encoding

parameters. A finding is that the utilization of the TCP

connection has to be kept low as it has a major impact on

delays in the sender’s TCP socket buffer. Further, a pronounced

influence of the distribution of the CWND on the transfer

440

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240

C
C

D
F

Time (ms)

80% frame size
100% frame size
120% frame size

 RTT/2

Varying step height

Constant step width

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
D

F

Congestion window size in MSS

80% frame size
100% frame size
120% frame size

CWND-2

CWND-1

CWND-3

(b) CWND

Fig. 8. Impact of the frame size. The RTT is 28 ms, the packet loss rate 1%, and the frame rate 10 fps. The frame size effectively controls the CWND
requirements of the video stream, where a CWND of 7, 9, and 11 MSS, respectively, permits sending a video frame at once. The probabilities that the CWND
falls below these critical values correspond to the probabilities to see transfer delays of more than RTT/2.

delay is noticed. The insights guide the design of adaptive

applications and suggest to include feedback about the size of

the CWND and the socket buffer filling to the application.

Our measurements of the end-to-end delay showed a high

variability of a few 100 ms. Hence, the receiver of a video

streaming application has to provision an adequate de-jitter

buffer to accomodate the observed tail delays. In case of our

rendering application, frames are displayed immediately when

they arrive at the receiver. For moderate RTT and packet loss,

stalling is sporadic and the user perception of the time lag is

mostly acceptable.

REFERENCES

[1] S. Aljoscha, “3d video and free viewpoint video – from capture to
display,” Pattern Recognition, vol. 44, no. 9, pp. 1958–1968, Sep. 2011.

[2] J. Chakareski, “Adaptive multiview video streaming: challenges and
opportunities,” IEEE Communications Magazine, vol. 51, no. 5, pp. 94–
100, May. 2013.

[3] A. Hamza and M. Hefeeda, “Adaptive streaming of interactive free view-
point videos to heterogeneous clients,” in Procs. of the 7th International
Conference on Multimedia Systems, May. 2016, pp. 10–22.

[4] X. Xiu, G. Cheung, and J. Liang, “Frame structure optimization for
interactive multiview video streaming with bounded network delay,” in
Procs. of IEEE International Conference on Image Processing, Sep.
2011, pp. 593–596.

[5] ——, “Delay-cognizant interactive streaming of multiview video with
free viewpoint synthesis,” IEEE Trans. on Multimedia, vol. 14, no. 4,
pp. 1109–1126, Aug. 2012.

[6] T. Maugey and P. Frossard, “Interactive multiview video system with
low complexity 2d look around at decoder,” IEEE Trans. on Multimedia,
vol. 15, no. 5, pp. 1070–1082, Aug. 2013.

[7] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp, “Client-driven selective
streaming of multiview video for interactive 3DTV,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1558–
1565, Nov. 2007.

[8] M. Ueberheide, F. Klose, T. Varisetty, M. Fidler, and M. Magnor,
“Web-based interactive free-viewpoint streaming: A framework for high
quality interactive free viewpoint navigation,” in Procs. of the ACM
International Conference on Multimedia, Oct 2015, pp. 1031–1034,
Short Paper.

[9] X. Yan, L. Yang, S. Lan, and X. Tong, “Application of HTML5
multimedia,” in Procs. of International Conference on Computer Science
and Information Processing (CSIP), Aug. 2012, pp. 871–874.

[10] A. Vetro, T. Wiegand, and G. J. Sullivan, “Overview of the stereo
and multiview video coding extensions of the H.264/MPEG-4 AVC
standard,” Procs. of the IEEE, no. 4, pp. 626–642, Apr. 2011.

[11] G. Cheung, A. Ortega, and N. M. Cheung, “Interactive streaming of
stored multiview video using redundant frame structures,” IEEE Trans.
on Image Processing, vol. 20, no. 3, pp. 744–761, Mar. 2011.

[12] J.-G. Lou, H. Cai, and J. Li, “A real-time interactive multi-view video
system,” in Procs. of the ACM International Conference on Multimedia,
Nov. 2005, pp. 161–170.

[13] D. Yun and K. Chung, “Dash-based multi-view video streaming system,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 99,
no. 99, pp. 1–1, Apr. 2017.

[14] A. Hamza and M. Hefeeda, “A DASH-based free viewpoint video
streaming system,” in Procs. of Network and Operating System Support
on Digital Audio and Video Workshop, Mar. 2014, pp. 55–60.

[15] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofeld, and P. Tran-Gia,
“A survey on quality of experience of HTTP adaptive streaming,” IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, Mar. 2015.

[16] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” in
Procs. of the ACM Conference on Multimedia Systems, Feb. 2011, pp.
157–168.

[17] K. Miller, A.-K. Al-Tamimi, and A. Wolisz, “QoE-based low-delay
live streaming using throughput predictions,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 13, no. 1, pp. 41–44, Oct. 2016.

[18] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia streaming
via TCP: An analytic performance study,” in Procs. of the ACM
International Conference on Multimedia, Oct. 2004, pp. 908–915.

[19] A. Goel, C. Krasic, K. Li, and J. Walpole, “Supporting low latency
TCP-based media streams,” in IEEE International Workshop on Quality
of Service, Aug. 2002, pp. 193–203.

[20] A. Goel, C. Krasic, and J. Walpole, “Low-latency adaptive streaming
over TCP,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 4,
no. 3, pp. 21–40, sep. 2008.

[21] R. Lübben and M. Fidler, “On characteristic features of the application
level delay distribution of TCP congestion avoidance,” in Procs. of IEEE
International Conference on Communications (ICC), May 2016.

[22] ——, “Service curve estimation-based characterization and evaluation
of closed-loop flow control,” IEEE Trans. on Network and Service
Management, vol. 14, no. 1, pp. 161–175, Mar. 2017.

[23] E. Brosh, S. A. Baset, V. Misra, D. Rubenstein, and H. Schulzrinne,
“The delay-friendliness of TCP for real-time traffic,” IEEE/ACM Trans.
on Networking, vol. 18, no. 5, pp. 1478–1491, Oct. 2010.

[24] J. Wu, C. Yuen, and J. Chen, “Leveraging the delay-friendliness of TCP
with FEC coding in real-time video communication,” IEEE Trans. on
Communications, vol. 63, no. 10, pp. 3584–3599, Oct. 2015.

[25] Y. Xiong, M. Wu, and W. Jia, “Rate adaptive real-time video transmis-
sion scheme over TCP using multi-buffer scheduling,” in Procs. of the
International Conference for Young Computer Scientists, Nov. 2008, pp.
354–361.

[26] R. L. Cigno and M. Gerla, “Modeling window based congestion control
protocols with many flows,” Performance Evaluation, vol. 36-37, pp.
289–306, Aug. 1999.

[27] M. Garetto, R. L. Cigno, M. Meo, and M. A. Marsan, “Modeling
short-lived TCP connections with open multiclass queuing networks,”
Computer Networks, vol. 44, no. 2, pp. 153–176, Feb. 2004.

[28] G. Fairhurst, A. Sathiaseelan, and R. Secchi, “Updating TCP to support
rate-limited traffic,” RFC 7661, Oct. 2015.

441

Alternative Handshake Mechanism for the Stream
Control Transmission Protocol

Felix Weinrank, Irene Rüngeler, Michael Tüxen
Münster University of Applied Sciences

Department of Electrical Engineering and Computer Science
Stegerwaldstrasse 39

48565 Steinfurt, Germany
{weinrank,ruengeler,tuexen}@fh-muenster.de

Erwin P. Rathgeb
University of Duisburg-Essen

Faculty of Business Administration and Economics
Computer Networking Technology Group

Schützenbahn 70
45127 Essen, Germany

erwin.rathgeb@iem.uni-due.de

Abstract—The Stream Control Transmission Protocol (SCTP)
is a message and connection oriented transport protocol using
a cookie based four-way handshake for connection establish-
ment. The intention of the four-way handshake is to provide
a robust protection against flooding attacks, like TCP SYN-
flooding. Although it protects the memory resources on the
server side, current implementations require a quite large amount
of CPU resources. For some of SCTP’s use-cases, like the
underlying transport protocol for Web Real-Time Communi-
cation (WebRTC) Data-Channels, SCTP’s cookie protection is
unnecessary and its four-way handshake delays the connection
setup unnecessarily.

We have developed an alternative handshake method which
offers a more lightweight cookie exchange and a zero round-trip
time (RTT) connection setup capability while still being fully
backwards compatible with the existing handshake procedure.
We describe the alternative handshake procedure and its ad-
vantages in common use cases like short living connections and
WebRTC Data-Channels. In addition, we evaluate the alternative
handshake’s benefit to the regular handshake with measurements
using our FreeBSD kernel implementation.

I. MOTIVATION

Reducing the connection setup time has become a more
and more important topic in the design of network protocols.
With TCP Fast Open [1], TLS 1.3 [2] and QUIC [3], many
popular protocols provide specific mechanisms to reduce the
connection setup time. This development is driven by the
perception that connection setup time has replaced insufficient
bandwidth in the context of improving the user experience.

The Stream Control Transmission Protocol (SCTP) [4]
is a reliable, connection oriented transport protocol using a
cookie based four-way handshake to provide protection against
INIT-flooding attacks, resulting in one round trip before the
client can send the first data and two round-trips until the
connection establishment is completed. Even though originally
designed for the transmission of small signaling messages in
the Signaling System No. 7 (SS7), SCTP’s use cases have
been extended over the last years, for example by Web Real-
Time Communication (WebRTC) where SCTP is used as the
underlying transport protocol for Data-Channels [5].

We have analyzed the regular SCTP handshake in multiple
scenarios and by using the FreeBSD and Linux SCTP stacks.

Previous work [6],[7],[8],[9] and our evaluation shows that the
handshake procedure is a resource consuming operation and
vulnerable to byte amplification attacks, which is covered by
the measurement and evaluation section in detail.

In case of WebRTC Data-Channels, SCTP’s four-way hand-
shake is redundant and adds an unnecessary delay because
the SCTP communication is encapsulated within the Datagram
Transport Layer Security (DTLS) [10] protocol which already
authenticates the peer during its handshake.

Therefore, we developed an alternative handshake pro-
cedure focused on a more lightweight and flexible method
which addresses the requirements and approaches of today’s
transport protocols. Our main goal was to reduce the time to
set up a transport connection, while still being fully backwards
compatible with the regular handshake procedure defined in
RFC4960 [4].

Before we introduce our approach of the alternative hand-
shake in detail, we explain the regular handshake and show its
drawbacks with respect to setup time and resource consump-
tion. The measurement and evaluation section points out the
benefits of the new extension by running tests and benchmarks
on real hardware with our FreeBSD kernel implementation. In
the next section we describe the interaction with existing SCTP
extensions and how the new extensions have been implemented
and integrated in the existing socket API. The last section
summarizes this paper and gives an outlook on further research
activities.

II. REGULAR HANDSHAKE

An SCTP association between a server and a client is
established by a four-way handshake as shown in Figure 1.
The client sends an SCTP message containing an INIT chunk
to an SCTP server to initialize the association setup. The INIT
chunk, as shown in Figure 2, consists of several parameters
carrying a variety of information. Some of the parameters are
mandatory in every INIT and INIT-ACK chunk, while other
parameters are optional.

The mandatory parameters include the Initiate Tag, Ad-
vertised Receiver Window, number of incoming and outgo-
ing streams and the Initial Transmission Sequence Number
(TSN). The optional parameters provide a flexible way to
store arbitrary information in those chunks, for example a listISBN 978-3-903176-08-9 c© 2018 IFIP

Client Server

Generates state cookie
State: closed

Reflects state cookie
State: cookie-echoed

Validates state cookie
Generates TCB
State: open

State: open

State: cookie-wait

Fig. 1: Regular four-way handshake

of available IP address candidates and additional supported
extensions.

Initiate Tag

Advertised Receiver Window Credit

#Out Streams #In Streams

Initial Transmission Sequence Number

Optional Parameter #1

Optional Parameter #2

32 Bit

Type = 1 LengthFlags

Fig. 2: INIT chunk structure

When receiving an SCTP message containing an INIT
chunk, the server responds with an INIT-ACK chunk which
consists of the same mandatory parameters as the INIT chunk
and an additional State Cookie parameter. The state cookie
contains all information the server needs to create the Trans-
mission Control Block (TCB) and establish the association. It is
digitally signed by the server to ensure its validity and neither
the format nor the size of the cookie is specified by RFC4960,
but it should be as small as possible. Since all necessary
information to create the TCB is included in the cookie, the
server does not need to allocate any client specific resources
after the state cookie has been transmitted to the client. This
mechanism is a key feature to prevent SCTP INIT-flooding
attacks, similar to the TCP SYN-flooding, where an attacker
can exhaust the server’s resources. On the other hand, this can
also be a drawback if the server stores a lot of information in
the cookie, for example a long list of supported extensions or
many address candidates. A large cookie size may be abused
by an attacker for a byte amplification attack or to exhaust
the server’s uplink capacity. Byte amplification attacks cause
the server to send a significantly larger INIT-ACK chunk as a
response to an INIT chunk sent by an attacker with a spoofed
source address of a victim. In addition to the state cookie, the
server can also add any number of optional parameters to the
INIT-ACK chunk.

Upon receiving the INIT-ACK chunk, the client returns

the received state cookie to the server in a COOKIE-ECHO
chunk to authenticate its ownership of the IP address. The
server validates the reflected state cookie, creates the TCB,
establishes the SCTP association and acknowledges the suc-
cessful process with a COOKIE-ACK chunk. This COOKIE-
ACK chunk opens the association on the client side, the four-
way handshake has now successfully finished.

To reduce the timespan between connection initialization
and transmitting the first data, the client and the server can
bundle DATA chunks with the COOKIE-ECHO chunk and the
COOKIE-ACK chunk, respectively, in a single SCTP message,
resulting in a timespan of one round-trip for a client between
initiating the connection and sending the first data.

Client Server

Re-uses state cookie
State: cookie-echoed Validates state cookie

Generates TCB
Acknowledges DATA
State: open

State: open

Fig. 3: Zero-RTT connection setup by re-using the state cookie
from a previous association

In theory, the client can re-use the state cookie multiple
times for future associations with the advantage of saving one
round-trip for the connection setup, resulting in a zero-RTT
connection setup, which is shown in Figure 3. A disadvantage
of re-using the regular state cookie is that all connection
specific parameters from the previous association, exchanged
by the INIT and INIT-ACK chunk, have to stay the same which
affects the Initiate Tags and the Initial Transmission Sequence
Numbers in particular. Re-using the same Initiate Tag for more
than one association is in conflict with its purpose: providing
a key that allows a receiver to verify that the SCTP message
belongs to the current association and is not an old or stale
message from a previous association and should therefore be
unique for every SCTP association. Additionally, the client
cannot modify the supported extensions, number of streams or
announced IP address candidates. Because of the drawbacks,
this method is not implemented in the common network stacks.

III. ALTERNATIVE HANDSHAKE

With our alternative handshake approach, we wanted to
create a more lightweight cookie exchange mechanism which
reduces the resource consumption on the server side and allows
a faster connection setup in less round-trips compared to
the regular handshake. Additionally, our alternative handshake
mechanism should still be fully backwards compatible to
systems without support for the new mechanism.

The alternative handshake, as shown in Figure 4, uses the
same SCTP chunks as the regular handshake, only adding new
optional parameters. A client using the alternative handshake
method initiates an SCTP association by sending a regular
INIT chunk to the server. The only difference to a regular hand-
shake is the new ALT-COOKIE parameter which is included in
the INIT chunk. By adding this parameter to the INIT chunk,

443

the client announces the support for the alternative handshake
and its willingness to use it.

A server, also supporting the alternative handshake exten-
sion, who receives the alternative cookie parameter in the INIT
chunk, generates a client specific cookie and includes it in an
ERROR chunk. The ERROR chunk is sent as a response to
the INIT chunk which is silently dropped by the server. This
is the first major difference to the regular handshake: instead
of generating an INIT-ACK chunk, containing all information
the server needs to create the TCB, the server only generates
a lightweight cookie to validate the IP address ownership of
the client, which is the only purpose of the alternative cookie.
The ERROR chunk has a specific error cause (”ALT-COOKIE
required”) and the client specific cookie in the Cause-Specific
Information field.

Client Server

Generates alternative
Cookie
State: closed

Reflects alternative
cookie

Validates cookie
Responds with INIT-ACK
State: open

State: open

State: cookie-wait

Fig. 4: Alternative four-way handshake

The client responds to the ERROR chunk by transmitting
the INIT chunk and, in contrast to the first attempt, including
the cookie from the server’s ERROR chunk in the INIT chunk’s
ALT-COOKIE parameter payload field. Upon receiving the
INIT chunk with a non-empty ALT-COOKIE parameter, the
server validates the alternative cookie and opens the associa-
tion if successful. In the next step, the server responds with
an INIT-ACK chunk which carries an empty ALT-COOKIE
parameter and no state cookie to acknowledge the successful
usage of the alternative handshake to open the association. This
INIT-ACK chunk establishes the association on the client side,
and the alternative handshake is finished.

If the server cannot validate the alternative cookie, for
whatever reason, it should generate a new alternative cookie
and respond with an ERROR chunk, including this new cookie.

Client Server

Includes cached
alternative cookie
State: cookie-wait

Validates cookie
Responds with INIT-ACK
State: open

State: open

Fig. 5: Alternative handshake using a cached cookie

The client caches the alternative cookie for future associ-

ations to the server. To establish new associations, as shown
in Figure 5, the client simply includes the previously received
alternative cookie in the INIT chunk which instantly opens the
association. This method allows an SCTP connection setup
in a single round-trip without the disadvantage of re-using
association specific parameters like the Initiate Tags and the
Initial Transmission Sequence Numbers.

A. Alternative Cookie Parameter

As already mentioned in the introduction, the INIT and
INIT-ACK chunks consist of mandatory and optional param-
eters. To distinguish the optional parameters, SCTP uses a
predefined Type-Length-Value (TLV) format to encode the
parameter types, variable length and payload.

32 Bit

Type = 0xB007 Length

Cookie Data

Fig. 6: ALT-COOKIE parameter

The parameter type, represented by a 16-bit field, utilizes
the two bits of the highest order to specify the action that
must be taken if the processing endpoint does not support the
parameter type. The first bit encodes if the endpoint should
process any further parameters from the current INIT or INIT-
ACK chunk when reading this unknown parameter. If set, an
endpoint will stop processing the INIT chunk and report an
error. The second bit encodes if an unknown parameter should
be reported to the remote endpoint or silently be discarded.

The alternative cookie (ALT-COOKIE) parameter uses this
particular TLV structure and is included in the INIT and
INIT-ACK chunk for multiple purposes. The ALT-COOKIE
parameter type (0xB007) has the highest bit set to one and
the second highest bit to zero. This encoding ensures that a
server without support for the alternative cookie mechanism
will silently discard the ALT-COOKIE parameter and continue
processing the SCTP message. The length field contains the
size of the parameter in bytes, including the length of the
parameter header. An ALT-COOKIE parameter can carry an
empty cookie. Therefore, the length value is between 4 and
65535 bytes.

B. Alternative Cookie Calculation

A fundamental requirement in the design process for the
alternative cookie was to be more lightweight than the regular
state cookie, as already explained in the introduction. This
covers the cookie size and its computation time for the server
while still offering the same protection level as the regular
state cookie. In contrast to the regular state cookie, the only
purpose of the alternative cookie is the validation of the client’s
ownership of the source IP address and, in contrast to the
regular state cookie, not to create the TCB on the server side.

The generation and validation of the cookie is in the
responsibility of the server. We suggest that an implementation
should use an appropriate cryptographic hashing mechanism to
ensure the integrity of the cookie. Since the client only reflects

444

the cookie, the server can embed any desired information in
the cookie but should keep it as small as possible to mitigate
the risk of amplification attacks. Our implementation uses
a SIPHASH [11] based keyed-hash message authentication
algorithm, which is also used for the TCP Fast Open cookie
in the FreeBSD kernel stack, to generate the cookie from the
client’s IP address. This method binds the alternative cookie
to a specific IP address and, therefore, a multihomed client
has to use the same path it received the alternative cookie on
for future associations. The lifetime of the alternative cookie
can be limited by changing the secret key of the cryptographic
hash function.

C. Cookieless Handshake

Both handshake methods, the regular and the alternative,
aim to prevent amplification attacks and resource exhaustion
by malicious peers. But in certain use cases this protection
is not necessary, for example if the SCTP communication
is transmitted within a protected environment. The usage of
SCTP for WebRTC Data Channels represents a typical case
for a protected environment due to DTLS encapsulation of
the SCTP communication [12]. In this case, the client and
the server already perform a DTLS handshake before the
first SCTP message is transmitted within the DTLS tunnel.
For those scenarios, the alternative handshake method allows
an SCTP server to waive the cookie exchange and open the
association upon receiving the INIT chunk with an empty ALT-
COOKIE parameter.

Client Server

Responds with INIT-ACK
Acknowledges DATA
State: open

State: open

State: cookie-wait

Fig. 7: Cookieless Handshake

Instead of responding with an ERROR chunk, the server ac-
knowledges the successfully established association by sending
an INIT-ACK chunk which includes an empty ALT-COOKIE
parameter, similar to the last two steps of the alternative
handshake with a cookie exchange. This method saves a full
round-trip even if both peers have never been in contact before
and requires no changes at the client side.

D. Zero-RTT connection setup

In addition to the alternative cookie parameter, our ap-
proach introduces an alternative data (ALT-DATA) parameter
and an alternative selective acknowledgment (ALT-SACK)
parameter. These parameters allow the client to embed applica-
tion data in the INIT chunk, resulting in a zero RTT connection
setup. The ALT-DATA parameter simply acts as a container for
regular DATA chunks, see Figure 8. The local endpoint embeds
one or more regular DATA chunks in the parameter’s value
field. The sender has to be aware of not exceeding the path

Type = 0xB008 Length

DATA / I-DATA Chunk #1

DATA / I-DATA Chunk #2

DATA / I-DATA Chunk #3

32 Bit

Fig. 8: ALT-DATA parameter

MTU to avoid IP fragmentation when embedding application
data.

When the server receives and accepts DATA chunks from
the INIT chunk’s alternative data parameter, it acknowledges
them by an alternative selective acknowledgment parameter
(ALT-SACK) which is included in the responding INIT-ACK
chunk. This indicates the successful usage of the alternative
data parameter to the client.

If the server receives a DATA chunk with an invalid
stream number, it drops the DATA chunk according to the
procedure specified by RFC4960 and reports it to the client
using an ERROR chunk with the Invalid Stream Identifier
cause. Another case is a server not opening the association
and requesting an alternative cookie exchange by sending an
ERROR chunk. In this case the application data is also lost
and should be retransmitted in the next INIT chunk.

Client Server

Includes cached
alternative cookie
State: cookie-wait Validates cookie

Responds with INIT-ACK
Acknowledges DATA
State: open

State: open

Fig. 9: Alternative Zero-RTT connection setup

A server not supporting data transmission at all via the
alternative data parameter will silently discard it and, therefore,
not include an ALT-SACK parameter in the responding INIT-
ACK chunk. The client retransmits the previously included
DATA chunks using the regular way.

E. Fallback Mechanism

A major requirement for the alternative handshake is the
seamless backwards compatibility to endpoints not support-
ing the alternative handshake method, and if the fallback
mechanism is used, it should not be unfavorable compared
to the regular handshake. As already explained in the previous
sections, we use TLV parameters in the INIT chunk to achieve
a maximum of compatibility with peers not supporting our
new extension. If a server without support for the alterna-
tive handshake procedure receives an INIT chunk with an
ALT-COOKIE parameter, the server will silently discard the
unknown parameter and respond with a regular INIT-ACK
chunk not containing the ALT-COOKIE parameter. The client

445

continues with a regular handshake and reflects the received
state cookie. When the client connects to the server for the first
time, without having a cached cookie, the alternative cookie
parameter has no payload and has a length of four bytes.

The behavior of silently ignoring the unsupported param-
eter is also used for the alternative data parameter. When the
initiating peer using the alternative handshake procedure in-
cludes application data in the INIT chunk, and the server does
not respond with an INIT-ACK chunk with the ALT-COOKIE
parameter set and an included ALT-SACK parameter, the
application data is lost and has to be retransmitted using regular
DATA chunks. In contrast to wasting four bytes by sending an
unused ALT-COOKIE parameter, including application data in
an INIT chunk should be considered thoroughly because the
performance impact may be much higher. In the worst case
scenario where the client and the server support the alternative
handshake but only the client supports the alternative data
parameter, the client will transmit application data three times
before it is accepted by the server. The server responds to
the first INIT chunk with an ERROR chunk and requests the
reflection of the alternative cookie, while dropping the included
DATA chunks. The client retransmits the INIT chunk, now
including the alternative cookie which opens the association
on the server side. The server ignores the alternative data
parameter, and the client has to retransmit the application data
a third time using the regular DATA chunk.

F. Multihoming

A key feature of SCTP is multihoming which allows
the usage of multiple IP addresses for a single association,
either for automatic failover or load sharing [13]. During the
handshake, both endpoints exchange their IP address candi-
dates by including them in the INIT and INIT-ACK chunk,
respectively. After the association has been established via the
primary path, both peers probe the remote address candidates
by sending HEARTBEAT chunks. An endpoint responds to a
HEARTBEAT chunk by sending a HEARBEAT-ACK chunk
which reflects the Sender-Specific Heartbeat Info from the
HEARTBEAT chunk.

We have modified this mechanism for the alternative hand-
shake since it leads to problems in certain cases. When a
client initiates the association by sending an INIT chunk with
the alternative handshake method and the server accepts this
INIT chunk, either by successfully validating the cookie or by
waiving the cookie exchange, the INIT chunk instantly opens
the association on the server side and the server responds with
an INIT-ACK chunk. Additionally, the server will probe all
the client’s IP address candidates by sending HEARTBEAT
chunks to the particular IP addresses. If the client receives
the server’s HEARTBEAT chunk before the INIT-ACK chunk,
which may happen if the secondary path is faster than the
primary or the HEARTBEAT chunk is processed before the
INIT chunk, the client cannot match the HEARTBEAT chunk
with an existing association and will respond with an ABORT
chunk which terminates the association on the server side. To
avoid this behavior, the server will not send HEARTBEAT
chunks directly after the association has been established.
Instead the server waits until receiving the first additional
SCTP message from the client on the new association before

sending HEARTBEAT chunks to ensure that the association
has successfully been established on the client side.

PRIMARY PATH

SECONDARY PATH

Client Server

State: open

State: open

State: cookie-wait

Fig. 10: Alternative cookie exchange on a secondary path

Another change affects the alternative cookie. The alterna-
tive cookie only validates the source address of the client from
which the INIT chunk has been sent and not the additional
address candidates listed in the INIT chunk. Especially mobile
devices, like smartphones, often switch between cellular and
wifi networks. When establishing a connection to the server,
the smartphone uses the wifi network as its primary path
and includes its cellular IP address in the INIT chunk as
an additional address candidate. When the connection has
successfully been established using the primary path, the client
has an alternative cookie which validates the ownership of the
wifi path but is not valid for a future connection using the
cellular path.

To overcome this limitation, the client sends INIT chunks
to the server via the additional paths after the association
has been established, as shown in Figure 10. The server
generates an alternative cookie for the client’s source address
and responds with an ERROR chunk via the alternative path.
The client caches the cookie for future associations on the
alternative path.

G. Initialization Collision

Initialization collision happens if both peers initiate an
SCTP association by sending an INIT chunk simultaneously
and use the same address/port combination. The collision han-
dling is an important feature, especially for the WebRTC use-
case where both peers take the active part and initiate the SCTP
connection simultaneously, as defined in the corresponding
IETF draft [14]. The regular handshake has techniques to
detect and handle collision cases, but not all of these techniques
can be applied to the alternative handshake since the state
cookie is lacking.

446

Client Server

State: openState: open

INIT [ALT-COOKIE
(empty)]

INIT-ACK [ALT-
COOKIE (empty)]

State: cookie-wait State: cookie-wait

Fig. 11: Initialization collision scenario

When an endpoint receives and accepts an INIT chunk
using the alternative handshake procedure from a remote peer
while being in a state of waiting for a response for its own
INIT chunk from the same address/port combination, as shown
in Figure 11, the local endpoint opens the association and
responds with an INIT-ACK chunk, following the alternative
handshake procedure. But, in contrast to the non-collision
case, the local endpoint includes the same parameter as in
the previously sent INIT chunk. This especially affects the
initiate tag. The remote peer receives the INIT-ACK chunk
which is carrying the same initiate tag parameter as the
previously received INIT chunk. This indicates that the local
peer has successfully handled the collision case and migrated
the colliding connection attempts into a single association.

IV. EXTENSION COMPATIBILITY

It is not sufficient to design the alternative handshake mech-
anism only to match the RFC 4960 since there are additional
extensions relying on the traditional handshake mechanism.

A. User Message Interleaving

The User Message Interleaving (I-DATA) [15] extension
is a mandatory part of the WebRTC Data Channel specifi-
cation [5], solving SCTP’s sender side head-of-line blocking
issues when sending a large user message which blocks
all other streams. During the regular handshake, both peers
announce support for the I-DATA extension in the Supported
Extensions Parameter as defined in RFC 5061 [16]. If the I-
DATA extension has been negotiated, which is the case if both
peers have announced to support it, both peers must use the
I-DATA chunk instead of the DATA chunk. Using the DATA
chunk during an association when the I-DATA extension has
been negotiated results in an error. The alternative handshake,
including the cookieless variant, does not affect the I-DATA
negotiation process but if the I-DATA announcing client wants
to include application data within the INIT chunk by using the
ALT-DATA parameter, the support for this extension has not
been negotiated at this point of time. We considered several
ways to solve this issue and concluded that the client should
proactively use the I-DATA chunk instead of the DATA chunk
when including data using the alternative data parameter in the
INIT chunk.

When the alternative handshake has successfully finished,
the client handles the application data within the alternative
data parameter as lost if the I-DATA extension support has not
been negotiated and automatically retransmits the application
data using a regular DATA chunk.

A server without support for the I-DATA extension will
silently discard the I-DATA chunks carried by the alternative
data parameter and wait for the client to retransmit the appli-
cation data using a regular DATA chunk.

B. Authenticated Chunks

SCTP’s 32-bit verification tags protect the association
against a blind attacker but not against a Man-in-the-middle
attack where the attacker can easily inject SCTP messages with
the correct verification tags. The Authenticated Chunks [17]
extension solves this issue by allowing the endpoints to au-
thenticate specific peer chunks to verify that the chunks are
sent by the remote endpoint and not from a Man-in-the-middle
attacker. A sender bundles an authentication chunk with the
chunk types which should be authenticated. The authentication
chunk contains an HMAC which can be used by the receiver
to validate the chunks bundled within the received SCTP
message.

The support of this extension and the association specific
parameters, like the list of authenticated chunks and the
HMAC algorithm, are negotiated during the INIT and INIT-
ACK chunk exchange. This procedure is compatible with the
alternative handshake using the alternative cookie. However,
this extension is not compatible with the usage of the ALT-
DATA parameter to include DATA chunks in the INIT chunk
because the sending endpoint has no knowledge of the re-
ceivers capabilities.

V. IMPLEMENTATION

We have successfully implemented and tested the alterna-
tive handshake mechanism for the FreeBSD kernel stack and
the SCTP userland implementation (usrsctp) [18]. The userland
implementation is supported on all widely used operating
systems, including FreeBSD, Linux, macOS and Windows.
Additionally, the userland implementation is used for WebRTC
Data-Channels in several major browsers, including Google
Chrome, Mozilla Firefox, Opera and Apple’s Safari.

A. API extension

The alternative handshake mechanism is controllable by
using the setsockopt() and sysctl() function calls. The support
for the alternative handshake in general is controllable system
wide by sysctl variables. System administrators can choose be-
tween only allowing the regular handshake (0), the alternative
one (2) or both of them (1).

Applications, which want to use the alternative hand-
shake for future associations, use the setsockopt() function
call to control the functionality per socket. By setting the
SCTP ALT HANDSHAKE socket option, the alternative hand-
shake procedure is activated. The available option values are
the same as for the system wide sysctl settings. After the
association has been established, the application may use the
same options for the getsockopt() function call to determine
if the association has been established using the alternative or
the regular handshake.

If the server wants to allow the cookieless alternative
handshake, it sets the SCTP EMPTY ALT COOKIE socket
option on a listening socket. This socket option controls if

447

i n t s o c k f d = s o c k e t (. . .) ;
s t r u c t s c t p a s s o c v a l u e av = { . a s s o c i d = 0 , . a s s o c v a l u e = 1 } ;
s e t s o c k o p t (sockfd , IPPROTO SCTP , SCTP ALT HANDSHAKE, &av , s i z e o f (av)) ;
s e t s o c k o p t (sockfd , IPPROTO SCTP , SCTP INIT ALT DATA , &av , s i z e o f (av)) ;
char p a y l o a d [1 3] = ” H e l l o I r e n e ! ” ;
s e n d t o (sockfd , pay load , s t r l e n (p a y l o a d) , . . .) ;

Listing 1: Sample code for a client using the alternative handshake with zero-RTT connection setup

a server accepts an empty ALT-COOKIE parameter in the
INIT chunk as described in the previous section. For existing
associations, it allows to query whether the empty cookie
method has been used or not on a particular association, e.g.
for statistical usage.

If the network socket is configured to support the alterna-
tive handshake, the application may bundle application data
within the INIT or INIT-ACK chunk using the ALT-DATA
parameter. The application can enable this feature by using the
SCTP INIT ALT DATA option for the setsockopt() function
call. Since the SCTP network stack needs the application
payload before sending the initiate message, application de-
velopers cannot use the typical function sequence of connect()
and send(). Calling the sendto() function initiates an implicit
connection setup and includes the given payload data in the
INIT chunk.

Listing 1 shows a simplified SCTP client example using the
alternative handshake procedure with application data included
in the ALT-DATA parameter of the INIT chunk by using an
implicit connection setup.

VI. MEASUREMENTS AND EVALUATION

To evaluate the performance of our alternative handshake
procedure and its implementation, we created a client-server
scenario as shown in Figure 12. Both nodes have the identical
hard- and software configuration: PC Engines APU2 boards
with mSATA solid state discs and two operating systems
installed. We have chosen this hardware configuration by
intention to evaluate CPU effects caused by the low perfor-
mance and energy optimized processor. In addition to FreeBSD
HEAD with release type kernel and disabled debugging op-
tions (GENERIC-NODEBUG), we used Ubuntu 17.10.

Client Server

1 Gbit/s

Fig. 12: Testbed for INIT chunk flooding

A. INIT flooding

Although SCTP is robust against INIT-flooding attacks,
similar to TCP SYN-flooding, however, generating the state
cookie consumes a large amount of CPU load for the server
side, and the INIT-ACK chunk is significantly larger than the
INIT chunk. In a first step, we evaluated the performance
of the INIT chunk handling on the server side for different
scenarios where a server, running FreeBSD HEAD and Ubuntu
17.10, is flooded with INIT chunks. To send a large amount

of SCTP messages containing an INIT chunk while having
the greatest possible control over the senders behavior, we
developed a benchmark tool using the netmap fast packet
I/O framework [19], allowing us to send and receive network
packets with a variable rate up to wire speed. To eliminate side
effects, we disabled the ethernet flow control on all nodes. The
client, running the netmap benchmarking tool, sends SCTP
messages containing an INIT chunk with different rates to the
server for a fixed timespan of 60 seconds and measures several
values during the test run, including the packet-rate, bandwidth
and average packet size in both directions. The benchmark tool
provides several options to modify the INIT chunks, which
includes extensions, address candidates and the number of
parameters. We have configured the benchmark tool to flood
the server with INIT chunks which announce support for all
officially specified extensions and additionally our alternative
handshake extension.

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

0 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000

Re
sp
on
se
	R
at
e	
(p
kt
s/
se
c)

Request	Rate	(pkts/sec)

ABORT	(Linux) ABORT	(FreeBSD) INIT-ACK	MIN	(FreeBSD)

INIT-ACK	MAX	(FreeBSD) INIT-ACK	MIN	(Linux) INIT-ACK	MAX	(Linux)

Fig. 13: Comparison of Linux and FreeBSD INIT-ACK rates

In the first test scenario, the client sends small SCTP
messages of 112 bytes, containing an INIT chunk, to the
server which does not have a listening service on the particular
IP/port combination. The server responds with an ABORT
chunk which is a cheap operation for the server, its generation
consumes only a small amount of resources and its size is only
16 bytes. Therefore, this is our baseline scenario with respect
to the responding packet rate and resource consumption on the
server side. As shown in Figure 13, we measured an ABORT
rate of 74 kpps from the FreeBSD server and an ABORT rate
of 32 kpps from the Ubuntu server.

In our second scenario, the server has a listening socket
bound to the specific IP/port combination and responds to
INIT chunks with an INIT-ACK chunk. As already mentioned

448

in the previous section, the INIT-ACK chunk is significantly
larger than the INIT chunk and its generation is more resource
consuming. In contrast to Linux, FreeBSD announces all
officially specified extensions in the INIT-ACK chunk by
default, even if they are not requested by the INIT chunk. To
have a more comparable result, we measured the INIT-ACK
rate on both machines with two different settings. First with
all extensions enabled, labeled as INIT-ACK MAX in Figure 13
and additionally with all extensions disabled, labeled as INIT-
ACK MIN. In contrast to the ABORT rate, the INIT-ACK rates
of Ubuntu and FreeBSD are on a similar level. The INIT-ACK
rates for both systems range between 13 kpps for an INIT-
ACK chunk with all extensions from the Ubuntu machine until
18 kpps INIT-ACK chunks without any extensions from the
FreeBSD machine.

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

0 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000

Re
sp
on
se
	R
at
e	
(p
kt
s/
se
c)

Request	Rate	(pkts/sec)

ABORT	(FreeBSD) INIT-ACK	MIN	(FreeBSD)

INIT-ACK	MAX	(FreeBSD) ALT-ERROR	(FreeBSD)

Fig. 14: FreeBSD’s response rate to INIT chunks

In a third step we used the alternative handshake method
where the server responds with an ERROR chunk, bundled
with the alternative cookie. The server is able to respond
with about 52k ERROR chunks per second which carry
the alternative cookie, shown in Figure 14. In addition, the
responses are much smaller compared to the regular INIT-ACK
chunk. In our scenario, the regular INIT-ACK chunk, with
extensions, has a length of 416 bytes whereas the alternative
one has a length of only 40 bytes. While the alternative
response is only 4 bytes larger than the initiating request,
the regular response is more than ten times larger than the
SCTP message containing the INIT chunk. This shows another
advantage of the alternative handshake, it successfully prevents
byte amplification attacks.

B. Time to first byte

A common use case of SCTP, since it is reliable and
message oriented, is the transmission of small messages in
a request-response manner. Typically the client sends a small
request, the server answers with a response and closes the
connection afterwards. This traffic pattern is common for sig-
naling services and measurement grids. We developed a client
and a server to evaluate the performance improvements of the
alternative handshake procedure over the regular handshake.

The client establishes a connection to the server and sends
a small request of less than 100 bytes payload. The server

1 Gbit/s

Client Server

1 Gbit/s
Dummynet

Router

Fig. 15: Testbed for signaling traffic

also responds with a small message of less than 100 bytes and
closes the connection afterwards. We varied the link delay by
using the dummynet [20] network emulation tool running on a
router between the server and the client, this scenario is shown
in Figure 15. The link speed has been set to 2 Mbit/s, and we
varied the link delay.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m
e-
to
-F
irs
t-B

yt
e	
(m

s)

Link	Delay	(ms)

Regular Alternative Alternative		+	Data

Fig. 16: Timespan between the connection initialization and
receiving the first bytes on the client side

Figure 16 shows the results for three different handshake
types. We measured the timespan between initiating the asso-
ciation and the arrival of the server’s response on the client
side. The regular handshake and the alternative handshake
show a nearly identical performance, the alternative handshake
is slightly faster because of the smaller cookie size. This
matches our expectations since both peers are not affected by
CPU limitations and both handshake variants take the same
amount of round-trips. When the client uses a previously
cached cookie, the connection setup time is reduced by one
round-trip. Since both DATA chunks, containing the request
and the response, fit in a single SCTP message, the timespan
until the server’s response arrives at the client is reduced by
one half when using a previously cached cookie.

C. Compatibility and Security

We have tested the backwards compatibility of our new ex-
tension with multiple SCTP implementations without support
for the extension to ensure its deployability. This includes the
implementations of FreeBSD, Linux, Solaris and the userland
stack. All of them successfully ignore the alternative parameter
in the INIT chunk and continue with the regular handshake
by sending an INIT-ACK chunk. Thus, and since introducing
new parameters is defined in the official RFC4960, we do not
expect any compatibility problems in deployment.

449

Our measurements and evaluation demonstrates that an
attacker is able to exhaust the server’s CPU resources by
sending a large number of INIT chunks and, since the gener-
ated INIT-ACK chunk is mostly larger than the corresponding
INIT chunk, may also be used for a byte amplification attack.
This insight is not new and has already been treated by
RFC5062 [6] in the year 2007, where this kind of attack
is characterized as hard to avoid. RFC5062 suggests to use
the PAD parameter [21] to artificially enlarge the initiating
message and, therefore, prevent this attack pattern.

The QUIC protocol makes use of this method, the initiating
QUIC message must at least have a length of 1200 octets.
Our implementation allows the server to waive the fallback
mechanism and only support the alternative handshake. When
configured to do so, a server will always respond with an
ERROR chunk including an alternative cookie upon receiving
an INIT chunk, even if the client has not announced support for
the alternative handshake. This is an effective way to prevent
amplification attacks but requires both peers to support the
alternative handshake.

Before an application developer enables the new hand-
shake features, their possible drawbacks should be considered
carefully. While using the alternative cookie parameter should
not have any negative impact, as it has a seamless fallback
mechanism and offers the same protection as the regular
handshake, the inclusion of application data in the INIT chunk
may lead to unwanted behavior regarding security and data
integrity. The cookieless handshake should only be enabled in
protected environments, like WebRTC Data-Channels.

VII. CONCLUSION AND OUTLOOK

This paper introduces an alternative handshake mechanism
for the SCTP protocol which reduces the required round-trips
for association establishment and offers a lower resource con-
sumption. Our solution provides the same protection against
INIT-flooding attacks as the regular handshake procedure and
is fully backwards compatible to peers not supporting the
new extension. It can also prevent byte amplification attacks
in case the server waives the backwards compatibility by
only accepting handshakes using the alternative mode. In
certain scenarios, like the usage of SCTP for WebRTC Data-
Channels, our new zero RTT connection setup capability
gives a significant performance improvement, compared to the
regular handshake. We have implemented the new handshake
mechanism for the FreeBSD kernel stack and the widely used
userland stack and evaluated its impact in several test scenarios
with both implementations regarding robustness against INIT-
flooding attacks and performance improvements. Our future
work will focus on improving the alternative handshake and
its implementation for the WebRTC Data-Channel use-case.
We are also working on an IETF draft and will publish our
implementation.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT) and the German Research
Foundation (Deutsche Forschungsgemeinschaft). The views
expressed are solely those of the authors.

REFERENCES

[1] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast Open. RFC
7413 (Experimental), December 2014.

[2] Eric Rescorla. The transport layer security (tls) protocol version 1.3.
Internet-Draft draft-ietf-tls-tls13-28, IETF Secretariat, July 2017. http:
//www.ietf.org/internet-drafts/draft-ietf-tls-tls13-28.txt.

[3] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. Internet-Draft draft-ietf-quic-transport-10, Inter-
net Engineering Task Force, March 2018. Work in Progress.

[4] R. Stewart (Ed.). Stream Control Transmission Protocol. RFC 4960
(Proposed Standard), September 2007. Updated by RFCs 6096, 6335,
7053.

[5] Randell Jesup, Salvatore Loreto, and Michael Tuexen. We-
brtc data channels. Internet-Draft draft-ietf-rtcweb-data-channel-13,
IETF Secretariat, January 2015. http://www.ietf.org/internet-drafts/
draft-ietf-rtcweb-data-channel-13.txt.

[6] R. Stewart, M. Tuexen, and G. Camarillo. Security Attacks Found
Against the Stream Control Transmission Protocol (SCTP) and Current
Countermeasures. RFC 5062 (Informational), September 2007.

[7] E. P. Rathgeb, C. Hohendorf, and M. Nordhoff. On the robustness of
sctp against dos attacks. In 2008 Third International Conference on
Convergence and Hybrid Information Technology, 2008.

[8] I. Joe and L. Kant. Sctp with an improved cookie mechanism for
wireless networks through modeling and simulation. In 2003 IEEE
58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat.
No.03CH37484), 2003.

[9] I. Joe. Sctp with an improved cookie mechanism for mobile ad-hoc net-
works. In Global Telecommunications Conference, 2003. GLOBECOM
’03. IEEE, 2003.

[10] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version 1.2. RFC 6347 (Proposed Standard), January 2012. Updated
by RFCs 7507, 7905.

[11] SipHash: a fast short-input PRF. https://131002.net/siphash/. [Online;
accessed 24-November-2017].

[12] M. Tuexen, R. Stewart, R. Jesup, and S. Loreto. Datagram Transport
Layer Security (DTLS) Encapsulation of SCTP Packets. RFC 8261
(Proposed Standard), November 2017.

[13] Professor Paul D. Amer, Martin Becke, Thomas Dreibholz, Nasif
Ekiz, Jana Iyengar, Preethi Natarajan, Randall R. Stewart, and Michael
Txen. Load Sharing for the Stream Control Transmission Protocol
(SCTP). Internet-Draft draft-tuexen-tsvwg-sctp-multipath-15, Internet
Engineering Task Force, January 2018. Work in Progress.

[14] Christer Holmberg, Roman Shpount, Salvatore Loreto, and Gonzalo
Camarillo. Session description protocol (sdp) offer/answer procedures
for stream control transmission protocol (sctp) over datagram transport
layer security (dtls) transport. Internet-Draft draft-ietf-mmusic-sctp-sdp-
26, IETF Secretariat, April 2017. http://www.ietf.org/internet-drafts/
draft-ietf-mmusic-sctp-sdp-26.txt.

[15] R. Stewart, M. Tuexen, S. Loreto, and R. Seggelmann. Stream
Schedulers and User Message Interleaving for the Stream Control
Transmission Protocol. RFC 8260 (Proposed Standard), November
2017.

[16] R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and M. Kozuka. Stream
Control Transmission Protocol (SCTP) Dynamic Address Reconfigura-
tion. RFC 5061 (Proposed Standard), September 2007.

[17] M. Tuexen, R. Stewart, P. Lei, and E. Rescorla. Authenticated Chunks
for the Stream Control Transmission Protocol (SCTP). RFC 4895
(Proposed Standard), August 2007.

[18] usrsctp - a portable SCTP userland stack. Available at
https://github.com/sctplab/usrsctp, 2018.

[19] Luigi Rizzo. Netmap: A novel framework for fast packet i/o. In
Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pages 9–9, Berkeley, CA, USA, 2012.
USENIX Association.

[20] The dummynet project. http://info.iet.unipi.it/∼luigi/dummynet/. [On-
line; accessed 19-September-2017].

[21] M. Tuexen, R. Stewart, and P. Lei. Padding Chunk and Parameter for the
Stream Control Transmission Protocol (SCTP). RFC 4820 (Proposed
Standard), March 2007.

450

A Framework for Evaluating Caching Policies in
A Hierarchical Network of Caches

Eman Ramadan, Pariya Babaie, Zhi-Li Zhang
Department of Computer Science and Engineering

University of Minnesota, Twin Cities
Email: eman, babai008, zhzhang@cs.umn.edu

Abstract—Much attention of the research community has
focused on performance analysis of cache networks under various
caching policies. However, the issue of how to evaluate and com-
pare caching policies for cache networks has not been adequately
addressed. In this paper, we propose a novel and general frame-
work for evaluating caching policies in a hierarchical network of
caches. We introduce the notion of a hit probability/rate matrix,
and employ a generalized notion of majorization as the basic tool
for evaluating caching policies for various performance metrics.
We discuss how the framework can be applied to existing caching
policies, and conduct extensive simulation-based evaluation to
demonstrate the utility and accuracy of our framework.

I. INTRODUCTION

The emergence of information-centric network (ICN) ar-
chitectures [1], [2], [3], [4], [5] (see [6] for a survey of
ICN architectures) has attracted a flurry of renewed research
interest in caching policies and their performance analysis.
Classical caching policies such as FIFO, LRU, or LFU – which
specify what object should be evicted when the cache is full –
have been widely used in computer systems. It is notoriously
difficult to exactly analyze the performance of these caching
policies, instead one has to resort to approximation methods
with various assumptions [7], [8], [9]. These policies can be
viewed as organizing the cached objects in an ordered list for
replacement. More recently, timer-based caching policies have
gained particular attention (see, e.g., [10], [11], [12], [13])
– where each object is associated with a time-to-live (TTL)
timer, and is evicted when the timer expires. The interest in
timer-based caching policies is due to the fact that objects
within a cache can be viewed independently, and their hitting
probabilities can be analyzed separately. As an analytical aid,
TTL-cache can provide a good avenue to approximate classical
list-based caching policies [14], e.g., in terms of characteristic
times [7], [15], [16].

One important feature ICNs offer is a distributed network
of caches, namely, a cache network, which poses additional
challenges both in terms of practical cache management issues
and performance analysis. For example, when an object is
evicted from one cache, should it simply be discarded, or
should it be inserted into the next cache (i.e., as a new arrival
to this next cache) along the path to the origin server? When
an object is returned from an upstream cache (or the origin
server) back down along the request path, should it be cached

along the way (e.g., as advocated by [1], [2]), selectively
or probablistically at some caches (e.g., leave-copy-down or
leave-copy-probabilistically [7]), or only at the edge (e.g., as
advocated by [4])? Should caches in a network be operated
independently, in a cooperative fashion [17], or managed
globally with a coherent view [18]?

Moreover, no single caching policy is likely to perform
well for all user request patterns. For example, under the
Independence Reference Model (IRM), static caching is shown
to be optimal [19] if the object popularity distribution is known
a priori. However, it is shown in [20] that static caching
is no longer optimal when the interarrival distribution of
object requests has a decreasing hazard rate (e.g., when the
interarrivals of object requests are Pareto-distributed). In this
case, instead of always caching the most popular objects as in
the case of static caching, the optimal policy is to cache each
object with a probability less than 1. This means that objects
do not have to be always in the cache, leaving space for more
objects to be cached. In addition, static caching cannot cope
with changes in user request patterns, e.g., a flash-crowd.

From a theoretical standpoint, performance analysis of a
network of caches is significantly more difficult: consider the
simple case of a line of caches where each cache employs
its own cache replacement policy (e.g., LRU) independently;
assuming that object request streams at the first cache (the
edge cache) are independent, the request arrival streams at
the upstream caches are no longer independent – they are
generated by cache misses from the downstream caches. Such
coupling of the caches in tandem network is what makes the
analysis of cache networks a challenging task. Approximation
results for cache networks of specific topologies (e.g., a line
or star network) have been obtained for LRU caches (see,
e.g., [7], [15], [16]); exact and approximation results for a
general network of TTL-caches have been developed recently
under either the renewal arrival processes or Markov arrival
processes (MAP) [7], [12], [13]. In our previous work [18],
we have shown that when caches in a network are operated
independently (with their own cache replacement policy such
as LRU), the utilization of intermediate caches can be ex-
tremely poor, due to the “thrashing” problem caused by the
(non-independent) filtered (cache miss) arrival processes at
intermediate servers. To address this problem, we proposed the
innovative notion of “BIG” cache abstraction [18] by viewing
a line of caches from an edge server along the path to the originISBN 978-3-903176-08-9 c© 2018 IFIP

server as a single “BIG” cache, and argued that it affords the
added benefits of simplifying the analysis of a line of caches.

Unlike a single cache where the performance of various
caching policies can be directly compared, evaluating and
comparing the (relative) performance of caching policies for
a network of caches are no longer straightforward. From a
user’s perspective, hit probabilities at individual caches are
immaterial; what matters is the latency he/she experiences. On
the other hand, a cache network provider is more concerned
with the efficient utilization of all cache capacities in the
network; whereas from the standpoint of a content provider,
the utility of a cache network is its ability to decrease the
overall load on its origin server(s), and reduce the network
bandwidth cost (it also cares about improved content access
latencies to its users). Despite much focus on performance
analysis of cache networks, this important problem has not
received much attention in the research community.

In this paper, we propose a novel and general framework
to evaluate and compare caching policies for a network of
caches. Consider a collection of content objects served by
a network of caches with a fixed set of ingress points (or
edge servers) where user requests for content are routed. We
assume caches are organized in a hierarchy, from the edge
servers to the origin server(s). Given the request streams for
the collection of objects at each ingress point (edge server),
we introduce the notion of a hit probability matrix, which
characterizes the hit probability of content objects that are
served at different layers of the cache hierarchy. We employ
(and define an extended version of) the majorization notion
as the basic tool to evaluate and compare caching policies for
various performance metrics of cache networks in Section II.

Section III provides an overview of the existing works to
estimate the hit probability matrix, including their limitations.
Then, we provide and evaluate a general simplified approach
to estimate the hit probability matrix based on the “BIG”
cache abstraction in Section IV. As we have shown in [18],
implementing caching policies as a single caching strategy
for the virtual “BIG” cache outperforms their implementation
at each layer independently. In this paper, we show that our
approach to estimate the hit probability matrix achieves the
exact result as the “BIG” cache simulation for LRU and q-LRU
caching strategies as examples. Thus, this estimation approach
can be used to generate the hit matrix for the comparison
framework without wasting any time on simulations. Section V
shows the accuracy of applying our proposed framework to
compare caching policies for different user request patterns.
Finally, the paper is concluded in Section VI.

II. CACHING POLICIES COMPARISON FRAMEWORK

In this section, we present a general framework to evaluate
and compare two caching policies, P and Q, for network-
wide performance analysis, where P , Q represent any caching
policy such as LRU, static caching, k-LRU, ... etc. We first
describe the network model, basic assumptions, and the key
notion of hit probability matrix associated with a caching
policy (here we assume it is given). Then, we identify the

….

…. ……

Users

… ... Layer 1

Layer H-2

Layer H-1Layer H
Origin server

Edge caches

… ... … ...

Figure 1. Network Model

conditions for policy P to dominate policy Q by generalizing
the notion of majorization defined for vectors to matrices.

A. Network Model and Assumptions

For ease of exposition, we make a simplifying assumption
and model the cache network as a hierarchy of cache servers
organized in an (H−1) level k-ary tree, as shown in Figure 1,
which is commonly used in today’s content distribution net-
works [21], [22]. Cache servers at leaf nodes represent edge
servers, which are the closest to users located at layer 1. The
root of the tree is connected to the origin server (at layer
H , which has a permanent copy of each object). The content
population is a collection of N unique objects of unit size,
denoted by O = {O1, O2, . . . ON}. The popularity of objects
follows a Zipf distribution with parameter α. The access
probability of each object is denoted by ai = λi/λ, where λi
is the request rate of object i, and λ is the aggregate request
rate, λ =

∑
i λi. The access probability ai is proportional to

1
iα for α > 0, and

∑N
i=1 ai = 1. Without loss of generality,

we assume that a1 ≥ a2 ≥ . . . ≥ aN , namely, O1 is the
most popular object, O2 is the second most popular object,
and so forth. Object requests arrive randomly at one of the
edge servers. When a request is received at a server, which
does not have the object, it forwards the request to its parent.
This process continues till the request reaches the root, and
the origin server eventually if no other server on the path
has a copy. Each request experiences a latency depending on
the layer it is served from. First, we consider comparing the
caching policies P and Q for a tandem cache network (a
line of caches) starting from one edge cache Ce at layer 1,
till the origin server at layer H . The concepts and notations
introduced below can be generalized to a cache network of
any arbitrary topology, where we construct a request routing
tree/graph formed by the request forwarding paths from each
edge server towards an origin server as illustrated at the end
of this section.

B. Tandem Cache Network

We define Lj to denote the latency experienced by an object
served from a cache server at layer j. We assume L1 < L2 <
. . . < LH and Lj = Lj−1 + ∆Lj−1, 2 ≤ j ≤ H . For a
caching policy P , aipij represents the hit probability of object
Oi at layer j cache, where 1 ≤ j ≤ H , pij is the percentage
of requests for Oi served from layer j cache, and ai is the
access probability of object Oi.

452

The set of values {aipij}, 1 ≤ i ≤ N, 1 ≤ j ≤ H can be
compactly represented using an N ×H matrix, and by abuse
of notation, we denote it as “P ”.

PN×H =

a1p11 a1p12 a1p13 . . . a1p1H
a2p21 a2p22 a2p23 . . . a2p2H

...
...

...
. . .

...
aNpN1 aNpN2 aNpN3 . . . aNpNH

Majorization of Hit Probability Matrices. We employ the
notion of majorization as the basic tool to evaluate and
compare caching policies for a cache network. The standard
notion of majorization is defined for vectors. We generalize
it to a (hit probability) matrix as follows. Given two caching
policies P and Q, with hit probability matrices represented
by P = [aipij] and Q = [aiqij] respectively. Without loss
of generality, we assume both policies are “sensible” at layer
1 cache – namely, the first column is decreasing in value.
As caching policies react based on the received requests, thus
popular objects are cached more often than others, which is
also confirmed by the simulation results shown in [18] for
different caching policies. Therefore, we assume the following
holds: p11 ≥ p21 ≥ p31 ≥ · · · ≥ pN1

q11 ≥ q21 ≥ q31 ≥ · · · ≥ qN1

(1)

Also, the summation of the hit probabilities of object Oi for
all H layers equals 1 under both policies, i.e., a request for
object Oi has to be served from one of the H layers.

H∑
j=1

pij =

H∑
j=1

qij = 1, ∀ 1 ≤ i ≤ N (2)

Given the above conditions, we say P majorizes Q, denoted
by P � Q, if the following criterion holds:

The summation of the hit probabilities in the top-left (k, h)
sub-matrix of P is equal or larger than that of Q for all values
of k, h, where 1 ≤ k ≤ N, 1 ≤ h ≤ H , (i.e., policy P utilizes
the first h cache layers to serve the top k objects better than
policy Q). k∑

i=1

h∑
j=1

aipij ≥
k∑
i=1

h∑
j=1

aiqij (3)

Thus, we say caching policy P dominates Q if and only if
P � Q (i.e., P majorizes Q).
Comparing Overall Performance. Having two general
caching policies P,Q, where P dominates Q (from the per-
spective of the edge server), we show that P outperforms Q
in terms of both the overall latency (as seen by the end user),
and the load of the origin server.

1) Expected Overall Latency:
Theorem 1: For a hierarchy of caches of H layers, if caching

policy P dominates caching policy Q, the overall expected
latency for P is less than or equal to that of Q.

Proof: Expected latency under caching policy P (OLP):

OLP =

N∑
i=1

(ai

H∑
j=1

(pijLj)) (4)

Since, Lj = LH −
H−1∑
h=j

∆Lh, 1 ≤ j ≤ H − 1

By substituting for Lj in “(4)”, and rearranging the summation
indices:

OLP =

N∑
i=1

(ai

H∑
j=1

(pijLH))−
H−1∑
h=1

(∆Lh

N∑
i=1

(ai

h∑
j=1

pij))

From “(2)” and
∑N
i=1 ai = 1:

OLP = LH −
H−1∑
h=1

(∆Lh

N∑
i=1

h∑
j=1

aipij)

From “(3)”:
OLP ≤ LH −

H−1∑
h=1

(∆Lh

N∑
i=1

h∑
j=1

aiqij)

OLP ≤ OLQ
Intuitively, caching policy P dominates Q means that under

policy P , the top k most popular objects are likely to be placed
in the first h layer caches than under policy Q, for 1 ≤ k ≤
N , 1 ≤ h ≤ H . Given that L1 < L2 < · · · < LH , we would
expect that P outperforms Q in terms of expected latency.

2) Origin Server Load:
Theorem 2: For a hierarchy of caches of H layers, if caching

policy P dominates caching policy Q, the origin server load
under policy P is less than or equal to that of policy Q.

Proof: Origin server load under caching policy P (SP):

SP =

N∑
i=1

aipiH (5)

From “(2)” and
∑N
i=1 ai = 1:

SP = 1−
N∑
i=1

H−1∑
j=1

aipij

From “(3)”:
SP ≤ 1−

N∑
i=1

H−1∑
j=1

aiqij

SP ≤ SQ
Intuitively, caching policy P dominates Q means that under

policy P , the top k most popular objects are likely to be placed
in the first h layer caches than under policy Q, for 1 ≤ k ≤
N , 1 ≤ h ≤ H . Since, the number of requests is directly
proportional to the object popularity, we expect more requests
to be satisfied form the first h layer caches under policy P .
Thus, the origin server load under policy P would be less than
or equal to that of Q.

C. General Cache Networks

We now discuss how this framework can be utilized for any
general cache network. Consider a cache network as shown in
Figure 1. Each edge server Ce ∈ E (set of all edge servers) is
deployed to service content requests from one user populace
located close to Ce. The content population of edge Ce is
denoted byOe = {Oe1, Oe2, . . . OeNe}, and the object popularity
follows a Zipf distribution with parameter αe. The access
probability of each object is denoted by aei = λei/λe, where
λei is the request rate of object Oei , λe is the aggregate request
rate for the edge server Ce, and λe =

∑
i λ

e
i .

A user’s request for an object Oei is first routed to the edge
server Ce closest to her. The request is serviced directly by

453

Ce if it has Oei cached; otherwise Ce routes the request along
a request path Le – consisting of a sequence of intermediate
cache servers, Ceh ∈ Le – towards the origin server. If one
of the intermediate servers, Ceh, has Oei cached, the request
is serviced by Ceh, and the cached copy is returned along the
reverse path back to Ce, which then delivers it to the user.
Otherwise, the request is serviced by the origin server. Thus,
we consider the hierarchical topology as multiple tandem
cache networks, each corresponding to an edge server Ce. The
request paths Le from multiple edge servers traverse and share
the cache resources at the intermediate cache servers Ch.

Given two caching policies P and Q, and their hit probabil-
ity matrices P (e) and Q(e) respectively from the prospective of
each edge cache server Ce. We can then apply the comparison
framework detailed earlier to compare the two caching policies
P and Q for each edge server Ce. Clearly, if P (e) � Q(e) for
each edge server Ce, then P =

∑
e P

(e) �
∑
eQ

(e) = Q,
where P =

∑
e P

(e) is the aggregate hit probability matrix
over all edge servers, as shown in Section V. The aggregate hit
probability matrix can be determined using approaches such
as [7], in which the authors extend their proposed method
(discussed in Section III) for a general cache network, and
use the miss rate of lower layer caches as an estimate of the
request arrival rate for the current cache node. Finally, these
concepts and notations can be generalized to a cache network
of any arbitrary topology, where we construct a request routing
tree/graph formed by the request forwarding paths from each
edge server towards an origin server. Moreover, the cache
network does not have to be symmetric, the tandem cache
network from each edge server till an origin server could have
a different height, and the missing layers could be replaced
by dummy cache nodes with zero capacity. Hence, their hit
probability is zero, and our proposed comparison framework
would still be applicable.

III. HIT PROBABILITY MATRIX ESTIMATION
USING TTL CACHES

As mentioned before, the analysis of cache networks is a
complex and challenging task. This is because the request
arrival streams at the upstream caches are not independent
– they are generated by cache misses from the downstream
caches. Thus, for each cache in the network, the miss rate
of content objects should be calculated, along with splitting
the miss streams to the other upstream caches. Moreover, the
superposition of the miss streams which form the requests
arriving at the intermediate caches needs to be calculated.
Therefore, several approaches (e.g., [7], [12], [15], [23])
have been proposed to estimate the requests arrival rate at
intermediate caches. Thus, the object hit probability for every
cache in the network can be calculated.

The complexity of the analysis of capacity-based caching
policies is due to the dynamics of the content objects in
the cache. Hence, Che et al. [15] proposed the relationship
between a capacity-based caching policy (LRU) and a timer-
based caching, by defining the characteristic time. Timer-based
caching also simplifies the performance analysis of caching

systems, as it decouples the dynamics of content objects within
a cache, as they can be analyzed independently. In this section,
we categorize some of the existing TTL-based approaches
according to the type of the approximations they proposed to
estimate the request arrival rates at caches, and briefly discuss
their limitations.
A Hierarchical Network of LRU Caches with LCE, LCP,
and LCD Replication Strategies. The authors in [7] provided
a unified approach to analyze the performance of caching
policies such as LRU, FIFO, RANDOM, q-LRU, k-LRU, ...
etc. for single cache, by extending the decoupling technique
introduced in [15]. The authors also analyzed LRU for a two-
layered cache network with respect to the following object
replication strategies, which define how the object is cached
when it is returned from an upstream cache (or the origin
server) back down along the request path. 1) Leave-Copy-
Everywhere (LCE): the object is cached at all the downstream
caches along the request path. 2) Leave-Copy-Probabilistically
(LCP): the object is cached at the downstream caches along
the request path with a probability q. 3) Leave-Copy-Down
(LCD): the object is cached only at the cache preceding to the
one where it is currently cached.

For a single cache, the authors considered a temporal local-
ity relation between requests by considering renewal process
for request arrival process. However, the key assumption for a
hierarchical network of caches is that the request arrival pro-
cess at any cache in the network is Poisson (IRM request traf-
fic). The existing spatial-correlation and temporal-correlation
among requests are ignored as the requests interarrival process
is considered Poisson at the intermediate caches. The authors
justified this assumption by mentioning that the error gets
smaller as the network grows (in terms of the number of
branches), hence, the proposed model becomes valid. Finally,
the authors proposed another extension for their model to work
for a network of caches with any topology.

Equations “6” & “7” define the hit probability at each
layer for object m in an LRU-cache with LCE & LCP object
replication strategies respectively. The hit probability of object
m at cache i is denoted by phit(i,m). T iC is the timer
assigned to all objects at cache i which is related to the
cache size, and q is the probability to cache objects for LCP.
The average arrival rate for object m at cache i is calculated
by: λm(i) =

∑
j λm(j)(1− phit(j,m))rj,i, where rj,i is the

probability that cache j forwards its miss stream to cache i. We
use these equations in Section V to calculate the hit probability
matrix, and compare them using our proposed framework.

LCE
phit(1,m) = 1− e−λm(1)T 1

C

phit(2,m) ≈ 1− e−λm(2)(T 2
C−T

1
C)

(6)

LCP

phit(1,m) =
q(1− e−λm(1)T 1

C)

e−λm(1)T 1
C + q(1− e−λm(1)T 1

C)

phit(2,m) ≈ [phit(2,m) + q(1− phit(2,m))]

(1− e−λm(2)(T 2
C−T

1
C)e−λm(2)(1−q)T 1

C)

(7)

454

Approximate Analysis of Hierarchical and General TTL-
Cache Networks. Fofack et al. [10], [12], [24] focus on
analyzing the performance of LRU, FIFO, and RANDOM
caching policies using the characteristic time. The timer is
set up so that the number of objects in the cache does not
exceed the cache size, considering the same size for all objects.
The key assumption of this model is considering the requests
arriving at any cache in the network to have a renewal process
interarrival time. The authors also assume that requests are
forwarded in a feed-forward network in contrast with [7].
This approach characterizes three request streams: i) the miss
stream of each cache, ii) the splitted miss streams to next layer
caches, and iii) the superposition of request streams arriving
from different caches along with exogenous request arrival as
a renewal process. The main source of error of this approach
is considering the superposition of renewal processes as a
renewal process, which is a non-renewal in general. Moreover,
this approach is computationally very extensive when the size
of the cache network grows, thus, it is not scalable. Finally, it
has the limitation of assuming the routing of the cache network
to be feed-forward.
Exact Analysis of a Hierarchical Network of TTL-Caches.
Following the approach in [12], Berger et al. [23] propose
an exact model for performance evaluation of a hierarchical
network of caches. The key contribution of this approach
is adopting Markovian Arrival Process (MAP) for request
arrival processes, and showing that the miss stream of TTL-
based caches is MAP as well. Since the superposition of
MAP processes is also MAP, the provided analysis are the
exact values for feed-forwarded cache networks with a MAP
process as an input for all caches in the network. However, this
approach suffers from the computation cost for large networks,
as well as [12], and suffers also in case of non feed-forward
cache networks.

IV. GENERAL APPROACH FOR HIT PROBABILITY
MATRIX ESTIMATION

The input to our proposed comparison framework (Sec-
tion II) is the hit probability matrices of both policies ones
wish to compare, which on general is a challenging task to
calculate as discussed in Section III. Ether of exact or approx-
imatation calculated values are known for specific network set
ups [7], [12], [23], assumptions about the request inter-arrival
processes. As mentioned, currently, there exists no general
methodology for computing, approximating or even bounding
the hit probabilities for a network of caches within a reasonable
computation cost. Even with the simplifying IRM assumption,
the request arrival processes to intermediate network caches
are filtered, and no longer independent. This creates technical
difficulty in analyzing a cache network for any arbitrary
caching policy under general assumptions of request arrival
processes. Thus, in this section for a caching policy P , given
the equations to calculate the hit probability for a single cache,
we propose a general simplified approach to calculate the
hit probability matrix for a tandem cache network, using the
notion of “BIG” cache abstraction introduced in [18]. At the

end of this section, we extend this approach to be applied for
any general cache network.

The main idea of “BIG” cache is to view a group of
hierarchical caches as if they are “glued” together to form one
virtual “BIG” cache with a storage capacity distributed across
multiple layers. Consider a tandem cache network of H layers,
where CH represents the origin server, and C1 the edge server,
where requests are first received. Assume, the cache size of
each layer is denoted by Cj , 1 ≤ j < H . The size of the
virtual “BIG” cache is denoted by CB :=

∑H−1
j=1 Cj . Then,

any caching policy can be directly applied to this one (virtual)
“BIG” cache as a single consistent strategy. Objects can be
cached in any layer of the hierarchy, and moved between cache
boundaries of different layers according to the caching policy
(see [18] for more details). Using this “BIG” cache abstraction,
the cache network can be viewed as a single “giant” (blackbox)
cache with storage capability CB , receiving multiple streams
of content requests {λi}. The goal of any caching policy is
to maximize the overall hit probability of the entire cache
network, and minimize the load at the origin server. We now
explain in details how “BIG” cache abstraction allows us to
estimate the hit probability matrix for a line of caches, given
the hit probability pi(C, λi, P) of object Oi under caching
policy P as a function of the cache size C, and the object
request rate λi.

Consider a line of caches with cache sizes Ch, 1 ≤ h < H .
We can view the caches from layer 1 to layer j as if they repre-
sent a single virtual cache of total capacity C[1:j] :=

∑j
h=1 Ch.

Thus, pi(C[1:j], λi, P) (upper) bounds the probability of serv-
ing requests for object Oi from one of the first j caches under
P , and p̃ij = pi(C[1:j], λi, P)− pi(C[1:j−1], λi, P)1 yields an
estimate (upper bound) of pij , the probability that requests for
object Oi are served by cache Cj . Knowing the hit probability
of object Oi at L1, we can find its probability at L2. Then,
we repeat this process iteratively till layer LH−1. Then, piH
can be calculated as 1 −

∑H−1
j pij , which represents the

percentage of requests served from the origin server. Hence,
we can calculate the hit probability matrix. Thus, “BIG” cache
abstraction completely avoids the aforementioned technical
challenges and interdependency between cache layers, such
as the filtered requests at intermediate layers. Since content
objects can be stored at any layer of the cache hierarchy,
the overall hit probability of each object pi =

∑H−1
h=1 pih is

not affected by “BIG” cache since the percentage of requests
satisfied by the cache network does not change based on the
location of the object in the hierarchy, as the total caching ca-
pacity is the same. Hence, the origin server load is not affected
either. However, the user’s latency depends on which layer the
object is served from, which depends on the caching policy.
Therefore, our proposed approach can be used to estimate the
hit probability matrices for different caching policies. Then,
our comparison framework mentioned in Section II can be
used to find the appropriate policy for the given request traffic.
Estimation Approach Validation. We evaluate our proposed

1This linear relationship is valid under IRM model assumption.

455

10 50 100 500 1000 2500
Cache Size

0.2

0.4

0.6

0.8

1.0

o
v
e
ra

ll
h
it

 r
a
te

LRU-model

LRU(B)-sim

LRU(I)-sim

(a) LRU

10 50 100 500 1000 2500
Cache Size

0.2

0.4

0.6

0.8

1.0

o
v
e
ra

ll
h
it

 r
a
te

q-LRU-model

q-LRU(B)-sim

q-LRU(I)-sim

(b) q-LRU (q = 0.5)

Figure 2. Hit Probability Matrix Estimation

approach to estimate the hit probability matrix by comparing it
to the simulation results for some known caching policies, and
also to show how implementing these caching policies using
“BIG” cache abstraction always enhances their performance
when they are implemented at each cache layer independently.

LRU
C =

∑
i

phit(i) = 1− e−λiTC (8)

q-LRU

C =
∑
i

phit(i) =
q(1− e−λiTC)

e−λiTC + q(1− e−λiTC)
(9)

From [7], and considering Poisson interarrival process for
requests, we use “(8)” to calculate the hit probability of
each object in a single cache of size C for LRU (always
cache a copy of the requested object), and use “(9)” for q-
LRU (cache a copy of the object with probability q). These
equations calculate the characteristic time TC for cache using
the cache size C and the request rates for each object {λi}.
Using our proposed approach, we calculate the hit probability
matrix by considering the cache size of the first j layers
C[1:j] :=

∑j
h=1 Ch, which would give us a new value for

the characteristic time using the corresponding equation “(8)”
or “(9)” according to the caching policy. Using this new
characteristic time, we can calculate the probability that the
object is being served from the first j layers.

We compare the hit probability matrix calculated by our
proposed approach with simulation results. We consider a
line of five caches, and a collection of 10K unique objects.
The edge cache server, and intermediate caches, have the
same cache size, ranging from [10, 50, 100, . . . , 2500]. User
requests follow Zipf-distribution with α = 1. We use LRU
as the cache eviction policy at each cache layer, and LCE as
the object replication strategy when the object is traversing
a request path back to the user. The results are shown in
Fig. 2a, in which LRU(I)-sim represents the simulation results,
and model represents our proposed approach results. We also
simulate LRU using “BIG” cache abstraction, which maintains
one copy at a time at any layer due to applying LRU as a
single caching strategy for the “virtual” “BIG” cache, where
requested objects are always cached at the first layer L1 (edge
server), and when L1 is full, the evicted objects are cached in
L2, and so on (denoted by LRU(B)-sim).

The result shown in Fig. 2a indicates that LRU(B)-sim
outperforms LRU-LCE. This is confirmed by the results

in [18], which show that applying existing caching policies
to a hierarchical network as a single cache, improves the per-
formance, instead of having each cache layer taking decisions
independently. In LRU(B)-sim, we considered the available
storage as a single aggregated cache capacity which leads to
caching one copy at most. Whereas other policies like LRU(I)-
sim (LRU-LCE) results in having more than one copy of the
requested object at different cache layers. Having only one
copy at the cache, leaves more space for other objects to
be cached, and hence improves the overall hit probability,
minimizes the latency and origin server load. Our proposed
estimation (model) consideres available storage as one single
“virtual” cache with the aggregate cache capacity allowing
one copy of an object in cache. In Fig. 2a it is observed that
the values of (model) estimations and LRU(B)-sim matches.
As LRU(B)-sim outperforms other policies [18], our proposed
method for estimation of hit probability matrix provides an
upper bound for other approximations. Similar results are
shown for q-LRU in Fig. 2b.

General Cache Network. Finally, this approach can be ap-
plied to any general cache network topology using the idea
discussed in Section II-C by constructing a path from each
edge server to an origin server. However, to apply the “BIG”
cache approach to estimate the hit matrix for each line of
caches, we need to (logically) partition the cache resources
at intermediate cache servers through which the request paths
Le from multiple edge servers traverse, and allot appropriate
cache resources to each edge server Ce. Taking into account,
the characteristics of the requests of each user populace (i.e.,
edge server) in terms of object popularity, request interarrival
distribution, ... etc, with the goal of optimizing the perfor-
mance objectives. For an intermediate server Ch, h ∈ Le, let
Ceh be the portion of its cache Ch that is (logically) allotted to
Ce. In other words, the cache Ch is logically partitioned into
multiple pieces, Ceh’s, among the edge servers;

∑
e C

e
h = Ch

(here by abuse of notation we also use Ceh and Ch to denote
the cache size). Collectively, Ceh’s, h ∈ Le, form a tandem
cache network with respect to the edge server Ce; its total
size is Ce :=

∑
h∈Le C

e
h.

For each tandem cache network corresponding to an edge
server Ce, let uei be the object occupancy probability, and let
Ue(·) be a generic (concave) objective (or utility) function (of
object occupancy or allotted cache size). We can formulate
the following cache partition/allotment optimization problem.
The solution2 of this optimization problem indicates how to
partition the cache resources at each intermediate cache, and
allot them to the tandem cache network of each edge server
to maximize the hit probability of the entire cache network.
Once we have these partitions, we can apply the previously
mentioned approach for each edge cache and estimate its hit
probability matrix.

2Due to space limit, we do not elaborate on the solution of the optimization
problem here.

456

O1

O10k
 L1 L1:L2 L1:L3

(a) CS = 50

O1

O10k
 L1 L1:L2 L1:L3

(b) CS = 100

O1

O10k
 L1 L1:L2 L1:L3

(c) CS = 500

O1

O10k
 L1 L1:L2 L1:L3

(d) CS = 1000

O1

O10k
 L1 L1:L2 L1:L3

(e) CS = 2500

O1

O10k
 L1 L1:L2 L1:L3

(f) CS = 3000

Figure 3. Majorization Conditions “(3)” for the caching policies LCP & LCE in Section III

maximize
uei∈[0,1],Ce

h

∑
e∈E

N∑
i

Ue
i (u

e
i)

s.t.
N∑
i=1

ue
i ≤ Ce, ∀e ∈ E ;

∑
h∈Le

Ce
h = Ce, e ∈ E ;

and
∑
e∈E

Ce
h ≤ Ch, h ∈ H,

(10)

V. EVALUATION

The goal of this section is to validate our proposed policy
comparison framework, and show its evaluation in all the
considered cases through simulation. Using common existing
caching policies such as static caching, LRU, ... etc, we show
that if policy P outperforms policy Q, then P majorizes
Q according to our definition in Section II, and show that
the majorization condition “(3)” is satisfied. First, we start
by applying the comparison framework to a tandem line of
caches. Then, we show the framework extension (discussed
in Section II-C) applied to a hierarchical cache network.

A. Tandem Cache Network

We use a hierarchical network organized as a line of four
caches. Edge server lies at L1, where user requests are first
received. The origin server lies at L4, which serves a collection
of 10K unique objects each of a unit size. The edge server
and intermediate caches have the same cache size, which
ranges from [50, 100, . . . , 3000]. User requests follow Zipf-
distribution with α = 0.8. Each object has a request rate λi,
where the aggregate request rate λ =

∑
i λi = 1. We simulated

two distributions for the request intervarrival times of each
object: 1) Poisson & 2) Pareto (w. parameter 2) [20]. We
compare the following caching policies: static, q-LRU, LRU
with different object replication strategies (LCD & LCE) [7].
Comparison Framework Validation. Using the hit proba-
bility matrices of policies P & Q, we calculate new corre-
sponding matrices, P̂ & Q̂, where p̂kh =

∑k
i=1

∑h
j=1 aipij ,

1 ≤ k ≤ N, 1 ≤ h ≤ H , similarly for Q̂. P̂ & Q̂
represent the summation of all the possible submatrices of
P & Q respectively. Finally, we define a comparison matrix
XP−Q, where xij = 1 if p̂ij ≥ q̂ij ; and 0 otherwise,
where 1 ≤ i ≤ N, 1 ≤ j ≤ H . The matrix XP−Q is
the representation of the majorization condition “(3)”. If all
elements of matrix XP−Q are equal to one, then policy P
dominates policy Q. We visualized XP−Q using a heatmap,
representing 1 as black, and 0 as white.
Analytically. We use the equations defined for LRU-LCE and
LRU-LCP “6” & “7”. The only change to the simulation

Table I
POISSON

P, Q
CS 50 100 500 1000 2500 3000

Static, LRU(B) 3 3 3 3 3 3
Static, LRU-LCD 3 3 3 3 3 3
Static, LRU-LCE 3 3 3 3 3 3
LRU-LCD, LRU(B) 3 3 3 7 7 7
LRU-LCD, LRU-LCE 3 3 3 3 3 3
LRU(B), LRU-LCE 3 3 3 3 3 3
Static, qLRU(B) 3 3 3 3 3 3
Static, qLRU 3 3 3 3 3 3
qLRU(B), qLRU 3 3 3 3 3 3
qLRU(B), LRU-LCE 3 3 3 3 3 3
qLRU, LRU-LCE 3 3 3 3 3 3
LRU-LCD, qLRU 3 3 3 3 3 3

settings mentioned at the beginning of this section is the
number of layers, as these equations are defined for a network
of 3 layers. For each policy, we calculate the characteristic
time of each cache, then the hit probability matrix. We apply
our comparison framework to compare their performance.
The heatmap comparing LRU-LCP and LRU-LCE is shown
in Fig. 3. As expected, LRU-LCP dominates LRU-LCE for
the different cache sizes.
Simulation. We implemented several caching policies to com-
pare their performance using our proposed framework. Fig. 4
shows the overall performance of these caching strategies
in terms of the average hit probability (

∑N
i=1

∑H
j=1 aipij),

latency and origin server load for both Poisson (top row)
& Pareto (bottom row) request interarrival distributions. As
expected in case of Poisson request interarrival distribution,
static caching is shown to be optimal [19] if the object popu-
larity distribution is known a priori, followed by LRU-LCD,
LRU-LCP(q-LRU), and LRU-LCE caching policies (similar
to results reported in [7]). The latency and origin server load
follows the same behavior of the average hit probability, thus
are not included for the other policies due to space limitations.
Figs. 4a, 4d show LRU(B) & q-LRU(B), implemented using
“BIG” cache abstraction [18].

LRU(B) & q-LRU(B) outperform their corresponding
caching policies when implemented independently at each
cache. Moreover, their performance is close to static caching
performance (similar to results reported in [18]). However, as
shown in [20] static caching is no longer optimal when the
interarrival distribution of requests has a decreasing hazard rate
(e.g., when the interarrivals of requests are Pareto-distributed),
we can see that LRU(B) & q-LRU(B) achieve better perfor-
mance when the cache size is large as shown in Figs. 4e, 4h.

The heatmap of comparing LRU-LCD & LRU(B) in both

457

50 100 500 1000 2500 3000
Cache Size

0.2

0.4

0.6

0.8

1.0

o
v
e
ra

ll
h
it

 r
a
te

Static

LRU(B)

LRU-LCD

LRU-LCE

(a) Hit Probability

50 100 500 1000 2500 3000
Cache Size

25

50

75

100

125

150

175

200

225

la
te

n
cy

Static

LRU(B)

LRU-LCD

LRU-LCE

(b) Latency

50 100 500 1000 2500 3000
Cache Size

0.0

0.2

0.4

0.6

0.8

o
ri

g
in

 s
e
rv

e
r

lo
a
d

Static

LRU(B)

LRU-LCD

LRU-LCE

(c) Origin Server Load

50 100 500 1000 2500 3000
Cache Size

0.2

0.4

0.6

0.8

1.0

o
v
e
ra

ll
h
it

 r
a
te

Static

qLRU(B) (q=0.5)

LRU-LCD

q-LRU (q=0.5)

LRU-LCE

(d) Hit Probability

50 100 500 1000 2500 3000
Cache Size

0.2

0.4

0.6

0.8

1.0

o
v
e
ra

ll
h
it

 r
a
te

Static

LRU(B)

LRU-LCD

LRU-LCE

(e) Hit Probability

50 100 500 1000 2500 3000
Cache Size

25

50

75

100

125

150

175

200

la
te

n
cy

Static

LRU(B)

LRU-LCD

LRU-LCE

(f) Latency

50 100 500 1000 2500 3000
Cache Size

0.0

0.2

0.4

0.6

0.8

o
ri

g
in

 s
e
rv

e
r

lo
a
d

Static

LRU(B)

LRU-LCD

LRU-LCE

(g) Origin Server Load

50 100 500 1000 2500 3000
Cache Size

0.2

0.4

0.6

0.8

1.0

o
v
e
ra

ll
h
it

 r
a
te

Static

qLRU(B) (q=0.5)

LRU-LCD

q-LRU (q=0.5)

LRU-LCE

(h) Hit Probability

Figure 4. Overall Performance for Caching Policies for a network with N = 10K, H = 4, R = 5M , Poisson 1st row, Pareto 2nd row

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(a) CS = 50

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(b) CS = 100

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(c) CS = 500

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(d) CS = 1000

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(e) CS = 2500

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(f) CS = 3000

Figure 5. Majorization Conditions “(3)” for the caching policies LRU-LCD & LRU(B) Poisson in Fig. 4

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(a) CS = 50

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(b) CS = 100

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(c) CS = 500

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(d) CS = 1000

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(e) CS = 2500

O1

O10k
L1 L1:L2 L1:L3 L1:L4

(f) CS = 3000

Figure 6. Majorization Conditions “(3)” for the caching policies LRU-LCD & LRU(B) Pareto in Fig. 4
Table II
PARETO

P, Q
CS 50 100 500 1000 2500 3000

Static, LRU(B) 3 3 3 7 7 7
Static, LRU-LCD 3 3 3 3 3 3
Static, LRU-LCE 3 3 3 3 3 3
LRU-LCD, LRU(B) 3 3 7 7 7 7
LRU-LCD, LRU-LCE 3 3 3 3 3 3
LRU(B), LRU-LCE 3 3 3 3 3 3
Static, qLRU(B) 3 3 3 7 7 7
Static, qLRU 3 3 3 3 3 3
qLRU(B), qLRU 3 3 3 3 3 3
qLRU(B), LRU-LCE 3 3 3 3 3 3
qLRU, LRU-LCE 3 3 3 3 3 3
LRU-LCD, qLRU 3 3 3 3 3 3

cases (Poisson and Pareto distributions) are shown in Fig. 5
& Fig. 6 respectively, where they accurately reflect the domi-
nance of LRU-LCD over LRU(B) only when the cache size is
small as their corresponding average hit probability. Tables I

& II summarize the comparison of every two policies P,Q for
Poisson & Pareto interarrival distributions respectively for the
different cache sizes, where 3 is used if P dominates Q, and
7 otherwise. The results in these tables reflect 100% accuracy
for our proposed comparison framework in determining the
dominance of the policies in comparison with respect to their
simulated overall performance.

B. Tree Topology

We use a hierarchical network organized as a binary tree of
three levels (i.e., four edge servers). Edge servers lie at L1,
where user requests are first received. The origin server lies
at L4, which serves a collection of 2K unique objects each
of a unit size. The size of the cache servers at layers [L1, L2,
L3] are [400, 800, 1600]. We compare the following caching
policies: q-LRU and LRU with different object replication
strategies (LCD & LCE) [7].

458

0.6 0.8 1.0 1.2
alpha for Zipf distribution

2.0

2.5

3.0

3.5

o
v
e
ra

ll
h
it

 r
a
te

LRU-LCD

q-LRU (q=0.5)

LRU-LCE

(a) Changing Alpha

P,P,P,P P,P,R,R P,R,P,R R,R,R,R
interarrival distribution combination

2.4

2.6

2.8

3.0

3.2

3.4

o
v
e
ra

ll
h
it

 r
a
te

LRU-LCD

q-LRU (q=0.5)

LRU-LCE

(b) Changing Interarrival Distr.

Figure 7. Hierarchical Tree Cache Network

First Scenario. The distribution of the interarrival time is
Poisson. We simulated 4 different values of α for zipf-
distribution [0.6, 0.8, 1.0, 1.2] for all the edge servers. The
average hit probability is shown in Fig. 7a. We find the
relationship between the three policies is still as expected, and
when α increases, the average hit probability increases.
Second Scenario. We use α = 0.8 for all edge servers, and we
changed the distribution of interarrival time for the four edge
servers as following: [′P, P, P, P ′, ′P, P,R,R′, ′P,R, P,R′,
′R,R,R,R′], where ′P ′ refers to Poisson and ′R′ for Pareto
for the corresponding edge server. For example, ′P, P, P, P ′

means the distr. is Poisson for all edge servers in this experi-
ment. The average hit probability is shown in Fig. 7b.

For both scenarios, we used our proposed framework to
compare each two policies at each edge server. We construct
a tandem cache network from this edge server to the origin
server, and calculate the hit probability matrix for the objects
related to this edge server. If policy P has a better performance
than policy Q, policy P majorizes policy Q for each cache
server in all the different cases for α.

VI. CONCLUSION

In this paper, we have discussed the renewed research
interest in caching policies and their performance analysis
as a result of the ICN architectures. Also, the additional
challenges both in terms of practical cache management issues
and performance analysis for cache networks. We also have
discussed some of the related work done by the research
community which focuses on the performance analysis of
cache networks under various caching policies, and that the
issue of how to evaluate and compare caching policies for a
network of caches has not been adequately addressed. In this
paper, we propose and develop a novel and general framework
for evaluating caching policies in a hierarchical network of
caches. We introduced the notion of a hit probability matrix,
and employed (a generalized notion of) majorization as the
basic tool for evaluating and comparing cache policies in
terms of various performance metrics for a network of caches.
We discussed how the framework can be applied to various
existing caching policies and conduct extensive simulation-
based evaluation to demonstrate the utility of our framework.

Acknowledgment: This research was supported in part by

NSF grants CNS-1411636, CNS 1618339 and CNS 1617729
and a Huawei gift.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.

[2] “Named data networking,” http://named-data.net/.
[3] T. Koponen and et al., “A data-oriented(and beyond)network architec-

ture,” in ACM SIGCOMM Computer Communication Review, 2007.
[4] S. K. Fayazbakhsh and et al., “Less pain, most of the gain: Incrementally

deployable icn,” in SIGCOMM, 2013.
[5] E. Ramadan, A. Narayanan, and Z.-L. Zhang, “Conia: Content

(provider)-oriented, namespace-independent architecture for multimedia
information delivery,” in ICMEW, 2015.

[6] B. Ahlgren and et al., “A survey of information-centric networking,”
IEEE Communications Magazine, July 2012.

[7] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, 2016.

[8] A. Dan and D. Towsley, “An approximate analysis of the lru and fifo
buffer replacement schemes,” in ACM SIGMETRICS, 1990.

[9] P. R. Jelenkovi, “Asymptotic approximation of the move-to-front search
cost distribution and least-recently used caching fault probabilities,” The
Annals of Applied Probability, 1999.

[10] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of ttl-based
cache networks,” in VALUETOOLS, 2012. IEEE.

[11] M. Dehghan, L. Massoulié, D. Towsley, D. S. Menasché, and Y. C. Tay,
“A utility optimization approach to network cache design,” CoRR, 2016.

[12] N. C. Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L. Goeckel,
“On the performance of general cache networks,” in ValueTools, 2014.

[13] D. S. Berger, S. Henningsen, F. Ciucu, and J. B. Schmitt, “Maximizing
cache hit ratios by variance reduction,” SIGMETRICS, 2015.

[14] N. Gast and B. Van Houdt, “Transient and steady-state regime of a
family of list-based cache replacement algorithms,” ACM SIGMETRICS
Performance Evaluation Review, 2015.

[15] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” in INFOCOM, 2001.

[16] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for lru cache performance,” in ITC, 2012.

[17] A. Wolman and et al., “On the scale and performance of cooperative
web proxy caching,” ACM SIGOPS Operating Systems Review, 1999.

[18] E. Ramadan, A. Narayanan, Z.-L. Zhang, R. Li, and G. Zhang, “Big
cache abstraction for cache networks,” in ICDCS, 2017. IEEE.

[19] Z. Liu, P. Nain, N. Niclausse, and D. Towsley, “Static caching of web
servers,” in Multimedia Computing and Networking 1998.

[20] A. Ferragut, I. Rodriguez, and F. Paganini, “Optimizing ttl caches under
heavy-tailed demands,” in Proceedings of the 2016 ACM SIGMETRICS.

[21] V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, “Vivisecting youtube:
An active measurement study,” in INFOCOM, 2012.

[22] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A
platform for high-performance internet applications,” SIGOPS, 2010.

[23] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of ttl
cache networks,” Performance Evaluation, 2014.

[24] N. C. Fofack and et al., “Performance evaluation of hierarchical ttl-based
cache networks,” Computer Networks, 2014.

459

Neural Networks for Measurement-based

Bandwidth Estimation

Sukhpreet Kaur Khangura, Markus Fidler, Bodo Rosenhahn

Department of Electrical Engineering and Computer Science, Leibniz Universität Hannover

Abstract—The dispersion that arises when packets traverse
a network carries information that can reveal relevant network
characteristics. Using a fluid-flow model of a bottleneck link with
first-in first-out multiplexing, accepted probing tools measure the
packet dispersion to estimate the available bandwidth, i.e., the
residual capacity that is left over by other traffic. Difficulties
arise, however, if the dispersion is distorted compared to the
model, e.g., by non-fluid traffic, multiple bottlenecks, clustering
of packets due to interrupt coalescing, and inaccurate time-
stamping in general. It is recognized that modeling these effects
is cumbersome if not intractable. This motivates us to explore
the use of machine learning in bandwidth estimation. We train
a neural network using vectors of the packet dispersion that
is characteristic of the available bandwidth. Our testing results
reveal that even a shallow neural network identifies the available
bandwidth with high precision. We also apply the neural network
under a variety of notoriously difficult conditions that have not
been included in the training, such as heavy traffic burstiness,
and multiple bottleneck links. Compared to two state-of-the-art
model-based techniques, the neural network approach shows im-
proved performance. Further, the neural network can effectively
control the estimation procedure in an iterative implementation.

I. INTRODUCTION

The term available bandwidth refers to the residual capacity

of a link or a network path that is left over after the existing

traffic, also referred to as cross traffic, is served. Knowledge of

the available bandwidth benefits rate-adaptive applications and

facilitates, e.g., network monitoring, detection of congested

links, and load balancing. The goal of bandwidth estimation

is to infer the available bandwidth of a network path using

external observations of data packets, only.

Formally, given a link with capacity C and cross traffic

with long-term average rate λ, where λ ∈ [0, C], the available

bandwidth A ∈ [0, C] is defined as A = C − λ [1]. The end-

to-end available bandwidth of a network path is determined

by its tight link, that is the link that has the minimal available

bandwidth [2]. The tight link may differ from the bottleneck

link, i.e., the link with the minimal capacity.

To date, a number of accepted active probing techniques

and corresponding theories for available bandwidth estimation

exist, e.g., [1]–[13]. These techniques use a sender that actively

injects artificial probe traffic with a defined packet size l and

inter packet gap referred to as input gap gin into the network.

At the receiver, the output gap of the received probe gout is

measured to deduce the available bandwidth.

5 10 15 20 25 30 35 40 45 50

Index of Packet Gap

0

100

200

300

400

500

600

In
te

r
P

ac
k

et
 G

ap
 (

s)

g
in

g
out

measured

g
out

model

Fig. 1. Measurements of gin and gout compared to the fluid model. The
network has a single tight link with capacity C = 100 Mbps and exponential
cross traffic with rate λ = 62.5 Mbps. The packet size is l = 1514 byte.

A common assumption in bandwidth estimation is that the

available bandwidth, respectively, the rate of the cross traffic

does not change during a probe. Further, to simplify modeling,

cross traffic is assumed to behave like fluid, i.e., effects that are

due to the packet granularity of the cross traffic are neglected.

Modeling a single tight link as a lossless First-In First-Out

(FIFO) multiplexer of probe and cross traffic, the relation of

gout and gin follows by an intuitive argument [1] as

gout = max

{

gin,
ginλ+ l

C

}

. (1)

The reasoning is that during gin an amount of ginλ of the fluid

cross traffic is inserted between any two packets of the probe

traffic, so that the probe packets may be spaced further apart.

Reordering Eq. (1) gives the characteristic gap response curve

gout
gin

=

{

1 if l
gin

≤ C − λ,
l

ginC
+ λ

C
if l

gin
> C − λ.

(2)

The utility of Eq. (2) is that it shows a clear bend at A = C−λ
that enables estimating the available bandwidth using different

techniques, see Sec. II. We note that the quotient of packet size

and gap is frequently viewed as the data rate of the probe.

For an example, consider a tight link with capacity C =
100 Mbps and cross traffic with average rate λ = 62.5 Mbps.

The packet size is l = 1514 byte, resulting in a transmission

time l/C of about 120 µs. Given an input gap gin = 270 µs,

the output gap follows from Eq. (1) as gout = 290 µs. Now,

assume for the moment that C is known but λ is unknown. An

active probing tool can send probes with, e.g., gin = 270 µs

to measure gout. Noting that gout/gin > 1, Eq. (2) reveals the

unknown λ = (goutC − l)/gin = 62.5 Mbps.ISBN 978-3-903176-08-9 c© 2018 IFIP

In practice, the observations of gout are distorted for various

reasons. For an example, we recorded a measurement trace of

50 pairs of gin and gout in the network testbed in Fig. 3 with a

single tight link and the above parameters C, λ, and l, where

l is the maximal size of Ethernet packets including the header.

The results are shown in Fig. 1. Neglecting the cases where

gout < gin that are not possible in the model and ignoring large

outliers, a range of samples gout of about 360 µs remain that

suggest concluding λ ≈ 90 instead of 62.5 Mbps erroneously.

A. Challenges in Bandwidth Estimation

Relevant reasons for the distortions of gout include de-

viations from the assumptions of the model, i.e., a lossless

FIFO multiplexer with constant, fluid cross traffic as well as

measurement inaccuracies, such as imprecise time-stamping:

Random cross traffic: Eq. (2) is deterministic and hence

it does not define how to deal with the randomness of gout that

is caused by variable bit rate cross traffic. It is shown in [1]

that the problem cannot be easily fixed by using the expected

value E[gout] instead. In brief, this is due to the non-linearity

of Eq. (2) and the fact that the location of the turning point

C − λ fluctuates if the rate of the cross traffic λ is variable.

The result is a deviation that is maximal at l/gin = C−λ and

causes underestimation of the available bandwidth [1], [14].

Packet interference: Non-conformance with the fluid

model arises due to the interaction of probes with packets of

the cross traffic. In Fig. 1, two relevant examples are identified

by frequent samples of gout in the range of 240 and 360 µs,

respectively. In contrast, the gout of 290 µs, that is predicted

by the fluid model, is observed rarely. To understand this

effect, consider two probe packets with gin = 270 µs and

note that the transmission time of a packet is 120 µs. The

case gout = 360 µs occurs if two cross traffic packets are

inserted between the two probe packets. Instead, if one of the

two cross traffic packets is inserted in front of the probe, it

delays the first probe packet, resulting in gout = 240 µs.

Packet loss: If probe packets are lost, the corresponding

output gaps are void. This causes estimation bias, since packets

that encounter congestion have a higher loss probability. There

are few bandwidth estimation tools that consider loss, e.g., as

an indication that the available bandwidth is exceeded [6].

Multiple tight links: An extensions of Eq. (1) for multiple

links is derived in [3]. Yet, if cross traffic is non-fluid, the

repeated packet interaction at each of the links distorts the

probe gaps. Further, in case of random cross traffic, there

may not be a single tight link, but the tight link may vary

randomly. The consequence is an underestimation of the

available bandwidth [14], [15] that is analyzed in [11], [13].

Measurement inaccuracies: Besides, there exist limita-

tions of the accuracy due to the hardware of the hosts where

measurements are taken. A possible clock offset between

sender and receiver is dealt with by the use of probe gaps.

A problem in high-speed networks is, however, interrupt

coalescing [16], [17]. This technique avoids flooding a host

with too many interrupts by grouping packets received in a

short time together in a single interrupt, which distorts gout.

B. State-of-the-Art Estimation Techniques

To alleviate the observed variability of the samples of gout,
state-of-the-art bandwidth estimation methods perform aver-

aging of several gout samples. These samples can be collected

by repeated probes of two packets, so-called packet pairs [18],

or by packet trains [5], [19] that consist of n consecutive

packets and hence comprise n − 1 gaps. Further, to improve

the available bandwidth estimates, statistical post-processing

techniques are used, such as Kalman filtering [10], [20],

majority decisions [6], averaging of the bandwidth estimates

of repeated experiments [7], [8], or linear regression [4].

These techniques do, however, not overcome the basic

assumptions of the deterministic fluid model in Eq. (1).

While packet trains and statistical postprocessing help reduce

the variability of available bandwidth estimates, they cannot

resolve systematic deviations, such as the underestimation bias

in case of random cross traffic and multiple tight links [1],

[11], [13]. Further, it is difficult to tailor methods to specific

hardware implementations that influence the measurement

accuracy.

These fundamental limitations motivate us to explore the

use of machine learning in available bandwidth estimation.

The machine learning approach has been considered early

in [21], [22] and receives increasing attention in the recent

research [17], [23]. The works differ from each other with

respect to their application: [21] considers the prediction of

the available bandwidth from packet data traces that have been

obtained in passive measurements. In contrast [17], [22], [23]

use active probes to estimate the available bandwidth in NS-2

simulations [22], ultra-high speed 10 Gbps networks [17], and

operational LTE networks [23], respectively.

Common to these active probing methods [17], [22], [23]

is the use of packet chirps [7] that are probes of several

packets sent at an increasing data rate. The rate increase is

achieved either by a geometric reduction of the input gap [22],

by concatenating several packet trains with increasing rates

to a multi-rate probe [17], or by a linear increase of the

packet size [23]. Chirps permit detecting the turning point of

Eq. (2), that coincides with the available bandwidth, using

a single probe. They are, however, susceptible to random

fluctuations [12].

Other than chirps, [22] evaluates packet bursts that are

probes of back-to-back packets and concludes that bursts are

not adequate to estimate the available bandwidth. Also, [17]

considers constant rate packet trains for an iterative search

for the available bandwidth. Here, machine learning solves a

classification problem to estimate whether the rate of a packet

train exceeds the available bandwidth or not. Depending on the

result, the rate of the next packet train is reduced or increased

in a binary search as in [6] until the probe rate approaches

the available bandwidth. The authors of [17] give, however,

preference to chirp probes.

The feature vectors that are used for machine learning are

generally measurements of gout [22], [23] with the exception

that [17] uses the Fourier transform of vectors of gin and gout.

461

Supervised learning is used and [17], [23] take advantage of

today’s availability of different software packages to compare

the utility of state-of-the-art machine learning techniques in

bandwidth estimation.

C. Contributions

In this work, we investigate how to benefit from ma-

chine learning, specifically neural networks, when using stan-

dard packet train probes for available bandwidth estimation.

Compared to packet chirps, that are favored in the related

works [17], [22], [23], packet trains have been reported to be

more robust to random fluctuations. In fact, the implementation

of a chirp as a multi-rate probe, that concatenates several

packet trains with increasing rates, also benefits from this [17].

Different from multi-rate probes, packet trains are typically

used in an iterative procedure that takes advantage of feedback

to adapt the rate of the next packet train. Such a procedure

is also proposed in [17], where machine learning is used to

classify individual packet trains to control a binary search. The

goal is to adapt the probe rate until it approaches the available

bandwidth. In contrast, we use a feature vector that iteratively

includes each additional packet train probe. This additional in-

formation enables estimating the available bandwidth directly,

without the necessity that the probe rate converges to the

available bandwidth. Instead of a binary search, our method

chooses the probe rate next, that is expected to improve the

bandwidth estimate most.

We evaluate our method in controlled experiments in a

network testbed. We specifically target topologies where the

assumptions of the deterministic fluid model in Eq. 1 are not

satisfied, such as bursty cross traffic, and multiple tight links.

For a reference, we implement two state-of-the-art model-

based methods to use the same data set as our neural network-

based approach.

The remainder of this paper is structured as follows. In

Sec. II, we introduce the reference implementation of model-

based estimation techniques. We present our neural network-

based method, describe the training, and show testing results

in Sec. III. In Sec. IV, we consider the estimation of available

bandwidth and capacity for different tight link capacities. Our

iterative neural network-based method that selects the probe

rates itself is presented in Sec. V. In Sec. VI, we give brief

conclusions.

II. MODEL-BASED REFERENCE IMPLEMENTATIONS

The methods for available bandwidth estimation that are

based on the fluid model of Eq. (1) essentially fall into two

different categories: iterative probing and direct probing. For

each of the two categories, we implement a bandwidth esti-

mation technique that is representative of the state-of-the-art.

While available bandwidth estimation tools differ significantly

regarding the selection and the amount of probe traffic, our

implementations are tailored to use the same database so that

they provide a reference for the neural network-based method.

To reduce the variability of the measurements, a common

approach is the use of constant rate packet train probes. A

1

A=C - λ rin

iterative

direct

1

C

r
in

 /
r

o
u

t

~

Fig. 2. Rate response curve. The turning point marks the available bandwidth.

packet train of n packets comprises n−1 gaps. At the receiver,

the gaps are defined as gout(j) = tout(j + 1) − tout(j) for

j = 1 . . . n−1, where tout(j) is the receive time-stamp of

packet j. Considering the output rate of a packet train defined

as

rout =
(n− 1)l

tout(n)− tout(1)
(3)

implies averaging of the output gaps since by definition of

gout(j), Eq. (3) can be rewritten as

rout =
l

1

n−1

∑n−1

j=1
gout(j)

.

In case of long packet trains, stationarity, and ergodicity, the

denominator converges to the mean gout. Further, for the

deterministic fluid model, gout(j) = gout for j = 1 . . . n − 1
so that rout = l/gout. Similarly, the input rate for a defined

gin is rin = l/gin and by insertion into Eq. (2) the equivalent

rate response curve of the fluid model is obtained as

rin
rout

=

{

1 if rin ≤ C − λ,
rin+λ

C
if rin > C − λ.

(4)

The characteristic shape of Eq. (4) is shown in Fig. 2.

A. Iterative probing

In brief, iterative probing techniques search for the turning

point of the rate response curve by sending repeated probes

at increasing rates, as long as rin = rout. When rin reaches

C−λ, the available bandwidth is saturated and increasing the

probe rate rin further results in self-induced congestion, so that

rin > rout. This implies queueing at the tight link and hence

increasing one way delays can be observed at the receiver.

Established iterative probing tools are, e.g., Pathload [6] and

IGI/PTR [9]. Pathload adaptively varies the rates of successive

packet trains rin in a binary search until rin converges to

the available bandwidth. It uses feedback from the receiver

that reports whether rin exceeds the available bandwidth or

not. The decision is made based on two statistical tests that

detect increasing trends of the one way delay. For comparison,

IGI/PTR tests whether (rin − rout)/rin > ∆th, where the

threshold value ∆th is set to 0.1, to detect whether the

probe rate exceeds the available bandwidth. Regarding the

variability of the available bandwidth, Pathload reports an

462

available bandwidth range that is determined by the largest

probe rate that did not cause self-induced congestion and the

smallest rate that did cause congestion, respectively.

In our experiments, we use a dataset of equidistantly spaced

rin and corresponding rout. We process these entries iteratively

in increasing order of rin and apply the threshold test of

IGI/PTR [9] (rin − rout)/rin > ∆th to determine whether rin
exceeds the available bandwidth. We denote rthin the largest rate

before the test detects that the available bandwidth is exceeded

for the first time and report rthin as the available bandwidth

estimate. We note that there may, however, exist rin > rthin ,

where the test fails again. This may occur, for example, due

to the burstiness of the cross traffic that causes fluctuations of

the available bandwidth.

B. Direct probing

Instead of searching for the turning point of the rate

response curve, direct probing techniques seek to estimate

the parameters of the upward line segment for rin > C − λ.

The line is determined by C and λ. If C is known, a single

probe rin = C yields a measurement of rout that is sufficient

to estimate λ = C(C/rout − 1) from Eq. (4). Spruce [8]

implements this approach. If C is also unknown, a minimum

of two different probe rates rin > C−λ are needed to estimate

the two unknown parameters of the upward line segment of the

rate response curve. This approach is taken, e.g., by TOPP [3],

DietTOPP [4], and BART [10].

To implement the direct probing technique, we combine

it with a threshold test to select relevant probe rates. Direct

probing techniques require that rin > C−λ where C and λ are

unknown. We adapt a criterion from DietTOPP [4] to deter-

mine a minimum threshold rmin
in that satisfies rmin

in > C−λ and

use only the probe rates rin ≥ rmin
in . We use the maximal input

rate in the measurement data denoted by rmax
in and extract the

corresponding output rate rmax
out . If rmax

in > rmax
out , it can be seen

from Eq. (4) that both rmax
in > C−λ as well as rmax

out > C−λ.

Hence, we use rmin
in = rmax

out as a threshold to filter out all

rin ≤ rmin
in . Once we have selected samples that certainly

fulfill rin > C − λ, we use linear regression like [3], [4] to

determine the upward segment of the rate response curve. The

available bandwidth estimate is determined from Eq. (4) as

the x-axis intercept where the regression line intersects with

the horizontal line at 1, see Fig. 2.

If the assumptions of the fluid model do not hold, e.g.,

in case of random cross-traffic, the regression technique may

occasionally fail. We filter out bandwidth estimates that can

be classified as infeasible. This is the case if the slope of the

regression line is so small that the intersection with 1 is on

the negative rin axis, implying the contradiction A < 0, or if

the slope of the regression line is negative, implying C < 0.

III. NEURAL NETWORK-BASED METHOD

In this section, we present our neural network-based imple-

mentation of bandwidth estimation, describe the training data

sets, and show a comparison of available bandwidth estimates

for a range of different network parameters.

A. Scale-invariant Implementation

We use a neural network that takes a k-dimensional vec-

tor of values rin/rout as input. The corresponding rin are

equidistantly spaced with an increment δr. Hence, rin is in

[δr, 2δr, . . . , kδr] that is fully defined by the parameters k and

δr that determine the measurement resolution. Since the actual

values of rin do not provide additional information, they are

not input to the neural network. Instead, the neural network

refers to values of rin/rout only by their index i ∈ [1, k]. The

output of the neural network is the tuple of bottleneck capacity

and available bandwidth that are also normalized with respect

to δr, i.e., we use C/δr and A/δr, respectively. While C/δr
and A/δr are not necessarily integer, they can be thought of as

the index iC and iA where rin saturates the bottleneck capacity

or the available bandwidth, respectively. To obtain the actual

capacity and the available bandwidth, the output of the neural

network has to be multiplied by δr.

The normalization by δr achieves a neural network that is

scale-invariant, since the division by δr replaces the units, e.g.,

Mbps or Gbps, by indices. Considering the fluid model in

Eq. (4), the normalization of all quantities rin, rout, C, and λ
by δr results in

rin
rout

=

{

1 if i ≤ iC − iλ,
i+iλ
iC

if i > iC − iλ.
(5)

where we used the indices i = rin/δr, iC = C/δr, iλ = λ/δr,

and iA = A/δr = iC − iλ. Eq. (5) confirms that the shape of

rin/rout is independent of the scale, e.g., sampling a 100 Mbps

network in increments of δr = 10 Mbps or a 1 Gbps network

in increments of δr = 0.1 Gbps reveals the same characteristic

shape. The advantage of the scale-invariant representation is

that the neural network requires less additional training. We

note that the identity is derived under the assumptions of the

fluid model and does not consider effects that are not scale-

invariant such as the impact of the packet size or interrupt

coalescing.

For implementation we use a k = 20-dimensional input vec-

tor of equidistantly sampled values of rin/rout. We decided for

a shallow neural network consisting of one hidden layer with

40 neurons. Thus, the network comprises a 20-dimensional

input vector, 40 hidden neurons and two output neurons. The

output neutrons encode C/δr and A/δr.

We also explored the use of deeper networks with more

hidden layers, convlayers and residual networks. However, in

our setting different variants of networks did not improve the

quality in our experiments. We belief, that the main reason

is overfitting which is caused from the sparse amount of data

used for training. When using more data or more complex set-

tings these variants might become interesting again. Methods

based on metric [24] or incremental learning [25] will also be

explored in future works.

B. Training Data: Exponential Cross Traffic, Single Tight Link

We generate different data sets for training and for eval-

uation using a controlled network testbed. The testbed is

463

Probe

Sender

Cross Traffic

Sender 1

Cross Traffic

Multi Rate Probes

Tight link

A

Probe

Receiver

B

Cross Traffic

Sender 2

Cross Traffic

Receiver 1

Tight link

Cross Traffic

Receiver 2

Cross Traffic

Sender 3

Tight link

Cross Traffic

Receiver n

Cross Traffic Cross Traffic

Fig. 3. Dumbbell topology set up using the Emulab and MoonGen software. A varying number of tight links with single hop-persistent cross traffic are
configured. Probe-traffic is path-persistent to estimate the end-to-end available bandwidth from measurements at points A and B.

located at Leibniz Universität Hannover and comprises about

80 machines that are each connected by a minimum of 4

Ethernet links of 1 Gbps and 10 Gbps capacity via VLAN

switches. The testbed is managed by the Emulab software [26]

that configures the machines as hosts and routers and connects

them using VLANs to implement the desired topology. We

use a dumbbell topology with multiple tight links as shown

in Fig. 3. To emulate the characteristics of the links, such

as capacity, delay, and packet loss, additional machines are

employed by Emulab. We use the MoonGen software [27]

for emulation of link capacities that differ from the native

Ethernet capacity. To achieve an accurate spacing of packets

that matches the emulated capacity, MoonGen fills the gaps

between packets by dummy frames that are discarded at the

output of the link. We use the forward rate Lua script for the

MoonGen API to achieve the desired forwarding rate for the

transmission and reception ports of MoonGen.

Cross traffic of different types and intensities is generated

using D-ITG [28]. The cross traffic is single hop-persistent,

i.e., at each link fresh cross traffic is multiplexed. The probe

traffic is path-persistent, i.e., it travels along the entire network

path, to estimate the end-to-end available bandwidth. We use

RUDE & CRUDE [29] to generate UDP probe streams. A

probe stream consists of a series of k packet trains of n packets

each. The k packet trains correspond to k different probe rates

with a constant rate increment of δr between successive trains.

The packet size of the probe traffic and the cross traffic is

l = 1514 byte including the Ethernet header.

Packet timestamps at the probe sender and receiver are

generated at points A and B, respectively, using libpcap at

the hosts. We also use a specific endace DAG measurement

card to obtain accurate reference timestamps. The timestamps

are used to compute rin and rout for each packet train.

We generate two training data sets for a single tight link with

exponential cross traffic. In data set (i) the capacity of the tight

link and the access links is C = 100 Mbps. Exponential cross

traffic with an average rate of λ = 25, 50, and 75 Mbps is

used to generate different available bandwidths. In data set (ii)

the capacity of the tight link is set to C = 50 Mbps and the

exponential cross traffic has an average rate of λ = 12.5, 25,

and 37.5 Mbps, respectively. In both cases the probe streams

comprise packet trains of n = 100 packets sent at k = 20
different rates with rate increment δr = 5 Mbps. For each

configuration 100 repeated experiments are performed.

For training of the neural network, we first implement

an autoencoder for each layer separately and then fine-tune

the network using scaled conjugate gradient (scg). Given

a regression network, we optimize the L2-error requiring

approximately 1000 epochs until convergence is achieved.

Training of the network (using Matlab) takes approximately

30 seconds. Due to the limited amount of training data (600

experiments overall in both training data sets), the shallow

network with a small amount of hidden neurons allows training

without much overfitting.

C. Evaluation: Exponential Cross Traffic, Single Tight Link

We train the neural network using the two training data

sets and generate additional data sets for testing. The test

data is generated for the same network configuration as the

training data set (i), i.e., using exponential cross traffic of

25, 50, and 75 Mbps at a single tight link of 100 Mbps

capacity. We also consider other cross traffic rates of 12.5,

37.5, 62.5, and 87.5 Mbps that have not been included in

the training data set (i) to see how well the neural network

interpolates and extrapolates. We repeat each experiment 100

times so that we obtain 100 bandwidth estimates for each

configuration. We compare the performance of the neural

network-based method with the two model-based reference

implementations of an iterative and a direct estimation method.

All three methods generate available bandwidth estimates from

the same measurement data.

1) Testing: The testing results of the neural network-based

method are summarized in Fig. 4(a) compared to the results

of the direct and the iterative method. We show the average of

the available bandwidth estimates with error bars that depict

the standard deviation of the estimates. The variability of the

available bandwidth estimates is due to a number of reasons as

discussed in Sec. I-A. Particularly, the exponential cross traffic

deviates from the fluid model and causes random fluctuations

of the measurements of rout.
The variability of the available bandwidth estimates of the

direct method is comparably large and the average under-

464

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

75 50 25

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

(a) Testing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

62.5 37.5

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

(b) Interpolation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

87.5 12.5

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

(c) Extrapolation

Fig. 4. Bandwidth estimates for different cross traffic rates that have been included in the training data set (testing), that fall into the range of the training
data set (interpolation), and that fall outside the range of the training data set (extrapolation). The neural network-based method provides available bandwidth
estimates that exhibit little variation and have an average that matches the true available bandwidth.

estimates the true available bandwidth. The iterative method

shows less variability but tends to overestimate the available

bandwidth. This is a consequence of the threshold test, where

a lower threshold increases the responsiveness of the test but

makes it more sensitive to random fluctuations. The neural

network-based method improves the bandwidth estimates sig-

nificantly. The average matches the true available bandwidth

and the variability is low. The good performance of the neural

network is not unexpected as it has been trained for the same

network parameters.

2) Interpolation: Next, we consider cross traffic of the

same type, i.e., exponential, however, with a different rate that

has not been included in the training data. First, we consider

cross traffic rates of 37.5 and 62.5 Mbps that fall into the range

of rates 25, 50, and 75 Mbps that have been used for training,

hence the neural network has to interpolate. The results in

Fig. 4(b) show that the available bandwidth estimates of the

neural network-based method are consistent also in this case.

3) Extrapolation: Fig. 4(c) depicts available bandwidth

estimates for cross traffic rates of 12.5 and 87.5 Mbps. These

rates fall outside the range of rates that have been included

in the training data set so that the neural network has to

extrapolate. The results of the neural network-based method

are nevertheless highly accurate, with a noticeable underesti-

mation of 5 Mbps on average only in case of a true available

bandwidth of 87.5 Mbps. A reason for the lower accuracy

that is observed when the available bandwidth approaches the

capacity is that fewer measurements are on the characteristic

upward line segment, see Fig. 2 that is also used for estimation

by the direct method.

D. Network Parameter Variation Beyond the Training Data

We investigate the sensitivity of the neural network with

respect to a variation of network parameters that differ sub-

stantially from the training data set. Specifically, we investigate

two cases that are known to be hard in bandwidth estimation.

These are cross traffic with high burstiness, and networks with

multiple tight links.

1) Burstiness of Cross Traffic: To evaluate how the neural

network-based method performs in the presence of cross traffic

with an unknown burstiness, we consider three different types

of cross traffic: constant bit rate (CBR) that has no burstiness

as assumed by the probe rate model, moderate burstiness due

to exponential packet inter-arrival times, and heavy burstiness

due to Pareto inter-arrival times with infinite variance, caused

by a shape parameter of α = 1.5. The average rate of the cross

traffic is λ = 50 Mbps in all cases. As before, the tight link

capacity and the access links capacities are C = 100 Mbps.

The burstiness of the cross traffic can cause queueing at the

tight link even if the probe rate is below the average available

bandwidth, i.e., if rin < C − λ. This effect is not captured

by the fluid model. It causes a deviation from the ideal rate

response curve as depicted in Fig. 2 that is maximal at C −λ
and blurs the bend that marks the available bandwidth. The

result is an increase of the variability of available bandwidth

estimates as well as an underestimation bias in both direct and

iterative bandwidth estimation techniques [1], [14].

Fig. 5 shows the mean and the standard deviation of 100

repeated experiments using the direct and iterative probing

techniques and the neural network-based method. The average

of the estimates shows a slight underestimation bias compared

to the true available bandwidth if the cross traffic burstiness

is increased. More pronounced is the effect of the cross

traffic burstiness on the standard deviation of the bandwidth

estimates. While for CBR cross traffic the estimates are close

to deterministic, the variability of the estimates increases sig-

nificantly if the cross traffic is bursty. The neural network, that

has been trained for exponential cross traffic only, performs

almost perfectly in case of CBR cross traffic and shows good

results with less variability compared to the direct and iterative

techniques also for the case of Pareto cross traffic.

2) Multiple Tight Links: To test the neural network with

multiple tight links, we extend our network from single-hop

to multi-hop as shown in Fig. 3. The path-persistent probe

streams experience single hop-persistent exponential cross-

traffic with average rate λ = 50 Mbps while traversing

465

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

CBR Exponential Pareto

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

Burstiness of Cross Traffic with 50 Mbps Intensity

Direct

Iterative

Neural Network

Fig. 5. Bandwidth estimates for different types of cross traffic burstiness.
An increase of the burstiness causes a higher variability of the bandwidth
estimates as well as an underestimation bias.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

of Tight Links

Direct

Iterative

Neural Network

Fig. 6. Multiple tight links with capacity C = 100 Mbps in the presence
of single hop-persistent exponential cross traffic with an average rate λ =

50 Mbps. All methods tend to underestimate the available bandwidth in case
of multiple tight links.

multiple tight links of capacity C = 100 Mbps. The capacity

of the access links is 1 Gbps.

In case of multiple tight links, the probe stream has a

constant rate rin with a defined input gap gin only at the first

link. For the following links, the input gaps have a random

structure as they are the output gaps from the preceding links.

At each additional link the probe stream interacts with new,

bursty cross traffic. This causes lower probe output rates and

results in underestimation of the available bandwidth in multi-

hop networks [1], [13], [14].

In Fig. 6 we show the results from 100 repeated measure-

ments for networks with 1 up to 4 tight links. The model-based

methods, direct and iterative, as well as the neural network-

based method underestimate the available bandwidth with

increasing number of tight links. The reason is that the model

as well as the training of the neural network consider only a

single tight link. Training the neural network for multiple tight

links is an interesting topic for future research. The estimates

of the neural network show the least variability.

IV. VARIATION OF THE TIGHT LINK CAPACITY

So far, we used test data sets that cover a tight link capacity

of C = 100 Mbps sampled with equidistantly spaced probe

rates rin with an increment of δr = 5 Mbps. Since our

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

25 and 50 25 and 100

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps) and Tight Link Capacity (Mbps)

Direct

Iterative

Neural Network

Fig. 7. Available bandwidth estimates for tight links with different capacities
of C = 50 and 100 Mbps, respectively, and A = 25 Mbps available
bandwidth.

implementation of the neural network-based method is scale-

invariant (within the limits of the fluid model), we expect that

the method can perform bandwidth estimation also, e.g., in

case of a tight link with C = 50 Mbps sampled at increments

of δr = 2.5 Mbps. If the capacity is, however, unknown, the

increment δr cannot be adequately scaled and the measurement

data will differ fundamentally. For this reason we include the

training data set (ii) that is obtained for a single tight link

with C = 50 Mbps sampled at increments of δr = 5 Mbps.

We test the neural network with data sets for C = 50, 100,

and 200 Mbps.

A. Estimation of Available Bandwidth and Capacity

We perform testing using measurement data obtained for

probe rates rin with increments of δr = 5 Mbps. The network

has a single tight link with unknown available bandwidth A
and unknown capacity C. In the evaluation we consider C =
50 and 100 Mbps and exponential cross trafic with rates λ =
0.25C, 0.5C, and 0.75C, respectively. We use the neural

network to estimate both A and C.

In Fig. 7 we compare the available bandwidth estimates

for A = C − λ = 25 Mbps. The results confirm that the

neural network estimates the available bandwidth correctly,

regardless of the capacity of the tight link. We omit further

results for reasons of space and note that the neural network

also estimates the capacity, i.e., 50 or 100 Mbps, with little

error.

B. Capacity and Parameter Scaling

Next, we consider a proportional scaling of the network and

probing parameters. In detail, the network has a single tight

link with capacity C = 50, 100, or 200 Mbps with expo-

nential cross traffic with rate λ = 0.25C, 0.5C, or 0.75C.

The probing is performed at rate increments of δr = 2.5,

5, and 10 Mbps, respectively. We note that only the case

C = 100 Mbps and δr = 5 Mbps is included in the training

data set whereas the others are not. The available bandwidth

estimates for λ = 0.5C are presented in Fig. 8. The results

confirm the utility of the scale-invariant implementation of the

neural network-based method that achieves precise estimates

466

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

25 50 100

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

Fig. 8. Parameter scaling. Available bandwidth estimates for tight links with
different capacities of C = 50, 100, and 200 Mbps, respectively, and A =

0.5C available bandwidth.

in all cases. We omit showing results of the capacity estimation

that was generally successful with little estimation error.

V. ITERATIVE NEURAL NETWORK-BASED METHOD

State-of-the-art iterative probing methods perform a search

for the available bandwidth by varying the probe rate rin
until rin converges to the available bandwidth. Pathload [6]

uses statistical tests to determine whether rin exceeds the

available bandwidth or not and performs a binary search to

adapt rin iteratively. The recent method [17] adopts Pathload’s

binary search algorithm but uses machine learning instead of

statistical tests to determine whether rin exceeds the available

bandwidth or not.

We propose an iterative neural network-based method that

differs from [17] in several respects. Most importantly our

method (a) determines the next probe rate by a neural network,

that is trained to select the probe rate that improves the

bandwidth estimate most, instead of using the binary search

algorithm, and (b) it includes the information of all previous

probe rates to estimate the available bandwidth instead of

considering only the current probe rate. Our implementation

comprises two parts. First, we train the neural network to

cope with input vectors that are not fully populated. Second,

we create another neural network that recommends the most

beneficial probe rates.

A. Partly Populated Input Vectors

An iterative method will only use a limited set of probe

rates. Correspondingly, we mark the entries of the input vector

that have not been measured as invalid by setting rin/rout = 0.

To obtain a neural network that can deal with such partly

populated input vectors, we perform training using the training

data sets (i) and (ii) where we repeatedly erase a random

number of entries at random positions. When testing the neural

network we erase entries in the same way.

In Fig. 9 we show the absolute error of the available

bandwidth estimates that are obtained by the neural network

if m ∈ [1, k] randomly selected entries of the k-dimensional

input vector are given. The bars show the average error and the

standard deviation of the error. The data set used for testing

 0

 5

 10

 15

 20

 25

1 3 5 7 9 11 13 15 17 19

E
rr

o
r

in
 A

v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

of Probe Rates [m]

Fig. 9. Error of the available bandwidth estimates obtained for a set of m
randomly selected probe rates.

is the same as the one used for Fig. 4(a) previously, i.e.,

C = 100 Mbps and A ∈ [25, 50, 75] Mbps. We show the

combined results for all values of A. The average error shows

a clear improvement with increasing m whereas the standard

deviation first grows slightly up to m = 5 before it eventually

starts to improve. The reason is that for m = 1 the information

is not sufficient to identify the two unknown parameters

capacity and available bandwidth. Hence, the neural network

first reports conservative estimates in the middle range. For

comparison, by guessing 50 Mbps in all cases the average

error is 16.6 Mbps for the given test data set. With increas-

ing m the neural network starts to distinguish the range of

A ∈ [25, 50, 75] Mbps but tends to frequent misclassifications

that can cause large errors. These misclassifications are mostly

resolved when increasing m further. We observe the same

trend also for the error of the capacity estimates that shows

a high correlation with the error of the available bandwidth

estimates. Hence, we omit showing the results.

B. Recommender Network for Probe Rate Selection

When adding entries to the partly populated input vector

of the neural network, the average estimation error improves.

The amount of the improvement depends, however, on the

position of the a priori unknown entry that is added, as well

as on the m entries that are already given, i.e., their position

and value. We use a second neural network that learns this

interrelation. Using this knowledge, the neural network acts

as a recommender that given a partly populated input vector

selects the next probe rate, i.e., the next entry, that is expected

to improve the accuracy of the bandwidth estimate most. The

recommender network takes the k = 20-dimensional input

vector of values rin/rout, has 80 hidden neurons, and generates

a k-dimensional output vector of estimation errors that apply

if the entry rin/rout is added at the respective position. Given

the output vector, the rate rin that minimizes the estimation

error is selected for probing next.

Fig. 10 shows how the recommender network improves the

error of the bandwidth estimates compared to the random

selection of probe rates in Fig. 9. Starting at 5 selected probe

rates, the average estimation error as well as the standard

deviation of the error are small and adding further probe

467

 0

 5

 10

 15

 20

 25

1 3 5 7 9 11 13 15 17 19

E
rr

o
r

in
 A

v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

of Probe Rates [m]

Fig. 10. Error of the available bandwidth estimates obtained for a set of m
recommended probe rates.

rates improves the estimate only marginally. The reason is

that certain probe rates, e.g., those on the horizontal line at

rin/rout = 1 in Fig. 2, provide little additional information.

We conclude that the recommender can effectively control the

selection of probe rates to avoid those rates that contribute

little. In this way, the recommender can save a considerable

amount of probe traffic.

VI. CONCLUSION

We investigated how neural networks can be used to ben-

efit measurement-based available bandwidth estimation. We

proposed a method that is motivated by the characteristic

rate response curve of a network. Our method takes a vector

of ratios of equidistantly spaced probe rates at the sender

and at the receiver rin/rout as input to a neural network to

estimate the available bandwidth and the bottleneck capacity.

We use ratios of data rates and a suitable normalization to

achieve an implementation that is scale-invariant with respect

to the network capacity. We conducted a comprehensive mea-

surement study in a controlled network testbed. Our results

showed that neural networks can significantly improve avail-

able bandwidth estimates by reducing bias and variability. This

holds true also for network configurations that have not been

included in the training data set, such as different types and

intensities of cross-traffic, multiple tight links, and different

bottleneck capacities. To reduce the amount of probe traffic,

we implemented an iterative method that varies the probe rate

adaptively. The selection of probe rates is performed by a

neural network that acts as a recommender. The recommender

effectively selects the probe rates that reduce the estimation

error most quickly.

REFERENCES

[1] X. Liu, K. Ravindran, and D. Loguinov, “A queueing-theoretic founda-
tion of available bandwidth estimation: single-hop analysis,” IEEE/ACM

Transactions on Networking, vol. 15, no. 4, pp. 918–931, 2007.
[2] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement

methodology, dynamics, and relation with TCP throughput,” IEEE/ACM

Transactions on Networking, vol. 11, no. 4, pp. 537–549, 2003.
[3] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end

probing and analysis method for estimating bandwidth bottlenecks,” in
IEEE Globecom, 2000, pp. 415–420.

[4] A. Johnsson, B. Melander, and M. Björkman, “Diettopp: A first im-
plementation and evaluation of a simplified bandwidth measurement
method,” in Swedish National Computer Networking Workshop, 2004.

[5] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?” in IEEE INFOCOM, 2001, pp. 905–914.

[6] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end
available bandwidth,” in Passive and Active Measurement Workshop,
2002.

[7] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient available bandwidth estimation for network paths,”
in Passive and Active Measurement Workshop, 2003.

[8] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in ACM Internet Measurement

Conference, 2003, pp. 39–44.
[9] N. Hu and P. Steenkiste, “Evaluation and characterization of available

bandwidth probing techniques,” IEEE Journal on Selected Areas in

Communications, vol. 21, no. 6, pp. 879–894, 2003.
[10] S. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J.-E. Mangs,

B. Melander, and M. Bjorkman, “Real-time measurement of end-to-
end available bandwidth using Kalman filtering,” in IEEE/IFIP Network

Operations and Management Symposium (NOMS), 2006, pp. 73–84.
[11] X. Liu, K. Ravindran, and D. Loguinov, “A stochastic foundation of

available bandwidth estimation: Multi-hop analysis,” IEEE/ACM Trans-

action on Networking, vol. 16, no. 1, pp. 130–143, 2008.
[12] J. Liebeherr, M. Fidler, and S. Valaee, “A system theoretic approach to

bandwidth estimation,” IEEE/ACM Transactions on Networking, vol. 18,
no. 4, pp. 1040–1053, 2010.

[13] R. Lübben, M. Fidler, and J. Liebeherr, “Stochastic bandwidth estimation
in networks with random service,” IEEE/ACM Transactions on Network-

ing, vol. 22, no. 2, pp. 484–497, 2014.
[14] M. Jain and C. Dovrolis, “Ten fallacies and pitfalls on end-to-end avail-

able bandwidth estimation,” in ACM Internet Measurement Conference,
2004, pp. 272–277.

[15] L. Lao, C. Dovrolis, and M. Sanadidi, “The probe gap model can under-
estimate the available bandwidth of multihop paths,” ACM SIGCOMM

Computer Communication Review, vol. 36, no. 5, pp. 29–34, 2006.
[16] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence on

network measurements,” in Passive and Active Measurement Workshop,
2004, pp. 247–256.

[17] Q. Yin and J. Kaur, “Can machine learning benefit bandwidth estimation
at ultra-high speeds?” in Passive and Active Measurement Conference,
2016, pp. 397–411.

[18] S. Keshav, “A control-theoretic approach to flow control,” in Proc. ACM

SIGCOMM, Sep. 1991, pp. 3–15.
[19] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM Transac-

tions on Networking, vol. 7, no. 3, pp. 277–292, 1999.
[20] Z. Bozakov and M. Bredel, “Online estimation of available bandwidth

and fair share using Kalman filtering,” in IFIP Networking, 2009.
[21] A. Eswaradass, X.-H. Sun, and M. Wu, “A neural network based pre-

dictive mechanism for available bandwidth,” in Parallel and Distributed

Processing Symposium, 2005.
[22] L.-J. Chen, “A machine learning-based approach for estimating available

bandwidth,” in TENCON, 2007, pp. 1–4.
[23] N. Sato, T. Oshiba, K. Nogami, A. Sawabe, and K. Satoda, “Ex-

perimental comparison of machine learning-based available bandwidth
estimation methods over operational LTE networks,” in IEEE Symposium

on Computers and Communications (ISCC), 2017, pp. 339–346.
[24] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Sigal, “Exploiting

view-specific appearance similarities across classes for zero-shot pose
prediction: A metric learning approach,” Conference on Artificial Intel-

ligence (AAAI), Feb. 2016.
[25] ——, “Expanding object detector’s horizon: Incremental learning frame-

work for object detection in videos,” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Jun. 2015.
[26] D. S. Anderson, M. Hibler, L. Stoller, T. Stack, and J. Lepreau, “Auto-

matic online validation of network configuration in the emulab network
testbed,” in IEEE International Conference on Autonomic Computing,
2006, pp. 134–142.

[27] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in ACM Inter-

net Measurement Conference, Oct. 2015.
[28] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-

ITG distributed internet traffic generator,” in Quantitative Evaluation of

Systems, 2004, pp. 316–317.
[29] J. Laine, S. Saaristo, and R. Prior, “Real-time udp data emitter

(rude) and collector for rude (crude),” 2000. [Online]. Available:
https://sourceforge.net/projects/rude/

468

Decentralized Scheduling for Offloading of
Periodic Tasks in Mobile Edge Computing

Slad̄ana Jošilo and György Dán
ACCESS Linnaeus Center, School of Electrical Engineering and Computer Science

KTH, Royal Institute of Technology, Stockholm, Sweden E-mail: {josilo, gyuri}@kth.se

Abstract—Motivated by various surveillance applications,
we consider wireless devices that periodically generate com-
putationally intensive tasks. The devices aim at maximizing
their performance by choosing when to perform the compu-
tations and whether or not to offload their computations to a
cloud resource via one of multiple wireless access points. We
propose a game theoretic model of the problem, give insight
into the structure of equilibrium allocations and provide an
efficient algorithm for computing pure strategy Nash equilib-
ria. Extensive simulation results show that the performance
in equilibrium is significantly better than in a system without
coordination of the timing of the tasks’ execution, and the
proposed algorithm has an average computational complexity
that is linear in the number of devices.

I . I N T R O D U C T I O N

Mobile edge computing (MEC) is considered to be-
come an enabler of a variety of Internet of Things (IoT)
applications that are based on a pervasive deployment
of wireless sensors. Examples range from water pipeline
surveillance [1], through pursuit problems and discrete
manufacturing [2] to body area networks [3]. Many of
these applications involve the periodic collection of sensory
data, which need to be processed timely to enable control
decisions. Processing often requires some form of data
analytics, e.g., visual analysis, which is computationally
demanding.

The key advantage of MEC compared to centralized
cloud infrastructures is that computational resources are
located close to the network edge [4]. Thus, even though
MEC infrastructures may be less resource-rich than cen-
tralized clouds, such as Microsoft Azure or AWS, due to
their proximity to the sensors they may be able to provide
response times that make them suitable for computation
offloading for real-time applications.

The proximity of MEC resources makes low response
times for individual sensors possible, but when multiple
wireless sensors attempt to offload to the MEC simultane-
ously, the response times might increase due to contention
for the communication and the computational resources [5],
[6], [7]. Coordination is thus essential for maintaining low
response times in the case of MEC computation offloading.

Coordination for offloading periodic tasks involves de-
ciding whether or not to offload the computations, deciding
which of the available wireless communication channels
to use for offloading, and in the case of periodic tasks,
it involves deciding when to collect sensory data and
when to offload the computation. In addition coordination
should respect that sensors may be managed by different
entities, with individual interests. The resulting coordination
problem not only has a huge solution space with a
combinatorial structure, but it also requires consideration of

the potentially diverse requirements of the sensors in terms
of response time and energy consumption for performing
the computation. Efficient coordination of computation
offloading for wireless sensors with periodic tasks is thus
a complex problem.

In this paper we address this problem by considering the
allocation of cloud and wireless resources among wireless
devices that generate tasks periodically. The devices can
choose the time slot in which to perform their periodic
task, and can decide whether to offload their computation
to a cloud through one of many access points or to
perform the computation locally. We provide a game
theoretical treatment of the problem, and prove the existence
of pure strategy Nash equilibria. Our proof provides a
characterization of the structure of the equilibria, and serves
as an efficient decentralized algorithm for coordinating
the offloading decisions of the wireless devices. We use
extensive simulations to assess the benefits of coordinated
computation offloading compared to uncoordinated com-
putation offloading where devices choose a time slot at
random, and in the chosen time slot play an equilibrium
allocation. Our results show that the proposed algorithm
computes equilibria with good system performance in a
variety of scenarios in terms of task periodicity, the number
of devices and the number of access points.

The rest of the paper is organized as follows. In Section II
we present the system model and the problem formulation.
In Section III we present algorithmic and analytical results.
In Section IV we show numerical results and in Section V
we discuss related work. Section VI concludes the paper.

I I . S Y S T E M M O D E L A N D P R O B L E M
F O R M U L AT I O N

We consider a computation offloading system that con-
sists of N devices,A acces points (APs) and a cloud service.
We denote by N={1, 2, ..., N} and A={1, 2, ..., A} the
set of devices and the set of APs, respectively. Each device
generates a computationally intensive task periodically
every T time units. Device i’s task is characterized by the
mean size Di of the input data and by the mean number of
CPU cycles Li required to perform the computation. We
make the reasonable assumption that the number X of CPU
cycles required per bit can be modeled by a random variable
following a Gamma distribution [8], [9], and assume E[X]
to be known from previous measurements. Thus, assuming
independence the mean number of CPU cycles can be
expressed as Li = DiE[X].

We consider that time is partitioned into T time slots,
and we denote by T ={1, 2, ..., T} the set of time slots.
Each device can choose one time slot in which it wants

1

1 4

Fig. 1. An example of a mobile cloud computing system than consists
of N devices, T = 4 time slots, and A = 3 APs.

to perform the computation and in the chosen time slot
it can decide whether to perform the computation locally
or to offload the computation to the cloud server through
one of the APs. Therefore, each device i ∈ N can choose
one element of the set Di = {A ∪ {0}} × T , where 0
corresponds to local computing. We denote by di∈Di the
decision of MU i, and refer to it as its strategy. We refer
to the collection d=(di)i∈N as a strategy profile, and we
denote by D =×i∈NDi the set of all feasible strategy
profiles. The considered model of homogeneous task
periodicities is reasonable for surveillance of homogeneous
physical phenomena, we leave the case of heterogeneous
periodicities to be subject of future work.

For a strategy profile d we denote by O(t,a)(d) =
{i|di = (t, a)} the set of devices that offload using AP a
in time slot t, and we denote by n(t,a)(d) = |O(t,a)(d)| the
number of devices that use AP a in time slot t. Furthermore,
we define the set of all devices that offload in time slot
t as Ot(d) = ∪a∈AO(t,a)(d), and the total number of
devices that offload in time slot t as nt(d)=

∑
a∈A n(t,a)(d).

Finally, we denote by O(d) = ∪t∈T Ot(d) the set of all
devices that offload in strategy profile d.

A. Local computing

In the case of local computing each device has to
use its own computing resources in order to perform the
computation. We consider that different devices may have
different computational capabilities and we denote by F 0

i

the computational capability of device i. Furthermore, we
consider that the computational capability F 0

i of device i
is independent of the chosen time slot, and hence the time
that is needed for device i to perform its computation task
that requires Li CPU cycles can be expressed as

T 0
i = Li/F

0
i . (1)

In order to express the energy consumption in the case of
local computing we denote by vi the energy consumption
per CPU cycle [10], and we express the energy that device i
would spend on performing a computation task that requires
Li CPU cycles as

E0
i = viLi. (2)

B. Computation offloading

In the case of computation offloading the computation
is performed in the cloud, but the input data for the
computation task need to be transmitted through one of
the APs. In what follows we introduce our communication

and computation models that describe how the wireless
medium and the cloud computing resources are shared
among devices that offload their tasks, respectively.

1) Communication model: We consider that the uplink
rate ωi,(t,a)(d) that device i can achieve if it offloads
through AP a in time slot t is a non-increasing function
fa(n(t,a)(d)) of the number n(t,a)(d) of devices that use
the same AP a in time slot t. Furthermore, we consider
that each device is characterized by PHY rate Ri,a, which
depends on device specific parameters such as physical
layer signal characteristics and the channel conditions.
Therefore, the uplink rate of device i on AP a can be
different from the uplink rates of the other devices on the
same AP and can be expressed as

ωi,(t,a)(d) = Ri,a × fa(n(t,a)(d)). (3)

This communication model can be used to model through-
put sharing mechanisms in TDMA and OFDMA based
MAC protocols [11].

Given the uplink rate ωi,(t,a)(d), the time needed for
device i to transmit the input data of size Di through AP
a in time slot t can be expressed as

T txi,(t,a)(d) = Di/ωi,(t,a)(d). (4)

We consider that every device i knows the transmit power
Pi,a that it would use to transmit the data through AP a,
where Pi,a may be determined using one of the power
control algorithms proposed in [12], [13]. The transmit
power Pi,a and the transmission time T txi,(t,a)(d) determine
the energy consumption of device i for transmitting the
input data of size Di through AP a in time slot t

Etxi,(t,a)(d) = Pi,aT
tx
i,(t,a)(d). (5)

2) Computation model: We denote by F c the computa-
tional capability of the cloud service, and we consider that
the computational capability F ci,t(d) that device i would
receive from the cloud in time slot t is a non-increasing
function fi(nt(d)) of the total number nt(d) of devices
that offload in time slot t

F ci,t(d) = F c × fi(nt(d)). (6)

Therefore, the time needed for performing device i’s task in
the cloud may be different in different time slots, and given
the number Li of CPU cycles needed for the computation
task it can be expressed as

T exei,t (d) = Li/F
c
i,t(d). (7)

We consider that a single time slot is long enough for
performing each user’s task both in the case of local
computing and in the case of computation offloading.
This assumption is reasonable in the case of real time
applications, where the worst-case task completion time
must be less than a fraction of the periodicity.

Figure 1 shows an example of a mobile cloud computing
system where devices can choose one slot out of four time
slots to perform the computation. In the case of computation
offloading, each device in the chosen time slot can offload
its task to the cloud through one of three APs, e.g., in
time slot 1 devices 1 and 2 offload their tasks through AP
1, device 3 offloads its task through AP 3, and device 4
performs the computation locally.

2

470

C. Cost Model

We consider that devices are interested in minimizing
a linear combination of their computing time and their
energy consumption, and denote by 0 ≤ γTi , γ

E
i ≤ 1 the

corresponding weights, respectively. We can then express
the cost of device i in the case of local computation as

C0
i = γTi T

0
i + γEi E

0
i . (8)

Similarly, we can express the cost of device i in the case
of offloading through AP a in time slot t as

Cci,(t,a)(d)=γTi (T exei,t (d)+T txi,(t,a)(d))+γEi E
tx
i,(t,a)(d). (9)

In (9) we made the common assumption that the time
needed to transmit the result of the computation from the
cloud service to the device can be neglected [5], [14], [15],
[7], because for many applications (e.g., object recognition,
tracking) the size of the output data is significantly smaller
than the size Di of the input data. We can thus express
the cost of device i in strategy profile d as

Ci(d)=
∑

di∈T ×{0}

1(t,0)(di)·C0
i+

∑
di∈T ×A

1(t,a)(di)·Cci,(t,a)(d), (10)

where 1(t,d)(di) is the indicator function, i.e., 1(t,d)(di) = 1
if di = (t, d) and 1(t,d)(di) = 0 otherwise.

D. Multi-slot computation offloading game

We consider that the objective of each device is to
minimize its own total cost (10), i.e., to find a strategy

d∗i ∈ arg mindi∈Di
Ci(di, d−i), (11)

where Ci(di, d−i) is the cost of device i if it chooses
strategy di given the strategies d−i of the other devices.
Since devices may be autonomous entities with individual
interests, we model the problem as a strategic game Γ=<
N , (Di)i, (Ci)i>, in which the set of players is the set
of devices (we use these two terms interchangeably). We
refer to the game as the multi-slot computation offloading
game (MSCOG). The MSCOG is a player specific network
congestion game, as illustrated in Fig. 2.

Our objective is to answer the fundamental question
whether there is a strategy profile from which no device
would want to deviate, i.e., a pure strategy Nash equilibrium.

Definition 1. A pure strategy Nash equilibrium (NE) is
a strategy profile d∗ in which all players play their best
replies to each others’ strategies, that is,

Ci(d
∗
i , d
∗
−i) ≤ Ci(di, d∗−i),∀di ∈ Di,∀i ∈ N .

Given a strategy profile d = (d′i, d−i), an improvement
step of device i is a strategy d′i such that Ci(d′i, d−i) <
Ci(di, d−i). A best improvement step is an improvement
step that is a best reply. A (best) improvement path is
a sequence of strategy profiles in which one device at
a time changes its strategy through performing a (best)
improvement step. We refer to the device that makes the
best improvement step as the deviator. Observe that no
device can perform a best improvement step in a NE.

I I I . C O M P U T I N G E Q U I L I B R I A

A. Single time slot (T = 1)

We start with considering the case T =1, i.e., a single
time slot.

Ci
0

d

o

v

1 2 Aa

Fig. 2. Network model of the MSCOG.

Theorem 1. The MSCOG for T = 1 possesses a pure
strategy Nash equilibrium.

Proof. We prove the result by showing that the game is best
response equivalent to a player specific congestion game
Γ̃ on a parallel network, i.e., a singleton player specific
congestion game [16]. Observe that if for T =1 we contract
the edge (v, d) in the network shown in Fig. 2, i.e., if we
replace the edge (v, d) and its two end vertices v and d by
a single vertex, then we obtain a parallel network. Let us
define the local computation cost of player i in Γ̃ as C̃0

i(N−
n1(d))=C0

i −fi(1 + n1(d))+c, and the cost of offloading
through AP a as f̃i,a(n(1,a)(d))=fi,a(n(1,a)(d))+c, where
c is a suitably chosen constant to make all costs non-
negative. Observe that due to the contraction of the edge
(v, d) the offloading cost is C̃ci,a=Cci,a−fi(n1(d)), and
thus the difference between the cost function of player
i in Γ̃ and that in Γ only depends on the strategies of
the other players. This in fact implies that Γ̃ and Γ are
best-response equivalent, and thus they have identical sets
of pure strategy Nash equilibria. Since Γ̃ is a singleton
player specific congestion game, it has a NE, and so does
Γ, which proves the result.

Furthermore, a Nash equilibrium of the MSCOG can be
found in polynomial time.

Corollary 1. Consider a MSCOG with T = 1 and N
players. Let d∗ be a Nash equilibrium of the game, and
consider that a new player is added to the game. Then
there is a sequence of best responses that leads to a NE.

Proof. The result follows from the best response equiva-
lence to Γ̃, and from the proof of Theorem 2 in [17].

Unfortunately, the contraction technique used in the proof
of Theorem 1 cannot be applied for T > 1, as the resulting
game would no longer be a congestion game.

B. Multiple time slots (T ≥ 1)

In order to answer the question for T ≥ 1 we first show
that if a pure strategy NE exists for T ≥ 1 then its structure
cannot be arbitrary.

Theorem 2. Assume that d∗ is a NE of the MSCOG with
T ≥ 1. Then the following must hold
(i)mint′∈T nt′(d∗)≤nt(d∗)≤mint′∈T nt′(d∗)+1 for ∀t,t′∈T ,
(ii) if nt(d∗) = nt′(d∗) + 1 for some t′ ∈ T \ {t}, then
n(t,a)(d∗) ≤ n(t′,a)(d∗) + 1 for every AP a ∈ A, and
(iii) if n(t,a)(d∗) = n(t′,a)(d∗) − k for k > 1 and t′ 6= t,
then nt′(d∗) ≤ nt(d∗) ≤ nt′(d∗) + 1.

Proof. Clearly, all statements hold for T =1. Assume that
T >1 and ∃t,t′ ∈ T such that nt(d∗)>nt′(d∗)+1. Then
∃a ∈ A such that n(t,a)(d∗) ≥ n(t′,a)(d∗)+1. Therefore,
player i∈O(t,a)(d∗) could decrease her cost by changing

3

471

d∗ = MB(N , T A, F c, F 0
i)

1: Let N ← 1
2: for N = 1 . . . |N | do
3: Let A′ ← ∅ /*APs with decreased number of offloaders*/
4: Let i← N
5: d∗i = argmind∈Di

Ci(d, d∗(N − 1))
6: Let d← (d∗i , d∗(N − 1))
7: if d∗i = (t, a) s.t. a ∈ A then
8: /*Players j ∈ O(t,a)(d) play best replies*/
9: (d′, t′, A′) = DPD(d, d∗(N − 1), (t, a), A′)

10: if ∃j∈Ot(d′), ∃dj∈Dj s.t.Cj(dj , d
′
−j)<Cj(d

′
j , d
′
−j)then

11: /*Players j ∈ Ot(d′) play best replies*/
12: dj = argmind∈Dj

Cj(d, d
′
−j)

13: Let d← (dj , d
′
−j), Update A′

14: if ∃i∈Odi(d),di 6=argmind∈Di
Ci(d, d−i) /∈A′ then

15: Let (t, a)← dj , go to 9
16: else
17: Let d′ ← d
18: end if
19: end if
20: if A′ 6= ∅ then
21: /*Players j ∈ O(d′) ∪ L(d′) play best replies*/
22: (d, (t, a), A′) = SID(d′, A′)
23: if ∃i∈O(t,a)(d), di 6=argmin

d∈Di

Ci(d, d−i) /∈A′ then

24: go to 9
25: else if ∃i∈O(d)∪L(d),di6=argmin

d∈Di

Ci(d, d−i)∈A′ then

26: Let d′ ← d, go to 22
27: end if
28: end if
29: end if
30: Let d∗(N)← d′
31: end for
32: return d∗(N)

Fig. 3. Pseudo code of the MB algorithm.

the strategy to offloading through AP a in time slot t′. This
contradicts d∗ being a NE and proves (i).

We continue by proving (ii). Assume that there is an
AP a such that n(t,a)(d∗) > n(t′,a)(d∗) + 1 holds. Since
nt(d∗) = nt′(d∗) + 1, we have that player i ∈ O(t,a)(d∗)
could decrease her cost by changing the strategy from (t,a)
to (t′,a). This contradicts d∗ being a NE and proves (ii).

Finally, we prove (iii). First, assume that nt(d∗)<nt′(d∗).
Since n(t,a)(d∗)<n(t′,a)(d∗)−1, we have that player i∈
O(t′,a)(d∗) could decrease her cost by changing the strategy
from (t′,a) to (t,a). This contradicts d∗ being a NE and
proves that nt(d∗)≥nt′(d∗). Second, assume that nt(d∗)>
nt′(d∗)+1 holds. Since n(t,a)(d∗) < n(t′,a)(d∗)−1, there is
at least one AP b 6= a such that n(t,b)(d∗) ≥ n(t′,b)(d∗)+1,
and thus player i ∈ O(t,b)(d∗) could decrease her cost by
changing the strategy to (t′, b). This contradicts d∗ being a
NE and proves that nt(d∗) ≤ nt′(d∗) + 1 must hold.

In what follows we prove our main result concerning
the existence of an equilibria in general case.

Theorem 3. The MSCOG for T ≥ 1 possesses a pure
strategy Nash equilibrium.

We provide the proof in the rest of the section.

C. The MyopicBest (MB) Algorithm

We prove Theorem 3 using the MB algorithm, shown in
Fig. 3. The MB algorithm adds players one at a time, and
lets them play their best replies given the other players’
strategies. Our proof is thus based on an induction in the
number N of players, and starts with the following result.

(d, t, A′) = DPD(d, d∗(N − 1), (t, a), A′)

1: /*Players that want to stop to offload*/
2: D′1={j|dj = (t, a), (t, 0) = argmind∈Dj

Cj(d, d−j)}
3: /*Player that want to change offloading strategy*/
4: D′2={j|dj =(t, a), (t′, b)=argmind∈Dj

Cj(d, d−j) /∈ A′,

(t, a) 6= (t′, b)}
5: while |D′1 ∪D′2| > 0 do
6: /*Players that want to stop to offload have priority*/
7: if |D′1| > 0 then
8: Take i ∈ D′1
9: di = (t, 0)

10: else
11: Take i ∈ D′2
12: Let di = argmind∈T ×ACi(d, d−i)
13: Let (t, a)← di
14: end if
15: Let d← (di, d−i)
16: Update A′, D′1, D

′
2

17: end while
18: return (d, t, A′)

Fig. 4. Pseudo code of the DPD algorithm.
Theorem 4. The MB algorithm terminates in a NE for
N ≤ T .

Proof. It is easy to see that if a strategy profile d∗(N) is
a NE for N ≤ T then by Theorem 2 there is at most one
player per time slot, and the MB algorithm computes such
a strategy profile.

We continue by considering the case N >T . Let us
assume that for N−1≥T there is a NE d∗(N − 1) and
that upon induction step N a new player i enters the game
and plays her best reply d∗i with respect to d∗(N−1). After
that, players can make best improvement steps one at a
time starting from the strategy profile d = (d∗i ,d

∗(N−1)).
If d∗i = (t, 0), then n(t,a)(d) = n(t,a)(d∗(N − 1)) holds
for every (t, a) ∈ T ×A, and thus d is a NE. Otherwise,
if d∗i = (t, a), for some a ∈ A, some players j ∈ O(t,a)(d)
may have an incentive to make an improvement step be-
cause their communication and cloud computing costs have
increased, and some players j ∈ Ot(d)\O(t,a)(d) may have
an incentive to make an improvement step because their
cloud computing cost has increased. Among these players,
the MB algorithm allows players j ∈ O(t,a)(d) to perform
best improvement steps, using the DoublePokeDeviator
(DPD) algorithm shown in Fig. 4. There are two types of
players that can make a best improvement step using the
DPD algorithm. The first type are players j ∈ O(t,a)(d)
for which a best reply is to stop to offload. The second
type are players j ∈ O(t,a)(d) for which a best reply is an
offloading strategy (t′, b) ∈ T ×A\{(t, a)} for which the
number of offloaders in d is not smaller than the number
of offloaders in the NE d∗(N − 1). The DPD algorithm
allows either one player of the first type, or one player of
the second type to perform a best improvement step, and
as we show next it terminates in a finite number of steps.

Proposition 1. Let d be a strategy profile in which there
is at least one player j ∈ O(t,a)(d) that can be chosen by
the DPD algorithm. Then the length of a best improvement
path generated by the DPD algorithm is at most N − 1.

Proof. Let us denote by d′ a strategy profile after a player
j ∈ O(t,a)(d) performs its best improvement step. First,
observe that if player j’s best improvement step is to stop
to offload, then the DPD algorithm terminates since it

4

472

allows only players that play the same strategy as the last
deviator to perform best improvement steps. Furthermore, if
d = (d∗i ,d

∗(N − 1)), then n(t,a)(d′) = n(t,a)(d∗(N − 1))
for every (t, a) ∈ T ×A, and thus d′ is a NE.

Otherwise, if player j’s best improvement step is (t′, b)∈
T ×A\{(t, a)}, then n(t′,b)(d′) = n(t′,b)(d) + 1 holds, and
we can have one of the following: (1) there is no player
j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b), (2) there
is a player j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b).

If case (1) happens then the DPD algorithm terminates,
because there is no player that plays the same strategy as
the last deviator and that can decrease its cost using the
DPD algorithm. Otherwise, if case (2) happens then a new
best improvement step can be triggered, which will bring
the system to a state where n(t′,b)(d′) = n(t′,b)(d) holds.

In what follows we show that none of the players that
has changed its offloading strategy in one of the previous
best improvement steps would have an incentive to deviate
again. Let us consider a player j′ that changed its strategy
from (t′, b) to another offloading strategy, and let us assume
that in one of the subsequent best improvement steps one
of the players changes its offloading strategy to (t′, b), and
thus it brings the system to a state where n(t′,b)(d′) =
n(t′,b)(d) + 1 holds. We observe that player j that has
changed its strategy from (t, a) to (t′, b) before player j′

deviated from (t′, b) would have no incentive to deviate
from its strategy (t′, b) after a new player starts offloading
through AP b in time slot t′. This is because (t′, b) was its
best response while player j′ was still offloading through
AP b in time slot t′, i.e, while n(t′,b)(d′) = n(t′,b)(d) + 1
was true. Therefore, a new best improvement step can
be triggered only if there is another player that wants to
change from (t′, b) to another offloading strategy. If this
happens, n(t′,b)(d′) = n(t′,b)(d) will hold again, and thus
the maximum number of players that offload through AP b
in time slot t′ will be at most n(t′,b)(d)+1 in all subsequent
best improvement steps. Consequently, player j would have
no incentive to leave AP b in time slot t′ in the subsequent
steps. Therefore, each player deviates at most once in a
best improvement path generated by the DPD algorithm,
and thus the algorithm terminates in at most N − 1 best
improvement steps, which proves the proposition.

The DPD algorithm may be called multiple times during
the execution of the MB algorithm, but as we show next
for any fixed N , it is called a finite number of times.

Proposition 2. The DPD algorithm is executed a finite
number of times for any particular N .

Proof. Let us assume that the DPD algorithm has been
called at least once during the execution of the MB
algorithm, and let us denote by d′ the most recent strategy
profile computed by the DPD algorithm. Now, let us assume
that in the next best improvement step generated by the
MB algorithm a player i ∈ O(d′)∪L(d′) changes its
strategy to (t, a)∈T ×A. Starting from a strategy profile
d=((t, a), d′−i) players j∈O(t,a)(d) are allowed to perform
the next best improvement step using the DPD algorithm.

Observe that players j′ ∈ O(t,a)(d′) that in the pre-
vious best improvement steps changed their strategy to
(t, a) using the DPD algorithm and triggered one of the

players to leave the same strategy (t, a) would have no
incentive to perform a best improvement step using the
DPD algorithm. This is because the previous deviators
j′ ∈ O(t,a)(d′) brought n(t,a)(d′) to its maximum, that
is to n(t,a)(d∗(N − 1)) + 1, which decreased again to
n(t,a)(d∗(N−1)) after the next deviator left strategy (t, a).
Since the number of previous deviators j′ ∈ O(t,a)(d′) that
have no incentive to perform a new best improvement step
using the DPD algorithm increases with every new best
improvement path generated by the DPD algorithm, players
will stop performing best improvement steps using the DPD
algorithm eventually, which proves the proposition.

So far we have proven that the DPD algorithm generates
a finite number of finite best improvement paths. In the
following we use this result for proving the convergence
of the MB algorithm.

Proof of Theorem 3. We continue with considering all
conditions under which the DPD algorithm may have
terminated. First, let us assume that the last deviator’s
best improvement step is a strategy within time slot t′.
The proof of Proposition 1 shows that the DPD algorithm
terminates if one of the following happens: (i) starting
from a strategy profile d = (d∗i ,d

∗(N − 1)) all players
performed their best improvement steps, (ii) some players
did not deviate and the last deviator’s strategy was (t′, 0),
i.e., the last deviator changed to local computing in time
slot t′, (iii) some players did not deviate and there was
no player that wanted to change from the last deviator’s
strategy (t′, b) ∈ T ×A.

Let us first consider case (i), and the last deviator
that performed its best improvement step. If its best
improvement step was to stop to offload, n(t,a)(d′) =
n(t,a)(d∗(N − 1)) holds for every (t, a) ∈ T × A.
Otherwise, if a best improvement step of the last deviator
was to change its offloading strategy to (t′, b), we have that
n(t,a)(d′) ≥ n(t,a)(d∗(N − 1)) for every (t, a)∈ T × A,
where the strict inequality holds only for (t′, b), and
n(t′,b)(d′) = n(t′,b)(d∗(N − 1)) + 1. Since there is no
offloading strategy for which the number of offloaders is
less than the number of offloaders in the NE d∗(N − 1),
there is no player j∈O(d′) that can decrease its offloading
cost. Furthermore, there is no player that wants to change
its strategy from local computing to offloading, and thus a
strategy profile computed by the DPD algorithm is a NE.

If case (ii) or case (iii) happen the MB algorithm allows
players that offload in the same time slot as the last
deviator to perform any type of best improvement steps.
Furthermore, if case (ii) happens and there are no APs
with decreased number of offloaders compared with the
NE d∗(N−1), i.e., n(t,a)(d′) = n(t,a)(d∗(N−1)) holds for
every (t, a) ∈ T ×A, then the strategy profile d′ computed
by the DPD algorithm is a NE. Observe that n(t,a)(d′) =
n(t,a)(d∗(N−1)) holds for every (t, a) ∈ T ×A if strategy
profile d′ is obtained by the DPD algorithm starting from
strategy profile d = (d∗i ,d

∗(N − 1)).
Otherwise, if case (ii) happens such that there is a strategy

(t, a) ∈ T ×A for which n(t,a)(d′) < n(t,a)(d∗(N − 1))
holds, then players j ∈ Ot′(d′) that offload in the same time
slot as the last deviator may want to change their offloading
strategy to (t, a). Let us assume that there is a player

5

473

j ∈ Ot′(d′) that wants to change its offloading strategy to
(t, a) and let us denote by d a resulting strategy profile.
Since n(t,a)(d) = n(t,a)(d′) + 1 and nt(d) = nt(d′) + 1
hold, some players j ∈ O(t,a)(d) may want to perform a
best improvement step using the DPD algorithm, which
can happen only a finite number of times accoring to
Proposition 2.

We continue the analysis by considering case (iii). Ob-
serve that if there is a strategy (t, a) for which n(t,a)(d′) <
n(t,a)(d∗(N − 1)) players j ∈ Ot′(d′) that offload in the
same time slot as the last deviator may want to change
their offloading strategy to (t, a). Furthermore, players
j ∈ Ot′(d′) \O(t′,b)(d′) may want to stop to offload or to
change to any offloading strategy (t, a) ∈ T ×A\{(t′, b)}
since their cloud computing cost increased. Let us assume
that there is a player j ∈ Ot′(d′) that wants to change
its offloading strategy to (t, a) ∈ T × A \ {(t′, b)} and
let us denote by d the resulting strategy profile. Since
n(t,a)(d) = n(t,a)(d′) + 1 and nt(d) = nt(d′) + 1 hold,
some players j ∈ O(t,a)(d) may want to perform a
best improvement step using the DPD algorithm, which
can happen only a finite number of times accoring to
Proposition 2.

If case (ii) or case (iii) happens and there is no player
j ∈ Ot′(d′) that wants to deviate, the MB algorithm allows
players from the other time slots t ∈ T \ {t′} to perform
best improvement steps using SelfImposedDeviator (SID)
algorithm shown in Fig. 5. Observe that players from time
slots t ∈ T \ {t′} are not poked to deviate by the other
players, and only reason why they would have an incentive
to deviate is that n(t,a)(d′) < n(t,a)(d∗(N − 1)) holds
for some strategies (t, a) ∈ T × A. The SID algorithm
first allows one of the players j ∈ O(d′) \ Ot′(d′) that
already offloads to perform a best improvement step, and
if there is no such player the SID algorithm allows one of
the players j ∈ L(d′) that performs computation locally
to start to offload. Let us assume that there is a strategy
(t, a) for which n(t,a)(d′) < n(t,a)(d∗(N − 1)) holds and
that there is a player j ∈ O(d′) \ Ot′(d′) ∪ L(d′) that
wants to deviate to strategy (t, a). We denote by d the
resulting strategy profile, after player j performs its best
improvement step. Since n(t,a)(d) = n(t,a)(d′) + 1 and
nt(d) = nt(d′) + 1 hold, some players j ∈ O(t,a)(d) may
want to perform a best improvement step using the DPD
algorithm, which can happen only a finite number of times
accoring to Proposition 2. Finally, let us consider case
(iii) such that there is a player j ∈ Ot′(d′) \ O(t′,b)(d′)
that wants to stop to offload because its cloud computing
cost increased. Let us denote by d a strategy profile after
player j changes its strategy from (t′, a) 6= (t′, b) to local
computing. We have that n(t′,a)(d) = n(t′,a)(d′)− 1, and
if n(t′,a)(d′) = n(t′,a)(d∗(N − 1)) we have that players
j′ ∈ O(d) \ O(t′,a)(d) may have an incentive to change
their offloading strategy to (t′, a) if doing so decreases their
offloading cost. We have seen that a best improvement step
of this type can trigger the DPD algorithm a finite number
of times according to Proposition 2. Now, let us assume that
a player j′ ∈ O(t,b)(d), where (t, b) ∈ T × A \ {(t′, a)},
changes its offloading strategy from (t, b) to (t′, a), and
that by doing so it does not trigger the DPD algorithm.
The resulting strategy profile d = ((t′, a), d−j′) is such

(d, (t, a), A′) = SID(d, A′)
1: /*Players that offload and can decrease their offloading cost*/
2: D1={j∈O(d)|(t,a)=argmind∈Dj

Cj(d,d−j)∈A′, dj 6=(t, a)}
3: /*Players that compute locally and want to start to offload*/
4: D2={j∈L(d)|(t,a)=argmind∈Dj

Cj(d, d−j) ∈ A′}
5: if |D1 ∪D2| 6= ∅ then
6: /*Players that offload have priority*/
7: if D1 6= ∅ then
8: Take i ∈ D1

9: else if D2 6= ∅ then
10: Take i ∈ D2

11: end if
12: d′i = argmind∈Di

Ci(d, d−i)
13: Let d← (d′i, d−i)
14: Let (t, a)← d′i
15: Update A′

16: end if
17: return (d, (t, a), A′)

Fig. 5. Pseudo code of the SID algorithm.

that n(t,b)(d) = n(t,b)(d′) − 1 holds, and if n(t,b)(d′) =
n(t,b)(d∗(N − 1)) some players may have an incentive
to change their offloading strategy to (t, b) if doing so
decreases their offloading cost.

We continue by considering the case where all subse-
quent best improvement steps are such that deviators change
to a strategy for which the number of offloaders is less
than the number of offloaders in the NE d∗(N −1) and by
doing so they do not trigger the DPD algorithm. Therefore,
the resulting best improvement path is such that the cost of
each deviator decreases with every new best improvement
step it makes. Assume now that after k ≥ 2 improvement
steps player j′ wants to return back to strategy (t, b). By
the definition of the resulting best improvement path, the
cost of player j′ in the (k+ 1)-th improvement step is not
only less than the cost in the k-th best improvement step,
but also less than its cost in the first best improvement step.
Therefore, player j′ will not return to a strategy it deviated
from, and thus it will deviate at most T × A − 1 times.
Consequently, when there are no players that can trigger
the DPD algorithm, players that change their startegy from
local computing to offloading using the SID algorithm, can
only decrease their offloading cost in the subsequent best
improvement steps, and thus they would have no incentive
to stop to offload. Since the number of players is finite,
the players will stop changing from local computing to
offloading eventually, which proves the theorem.

Even though the convergence proof of the MB algorithm
is fairly involved, the algorithm itself is computationally
efficient, as we show next.

Theorem 5. When a new player i enters the game in
an equilibrium d∗(N − 1), the MB algorithm computes a
new equilibrium d∗(N) after at most N × T ×A− 2 best
improvement steps.

Proof. In the worst case scenario the DPD algorithm
generates an N − 2 steps long best improvement path,
and a player that offloads in the same time slot as the last
deviator, but not through the same AP changes to local
computing, because its cloud computing cost increased.
Observe that the worst case scenario can happen only
if |O(d∗(N − 1))| = N − 1 holds. Furthermore, N − 2
players will have an opportunity to deviate using the DPD

6

474

algorithm and a player that offloads in the same time slot as
the last deviator will have an opportunity to stop to offload
only if n(t,a)(d∗(N − 1)) = n(t′,b)(d∗(N − 1)) holds for
every (t, a), (t′, b) ∈ T ×A. Furthermore, in the worst case
scenario, the best improvement path generated by the DPD
algorithm is followed by an N × (T × A− 1) long best
improvement path, in which deviators change to a strategy
for which the number of offloaders is less than the number
of offloaders in the NE d∗(N − 1) and by doing so they
do not trigger the DPD algorithm. Therefore, a NE can
be computed in at most N − 2 +N × (T × A− 1) best
improvement steps.

By addding players one at a time, it follows that the
MB algorithm has quadratic worst case complexity.

Theorem 6. The MB algorithm computes a NE allocation
in O(N2 × T ×A) time.

Implementation considerations: The MB algorithm
can be implemented in a decentralized manner, by letting
devices perform the best improvement steps one at a time.
For computing a best response, besides its local parameters
(e.g. Di, Li, F 0

i), each device i requires information about
achievable uplink rates, available MEC resources, and
the number of users sharing the APs and the cloud. In
practice these information can be provided by the MEC.
As discussed in [5], [18], [7], two main advantages of such
a decentralized implementation compared to a centralized
one are that the MEC can be relieved from complex
centralized management, and devices do not need to reveal
their parameters, but only their most recent decisions.

I V. N U M E R I C A L R E S U LT S

In the following we show simulation results to evaluate
the cost performance and the computational efficiency of
the MB algorithm. We consider that the devices are placed
uniformly at random over a square area of 1km × 1km,
while the APs are placed at random on a regular grid
with A2 points defined over the area. We consider that
the channel gain of device i to AP a is proportional to
d−αi,a , where di,a is the distance between device i and AP
a, and α is the path loss exponent, which we set to 4
according to the path loss model in urban and suburban
areas [19]. For simplicity we assign a bandwidth of 5 MHz
to every AP a, and the data transmit power of Pi,a is drawn
from a continuous uniform distribution on [0.05, 0.18] W
according to measurements reported in [20]. We consider
that the uplink rate of a device connected to an AP a
scales directly proportional with the number of devices
offloading through AP a. The computational capability F 0

i

of device i is drawn from a continuous uniform distribution
on [0.5, 1] GHz, while the computation capability of the
cloud is F c = 100 GHz [21]. We consider that the
computational capability that a device receives from the
cloud scales inversely proportional with the number of
devices that offload. The input data size Di and the number
Li of CPU cycles required to perform the computation are
uniformly distributed on [0.42, 2] Mb and [0.1, 0.8] Gcycles,
respectively. The consumed energy per CPU cycle vi is
set to 10−11(F 0

i)2 according to measurements reported
in [10], [9]. The weights attributed to energy consumption

γEi and the response time γTi are drawn from a continuous
uniform distribution on [0, 1].

We use three algorithms as a basis for comparison for
the proposed MB algorithm. In the first algorithm players
choose a time slot at random, and implement an equilibrium
allocation within their chosen time slots. We refer to
this algorithm as the RandomSlot (RS) algorithm. The
second algorithm considers that all devices perform local
execution. The third algorithm is a worst case scenario
where all devices choose the same time slot and implement
an equilibrium allocation within that time slot. Observe
that this corresponds to T = 1. We define the performance
gain of an algorithm as the ratio between the system cost
reached when all devices perform local execution and the
system cost reached by the algorithm. The results shown
are the averages of 100 simulations, together with 95%
confidence intervals.

A. Performance gain vs number of devices

Fig. 6 shows the performance gain as a function of the
number N of devices for A = 4 APs. The results show
that the performance gain decreases with the number of
devices for the MB algorithm for all values of T , for the
RS algorithm and for the deterministic worst case T = 1.
This is due to that the APs and the cloud get congested as
the number of devices increases. The performance gain of
the MB algorithm is up to 50% higher than that of the RS
algorithm for T > 1; the gap between the two algorithms
is largest when the ratio N/T is approximately equal to
4. The reason is that as T increases the average number
of offloaders per time slot remains balanced in the case of
the MB algorithm. On the contrary, in the case of the RS
algorithm some time slots may be more congested than
others, since the players choose their time slot at random.
However, the average imbalance in the number of offloaders
per time slot decreases as the number of devices increases,
thus the results are similar for large values of N . At the
same time, the performance gain of the MB algorithm
compared to that of the deterministic worst case T = 1
is almost proportional to the number T of time slots, and
shows that coordination is essential for preventing severe
performance degradation. It is also interesting to note that
for T = 1 the performance gain decreases with N at a
much higher rate than for T > 1, which is due to the fast
decrease of the number of offloaders, as we show next.

Fig. 7 shows the ratio of players that offload for the same
set of parameters as in Fig. 6. The results show that in
the worst case, for T = 1, the ratio of players that offload
decreases almost linearly with N , which explains the fast
decrease of the performance gain observed in Fig. 6. On
the contrary, for larger values of T the ratio of players
that offload appears less sensitive to N . We observe that
the ratio of players that offload is in general higher in
equilibrium than in the strategy profile computed by the
RS algorithm, which explains the superior performance of
MB observed in Fig. 6.

B. Performance gain vs number of APs

Fig. 8 shows the performance gain as a function of the
number A of APs for N = 50 devices. We observe that
the performance gain achieved by the algorithms increases

7

475

1 10 20 30 40 50 60 70 80 90 100

N

1

10

15

20

P
er
fo
rm

a
n
ce

g
a
in

MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 6. Performance gain vs number of devices (N).

1 10 20 30 40 50 60 70 80 90 100

N

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
o
f
p
la
y
er
s
th
a
t
o
ffl
o
a
d

MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 7. Ratio of offloaders vs. number of devices (N).

1 3 5 7 9 11 13 15

A

1

5

10

15

20

P
er
fo
rm

a
n
ce

g
a
in MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 8. Performance gain vs number of APs (A).

1 100 200 300 400 500 600 700 800

N

200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
It
e
r
a
t
io
n
s

MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 9. Number of iterations vs number of devices (N).

monotonically with the number of APs for all values of T
with a decreasing marginal gain. The reason is that once
T ×A ≥ N every device can offload its task through its
favorite AP without sharing it, and hence the largest part
of the offloading cost comes from the computing cost in
the cloud. However, a small change in the performance
gain is still present even for very large values of A because
the density of the APs over a region becomes larger as
A increases, and hence the channel gain, which depends
on the distance between the device and the APs becomes
larger on average. The results also show that MB always
outperforms RS, and its performance gain compared to
that of RS increases with T . Most importantly, the number
of APs required for a certain performance gain is almost
50% lower using the MB algorithm compared to the RS
algorithm for higher values of T , i.e., significant savings
can be achieved in terms of infrastructural investments.

C. Computational Complexity

In order to assess the computational efficiency of the MB
algorithm we consider the number of iterations, defined
as the number of induction steps plus the total number of
update steps over all induction steps needed to compute a
NE. Fig. 9 shows the number of iterations as a function
of the number N of devices for A = 4 APs. The results
show that the number of iterations scales approximately
linearly with N for both algorithms, and indicates that the
worst case scenario considered in Theorem 6 is unlikely
to happen. The first interesting feature of Fig. 9 is that
the number of iterations is slightly less in the case of
the MB algorithm than in the case of the RS algorithm
for all values of T , except for T = 1 for which the two
algorithms are equivalent. The reason is that in the case
of the MB algorithm the number of offloaders per time
slot is more balanced, and hence the devices have less
incentive to deviate when a new device enters the system,
and their updates are always at least as good as in the case
of RS algorithm, since the MB algorithm allows devices

to change between time slots. On the contrary, in the case
of the RS algorithm some of the time slots may be very
congested, and the devices that offload within these time
slots have a higher incentive to deviate when a new device
enters the system. The second interesting feature of Fig. 9
is that the number of iterations is smaller for larger values
of T for smaller values of N , but for larger values of N the
results are reversed. The reason is that for smaller values
of N the time slots are less congested on average as T
increases, and hence the devices do not want to update
their strategies so often. On the contrary, as N increases
the benefit of large values of T becomes smaller, because
the congestion per time slots increases, and hence devices
may want to update their strategies more often.

Overall, our results show that the proposed MB algo-
rithm can compute efficient allocations for periodic task
offloading at low computational complexity.

V. R E L AT E D W O R K

The scheduling of periodic tasks received significant
attention for real-time systems [22], [23], but without
considering communications. Similarily, the scheduling
of communication resources has been considered without
considering computation [24]. Most works that considered
both communication and computation considered a single
device [25], [10], [6], [26], [27], and thus they do not
consider the allocation of resources between devices.

Related to our work are recent works on energy efficient
computation offloading for multiple mobile users [28], [29],
[30]. [28] proposed a genetic algorithm for maximizing the
throughput in a partitioning problem for mobile data stream
applications, while [29] proposed a heuristic for minimizing
the users’ cost in a two-tiered cloud infrastructure with
user mobility in a location-time workflow framework. [30]
considered minimizing mobile users’ energy consumption
by joint allocation of wireless and cloud resources, and
proposed an iterative algorithm.

A few recent works provided a game theoretic treatment
of the mobile computation offloading problem for a

8

476

single time slot [31], [32], [5], [18], [33], [34], [7]. [31]
considers a two-stage game, where first each mobile user
chooses the parts of its task to offload, and then the
cloud allocates computational resources to the offloaded
parts. [32] considered a three-tier cloud architecture, and
provided a distributed algorithm for the computing a mixed
strategy equilibrium. [33] considered tasks that arrive
simultaneously and a single wireless link, and showed the
existence of equilibria when all mobile users have the same
delay budget. [5] showed that assuming a single wireless
link and link rates determined by the Shannon capacity of
an interference channel, the resulting game is a potential
game. [18] extended the model to multiple wireless links
and showed that the game is still a potential game under
the assumption that a mobile user experiences the same
channel gain for all links. [7] considered multiple wireless
links, equal bandwidth sharing and a non-elastic cloud,
and provided a polynomical time algorithm for computing
equilibria. Compared to these works, our model of periodic
tasks considers the scheduling of tasks over time slots and
wireless resources, and is thus a first step towards bridging
the gap between early works on scheduling [23] and recent
works on computation offloading [5], [7].

From a game theoretical perspective the importance of
our contribution is the analysis of a player-specific network
congestion game for which the existence of equilibria is
not known in general [16], thus the proposed algorithm
and our proof of existence advance the state of the art in
the study of equilibria in network congestion games.

V I . C O N C L U S I O N

We provided a game theoretic treatment of computation
offloading for periodic tasks. We proved the existence of
equilibrium allocations, characterized their structure and
provided a polynomial time decentralized algorithm for
computing equilibria. Simulations show that the proposed
algorithm achieves good system performance for a wide
range of system sizes and task periodicities. Our results
show that periodic computation offloading can be efficiently
coordinated using low complexity algorithms despite the
vast solution space and the combinatorial nature of the
problem. An interesting open question is whether our results
can be extended to devices with heterogeneous periodicities,
we leave this question subject of future work.

R E F E R E N C E S

[1] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “Pipeneta
wireless sensor network for pipeline monitoring,” in Proc. of IPSN,
2007, pp. 264–273.

[2] S. Oh, P. Chen, M. Manzo, and S. Sastry, “Instrumenting wireless
sensor networks for real-time surveillance,” in Proc. IEEE ICRA,
May 2006, pp. 3128–3133.

[3] X. Zhu, S. Han, P. C. Huang, A. K. Mok, and D. Chen, “Mbstar: A
real-time communication protocol for wireless body area networks,”
in Proc. of ERCTS, Jul. 2011, pp. 57–66.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing: A key technology towards 5G,” Sep. 2015.

[5] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” Proc. of IEEE PDS, pp. 974–983, 2015.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? The bandwidth and energy costs of mobile cloud computing,”
in Proc. of IEEE INFOCOM, April 2013, pp. 1285–1293.

[7] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. of IEEE INFOCOM, May 2017.

[8] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” in ACM SIGMETRICS Perf. Eval. Rev.,
vol. 29, no. 1, 2001, pp. 50–61.

[9] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” in Proc. of Usenix HotCloud, 2010.

[10] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,”
in Proc. of IEEE INFOCOM, March 2012, pp. 2716–2720.

[11] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime
fairness for ieee 802.11 multirate networks,” IEEE Trans. on Mobile
Computing, vol. 7, no. 4, pp. 513–527, 2008.

[12] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient
power control via pricing in wireless data networks,” IEEE Trans.
on Communications, vol. 50, no. 2, pp. 291–303, 2002.

[13] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-
control scheme in wireless cellular systems,” IEEE/ACM Trans. on
Networking, vol. 11, no. 2, pp. 210–221, 2003.

[14] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[15] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Computer Mag., vol. 43,
no. 4, pp. 51–56, Apr. 2010.

[16] I. Milchtaich, “The equilibrium existence problem in finite network
congestion games,” in Proc. of WINE, 2006, pp. 87–98.

[17] ——, “Congestion games with player-specific payoff functions,”
Games and Economic Behavior, vol. 13, no. 1, pp. 111 – 124, 1996.

[18] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. on
Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[19] A. Aragon-Zavala, Antennas and propagation for wireless commu-
nication systems. John Wiley & Sons, 2008.

[20] E. Casilari, J. M. Cano-García, and G. Campos-Garrido, “Modeling
of current consumption in 802.15. 4/zigbee sensor motes,” Sensors,
vol. 10, no. 6, pp. 5443–5468, 2010.

[21] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzel-
man, “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in ISCC, 2012, pp. 59–66.

[22] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. on
Computers, vol. 39, pp. 1175–1185, Sep. 1990.

[23] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real
time scheduling theory: A historical perspective,” Real-Time Syst.,
vol. 28, no. 2-3, pp. 101–155, Nov. 2004.

[24] I. H. Hou, “Packet scheduling for real-time surveillance in multihop
wireless sensor networks with lossy channels,” IEEE Trans. on
Wireless Comm., vol. 14, no. 2, pp. 1071–1079, Feb 2015.

[25] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proc. of ACM MobiSys, 2010, pp. 49–62.

[26] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mob. Netw. Appl.,
vol. 18, no. 1, pp. 129–140, Feb 2013.

[27] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the Markov decision processes,” in Proc.
of IEEE WoWMoM, Jun. 2015, pp. 1–9.

[28] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4,
pp. 23–32, Apr. 2013.

[29] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos,
“MuSIC: Mobility-aware optimal service allocation in mobile cloud
computing,” in Proc. of IEEE CLOUD, Jun. 2013, pp. 75–82.

[30] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE T-SIPN, vol. 1, no. 2, pp. 89–103, Jun. 2015.

[31] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in
Proc. of IEEE SOSE, Mar. 2013, pp. 494–502.

[32] V. Cardellini et al., “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming,
pp. 1–29, 2015.

[33] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communication channel,”
in Proc. of IEEE ICC, Jun. 2015, pp. 3192–3197.

[34] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,”
in Proc. of ACM MSWiM, 2015, pp. 271–278.

9

477

Experience-Availability Analysis of Online Cloud
Services using Stochastic Models

Yue Cao1, Laiping Zhao1∗, Rongqi Zhang2, Yanan Yang1, Xiaobo Zhou2, Keqiu Li2
1School of Computer Software, Tianjin University, Tianjin, China

2Tianjin Key Laboratory of Advanced Networking, School of Computer Science and Technology, Tianjin University, Tianjin, China
E-mail: {cy1994, laiping, zrq0312, ynyang, xiaobo.zhou, keqiu}@tju.edu.cn

Abstract—Recently a new performance metric called expe-
rience availability (EA) has been proposed to evaluate online
cloud service in terms of both availability and response time. EA
originates from the fact that from the prospective of quality
of experience (QoE), an online cloud service is regarded as
unavailable not only when it is inaccessible, but also when the
tail latency is high. However, there still lacks analytic models for
evaluating the EA of online services. In this paper, we propose
an efficient EA-analytic model using stochastic reward net (SRN)
to study the tail latency performance of online cloud services in
the presence of failure-repair of the resources. Our EA-analytic
model can predict the online service performance on EA, as
well as support analysis on traditional availability and mean
response time. We apply this model to an Apache Solr search
service, and evaluate the prediction accuracy by comparing the
results derived from the model to actual experimental results.
It is shown that the proposed model overestimates the response
time at lower percentiles and underestimates the response time
at higher percentiles. Through attribution analysis, we further
identify the list of factors that may affect the accuracy, and show
that the 95th percentile latency prediction error can be reduced
to as low as 2.45% by tuning the configurations suggested by the
attribution.

Keywords—cloud computing, experience availability, online
cloud service, stochastic reward net

I. INTRODUCTION

Cloud computing is growing rapidly towards delivering
computing as a public utility. Many services, including online
web systems (e.g., social networking, e-commerce, search
engine) and offline data-processing jobs (e.g., mapreduce,
spark), are continuously deployed or processed in cloud sys-
tems [1, 2]. These services often consist of multiple tiers
and tens or hundreds of tasks or micro-services, and need to
handle unprecedented volumes of data. To characterize the
performance of cloud service, an uptime-based availability
measure was widely used [3], which is defined as

A =
MTTF

MTTF +MTTR
, (1)

where MTTF and MTTR denote mean time to failure and
mean time to repair, respectively. According to Equ. (1),
availability describes only whether the service is accessible
or not.

∗ Corresponding Author: Laiping Zhao, laiping@tju.edu.cn

In fact, from the prospective of quality of experience
(QoE), the tail latency performance is at least as important
as availability for a realtime online cloud service. Google’s
experiences on their back end services show that while ma-
jority of requests take around 50-60 ms, a fraction of requests
takes longer than 100 ms, with the largest difference being
almost 600 times [4]. One major reason of the performance
uncertainty is due to the inevitable underlying competition
on hardware resources among co-located services, resulting
in the serious tail latency problem [5]. According to Nielsen
[6], 0.1 second is about the limit for having the user feel that
the system is reacting instantaneously; a response time of 1.0
second is about the limit for the user’s flow of thought to stay
uninterrupted, even though the user will notice the delay. For
delays longer than 10 seconds, users are prone to perform other
tasks while waiting. In this sense, slow response and service
unavailable would be indistinguishable for cloud users [7].

Recently a new performance measure, named Experience
Availability (EA), which is extended from the definition of
availability, is proposed in [8]. It combines the traditional
availability and tail latency for the first time into a single
metric. According to EA, a service is experience unavailable
not only because the service is failed, but also the γth latency
exceeds a pre-defined threshold τ .

Currently, there still lacks analytic models and method-
ologies to analyze the EA of cloud services. According to
its definition, we need to derive both the tail latency and
availability to measure EA. Analyzing availability is relatively
straightforward, and there are already a number of models pro-
posed for availability modeling [9, 10]. However, calculating
tail latency of online cloud services is a significant challenge
due to the multi-tier architecture of cloud services. The er-
rors could propagate across tiers and have cascading effects
on overall latency distribution. Even worse, the majority of
existing work focus on evaluating mean performance metrics,
such as average response time, average resource utilization
[11], while there are only a few of them considering to model
and analyze the distribution of latencies for online services.

In this paper, we propose an efficient analytic model for
analyzing the EA of online cloud services. We consider the
common online search service, and use a stochastic reward
net (SRN) to describe the interactions between its multi-tiers.

ISBN 978-3-903176-08-9 c© 2018 IFIP

Through the model analysis, we can predict the service perfor-
mance on EA. By comparing the prediction results to the real
experimental results, we find that the proposed model shows
some error on tail latency. We then give an attribution analysis
on the system behavior, and find the potential factors that may
affect the accuracy. The contributions can be summarized as
follows:
• We design a SRN model to characterize the request

response process of online cloud services. In this model,
we study the mean response time of online cloud services
in the presence of failure-repair of the resources.

• We propose a tagged customer model to analyze the
cumulative distribution function (CDF) of response time
for online cloud services. Based on the CDF, we can
derive the EA of online cloud services.

• We demonstrate the accuracy of the model by comparing
the analytical results to the real experimental results. It
shows that the proposed model overestimates the response
time at lower percentiles and underestimates the response
time at higher percentiles. We further conduct experi-
ments to identify a list of factors, including cache, number
of keywords in search space, turbo boost and DVFS
governor, that may affect the accuracy. It is found that by
turning off the cache, increasing the search space, turning
off Turbo Boost and configuring the DVFS performance
governor, the prediction error can be reduced to as low
as 2.45%.

The rest of the paper is organized as follows. Section II
describes the basic architecture of online search service and
our design of the SRN model. We present the EA-analytic
model and introduce the model solving method in section III.
Section IV describes the experimental evaluation of our model
for online search service. In section V, we summarize the
related work. We conclude and discuss future work in section
VI.

II. SEARCH SERVICE AND THE SRN MODEL

In this section, we firstly introduce the general architecture
of online search service. Then, we show how to construct the
SRN model for the online search service.

A. Online Service Architecture

An online search service is a software system that is
designed to search for information on the World Wide Web.
Generally it consists of three main components [12]: the web
crawler, the index generator, and the search engine, as shown
in Fig. 1. The web crawler crawls some of the reachable
web pages from site to site. The index generator associates
keywords found on these web pages to their names of sites
containing the keywords. It uses an update handler to process
all updates, and generates distributed indexes. The indexed
information is stored in database, and made available for
search queries. The search engine will accept user’s search
requests, support text analysis, and generate the web pages list
results by searching indexes. During this process, every page

in the entire list must be weighted according to information
in the indexes.

Fig. 1. General architecture of the online search service.

Since a user’s perception of the latency is mainly affected by
the search engine, we hereafter merely discuss the modeling
of the request processing in search engine. As shown in Fig.
1, a typical infrastructure for supporting a search component
mainly includes four tiers: search tier, database tier and two
load balancer tiers. We do not take into account the two
load balancer tiers because their processing time is negligible
compared to the search tier and the database tier in our
setup. Depending on the number of users, each tier can be
implemented with multiple instances, which are hosted across
different virtual machines (VMs) in cloud platform. If there
exists more than one instance at a tier, it is required to deploy
another load balance tier to distribute the customer requests
among instances.

Each instance, either the search or the database, maintains
a thread pool for accepting requests. When a search request
arrives, it first waits in the searching queue. The load balancer
reads the search queue, and dispatches the request to a specific
instance of search tier for text analysis. The corresponding
instance then allocates one connection thread from thread pool
to the request, and the connection will be occupied until user
receives search results. After getting the keywords by text
analysis, the request is further forwarded to an instance of
database. Then, the database instance also allocates a thread
to it for searching all web pages containing the keywords.
Then, the response writer in the search instance constructs a
ranked list of web pages, and sends the results back to user.

B. SRN Model

According to the architecture of online search service shown
in Fig. 1, we construct a SRN model to analyze the interac-
tions between multi-tiers. SRN is scalable to model systems
composed of thousands of resources and is flexible to represent
different policies and strategies [13].

We assume that the times assigned to all timed transitions
conforms to an exponential distribution between, following

479

the common assumptions in [11, 14]. We consider crash
failures occurs in an instance, i.e., an instance of search or
database could fail with probabilities, resulting in the lost
of all connections running on the instance. If a request’s
connection is lost due to the instance failures, we think that
its response time is infinity. The input parameters required in
the SRN model include: (1) request arrival rate (denoted by
λ); (2) queue sizes of search and database (denoted by Ms

and Mdb); (3) service rates of a search instance or database
instance (denoted by µs and µdb); (4) the maximum number of
connections supported by search tier and database tier (denoted
by Ns and Ndb); (5) failure rates of search and database
(denoted by φs and φdb); (6) repair rates of search and database
(denoted by δs and δdb).

Fig. 2. SRN model of the online search service.

TABLE I
GUARD FUNCTIONS OF THE SRN MODEL

Transition Guard Function
g1 #Psw < Ms? 1 : 0

g2 #Pdbw ≥Mdb? 1: 0

g3 #Pdbw < Mdb? 1 : 0

Fig. 2 describes the design of the SRN model for online
search service. We only consider the two main tiers that
directly affect the user’s response time in the model: place
Psw to transition Tsp represents the processing in the search
tier; place Pdbw to transition Tdbp represents processing in
the database tier. Components such as search handlers are
not studied separately because their processings have been
incorporated into their corresponding tiers. Timed transition
Ta represents the request arrivals to the system. Places Psw
and Pdbw represent the waiting queues of the search tier and
database tier, and Ta fires only if the queue of search tier is
not yet full (following guard function g1). Once transition Ta
(ttrans) fires, a token is deposited in place Psw (Pdbw) showing

that a request has been submitted to search tier (database tier)
and it is waiting for processing from search tier (database
tier). Place Ps and place Pdb represent the remaining number
of resources (i.e., connection threads) supported by search and
database tier, and they are initialized with Ns and Ndb. If there
is a token in place Psw and there is at least one token in place
Ps, then one token from Psw together with another token from
Ps is removed respectively, and a token is put in place Psp,
representing that a request is ready for processing by search
tier. Places Psp and Pdbp represent the processing queues of
search tier and database tier. The pound # in the arc from
place Psp to the transition Tsp shows that the actual firing rate
of transition is marking-dependent. Thus, the actual firing rate
of transition Tsp is calculated as Kµs, where K is the number
of tokens in place Psp. After that, a token is removed from
place Psp and deposited into place Ptrans, which represents
that the request has been processed and leaves from search tier.
Transition ttrans represents that the request moves from search
tier to database tier. Transition to shows that the request gets
dropped from the system and it fires only when the queue of
database tier is already full (following guard function g2). And
then, the request is inserted into the waiting queue of database
(i.e., place Pdbw) following guard function g3. At the database
tier, likewise, the request is processed only if database has
available resources. After firing the timed transition Tdbp, a
token is removed from place Pdbp, while one token deposited
into place Pdb and another token deposited into place Ps,
showing that the request is finished and the corresponding
connections at search tier and database tier are both released.

In the SRN model, we also model and analyze the impact
on response time by server failures. We use place Psdown and
Pdbdown to represent the number of lost connections in search
tier and database tier, respectively. If an search instance fails,
all working connections in Psp and idle connections in Ps
running on the instance are lost simultaneously. Transition Tsd
represents the failure occurs in search instances. The zigzag
line on an arc represents that the arc can transfer multiple
tokens at once. Suppose there are Is instances at search tier and
Idb instances at database tier. Since the requests are distributed
evenly among the instances, a fraction of 1/Is tokens in place
Psp together with another fraction of 1/Is tokens in place Ps
are removed respectively, and the sum of these tokens (Ns/Is)
is put in place Psdown, representing that failed connections are
ready for recovering. Once transition Tsr fires, the number of
tokens (Ns/Is) are removed from Psdown and deposited in
place Ps, indicating that the lost connections are recovered.
The same process also applies to the database tier, except that
the fraction of 1/Idb tokens are also deposited in place Ps after
transition Tdbd fires. It means that the affected connections at
search tier are also released when a database instance fails.
The guard functions of the SRN model is shown in Tab. I.

C. Mean Response Time under Steady State

Given the SRN model above, we can derive the mean
response time characterizing the system behavior by defining
reward functions. To analyze the mean response time, we

480

first need to derive the mean number of waiting requests and
blocking probability of requests.

1) Mean number of waiting requests: The mean number of
waiting requests is given by mean number of tokens in place
Psw in Fig. 2, and it can be represented by E[#Psw].

2) Blocking probability of requests: The steady-state block-
ing probabilities of requests in Fig. 2, Pb, can be calculated
by assigning the following reward to the SRN model,

ri =

{
1, if [#Psw] >Ms,
0, otherwise.

(2)

where Ms is the maximum length of waiting queue.
3) Mean response time: Mean response time is defined as

the mean time from a customer request is entered the system
until its leave. According to Fig. 2, the mean response time
is the time from the instant that a token is deposited into Psw
until it is removed from Pdbp. Using Little’s law, the mean
response time (denoted by Et) for requests at steady-state can
be calculated as follows,

Et =
(E[#Psw] + E[#Pdbw] + E[#Psp] + E[#Pdbp])

(1− Pb)× λ
(3)

where E[#Px] is the mean number of tokens in place Px at
steady-state and (1 - Pb) × λ is the effective request arrival
rate in the online search service system.

III. EXPERIENCE AVAILABILITY MEASURE

In this section, we show how to model and predict the EA
of the online search service. Generally, it takes three steps for
calculating EA: (1) Divide the total operational time T into n
time slices. (2) In each time slice, derive the CDF of response
time while taking into account instance failures. (3) Derive
EA based on the CDF of response times in all time slices.

A. Tagged Customer Model

To derive the CDF of response time, we propose the tagged
customer model [15] by modifying the SRN model in order
to track the tagged customers movements through the system.

Fig. 3. Tagged customer model.

We show the design of the tagged customer model in Fig. 3.
Place Pcsw contains a single token that represents the arrival
of a request. The m, n, i, j, a, b and p, q tokens initially
presented in places Psw, Pdbw, Psp, Pdbp, Psdown, Pdbdown

TABLE II
GUARD FUNCTION OF THE TAGGED CUSTOMER MODEL IN FIG. 3

Transition Guard Function
g1 #Pdbw ≥Mdb? 1 : 0

g2 #Pdbw < Mdb ? 1 : 0

g3 #Ps > 0 and #Psw == 0 ? 1 : 0

g4 #Pdb > 0 and #Pdbw == 0 ? 1 : 0

g5 #Pdbw ≥Mdb ? 1 : 0

g6 #Pdbw < Mdb ? 1 : 0

and Ps, Pdb, represent the corresponding system status before
the request arrival. That is, at the time of the request arrival,
there are m (n) requests waiting in the search (database) queue,
i (j) requests being processing by search (database), a (b)
connections lost in Psdown (Pdbdown), and p (q) connection
threads in the thread pool still available for accepting new
requests. Transition tcsw is fired only when place Psw is empty
and the place Ps is not empty. Transition tcdbw is fired only
when place Pdbw is empty and the place Pdb is not empty. The
guard functions are shown in Tab. II.

B. Response Time Distribution Calculation

Now, we can derive the response time CDF using the tagged
customer model. We define the set of initial system states as
follows:

T = [m,n, i, j, a, b, p, q] (4)

where,

m ∈ [0, ...,Ms], n ∈ [0, ...,Mdb], i ∈ [0, ..., Ns], j ∈ [0, ..., Ndb],

a ∈ [0, ..., Ns], b ∈ [0, ..., Ndb], p ∈ [0, ..., Ns], q ∈ [0, ..., Ndb],

i+ a+ p = Ns, j + b+ q = Ndb.
(5)

Denoted by πx the probability that the system stays in ∀x ∈
T under steady state. Then πx can be derived using the SRN
model proposed in Section II. Clearly, we have,∑

x∈τ
πx = 1 (6)

In the tagged customer model, a non-empty place Pfin means
that the processing of the tagged request has been completed.
Thus, we define the absorbing state for the tagged customer
as follows,

rx(t) =

{
1, if(#(Pfin), t) > 0,
0, otherwise.

(7)

where the reward function rx(t) is denoted whether an absorb-
ing marking has been reached at time t.

By solving the reward function rx(t), we can obtain the
probability Rx(t) that the tagged customer request is absorbed
at time t under initial marking x. Then, the probability that a
request processing is completed at time t can be calculated as
follows:

R(t) =
∑
x∈τ

[Rx(t)× πx] (8)

481

Given the R(t) and the pre-defined γ and τ , we can easily
know if the γth percentile latency exceed τ or not in the
current time slice. Then, it is straightforward to calculate the
EA using Equ. (9),

EA(τ, γ) =

mi∑
i=1

tTTHTLi(τ,γ)

mi∑
i=1

tTTHTLi(τ,γ) +
ni∑
j=1

tTTLTL(τ,γ)

(9)

where tTTHTLi(τ,γ) represents the time to high tail latency,
that is, the time whose γth percentile latency is less or equal
to τ : TL(γ) ≤ τ , and tTTLTLj(τ,γ) represents the time to low
tail latency, that is, the time with TL(γ) > τ .

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed SRN model by
comparing its results with the actual experimental results. We
then give an in-depth analysis on the prediction error, and list
the factors that may affect the accuracy of the model.

A. Experiment Setup

We use the Stochastic Petri Net Package (SPNP) [16] to
solve the proposed model. We also implement a real Apache
Solr [17] search service to record and analyze the actual tail
latency experienced by users. All input parameters to the
SRN model are extracted from the testing of the Apache
Solr service. The proposed SRN model does not take into
account the two load balancers because their processing time
is negligible compared to the application and database tiers in
our setup.

For the real Apache Solr service, we deploy three instances
of SolrCloud search engine, which is implemented using
Tomcat for accepting users’ search requests, supporting text
analysis and interacting with database tier. Each instance
of the SolrCloud supports a limited number of connections.
When a request arrives at the server, a separate available
connection thread will be allocated to the request. Likewise,
we also deploy three instances of MySQL database to store
the indexes generated by crawler and indexing component, and
each database instance is configured with a limited maximum
number of connected clients. There may be more than three
instances in real system. Our model can still work by simply
changing the number of instances in the configurations. How-
ever, the runtime of model will increase over the number of
instances, and studying the scalability is left as future work. In
addition, either the SolrCloud instance or the MySQL instance
probably fails following some pre-configured failure rates.
To demonstrate the ability of our model, we artificially set
a relative high failure rate for both SolrCloud and MySQL
instances in the SRN model. We also injected failures into
the real system by powering off instances at the same rate.
If an instance fails, all connections running on it will be lost
simultaneously. The connections will not be recovered until
the instance is repaired.

Search requests are automatically generated by Apache
Jmeter [18]. It randomly selects a keyword from a pre-
configured search space, and sends requests to Solr following
a Poisson distribution with the arrival rate λ. The search space
is initially configured with 3,000 keywords. We totally send 1
million search requests to Solr service. Then Jmeter records
all response times of the requests. We deploy the Apache
Solr service on machines configured with Intel Core i5-4670
processor, and 8GB RAM. To estimate the service rate of both
search threads and database threads, we use Jmeter to access
Solr and Mysql separately, and take the average of ten repeated
operations as the final service rate. Tab. III lists all parameter
configurations used in our model and actual experiments.

TABLE III
CONFIGURATION PARAMETERS

Parameter Values
Max # of connections in search tier (Ns) 9 30 45
Max # of connections in database tier (Ndb) 9 30 45
Waiting queue size in search tier (Ms) 30
Waiting queue size in database tier (Mdb) 30
Request arrival rate (λ) 100 400 900
Service rate of a search thread (µs) 56
Service rate of a database thread (µdb) 32
Failure rate of a search instance (φs) 0.100 0.125 0.330
Failure rate of a database instance (φdb) 0.100 0.125 0.330
Repair rate of a search instance (δs) 0.100
Repair rate of a database instance(δdb) 0.100

B. Results

1) Mean Response Time: We first evaluate the mean re-
sponse time of the Solr service using the configuration pa-
rameters listed in Tab. III.

TABLE IV
MEAN RESPONSE TIME

Configurations Mean response time (ms)

Ns Ndb λ φs φdb Model Experiment Error

9 9 400 0.125 0.125 89.52 74.49 20.18%

30 30 400 0.125 0.125 57.93 49.31 17.48%

45 45 400 0.125 0.125 40.16 33.97 18.22%

30 30 100 0.125 0.125 43.29 37.15 16.53%

30 30 900 0.125 0.125 97.58 82.83 17.81%

30 30 400 0.330 0.330 68.32 57.14 19.57%

30 30 400 0.100 0.100 51.86 43.79 18.43%

Tab. IV shows the SRN model prediction results and the
actual experimental results. Fixing the request arrival rate λ at
400 and failure rates φs and φdb at 0.125, the response times
of both the SRN model and actual experiments decrease as the
number of maximum supported connections increase from 9 to
45. While setting Na = Ndb = 30, the response time increase
significantly as the job arrival rate increase from 100 to 900.

482

Moreover, the response time decrease if we reduce the failure
rate of both search instance and MySQL instance. We see that
the relative error on mean response time is generally within
20.18%, and the SRN model results on mean response time
are mostly larger than the actual experimental results. This
is primarily because, there are some acceleration techniques
adopted by either the hardware layer or software layer, for
example, CPU pipeline, multiple instruction issue, cache, our
SRN model is unable to analyze these techniques, while they
indeed reduce the response time significantly in the actual
experiments.

2) Response Time CDF: By changing the maximum num-
ber of connections (Ns and Ndb), request arrival rate (λ), and
failure rate (φs and φdb), respectively, we conduct three groups
of experiments to evaluate the cumulative distribution function
(CDF) of the response time.

(a) Ns = 9, Ndb =
9

(b) Ns = 30, Ndb

= 30
(c) Ns = 45, Ndb =
45

Fig. 4. Response time CDF when changing the max. number of connections.

The first experiment evaluates the response time CDF under
settings with different maximum number of connections (Ns
and Ndb). For the other parameters, we set λ = 400, φs =
φdb = 0.125. Fig. 4 shows the response time CDF and the
90th, 95th, 99th percentile latency, when Ns and Ndb are set to
9, 30 and 45, respectively. We find that increasing the number
of connections would reduce the 90th, 95th, 99th percentile
latency in both model analysis and actual experiments. On the
one hand, our model overestimates the response time at lower
percentile due to the lack of consideration on accelerating
technologies such as cache, CPU pipeline, multiple instruction
issue etc. On the other hand, our model underestimates the
response time at higher percentile (99th). This is because, there
are many processes, from either other instances/applications or
operating system processes, running on the same underlying
hardware simultaneously, yet the hardware does not support
performance isolation between these processes, resulting in
resource contention and disorder. Hence, the higher percentile
latency in actual experimental is usually much larger than
model results.

The second experiment evaluates the response time CDF
under settings with different request arrival rate (λ). Fig.
5 shows the response time CDF and the 90th, 95th, 99th

percentile latency, when Ns = Ndb = 30 and λ is set to
100 and 900, respectively. We see that the 90th, 95th, 99th

percentile latency all increases as we increase the arrival rate.
Like the first experiment, our model overestimates the response

(a) λ = 100 (b) λ= 900

Fig. 5. Response time CDF under different request arrival rates.

TABLE V
EXPERIENCE AVAILABILITY

Configurations Results

Ns Ndb λ φs φdb
250ms percentile

EA A
Model Experi.

9 9 400 0.125 0.125 97.3% 96.4% 70% 96.3%

30 30 400 0.125 0.125 99.5% 98.9% 85% 96.5%

45 45 400 0.125 0.125 99.9% 99.9% 95% 97.0%

30 30 100 0.125 0.125 99.9% 99.9% 95% 96.3%

30 30 900 0.125 0.125 95.9% 96.3% 80% 96.2%

30 30 400 0.330 0.330 98.6% 97.4% 75% 90.7%

30 30 400 0.100 0.100 99.7% 99.1% 90% 97.1%

time at lower percentile, and underestimates the response time
at higher percentile (99th). The two lines cross at around the
96th percentile.

(a) φs = 0.33, φdb = 0.33 (b) φs = 0.1, φdb = 0.1

Fig. 6. Response time CDF under different failure rate.

The third experiment evaluates the response time CDF under
settings with different failure rate (φs and φdb). Fig. 6 shows
the response time CDF and the 90th, 95th, 99th percentile
latency, when φs and φdb are set to 0.1 and 0.33, respectively.
When failures are injected to search and database instances,
all the affected connections will be lost, and their response
times become infinity. Moreover, since the maximum number
of connections supported by search tier and database tier is
reduced due to the failures, the newly arrived requests more
probably wait in the queue, or even are rejected if the waiting
queue becomes full. Thus, increasing the failure rate would
increase the response time.

483

TABLE VI
ERROR ATTRIBUTION FACTORS.

Factor Level 1 Level 2
Cache off on

Number of Keywords 8000 3000
Turbo Boost off on

DVFS Governor performance ondemand

3) Experience Availability Calculation: Suppose the user’s
QoE requirement on tail latency is defined as: in each time
slice, the 99th percentile latency should be less than 250ms.
Tab. V shows the percentiles at the response time of 250ms
in different configurations, calculated by solving the SRN
model and actual experiments, respectively. We see that the
percentiles calculated by SRN model is larger than that in
the actual experiment. By dividing the 1 million requests into
20 equal-time-intervals, we calculate a statistical analysis of
the response times for each time slice, and calculate the EA
according to Equ. (9). We find that, even the arrival rates are
the same in all time slices, but the response time we measure
is changing across runs, resulting in different percentiles at
250ms. This is due to the underlying hardware contention
interferences from other processes in the same server. We
also calculate the traditional availability according to Equ.
(1). Clearly, its values are generally much larger than EA,
implying that a service may be experience-unavailable even
when it is available.

C. Error Attribution

The analysis has shown the possible prediction error by our
model. To reduce the prediction error, we need to identify the
potential factors that may affect the accuracy. In this section,
we list all the factors we suspect to have an impact on the
response time, and evaluate their impact on the response time.

1) Cache: The cache includes CPU cache and page cache.
CPU cache is used by the CPU of a computer to reduce
the average time to access data from the main memory. The
page cache is kept by the operating system to speed-up the
access to the contents of cached pages and improve the overall
performance.

2) Number of keywords in search space: Since Jmeter
randomly selects keywords from the search space in each
request, a small search space could lead to high frequent
repeated requests. A repeated request could be completed by
the cache not only in the service side, but also in the client.

3) Turbo boost: Turbo boost is a feature implemented on
many modern processors, which automatically raises the pro-
cessors’ operating frequency, and thus performance, depending
on the task demand and dynamic power.

4) DVFS Governor: Dynamic voltage and frequency scal-
ing is a power management technique in CPU. It allows the
operating system to dynamically adjust the CPU frequency to
boost performance or save power.

Tab. VI lists all possible configurations of the factors, which
are divided into two levels, where level 1 indicates {cache off,
8000 keywords, turbo boost off, DVFS governor performance},

(a)
{on, 3000, on, ondemand}

(b)
{off, 3000, on, ondemand}

(c)
{on, 8000, on, ondemand}

(d)
{on, 3000, off, ondemand}

(e) {on, 3000, on, perf} (f) {off, 8000, off, perf}

Fig. 7. Response time CDF under different configurations in Tab. VI.

and level 2 indicates {cache on, 3000 keywords, turbo boost
on, DVFS governor ondemand}. We conduct another group
of experiments to evaluate the impact of these factors on the
model prediction accuracy as shown in Fig. 7. We find that,
setting all the four factors at level 1 could help to reduce
the prediction error on mean response time, 90th and 95th

percentile latency. In particular, as shown in Tab. VII, the
prediction error on mean response time could be reduced
to as low as 7.12%, the prediction error on 95th percentile
latency could be reduced to 2.45%. Among the four factors,
we find that turning off the cache feature is the most effective
way to reduce the error, the next is increasing the number of
keywords, turbo boost and DVFS governor make little effect
on the results. For the 99th percentile latency, we see that
the configuration of level 1 actually increase the prediction
error to 43.54%. This is because the interferences coming from
hardware resource contention still exists, and we are not able
to eliminate their impact through simple configurations.

Fig. 8 shows the response time CDF under the settings of
Ns = Ndb = 9 and Ns = Ndb = 45, respectively, after we
change all the factors into level 1. Compared with the results
in Fig. 4, when Ns = Ndb = 9, the prediction error on mean

484

TABLE VII
ERROR ANALYSIS CORRESPONDING TO FIG. 7.

Results Mean Time
Tail Latency (ms)

90th 95th 99th

Model 57.93 131 159 223

E
xp

er
im

en
t

Value Error Value Error Value Error Value Error
a 49.31 17.48% 74 77.03% 143 11.19% 295 24.41%
b 53.47 8.34% 91 43.96% 163 2.45% 386 42.23%
c 52.81 9.70% 85 54.12% 151 5.30% 324 31.17%
d 50.36 15.03% 79 65.82% 148 7.43% 309 27.83%
e 48.25 20.06% 68 92.65% 137 16.06% 281 20.64%
f 54.08 7.12% 96 36.46% 168 5.36% 395 43.54%

(a) Ns = 9, Ndb = 9 (b) Ns = 45, Ndb = 45

Fig. 8. Response time CDF for different resource number.

response time is reduced to 9.79%, and the 95th percentile
latency is reduced to 3.57 %. When Ns = Ndb = 45, the
prediction error on mean response time is reduced to 8.47%,
and the 95th percentile latency is reduced to 7.02%.

V. RELATED WORK

A. Availability Evaluation

There has been a large amount of work on evaluating the
availability of cloud services, which can be categorized into
model based methods and measurement based methods.

In model based methods, three types of widely used models
are combinatorial models, state-space models and hierarchi-
cal models. Combinatorial models include Reliability Block
Diagrams (RBD) and fault tree analysis. RBD are proposed
to model the availability of virtual data centers (VDCs) [19]
and fault tree [20] has been used to evaluate the reliability of
multi-nodes SDDC (software-defined data center). Although it
is easy to implement combinatorial model due to its explicit
presentation, it cannot model large and complicated systems.

State-space models mainly include Markov chain, semi-
Markov processes, stochastic petri net (SPN) or stochastic
reward net (SRN) [21] . Wu et al. [22] presented a stochastic
method based on semi-Markov model to evaluate the avail-
ability of Infrastructure-as-a-Service (IaaS) cloud. Longo et
al. [23] presented an SRN model to analyze the availability
of a large-scale IaaS cloud. State-space models are capable
of modeling large and complicated systems. However, it is
impractical to use a single state space model to model the
whole system due to the state space explosion problem.

Hierarchical models combine the combinatorial models and
state-space models to evaluate the availability of large-scale

systems. Wei et al. [24] constructs a hybird dependability
model based on RBD and GSPN to model the virtual data
center of cloud computing. Dantas et al. [25] combined RBDs
and Markov models to analyze availability of Eucalyptus
architecture. Because hierarchical model is decomposable, it
solves the problem of state space explosion. However, the
decomposability is not always manually controllable due to
the automaticity of the model generation.

Besides the model based methods, there are a lot of mea-
surement based methods to evaluate the availability. Fujita et
al. [26] developed DS-Bench toolset to evaluate the depend-
ability of a cluster of physical machines and a cloud computing
environment. Sangroya et al. [27, 28] proposed a MapReduce
benchmark suite to estimate the dependability and perfor-
mance of MapReduce systems. Furthermore, there are also a
number of prior works review the performance benchmarking
for IaaS cloud [29, 30]. However, standard benchmarking
solutions cannot be used directly for the prediction of cloud
availability.

B. Tail Latency Evaluation

Tail latency, or response time, is another important metric
reflecting the quality of user experience for online cloud
services. Most existing work focus on evaluating the mean
response time instead of the response time CDF [31, 32].
However, mean response time is far from sufficient to describe
the user experience.

Generally, the response time consists of queuing time and
service time. To evaluate waiting time, Sakuma et al. [33], con-
struct a M/M/s queue model to analyze the tail approximation
of the waiting time distribution of both patient and impatient
customers. Bruneo et al. [13] also propose a tagged customer
model based on SRN to calculate the waiting time distribution.
The waiting time CDF is calculated by the probability that
a tagged customer’s request is absorbed and the probability
of its corresponding initial state. However, the two above
methods only calculate the waiting time CDF instead of the
total response time CDF.

Muppala et al. [15] propose a tagged customer methods
based on SRN to evaluate the response time CDF. Their model
can apply to the closed queuing system with a fixed number of
customers. However, most online cloud services are built on
an open architecture and it can response to an arbitrary number
of customer requests at the actual arrival rate. Grottke et al.
[34] analyze the response time CDF using an open queuing
network model. However, it is not easy to construct and solve
the model due to the state space explosion problem.

VI. CONCLUSION

In this paper, we design an effective tagged customer model
based on SRN to study the tail latency performance of online
cloud services in the presence of failure-repair of the resources.
In our method, the tagged customer model was used to analyze
the CDF of online cloud service and predict the tail latency
at any percentile. By solving the tagged customer model,
we also can calculate the EA of online cloud services. We

485

conduct experiments by changing environment settings and
compare model results to real experimental results to verify
the accuracy of the proposed model. Experimental results show
that the model results generally overestimates the response
time at lower percentiles and underestimates the response time
at higher percentiles. We also identified the potential factors
that may impact the accuracy of online cloud services. It was
found that by turning off the cache, increasing the search
space, turning off Turbo Boost and configuring the DVFS
performance governor, the prediction error can be reduced to
as low as 2.45%. Taking these potential factor into account
and modify our model accordingly may further reduce the
prediction error, this is left as a future study.

In order to simulate the real utilization of the system whose
request rate may vary significantly over time, we will further
improve our model by adopting a Markov Modulated Poisson
Process (MMPP) in the future.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China under Grant No. 2016YF-
B1000205, the National Natural Science Foundation of China
under Grant No. 61402325. We would like to thank Binlei
Cai, Zhuoxiao Zhang for their contributions. We would also
like to thank Zitong Ji for the discussions on the initial drafts
of this paper.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[3] I. Neamtiu and T. Dumitraş, “Cloud software upgrades: Challenges and
opportunities,” in Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems (MESOCA), 2011, pp. 1–10.

[4] D. Krushevskaja and M. Sandler, “Understanding latency variations of
black box services,” in 22nd International World Wide Web Conference,
2013, pp. 703–714.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[6] J. Nielsen, “The usability engineering life cycle,” IEEE Computer,
vol. 25, no. 3, pp. 12–22, 1992.

[7] L. Zhao and X. Zhou, “Slow or down?: Seem to be the same for cloud
users,” in The first Workshop on Emerging Technologies for software-
defined and reconfigurable hardware-accelerated Cloud Datacenters,
2017, pp. 1–2.

[8] B. Cai, R. Zhang, X. Zhou, L. Zhao, and K. Li, “Experience availability:
Tail-latency oriented availability in software-defined cloud computing,”
Journal of Computer Science and Technology, vol. 32, no. 2, pp. 250–
257, 2017.

[9] Q. Lu, X. Xu, L. Zhu, L. Bass, Z. Li, S. Sakr, P. L. Bannerman, and
A. Liu, “Incorporating uncertainty into in-cloud application deployment
decisions for availability,” in IEEE Sixth International Conference on
Cloud Computing, 2013, pp. 454–461.

[10] X. Xu, Q. Lu, L. Zhu, Z. Li, S. Sakr, H. Wada, and I. Weber, “Availability
analysis for deployment of in-cloud applications,” in Proceedings of
the 4th international ACM Sigsoft symposium on Architecting critical
systems, 2013, pp. 11–16.

[11] R. Entezari-Maleki, K. S. Trivedi, and A. Movaghar, “Performability
evaluation of grid environments using stochastic reward nets,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 2, pp.
204–216, 2015.

[12] T. Grainger, T. Potter, and Y. Seeley, Solr in action. Manning Cherry
Hill, 2014.

[13] D. Bruneo, “A stochastic model to investigate data center performance
and qos in iaas cloud computing systems,” IEEE Transactions on
Parallel Distributed Systems, vol. 25, no. 3, pp. 560–569, 2014.

[14] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, “Enabling
cost-aware and adaptive elasticity of multi-tier cloud applications,”
Future Generation Computer Systems, vol. 32, no. 2, pp. 82–98, 2014.

[15] J. K. Muppala, K. S. Trivedi, V. Mainkar, and V. G. Kulkarni, “Numer-
ical computation of response time distributions using stochastic reward
nets,” Annals of Operations Research, vol. 48, no. 2, pp. 155–184, 1994.

[16] G. Ciardo, J. K. Muppala, and K. S. Trivedi, “SPNP: stochastic petri net
package,” in International Workshop on Petri Nets and PERFORMANCE
MODELS, 1989, pp. 142–151.

[17] H. V. Karambelkar, Scaling big data with Hadoop and Solr; 2nd ed.
Birmingham: Packt Publ., 2015.

[18] “Apache jmeter,” http://jmeter.apache.org/, 2017.
[19] B. Wei, C. Lin, and X. Kong, “Dependability modeling and analysis for

the virtual data center of cloud computing,” in Proc. High Performance
Computing and Communications (HPCC), 2011, pp. 784–789.

[20] A. Volkanovski, M. Čepin, and B. Mavko, “Application of the fault
tree analysis for assessment of power system reliability,” Reliability
Engineering & System Safety, vol. 94, no. 6, pp. 1116–1127, 2009.

[21] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, 2008.

[22] Q. Wu, M. Zhang, R. Zheng, Y. Lou, and W. Wei, “A qos-satisfied
prediction model for cloud-service composition based on a hidden
markov model,” Mathematical Problems in Engineering, vol. 2013,
no. 3, pp. 275–289, 2013.

[23] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable
availability model for infrastructure-as-a-service cloud,” in Proc. the
41st IEEE/IFIP International Conference on Dependable Systems &
Networks, 2011, pp. 335–346.

[24] B. Wei, C. Lin, and X. Kong, “Dependability modeling and analysis for
the virtual data center of cloud computing,” in Proc. High Performance
Computing and Communications, 2011, pp. 784–789.

[25] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “Models for dependability
analysis of cloud computing architectures for eucalyptus platform,”
International Transactions on Systems Science and Applications, vol. 8,
pp. 13–25, 2012.

[26] H. Fujita, Y. Matsuno, T. Hanawa, M. Sato, S. Kato, and Y. Ishikawa,
“Ds-bench toolset: Tools for dependability benchmarking with simula-
tion and assurance,” in Proc. IEEE/IFIP International Conference on
Dependable Systems and Networks, 2012, pp. 1–8.

[27] A. Sangroya, D. Serrano, and S. Bouchenak, “Benchmarking depend-
ability of mapreduce systems,” in Proc. the 31st IEEE Symposium on
Reliable Distributed Systems, 2012, pp. 21–30.

[28] A. Sangroya, S. Bouchenak, and D. Serrano, “Experience with bench-
marking dependability and performance of mapreduce systems,” Perfor-
mance Evaluation, vol. 101, pp. 1–19, 2016.

[29] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attributing
the source of tail latency through precise load testing and statistical
inference.” Acm Sigarch Computer Architecture News, vol. 44, no. 3,
pp. 456–468, 2016.

[30] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalua-
tion methodology for latency-critical applications,” in IEEE Internation-
al Symposium on Workload Characterization (IISWC), 2016, pp. 1–10.

[31] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N. Tantawi,
“An analytical model for multi-tier internet services and its applications,”
in ACM SIGMETRICS Performance Evaluation Review, 2005, pp. 291–
302.

[32] N. Roy, A. S. Gokhale, and L. W. Dowdy, “Impediments to analytical
modeling of multi-tiered web applications,” in Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2010, pp. 441–443.

[33] Y. Sakuma, A. Inoie, K. Kawanishi, and M. Miyazawa, “Tail asymptotics
for waiting time distribution of an m/m/s queue with general impatient
time,” Journal of Industrial & Management Optimization, vol. 7, no. 3,
pp. 593–606, 2013.

[34] M. Grottke, V. Apte, K. Trivedi, and S. Woolet, “Response time
distributions in networks of queues,” Queueing Networks, vol. 154, pp.
587–641, 2011.

486

Tuning Multipath TCP for
Interactive Applications on Smartphones

Quentin De Coninck∗, Olivier Bonaventure
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)

Université catholique de Louvain
Louvain-la-Neuve, Belgium

Email: {quentin.deconinck,olivier.bonaventure}@uclouvain.be

Abstract—Multipath TCP enables smartphones to simulta-
neously use both WiFi and LTE to exchange data over a
single connection. This provides bandwidth aggregation and more
importantly reduces the handover delay when switching from one
network to another. This is very important for delay sensitive
applications such as the growing voice activated apps. On
smartphones, user experience is always a compromise between
network performance and energy consumption. However, the
Multipath TCP implementation in the Linux kernel was mainly
tuned for bandwidth aggregation and often wakes up the cellular
interface by creating a path without sending data on it.

In this paper, we propose, implement and evaluate MultiMob,
a solution providing fast handover with low cellular usage for
interactive applications. MultiMob relies on three principles.
First, it delays the utilization of the LTE network. Second, it
allows the mobile to inform the server of its currently preferred
wireless network. Third, MultiMob extends the Multipath TCP
handshake to enable immediate retransmissions to speedup
handover. We implement MultiMob on Android 6 smartphones
and evaluate its benefits by using both microbenchmarks and
in the field measurements. Our results show that MultiMob
provides similar latency as the standard Linux implementation
while significantly lowering the cellular usage.

I. INTRODUCTION

Mobile devices such as smartphones are now an integral part
of our digital life. Mobile data traffic continues to grow [1].
The performance of the WiFi and cellular networks have
significantly increased over the last years. Compared with
3G, LTE provides both higher bandwidth and lower latency
while WiFi reaches Gbps and more. These high bandwidth
and low-latency networks encouraged the deployment of new
applications. Mobile video benefited a lot from the bandwidth
improvements. On the other hand, the lower latency enabled a
new family of voice activated applications [21]. The user uses
his/her voice instead of buttons to interact with the application
that sends voice samples to the cloud. For such applications,
latency is key and many protocols have been tuned during the
last years to reduce it [4], [33].

For most smartphone users, the WiFi and cellular networks
are not equivalent. WiFi has two major advantages compared
to cellular networks. First, using WiFi consumes less en-
ergy [20], [26]. Second, most service providers charge for
cellular data while most WiFi networks are free or charged on
a flat-rate basis. For these reasons, many smartphones owners

only use their cellular interface for voice calls and when there
is no WiFi network available [7].

Multipath TCP is a recent TCP extension [16] that was
designed with these smartphones in mind. Pluntke et al. [32]
and then Raiciu et al. [35] first discussed the expected benefits
of Multipath TCP on such mobiles devices. Later, Paasch et al.
implemented handover features [30] in the Linux kernel [29].
Lim et al. showed the importance of taking energy consump-
tion into account [23].

Industry has already adopted Multipath TCP on smart-
phones with two major deployments [3]. Apple uses Multipath
TCP for its Siri voice activated application since 2013 and
enables Multipath TCP for any application on iOS11 [7]. This
is the largest deployment of Multipath TCP today [3] with
about 700 million devices. There is another major deployment
in Korea. In this country, high-end Android smartphones use
Multipath TCP through network-operated SOCKS proxies to
achieve Gbps [37].

Many authors studied and tuned the bandwidth aggregation
capabilities of Multipath TCP [36], [22], [18], [27], [11],
[6] in mobile networks. Although popular in the scientific
literature, this is not the main use case for Multipath TCP
on mobiles [7]. Smartphones rarely exchange large files [9]
that would benefit from bandwidth aggregation. Measurement
studies [13], [9] show that smartphones mainly use either short
or long-lived intermittent TCP connections. Apple recently
opened Multipath TCP on iOS11 mainly to provide seamless
handovers and support interactive applications [7].

We first describe the current state-of-the-art of Multipath
TCP on smartphones in Section II. We then propose Mul-
tiMob, a series of improvements that adapt Multipath TCP
to the requirements of today’s smartphone applications. More
precisely, MultiMob provides a good compromise between
latency and cellular usage.

A MultiMob server replies on the subflow used by the
smartphone (§ III-A). If a smartphone sends a request over a
cellular subflow because its WiFi subflow performs badly, the
server should send its reply over the same subflow.

MultiMob minimizes cellular usage and unused subflows
(§ III-B). Like iOS11 [7], MultiMob prefers to use the WiFi
interface over the cellular one. MultiMob replaces the make-
before-break strategy of the Multipath TCP implementation on
Linux by break-before-make. With this strategy, the cellularISBN 978-3-903176-08-9 c© 2018 IFIP ∗ FNRS Research Fellow

interface is only used after a failure of the WiFi one.
MultiMob limits handover delays (§ III-C). The

break-before-make strategy minimizes energy consumption
but at the expense of increased handover delays. MultiMob
reduces those delays by extending the Multipath TCP protocol
to carry data during the subflow handshake.

In Sect. IV, we collect measurements in a Mininet envi-
ronment to assess MultiMob characteristics. In Sect. V, we
evaluate MultiMob with real smartphones. Finally, Sect. VI
concludes this paper. An extended technical report of this work
is available [10].

II. STATE OF THE ART AND MOTIVATION

Multipath TCP [16] was designed with multihomed devices
such as smartphones in mind. It enables them to exchange
data belonging to a single connection over different network
paths. It is described in details in [16], [36]. We briefly
summarize its main features here. A Multipath TCP connection
is in fact a combination of different TCP connections, called
subflows in [16], that are grouped together. A Multipath TCP
connection is established by using a three-way handshake
as a regular TCP connection, except that the SYN packet
contains the MP_CAPABLE option. This option negotiates
the utilization of Multipath TCP and allows the client and
server to exchange keys. Each Multipath TCP connection is
identified by a token that is derived from the keys exchanged
during the initial handshake [16]. Data can be exchanged
over the initial subflow and both the client and the server
can create additional subflows to use other paths or perform
handovers. Those additional subflows must be established by
using a four-way handshake with SYN packets that contain the
MP_JOIN option. This option includes a token that identifies
the corresponding Multipath TCP connection. Data can be
transmitted over any of the available subflows. Multipath TCP
uses two levels of sequence numbers. The standard TCP
sequence and acknowledgement numbers are used in the TCP
header to handle data sequencing and retransmissions on a
per-subflow basis. Furthermore, Multipath TCP uses the Data
Sequence Number (DSN) that tracks the position of the data in
the bytestream. The DSN is placed inside the Data Sequence
Signal TCP Option that also carries DSN acknowledgements.
Thanks to this DSN, Multipath TCP can transmit data over one
subflow and later retransmit it over another subflow because
the initial one failed or became unresponsive. Reinjecting data
over a different subflow is key to support handovers [36], [30].

There are two main implementations of Multipath TCP
on mobile nodes: Apple’s implementation on iOS [7] and
the open-source Linux implementation [29]. We focus on the
latter because it fully implements the protocol and can be
easily modified. Besides supporting all the features described
in [16], it includes several heuristics that are important for
performance [36] without impacting interoperability.

A first component of the Multipath TCP implementation in
the Linux kernel is the path manager. It determines when addi-
tional subflows must be created. The initial subflow is always
established on the interface that points to the current default

route. On a client, the default fullmesh path manager [29]
creates new subflows immediately after the creation of the
initial one and each time a new IP address is assigned to the
client or learned from the server. This path manager does not
initiate subflows from the server because it expects that the
client’s firewall will block incoming TCP connections.

A second component is the packet scheduler. It decides on
which established subflow the next packet will be sent. The
default scheduler extracts the smoothed round-trip-time of
all the subflows whose congestion window is not full and
selects the one having the lowest smoothed round-trip-time
(RTT). Other schedulers more adapted to heterogeneous paths
have been proposed [25], [28], [15].

Multipath TCP [16] also supports backup subflows. When
a subflow is established, it is possible to set a bit in the
MP_JOIN option to indicate that this subflow should not
be selected by the scheduler to exchange data unless all
non-backup subflows have failed. We observed that Siri in
iOS11 [7] also sets the backup bit on the cellular subflow to
discourage the utilization of the cellular interface to transport
data. In the Linux Multipath TCP implementation, a subflow
is considered to be in a potentially failed state once its
retransmission timer expires. This subflow transitions to the
active state as soon as new data is acknowledged on the
subflow. The default scheduler uses a backup subflow if all
the regular subflows are in the potentially failed state.

A. Multipath TCP on Smartphones

Before tuning Multipath TCP on smartphones, it is impor-
tant to understand how they interact with the network. We
summarize in this section some of the lessons we learned based
on discussions with network operators and previous works.

Smartphone applications rarely perform bulk transfers
Multipath TCP was designed to aggregate bandwidth and
many articles evaluated whether Multipath TCP reaches that
objective [31], [6], [11], [34]. However, smartphones rarely
exchange very long files [14], [9]. Most of the connections
carry a few KB. Many connections also experience large idle
times [8]. While not being an issue from TCP perspective,
from an energy viewpoint, it can consume energy if the radio
needs to remain active to support it.

Many subflows do not carry data The fullmesh path
manager immediately creates subflows on all active interfaces.
However, most of these subflows are useless, i.e., no data
is sent over them [9]. With the default scheduler, if the
initial subflow exhibits a lower RTT than the additional ones,
Multipath TCP will only use the initial one. Previous works
also indicate than Multipath TCP can perform worse than TCP
on short flows in heterogeneous networks [18], [27].

Mismatch with user expectations Most users favor WiFi
over cellular for both monetary and power consumption rea-
sons [20], [7]. They expect that their smartphone will use WiFi
whenever it works well and will switch to cellular only if it
brings some benefits. However, the packet scheduling decision
is taken by the sender of the packet. In practice, smartphones
mainly receive data [14], [9], meaning that most of the

488

scheduling decisions are taken by remote servers. Because
the measured round-trip-time is the only metric, the server
scheduling decision can go against the user expectations.

Backup subflows consume energy One way to minimize
the utilization of the cellular network is to always establish
the cellular subflow as a backup subflow [16], [23]. While
useful in mobility scenarios, there is no point to create backup
subflows if the primary one does not face any connectivity
issue. Indeed, energy consumption is a major concern for
mobile devices [7], [5], [2]. However, opening a subflow on the
cellular interface without using it is expensive from an energy
consumption viewpoint [11], the WiFi interface consuming at
least five times less than the LTE one [26]. In the remaining
of this paper, we use the LTE model proposed by Huang et
al. [20] to estimate the cellular power consumption (we expect
similar results with other models [26]). In the model used [20],
opening one cellular subflow on a smartphone is equivalent to
lighting up the screen 100% during the RRC_CONNECTED
period, which lasts around 11 s. Opening preventively the
cellular subflow as proposed in [30] is thus very expensive
from an energy consumption viewpoint. Siri in iOS11 still
creates cellular subflows at the beginning of the connection.

Related Works Lim et al. [24] proposed eMPTCP that
delays the use of the cellular below a given threshold of
bytes transfered and opens the cellular subflow if the WiFi
bandwidth is not sufficient. While working with bulk transfers,
interactive applications can transmit very few bytes and do not
need large bandwidths. Sinky et al. [38] proposes to rely on
the signal strength of the WiFi network to tune the congestion
window to trigger seamless WiFi handover with bulk transfer.
However, it was only tested under NS3-DCE environment and
not with actual devices. Han et al. [17] proposes to disable the
cellular when the WiFi is sufficient with delay-tolerant traffic.
However, interactive traffic is delay-sensitive.

III. TUNING MULTIPATH TCP

We explain how MultiMob improves Linux Multipath TCP.
We first add to the server’s packet scheduler a heuristic that
enables it to infer the wireless conditions that affect the client
subflows. Second, we implement an oracle that monitors the
network and opens cellular subflows only when needed. Third,
we extend the Multipath TCP protocol so that a client can
retransmit data inside the SYN that is used to create an
additional subflow during a handover.

A. Towards Global Scheduling

When a Multipath TCP connection is composed of 2 or
more subflows, each of the communicating hosts indepen-
dently selects the best subflow to transmit each data. The
Linux implementation selects the available subflow with the
lowest round-trip-time (RTT). This scheduler works well in
a variety of environments [31]. However, selecting subflows
only on the basis of their RTT is not always the best solution.
Consider a smartphone user that moves while using the Siri
application. This application regularly sends small bursts of
data and the server returns responses. If the smartphone detects

that the WiFi starts to be lossy, it will start to send data
over the cellular subflow. However, the server is not aware
of the movement of the smartphone and its packet scheduler
still sends responses over the WiFi subflow because it has
the lowest RTT. The server will only switch to the cellular
subflow after the expiration of its retransmission timer, which
potentially wastes hundreds of milliseconds.

To solve this problem, MultiMob includes a packet sched-
uler that uses the most recent data sent by the smartphone as
a hint to select the most suitable subflow. On the smartphone,
MultiMob uses a priority scheduler that favors WiFi and only
uses cellular when the WiFi subflow experiences retransmis-
sions. The server-side scheduler maintains for each subflow
the timestamp of the last original packet received over this
subflow. A packet is considered to be original if it contains
new data (based on its DSN) or if it successfully concludes
a subflow establishment. Similarly, an acknowledgement is
considered to be original if its Data ACK advances the lower
edge of the sending window. The MultiMob scheduler first
removes from consideration the potentially failed subflows and
the ones where this data has already been transmitted. Then it
iterates over all remaining subflows to identify the one having
the most recent original reception. If the congestion window
of this subflow is not full, it is selected.

Thanks to this scheduler, the server can quickly detect
the most suitable subflow while taking into account subflow
backup preferences. For an interactive application like Siri
that sends small requests, the server will always reply on the
subflow that was last used by the client.

B. Break-Before-Make

In the Linux kernel implementation, when a Multipath
TCP connection starts, the fullmesh path manager opens
the connection over the primary interface and then creates
subflows over the other ones. If the cellular interface is
configured as a backup interface, data packets will only be sent
over this interface once the WiFi interface fails. This make-
before-break approach minimizes the amount of data sent over
the cellular interface. Unfortunately, it does not minimize the
energy consumption. There is no significant difference from
an energy consumption viewpoint between a cellular interface
that transmits only SYN/FIN or several data packets.

MultiMob opts for break-before-make and creates subflows
over the backup interface after having detected failures on
the primary interface. With break-before-make, the key issue
from a performance viewpoint becomes how quickly can the
smartphone detect that a wireless interface works badly and
new backup subflows must be created. MultiMob detects those
failures through a Multipath TCP oracle implemented as a
kernel module. The oracle relies on the assumption that if
a network interface experiences connectivity issues, subflows
using it will experience retransmissions and losses, even if
they belong to different connections. To track those events,
our oracle maintains a monitoring table of netpaths. A netpath
is a tuple (IPsrc, IPdst, network interface). We aggregate the
information on a per layer-3 flow basis to reduce the size of the

489

monitoring table. This structure is well adapted to deployments
with SOCKS proxies such as [37] where all Multipath TCP
connections are terminated on the proxy.

Our oracle computes every Ts seconds statistics based on
the subflows associated to a given netpath. Our current imple-
mentation collects three metrics: smoothed loss rate (sloss),
smoothed retransmissions rate (sretrans) and maximum RTO.
Those statistics are computed based on the per-subflow state
maintained by the kernel. It also takes into account Tail Loss
Probes [12]. When the TLP timer fires, we enter FACK mode
and the packet at the head of the write queue is marked as lost.
The smoothed rates are computed by using Volume-weighted
Exponential Moving Averages (V-EMA) used by Android to
estimate the loss rate of WiFi beacons. These V-EMA reduce
to the three following equations

vali+1 =
prodi+1

voli+1
(1)

prodi+1 = α(valnew· volnew) + (1− α)prodi (2)

voli+1 = α· volnew + (1− α)voli (3)

where valnew is the new value of the studied metric (e.g., lost
sent packets during the last Ts period), volnew is the volume
of this new value (e.g., total number of packets sent during last
Ts period), prodi is the product at iteration i, voli the volume
at iteration i and vali the value at iteration i. prod0 = vol0 =
val0 = 0 and no value is computed if volnew is 0. α ∈ [0, 1]
is a parameter experimentally set to 0.5 as in Android.

The MultiMob oracle sets thresholds to detect underper-
forming netpaths. Once a threshold is crossed, MultiMob
triggers the creation of backup subflows for all connections
associated to the underperforming netpath. It also marks the
subflows associated with that netpath as potentially failed.
Since the oracle is part of the kernel, it can query the state of
all established Multipath TCP connections and trigger backup
subflows creation once a problem is detected.

The last scenario that we consider is a client-initiated down-
load. During such a download, the server pushes data towards
the client. If a subflow fails, the client stops receiving data,
but it is difficult for the Multipath TCP stack to distinguish
between losses in the network and the server application
becoming idle for any reason. We modify Multipath TCP so
that the server can indicate to the client that a data transfer
is not yet finished. This can work with existing applications.
We define two signals. The first one is sent in the Multipath
TCP DSN option. We modify one of the unused bits of the
DSN option that we call the MP_IDLE bit. This bit is set by
server when it sends a data packet that empties its send buffer.
Otherwise, the MP_IDLE bit of the DSN option is reset. Since
this bit is included in the DSS option, it is sent reliably to
the client. A receiver should not expect a connection to be
idle unless it has received a DSN option with the MP_IDLE
bit set. We also define a new experimental Multipath TCP
option that carries the current value of the RTO. The client
sends an empty RTO option from time to time and the server
returns the same option containing its current retransmission

timer. The client uses this information to set its idle timer
at max(500 msec, RTOServer). This timer runs while the
MP_IDLE flag of the last received data is reset. It is reset
every time a packet is received on the subflow and stopped if
the last data packet had the MP_IDLE flag set. If the timer
expires, the oracle triggers the creation of backup subflows.

C. Immediate reinjections

The break-before-make approach described in the previous
section is beneficial from an energy viewpoint. However, a
mobile typically detects the failure of a wireless interface
by the expiration of its retransmission timer or TLP probe.
This unacknowledged data can only be retransmitted over
another interface once a subflow has been established over this
interface. Multipath TCP [16] requires a four-way handshake
before allowing the transmission of data from the server. This
handshake has two purposes. First, it creates state on the
endpoints (and possibly on the intermediate middleboxes).
Second, the client and the server authenticate each other.
This authentication is performed by using the keys exchanged
during the initial handshake. Both the client and the server
exchange HMACs computed over these keys and random
numbers exchanged in the SYN and SYN+ACK (see Fig. 1a).
Unfortunately, this handshake delays the reinjection of the lost
data since the client cannot send data before having received
the fourth ACK [16].

To reduce this delay, we modify Multipath TCP to support
the transmission of data inside SYN or SYN+ACK pack-
ets. For this, we define two new Multipath TCP options:
FAST_JOIN_IN (FJI) and FAST_JOIN_OUT (FJO). This
is different than TCP Fast Open [33] because a new subflow
is established between hosts that already share state for one
Multipath TCP connection.

A naive approach would be to simply place data inside the
SYN and require the server to accept this data immediately.
Unfortunately, this solution would cause security problems
because this SYN is not authenticated. The MP_JOIN option
that it carries contains only the 32 bits token that identifies the
connection and a random number that is used to authenticate
the server (Fig. 1a). This token is not sufficient to authenticate
the client because a passive listener could have observed it
during the establishment of a previous subflow for the same
connection, e.g., on an open WiFi network.

The FJO option described on Fig. 1b solves this problem
and allows the client to carry authenticated data in the ini-
tial SYN. Our FJO option contains three fields. The token
identifies the Multipath TCP connection as in the MP_JOIN
option. The Data Sequence Number (DSN) indicates the
sequence number of the data contained in the SYN payload.
The third field is a HMAC computed over the connection
keys exchanged during the initial handshake and the DSN.
This last field ensures that the initiator of the subflow is
one of the connection hosts. To prevent replay attacks, our
implementation only accepts one SYN containing the FJO
option for a given DSN. To cope with lost acknowledgments,
if EDSN is the next expected DSN on the server and SDSN

490

(a) Multipath TCP uses a four-way handshake that lasts two round-
trip-times to create an additional subflows with JOIN.

(b) With FAST_JOIN, the client can immediately send data inside
the SYN packet.

Fig. 1: Time-sequence diagrams for the establishment of additional subflows.

Fig. 2: State machine of a simple interactive application.

the DSN contained in the FAST_JOIN SYN, the server allows
SDSN to be in the range [EDSN − rcv_wnd,EDSN]
where rcv_wnd is its receive window. Once the SYN has
been acknowledged, the server can immediately start to send
data to the client.

The FJO option is useful when the mobile client sends
data to a server. However, there are situations where the
server pushes data towards the client. A typical example
are streaming applications where the server pushes data at
a regular rate. When the oracle running on the mobile client
detects losses or the absence of data, it may want to quickly
establish a subflow without having data to send to the server.
This case is covered with the FJI option [10] (not shown
for space limitations). This option is very similar to the FJO
option, except that it contains the current Data ACK instead
of a DSN, with the HMAC computed over this Data ACK.
With this new option, the server can authenticate the client
immediately and send data upon reception of the SYN. By
using the FJI option, the data transfer can resume after 1
RTT, instead of 2 RTTs with normal join.

IV. EMULATIONS

We evaluate in this section the performance of MultiMob
in Mininet environments [19] in a scenario with two disjoint
paths between the client and the server. Emulations are based
on Multipath TCP v0.91 in Linux 4.1.

a) Studied Traffic: Siri is a famous example of interactive
traffic. However, it is not open-source and only runs on
iOS devices. To evaluate the interactions between a simple
interactive application and Multipath TCP, we use a simplified
model based on an analysis of the behavior of Siri. Our model
is a three-states process shown in Fig. 2. The client maintains
a counter: sent. In the sending burst state, the client sends

0 100 200 300 400 500 600 700
Max Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Default both side, no loss

Server scheduler, no loss

Default both side, 100% loss

Server scheduler, 100% loss

Fig. 3: Maximum delay to return an answer to simplified
interactive requests. Each scenario ran 25 times. Losses begin
to occur when the client is in inter-user interaction wait state,
i.e., between request bursts.

a burst of 2500 bytes using packets carrying between 50 and
500 bytes. Then sent is incremented and the client waits in
the inter-burst wait state before going back to sending burst.
Once sent reaches sent_thresh, the client switches to
the inter-user interaction wait state that represents the random
delay between successive user interactions. sent_thres,
inter-burst wait and inter-user interaction wait are empirically
set to 9, 1/3 s and 5 s respectively. We model the server as
a process that returns a 750 bytes response after each burst.
Our simple client application then collects the delay between
each request and the server’s response. Unless stated, all the
measurements in this paper are based on this traffic.

b) MultiMob Scheduler: The primary path exhibits a
RTT of 15 ms and the additional one 25 ms. Both paths have a
bandwidth of 10 Mbps and the router queue sizes are equal to
the bandwidth-delay product. The client opens the connection
over the primary path and then creates a backup subflow
over the additional one. Figure 3 shows that when there are
no losses, the default and MultiMob schedulers running
on the server exhibit quite similar performances. Notice that
because of the default tcp_slow_start_after_idle
set to 1, a request can be answered in two RTTs if its sending
phase generates more packets than the initial congestion
window (10 packets). However, when the primary subflow
fails between two requests, the MultiMob scheduler reduces
the maximal delay experienced by a factor of two. When
the client sends its first request after a loss, it experiences
a RTO before reinjecting the packet on the additional subflow.
However, with the default scheduler, the server does not

491

0 20 40 60 80 100
Random losses (%)

0
200
400
600
800

1000
1200
1400
1600
1800

M
a
x
 D

e
la

y
 [

m
s
]

No oracle

Oracle - sloss_threshold 10 %

Oracle - sloss_threshold 25 %

Oracle - sloss_threshold 40 %

(a) Maximal delay to answer a simplified interactive request.

0 20 40 60 80 100
Random losses (%)

0
200
400
600
800

1000
1200
1400
1600

M
e
a
n

 C
e
ll
 P

o
w

e
r

[m
W

]

No oracle

Oracle - sloss_threshold 10 %

Oracle - sloss_threshold 25 %

Oracle - sloss_threshold 40 %

(b) Estimated mean cell power consumption based on model [20].

Fig. 4: Simplified interactive requests with light continuous background traffic. The second interface is set as backup. If any,
the loss event occurs while the client is in inter-user interaction wait state, i.e., between request bursts. Markers shows medians
and error bars 25th and 75th percentiles over 25 runs.

know that the primary subflow failed, and it sends the reply to
the primary lossy subflow and experiences a RTO too before
reinjecting on the additional subflow. Since the MultiMob
server-side scheduler follows the last client decision, it does
not experience the RTO at the server side.

c) Influence of Threshold Value: To assess the benefits
of the oracle and determine the threshold value for sloss, we
rely on simplified interactive requests while a light background
request/response traffic (12 KB/s) is present. Figure 4a shows
the maximal latency to answer a request and Fig. 4b shows
the estimated mean power consumed on the second path. The
energy consumption is estimated by using the packet trace
and the model presented in [20], considering that the cellular
interface is always powered on. Without losses, we observe
similar requests delays, while the backup subflow is not
established with the oracle. When losses occur on the primary
path, the oracle knows that the background traffic experiences
connectivity issues and creates backup subflows for all connec-
tions using that path. Then, the simulated interactive client can
directly use the additional path and does not face RTO. Since
the server uses MultiMob scheduler, it replies on the subflow
used for the request and no RTO occurs. On the contrary, the
interactive connection must face a RTO if there is no oracle
before using the additional path, even if the additional subflow
is always established at the beginning of the connection.
Furthermore, when the link is very flappy (20-30% losses), the
case without the oracle tries to reuse the lossy path once some
ACKs manage to reach the host, while the oracle prevents this
behavior. With the oracle the creation of the additional subflow
depends on the network conditions and the sloss threshold.
When set to a low value, e.g., 10%, delays remain low but
a few losses suffice to open the additional subflow. With
higher values like 40%, the additional path remains closed in
the median case when the primary path experiences 10% of
random losses, but it can experience higher latencies. Based on
those simulations, we experimentally set the sloss threshold
to 25% as a reasonable trade-off between low-latency and
low additional path use. sretrans is set to 50% and the
max RTO threshold is empirically set to 1.5 seconds to avoid
using a subflow that might hurt interactivity because of lack
of retransmission reactiveness.

0 20 40 60 80 100
Random Losses [%]

0

500

1000

1500

2000

M
a
x
 D

e
la

y
 [

m
s
] 1 ms

10 ms

100 ms

500 ms

1000 ms

Fig. 5: Varying Ts for interactive traffic, with sloss set to 25%.
Showing 25th, 50th and 75th percentiles.

0 5 10 15 20

Time [s]

0.0

0.5

1.0

1.5

2.0

S
e
q

 N
u

m

1e7

Primary

Additional

Additional opening

Fig. 6: Time-sequence graph of the packets received by a client
during a 20 MB HTTP GET. The primary subflow suffers from
100% losses at 1.5 s. Retransmissions at 6 second are caused
by a burst of duplicate ACKs.

d) Influence of the Oracle Periodicity: The reactivity of
the oracle also depends on the oracle timer Ts. Indeed, as
shown in Fig. 5, the lower Ts, the quicker the reaction of the
oracle to losses and the lower the variability of the detection.
A value of 1 ms allows very quick reaction, but the oracle
might spend a lot of CPU time to update its monitoring table.
In the remaining of the paper, Ts is empirically set to 500 ms
to match sub-second reactivity and low CPU usage on mobiles.

e) Bulk Download and Primary Subflow Loss: The client
downloads a 20 MB file and we add 100% losses on the
primary path after 1.5 s. Fig. 6 shows that after some idle
time, the client detects that it did not receive data and triggers
the creation of a second subflow. The server then starts to use
the new subflow and the data transfer continues.

f) Fast Join Benefits: We evaluate the benefits of using
the FAST_JOIN_OUT option with regular request/response
traffic over an emulated network where the primary path
experiences 100% losses after five seconds. Figure 7 shows
the difference of the delays of the first request following the

492

0 50 100 150 200 250 300 350 400
Additional path RTT [ms]

0
100
200
300
400
500
600
700
800
900

D
e
lt

a
 M

a
x
 D

e
la

y
 [

m
s
]

512 B

1420 B

4 KB

16 KB

Fig. 7: Delta of max delay between normal and fast joins
depending on the request size. Markers are medians over 6×2
runs, bars show min and max.

Fig. 8: Walk map for micro-benchmarks.

loss event using normal and fast joins. If the request fits inside
one TCP packet, as for the popular Siri application, the fast
joins provide immediate reinjections when the client sends
data and the response can be received after one RTT.

V. PERFORMANCE EVALUATION

This section presents the evaluation of MultiMob on Nexus
5 smartphones running Android 6.0.1. For this, we backported
Multipath TCP v0.89 to the Linux 3.4 kernel of Nexus 5
phones. Three configurations are studied: 1) No backup (NBK),
MPTCP with the fullmesh path manager; 2) Backup (BK),
NBK with backup subflows on cellular; and 3) MultiMob, the
proposed solution described in Sect. III. We use two servers.
The first one, configured with the default scheduler, is
used by NBK and BK. The second one, configured with the
MultiMob server-side scheduler, is used by MultiMob. In
this section, we first explore particular use cases with micro-
benchmarks to understand the benefits of MultiMob. We then
compare at a larger scale NBK and BK with MultiMob through
active measurements performed on a set of modified Android
6 smartphones used by real users.

A. Mobility Micro-Benchmarks

To evaluate how MultiMob performs in changing wireless
conditions, we go for a short walk (Figure 8) with two
smartphones. The first uses MultiMob and the other a vanilla
Multipath TCP configuration. Our walk starts at A, close to the
WiFi AP. Starting from C, the WiFi signal becomes weaker
given the distance and the presence of trees and buildings.
Android usually detects the loss of the WiFi signal and tears
down the WiFi network at location D. Starting at location F,
the WiFi signal becomes available again.

0 10 20 30 40 50 60 70 80
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c
ti

o
n

 p
k
ts

 o
v
e
r

c
e
ll

No Backup

MultiMob

(a) No Backup vs. MultiMob.

0 10 20 30 40 50 60 70 80
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c
ti

o
n

 p
k
ts

 o
v
e
r

c
e
ll

Backup

MultiMob

(b) Backup vs. MultiMob.

Fig. 9: Evolution of the mean fraction of total packets carried
by the cellular network for the simplified interactive traffic.

Configuration MD (ms) RA CP (mW)
No backup 1112 100 884

Backup 780 100 885
MultiMob 1183 100 657

TABLE I: Aggregated results from simulated interactive
micro-benchmarks. MultiMob shows the mean value over both
runs. MD = Max Delay, RA = Requests Answered, CP = mean
Cell Power consumption.

Simulated Interactive Traffic Our test phones send 100
requests during our 80 s walk from A to D. Figure 9 shows
the instantaneous mean over the test duration of the fraction
of total packets that are carried by the cellular interface for
the two runs. In addition, Tab. I shows aggregated results
related to these tests. With NBK and BK, the cellular subflow
is always created at the beginning of the connection, but no
data packet is sent on the cellular subflow while the WiFi
signal remains good. This is expected for the backup case,
and the larger RTT on the cellular network combined to the
low network load explain the NBK results. When the client
requests start to be lost between locations C and D, the cellular
network is used to recover the connectivity. Since the cellular
subflow was established at the beginning of the connection,
the NBK and BK cases often experience a lower maximal
delay than MultiMob. Since the cellular subflow is already
established, the NBK and BK cases can reinject requests on
the cellular subflow as soon as a RTO occurs on the WiFi
subflow. MultiMob needs first to detect the connectivity loss
with its oracle before establishing the cellular subflow, but
its maximum delay remains similar to those of NBK and
BK cases1. On the opposite, MultiMob consumes less cellular
energy since it delays the utilization of the cellular interface.

Fixed Rate Streaming Traffic For this test, we configure
the smartphones to stream a web radio over HTTP while
performing twice the walk presented in Fig. 8. Our servers
relay the same web radio at a fixed bitrate using Icecast.

1It is actually very dependent of the wireless conditions of a particular run.
The lowest max delay observed for MultiMob over runs was 599 ms.

493

0
1
2
3
4
5
6
7

N
o
 B

a
c
k
u

p
 S

e
q

 N
u

m
1e6

Cellular opening WiFi Cellular

0 50 100 150 200 250 300

Time [s]

0
1
2
3
4
5
6
7

M
u

lt
iM

o
b

 S
e
q

 N
u

m

1e6

Fig. 10: Time-sequence graph of the server streaming flow as
perceived by the client for the No Backup vs. MultiMob. Color
indicates on which interface packet was received.

0
1
2
3
4
5
6
7

B
a
c
k
u

p
 T

im
e
 b

u
ff

e
r

[s
]

Cellular opening WiFi Cellular

0 50 100 150 200 250 300

Time [s]

0
1
2
3
4
5
6
7

M
u

lt
iM

o
b

 T
im

e
 b

u
ff

e
r

[s
]

Fig. 11: Playing time of the client buffer for the worst case in
Backup vs. MultiMob test. Color indicates on which interface
packet was last received.

Since all the data flows from the server to the client, all the
scheduling decisions are made by the server.

Figure 10 shows the time-sequence graph for the NBK vs.
MultiMob test. We observed no stall during those experiments.
However, the NBK case sends data nearly exclusively on the
cellular interface, even when the WiFi network is available.
From the server perspective, the cellular network appears to be
more stable with an often lower estimated RTT than the WiFi
one due to motion. This explains why the default scheduler
prefers the cellular subflow. MultiMob forces the server to
use the WiFi when it is still available. The WiFi to cellular
(between C and D) and the cellular to WiFi (between F and
A) handovers are visible on the MultiMob graph. Furthermore,
notice that MultiMob waits 40 s before opening the cellular
subflow using FJI, when the receive timer detects that no
more data is received after some time without having received
a MP_IDLE. Based on our model [20], NBK consumed 444 J
for the cellular interface during the test (1386 mW), while
MultiMob spent 329 J (1028 mW).

In the BK vs. MultiMob test, the network interface usage
is similar, i.e., WiFi is used when available. Over a dozen
of runs we observed no stall, except for a test that impacted
both Backup and MultiMob. The buffer playing time at client
side for that test is shown on Fig. 11. At 50 s (first C-D pass),
MultiMob faces an half-second stall time, due to the reception
of a packet on the WiFi network while the cellular subflow was
already established. Since packets are acknowledged on the
subflow they came from, the MultiMob server-side scheduler
then tries to reply on the WiFi subflow, but it was meanwhile
lost. After facing a RTO, the server reinjects this reply on

the cellular subflow and the connection continues. The BK
case experienced a 3 s stall time at time 205 s (second C-
D pass). This stall was caused by the default scheduler
that favors the WiFi subflow over the backup subflow on
the cellular interface. Indeed, after 200 s, the WiFi was
underperforming, the server experienced RTOs and reinjected
data on the cellular subflow, but it then came back. When the
WiFi signal eventually disappeared, the RTO value increased
because of previous losses and the RTO expired seconds after
the actual WiFi loss. Again, the BK case opened the cellular
path at the beginning of the connection, while this happened
at 45 s by MultiMob. Furthermore, MultiMob has a smaller
cellular energy consumption with 319 J (994 mW), though the
BK one remains close with 347 J (1083 mW).

B. Measurements with Real Users

This section summarizes active measurements performed on
Nexus 5 devices distributed to a few students and academics
over a period of seven weeks (28th January - 22nd March 2017).
We installed on each smartphone an Android application that
periodically changes the network configuration, either once
during night or after a reboot. Our measurement application
runs in the background and sends data when it detects that
the smartphone moves. Network conditions of tests depend on
the presence of WiFi and/or LTE networks. To observe the
performance of MultiMob to switch from the WiFi network
to the cellular one, we only consider here tests where both
WiFi and cellular interfaces are online at the beginning of the
tests. Notice that WiFi can be lost during some tests.

Figure 12a shows that nearly all simplified interactive re-
quests are answered within one second. Notice that simultane-
ously using two paths for such traffic as with the NBK can lead
to increased response delays because of network heterogeneity
between paths. Figure 12b plots the maximum delay observed
during the tests. For all configurations, the maximum delay ob-
served to answer simplified interactive requests remains within
one second, with rare outliers higher than two seconds. Though
the oracle detection to trigger cellular subflow is the largest
delay component, MultiMob does not impact too much the
request traffic when WiFi is lost. The main difference between
MultiMob and both NBK and BK resides in scenarios where
the WiFi remains alive during the whole test. The energy
consumption computed on the entire traffic collected during
the test is shown in Fig. 12c. Since NBK and BK always open
additional subflows at the beginning of the connection, they
consume energy, even if no real data is sent on that interface.
Background connections initiated by real users can sometimes
increase energy consumption by using the cellular interface.
In contrast, since most of the time MultiMob does not create
additional subflows, its cellular energy consumption is very
low. MultiMob can thus keep low latency for delay-sensitive
applications while limiting energy impact of Multipath TCP.

VI. CONCLUSION

Given that smartphones have both cellular and WiFi in-
terfaces, users expect them to be able to perform seamless

494

101 102 103

Delays [ms]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

No Backup (2120)

Backup (1890)

MultiMob (6932)

(a) All request delays. The legend contains
number of requests for the configuration.

102 103

Max Delay [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

No Backup (24)

Backup (20)

MultiMob (93)

(b) Maximal delays. The legend shows the
number of tests for the configuration.

No Backup Backup MultiMob
0

200

400

600

800

1000

1200

1400

M
e
a
n

 C
e
ll
u

la
r

P
o
w

e
r

[m
W

]

(c) Estimated mean cellular power [20] dur-
ing the test when primary path stays alive.

Fig. 12: Simplified interactive traffic with real users (easier to see with color).

handovers between those two network interfaces. Multipath
TCP enables such seamless handovers since it can use both
cellular and WiFi interfaces for a single connection. Using
both interfaces simultaneously is too expensive from an energy
viewpoint. We propose, implement and evaluate MultiMob,
a set of improvements to the Multipath TCP implementation
and protocol. MultiMob uses break-before-make to minimise
energy consumption. It extends Multipath TCP to support
immediate retransmissions over a different interface. Further-
more, thanks to its scheduler, a server automatically selects
the best performing interface to respond to requests from
a smartphone. Our measurements indicate that MultiMob
improves the performance of Multipath TCP on smartphones
while minimizing energy consumption.

MultiMob is available: http://multipath-tcp.org/multimob

REFERENCES

[1] Cisco visual networking index, February 2010.
[2] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun

Venkataramani. Energy consumption in mobile phones: A measurement
study and implications for network applications. In IMC’09, pages
280–293. ACM, 2009.

[3] Olivier Bonaventure and SungHoon Seo. Multipath TCP deployments.
In IETF Journal, volume 12, pages 24–27. November 2016.

[4] Bob Briscoe et al. Reducing internet latency: A survey of techniques and
their merits. IEEE Communications Surveys & Tutorials, 18(3):2149–
2196, 2014.

[5] Aaron Carroll and Gernot Heiser. An analysis of power consumption in
a smartphone. In USENIX’10, volume 14. Boston, MA, 2010.

[6] Yung-Chih Chen et al. A measurement-based study of MultiPath TCP
performance over wireless networks. In IMC’13, pages 455–468. ACM.

[7] Stuart Cheshire et al. Advances in networking, part 1. https://developer.
apple.com/videos/play/wwdc2017/707//, June 2017.

[8] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier
Bonaventure. Observing real smartphone applications over Multipath
TCP. IEEE ComMag, 54(3):88–93, March 2016.

[9] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier
Bonaventure. A first analysis of Multipath TCP on smartphones. In
PAM’16, pages 57–69. Springer, 2016.

[10] Quentin De Coninck and Olivier Bonaventure. Every millisecond counts:
Tuning Multipath TCP for interactive applications on smartphones.
Technical report. Available at http://hdl.handle.net/2078.1/185717.

[11] Shuo Deng et al. Wifi, lte, or both? measuring multi-homed wireless
internet performance. In IMC’14, pages 181–194. ACM, 2014.

[12] N Dukkipati et al. Tail Loss Probe (TLP): An algorithm for fast recovery
of tail losses. IETF Draft, draft-dukkipati-tcpm-tcploss-probe-01, 2013.

[13] Hossein Falaki et al. Diversity in smartphone usage. In MobiSys’10,
pages 179–194. ACM, 2010.

[14] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth
Kandula, and Deborah Estrin. A first look at traffic on smartphones.
In IMC ’10, pages 281–287, New York, NY, USA, 2010. ACM.

[15] Simone Ferlin et al. Blest: Blocking estimation-based mptcp scheduler
for heterogeneous networks. In IFIP Networking Conference (IFIP
Networking) and Workshops, 2016, pages 431–439. IEEE, 2016.

[16] A. Ford et al. TCP Extensions for Multipath Operation with Multiple
Addresses. RFC 6824, January 2013.

[17] Bo Han et al. Mp-dash: Adaptive video streaming over preference-aware
multipath. In CoNEXT’16, pages 129–143. ACM, 2016.

[18] Bo Han, Feng Qian, Shuai Hao, and Lusheng Ji. An anatomy of mobile
web performance over Multipath TCP. In CoNEXT ’15, pages 5:1–5:7,
New York, NY, USA, 2015. ACM.

[19] Nikhil Handigol et al. Reproducible network experiments using
container-based emulation. In CoNEXT’12, pages 253–264. ACM, 2012.

[20] Junxian Huang et al. A close examination of performance and power
characteristics of 4g lte networks. In MobiSys’12, pages 225–238. ACM.

[21] Will Knight. Conversational interfaces. MIT Technology Review.
[22] Ming Li et al. Multipath transmission for the internet: A survey. IEEE

Communications Surveys Tutorials, vol. PP, (99):1–41, 2016.
[23] Yeon-sup Lim et al. How green is Multipath TCP for mobile devices?

In All Things Cellular’14, pages 3–8. ACM, 2014.
[24] Yeon-sup Lim et al. Design, implementation, and evaluation of energy-

aware Multi-Path TCP. In CoNEXT’15, page 30. ACM, 2015.
[25] Yeon-sup Lim et al. Ecf: An mptcp path scheduler to manage hetero-

geneous paths. In CoNEXT’17, pages 33–34. ACM, 2017.
[26] Ana Nika et al. Energy and performance of smartphone radio bundling

in outdoor environments. In WWW’15, pages 809–819. ACM, 2015.
[27] Ashkan Nikravesh et al. An in-depth understanding of Multipath TCP

on mobile devices: Measurement and system design. In Mobicom’16,
pages 189–201. ACM, 2016.

[28] Bong-Hwan Oh and Jaiyong Lee. Constraint-based proactive scheduling
for mptcp in wireless networks. Computer Networks, 91:548–563, 2015.

[29] Christoph Paasch, Sebastien Barre, et al. Multipath TCP in the linux
kernel. http://www.multipath-tcp.org, 2017.

[30] Christoph Paasch et al. Exploring mobile/wifi handover with Multipath
TCP. In CellNet’12, pages 31–36. ACM, 2012.

[31] Christoph Paasch et al. Experimental evaluation of Multipath TCP
schedulers. In CSWS’14, pages 27–32. ACM, 2014.

[32] Christopher Pluntke et al. Saving mobile device energy with Multipath
TCP. In MobiArch’11, pages 1–6. ACM, 2011.

[33] Sivasankar Radhakrishnan et al. TCP Fast Open. In CoNEXT’11,
page 21. ACM, 2011.

[34] Costin Raiciu et al. Improving datacenter performance and robustness
with multipath tcp. In CCR’11, volume 41, pages 266–277. ACM, 2011.

[35] Costin Raiciu et al. Opportunistic mobility with Multipath TCP. In
MobiArch’11, pages 7–12. ACM, 2011.

[36] Costin Raiciu et al. How hard can it be? designing and implementing
a deployable Multipath TCP. In NSDI’12, pages 29–29, 2012.

[37] SungHoon Seo. Kt’s giga lte. IETF 93, 2015.
[38] Hassan Sinky et al. Proactive Multipath TCP for seamless handoff in

heterogeneous wireless access networks. IEEE Transactions on Wireless
Communications, 15(7):4754–4764, 2016.

495

Waypoint Routing in Special Networks
Saeed Akhoondian Amiri1 Klaus-Tycho Foerster2 Riko Jacob3 Mahmoud Parham2 Stefan Schmid2

1 MPI Saarland, Germany 2 University of Vienna, Austria 3 IT University of Copenhagen, Denmark

Abstract—Waypoint routing is a novel communication model
in which traffic is steered through one or multiple so-called
waypoints along the route from source to destination. Waypoint
routing is used to implement more complex policies or to
compose novel network services such as service chains, and
also finds applications in emerging segment routing networks.
This paper initiates the study of algorithms and complexity of
waypoint routing on special networks. Our main contribution is
an encompassing characterization of networks on which routes
through an arbitrary number of waypoints can be computed
efficiently: We present an algorithm to compute waypoint routes
for the important family of outerplanar networks, which have
a treewidth of at most two. We show that it is difficult to go
significantly beyond the graph families studied above, by deriving
NP-hardness results on slightly more general graph families
(namely graphs of treewidth three). For the case that the number
of waypoints is constant, we also provide a polynomial-time
algorithm for any constant treewidth network, even if waypoints
change the flow sizes. For arbitrary numbers of waypoints
however, the constraint of different flow-sizes between waypoints
turns the problem hard, already if the network contains just a
single cycle. Finally, we extend the study of waypoint routing to
special directed graph classes, in particular bidirected graphs.

I. INTRODUCTION

Waypoint routing is a fundamental communication model in
which packets need to visit a sequence of waypoints along their
route. Waypoint routing has many applications, e.g., related to
security policies [1], [2], [3], [4], emerging network services
such as service function chaining [5], [6], [7], [8], [9], or
segment routing [10], [11], [12], [13].

For example, computer networks today consist of a large
number of so-called middleboxes (in the order of the number of
routers [1]) providing various functionality inside the networks,
related to security (e.g., firewalls, NATs) and performance
(e.g., proxies, traffic optimizers). In order to benefit from (or
enforce) these middleboxes, traffic needs to be steered through
the functions (“waypoints”) explicitly, as in Fig. 1. This is non-
trivial especially in virtualized environments and in the context
of Network Function Virtualization (NFV), where virtualized
middleboxes can be deployed more flexibly. Software-Defined
Networking (SDN) is a particularly useful technology in this
context, as it facilitates the definition of such more flexible
routes.

This paper is concerned with the algorithmic aspects under-
lying waypoint routing. Interestingly, only little is known today
about the algorithmic problems, besides that the problem is
typically hard on general network topologies [14].

Our paper is motivated by the fact that real-world networks
(e.g., datacenter, enterprise, carrier networks) are often not
general or “worst-case” but feature additional structure, which
can potentially be exploited toward more efficient algorithms.
Accordingly, we initiate in this paper the study of waypoint
routing on specific network topologies.

A. Our Contributions

This paper studies the problem of computing (shortest)
paths through an arbitrary number of waypoints on special
network families. Our main contribution is a, in some sense,
tight characterization of the network topologies on which
routes through waypoints can be computed in polynomial time.
Concretely, we provide an algorithm to compute waypoint
routes on the important graph family of outerplanar graphs
(which are of treewidth at most two). We show that it is difficult
to go significantly beyond the graph families studied above, by
deriving NP-hardness results on slightly more general graph
families already (graphs of treewidth three). We also provide
a polynomial algorithm for shortest routes on any constant
treewidth, as long as the number of waypoints is also constant,
with the added feature that the flow-sizes may change after each
waypoint traversal. Additionally, we present various algorithmic
and complexity results on special directed graphs, in particular
on special bidirected graphs such as so-called cactus topologies.

B. State-of-the-Art and Novelty

The recent article by Amiri et al. [14] provided a first chart
for this waypoint routing problem in general graph classes.
Their focus is on providing intractability results and methods
for few waypoints, but they present no algorithms to handle
an arbitrary number of waypoints beyond trees and DAGs.

xs v t w

Fig. 1. In this introductory example, the task is to route the flow of traffic
from the source s to the destination t via the waypoint w. When routing via
the solid red (s, w) path, followed by the solid blue (w, t) path, the combined
walk length is 5 + 3 = 8. A shorter solution exists via the dotted red and
blue paths, resulting in a combined walk length of 2 + 2 = 4. Observe that
when the waypoint would be on the node x, no node-disjoint path can route
from s to t via the waypoint. Furthermore, some combinations can violate
unit capacity constraints, e.g., combining the solid red with the dotted blue
path induces a double utilization of the link from v to t.ISBN 978-3-903176-08-9 c©2018 IFIP

Waypoints Feasible Algorithms Known Hardness Demand Change Optimal Algorithms Demand Change Hardness

Arbitrary P: Outerplanar (tw ≤ 2)
Corollary 2

Strongly NPC: tw ≤ 3
Theorem 4

P: Tree (equivalent to tw of 1)
[14]

NPC: Unicyclic (tw ≤ 2)
Theorem 4

Constant P: General graphs
[14]

P: General graphs
[14]

P: Constant treewidth tw ∈ O(1)
Theorem 3

Strongly NPC: General graphs
[14]

TABLE I
OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN SPECIAL UNDIRECTED GRAPHS.

The goal of this paper is to chart the algorithmic landscape
of special graph classes, motivated by often highly structured
computer networks. Our main results on undirected graphs are
presented in Table I, but we also provide further new insights
w.r.t. algorithms for special directed graphs, whereas [14] only
provided NP-hardness results on general directed graphs.

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces the problem and model more formally, along
with studying the example of a single waypoint. Our in-depth
algorithmic results are presented in Section III, whereas the
complementing intractability proofs can be found in Section IV.
We present further related work in Section V and conclude in
Section VI.

II. THE PROBLEM AND MODEL

We study computer networks, modeled as connected undi-
rected, directed, or bidirected [15] graphs G = (V,E) with
|V | = n nodes (switches, middleboxes, routers) and |E| = m
links, where each link e ∈ E has a capacity c : E → N>0 and
a weight (cost) χ : E → N>0. Bidirected graphs (also known
as, e.g., Asynchronous Transfer Mode (ATM) networks [16] or
symmetric digraphs [17]) are directed graphs with the property
that if a link e = (u, v) exists, there is also an anti-parallel
link e′ = (v, u) with c(e) = c(e′) and χ(e) = χ(e′).

Given (1) a (bi/un)directed graph, (2) a source s ∈ V and
a destination t ∈ V , and (3) a set of k waypoints in V , the
waypoint routing problem asks for a flow-route R (i.e., a walk)
from s to t that (i) visits all waypoints in W and (ii) respects
all link capacities. Without loss of generality, we normalize
link capacities to the size of the traffic flow, removing links
of insufficient capacity. Unless specified otherwise, we will
assume at most one waypoint per node, though it may be
that s = t. Waypoints may also change the traffic rate, where
the demand can be denoted as follows: from s to w1 by d0,
from w1 to w2 by d1, etc. That said, if not stated explicitly
otherwise, we will assume that d0 = d1 = . . . = dk = 1, and
refer to this scenario as flow-conserving.

The waypoints depend on each other and must be traversed
in a pre-determined order: every waypoint wi may be visited at
any time in the walk, and as often as desired (while respecting
link capacities), but the route R must contain a given ordered
node sequence s, w1, w2, . . . , wk, t. For example, in a network
with stringent dependability requirements, it makes sense to
first route a packet through a fast firewall before performing a
deeper (and more costly) packet inspection.

We are interested both in feasible solutions (respecting
capacity constraints) as well as in optimal solutions. In the
context of the latter, we aim to optimize the cost |R| of the
route R, i.e., we want to minimize the sum of the weights of
all traversed links.

Lastly, for ease of reference, we might denote the undirected
waypoint routing problem by WRP, the directed version by
DWRP, and the bidirected version by BWRP.

Before directly presenting our algorithms and complexity
results, we start with a warm-up, considering the case of a
single waypoint in bidirected networks.

A. An Introductory Case Study: A Single Waypoint

We first examine the case of a single waypoint w, which
requires finding a shortest s− t route through this waypoint.
Amiri et al. [14] already 1) provided a polynomial-time
algorithm for undirected graphs and 2) showed the NP-hardness
for directed graphs. We thus complement their results by
providing an algorithm for bidirected graphs as an introduction.

One waypoint: greedy is optimal. Simply taking two shortest
paths (SP s) P1 = SP (s, w) and P2 = SP (w, t) in a greedy
fashion is sufficient, i.e., the route R = P1P2 is always feasible
(and thus, also always optimal in regards to total weight).

Suppose this is not the case, that is, P1 ∩ P2 6= ∅, possibly
violating capacity constraints. Among all nodes in P1 ∩P2, let
u and v be, resp., the first and the last nodes w.r.t. to the order
of visits in R. Let P xy

i denote the sub-path connecting x to y in
Pi. Thereby we have R = P1P2 = P su

1 Puv
1 P vw

1 Pwu
2 Puv

2 P vt
2

(Fig. 2). Let P̄ be the reverse of any walk P obtained by
replacing each link (x, y) ∈ P with its anti-parallel link (y, x).
Observe that for P ′1 = P su

1 P̄wu
2 and P ′2 = P̄ vw

1 P vt
2 we have

that P ′1 is at most as long as P1 (because P1 is shortest) and
P ′2 is shorter than P2 (by Puv), a contradiction to P2 being a
shortest path.

s u v

w

t
P su

1
Puv

1,2

P vw
1

P
vt

2

P
wu
2

P̄ w
u2

Fig. 2. The directed path from u to v is traversed two times in R.

Two waypoints: can be infeasible! While we saw that it is
always possible to route through a single waypoint in bidirected
graphs, already two waypoints can prevent a valid solution.

497

In the example of Figure 3, an s− t route traversing first w1

and w2 second must use the link from w2 to w1 twice. Hence,
the feasibility of a solution depends on the link capacity.

s w2 w1 t

Fig. 3. In this unit capacity network, the task is to route the flow of traffic
from s to w1, then to w2, and lastly to t. To this end, the link from w2 to
w1 must be used twice.

After this brief introduction, we next study algorithms and
complexity beyond the simple case of a single waypoint.

III. EXPLORING COMPUTATIONAL TRACTABILITY

Computer networks often have very specific structures: for
example, many data centers are highly structured (e.g., are
based on Clos topologies [18]), but also enterprise and router-
level AS topologies for example, while being less symmetric,
often come with specific properties (e.g., are sparse). In this
light, the general hardness results provided in [14] may be too
pessimistic: in practice, much faster algorithms may be possible
which are tailored toward and leverage the specific network
structure. For example, as already pointed out in [14], the
waypoint routing problem can be solved quickly on undirected
tree or DAG topologies

Accordingly, in this section we explore the waypoint routing
problem on specific graph families. In particular, we are
interested in sparse graphs. We conducted a small empirical
study using Rocketfuel topologies [19] and Internet Topology
Zoo graphs [20], and found that they often have a low path
diversity: almost half of these graphs are outerplanar, and one
third are cactus graphs:
• a graph is outerplanar if it has a planar drawing s.t. all

vertices are on the outer face of the drawing [21]
• a graph is a cactus graph if any two simple cycles share

at most one node [22] (every cactus graph is outerplanar)

A. General Observations and Reductions

As first pointed out in [14] for undirected graphs, there
is a direct algorithmic connection from the link-disjoint path
problem to BWRP with unit capacities. By setting s1 = s, t1 =
w1, s2 = w1, t2 = w2, . . . , a k+1 link-disjoint path algorithm
also solves unit capacity BWRP for k waypoints. This method
can be extended to general capacities via a standard technique,
by replacing each link of capacity c(e) with bc(e)c parallel
links of unit capacity and identical weight.

Hence, we can apply the algorithm from Jarry and
Prennes [17], which solves the feasibility of the link-disjoint
path problem on bidirected unit capacity multigraphs for a
constant number of paths in polynomial runtime.

Theorem 1: Let k ∈ O(1). Feasible solutions for BWRP
can be computed in polynomial time.

The optimal solution already for few link-disjoint paths still
puzzles researchers on bidirected graphs, but the problem seems
to be non-trivial on undirected graphs as well: while feasibility
for a constant number of link-disjoint paths is polynomial in

the undirected case as well [23],[24], optimal algorithms for 3
or more link-disjoint paths are not known, and even for 2 paths
the best result is a recent randomized high-order polynomial-
time algorithm [25]. For directed graphs, already 2 link-disjoint
paths pose an NP-hard problem [26].

Furthermore, leveraging our connection to disjoint path
problems again, we can also make the following observation,
which we will use for special directed graphs and a non-constant
amount of waypoints on some undirected graphs.

Observation 1: For any graph family on which the k + 1
disjoint paths problem is polynomial-time solvable, we can
also find a route through k waypoints in polynomial time on
graphs of unit link capacity.

Thus, it immediately follows from [27] that the single
waypoint routing problem is polynomial time solvable on
semicomplete directed graphs, where a directed graph is called
semicomplete, if there is at least one directed link between
every pair of nodes.

Another case are directed graphs with constant independence
number α, where α = α(G) denotes the maximum size of
an independent set in G. Then, for constant α, k ∈ O(1), a
polynomial time DWRP algorithm exists, using [28].

Having a well-connected graph helps as well: On random
undirected graphs G, where the set of 2k endpoints are chosen
by an adversary (e.g., to compute a waypoint routing), it holds
with high probability that the k paths exists, if k ∈ O(n/ log n)
and the minimum degree of G is some sufficiently large
constant. The paths can be constructed in randomized time of
O(n3) [29]. Similar results also hold on Expander graphs [30].

B. Algorithms: Parametrized by Treewidth I/II

For a further example, on bounded treewidth graphs, and as
long as the number of waypoints k is logarithmically bounded,
the problem is polynomial time solvable, because the link-
disjoint paths problem is polynomial time solvable.

We briefly introduce the notion of treewidth as in [31],
with alternate analogous descriptions and further examples
provided in, e.g., Bodlaender and Kloks in [32], [33], [34]:
Given an undirected graph G = (V,E), a tree decomposition
T = (T,X) of G is a bijection between a collection X and a
tree T , s.t. every element of X is a set of nodes from V with: 1)
each graph node is contained in at least one tree node, which is
in turn called a bag (separator), 2) the tree nodes containing a
node v form a connected subtree of T , and 3) nodes are adjacent
in the graph only when the corresponding subtrees have a
node in common. The width of T = (T,X) is the number of
elements in the largest set in X minus 1. The treewidth tw
is the minimum width over all tree decompositions of G. We
will make use of these definitions again in Section III-D.

For a treewidth decomposition of width ≤ tw and k link-
disjoint paths, Zhou et al. [35] provide an algorithm with a
runtime of

O
(
n((k + tw2)ktw(tw+1)/2 + k(tw + 4)2(tw+4)k+3

)
. (1)

As a constant-factor approximation of treewidth decompositions
can be obtained in polynomial time [36], also beyond constant

498

treewidth, it is therefore possible to solve the waypoint
routing problem for any values of t and k s.t. Equation (1)
stays polynomial. E.g., tw, k ∈ O(

√
log n/ log log n), due

to f(n)g(n) = exp(ln(f(n)g(n))) = exp(g(n) ln(f(n))).
This idea can also be extended to polylogarithmic functions
f(n), g(n) ∈ polylog(n), obtaining quasi-polynomial runtimes
of 2polylog(n) ∈ QP. Quasi-polynomial algorithms fit sort of
in between polynomial and exponential algorithms and it is
widely believed that NP-complete problems are not in QP [37].

Unit capacities can be modeled by introducing parallel links
and in particular subdividing them by placing auxiliary nodes
in the center. For each such new path of length three, we can
add the three nodes of the path to a new bag, and connect it to
the original bag. Unless the graph is a tree (in which case the
treewidth increases by one), the treewidth remains unchanged.

We thus obtain the following corollary, which does not find
shortest routes and is not applicable to demand changes:

Corollary 1: In undirected graphs with a treewidth of tw
and k waypoints, we can solve the waypoint routing problem
in polynomial time for the following combinations:
• Constant tw ∈ O(1), logarithmic k ∈ O(log n)
• tw ∈ O(

√
log n), constant k ∈ O(1)

• tw, k ∈ O
(√

log n/ log log n
)
.

In quasi-polynomial time, we can solve:
• tw, k ∈ polylog(n) .

Nonetheless, note that the non-parallel unit capacity obser-
vation is of limited use in general: for a negative example, an
outerplanar graph requires nodes to touch the outer face, how-
ever, this property will be lost during the graph transformation.
Yet, as we will show in the following, solutions for outerplanar
graph exist, even in arbitrarily capacitated networks. We note
that outerplanar graphs have a treewidth of tw ≤ 2.

C. Algorithms: Outerplanar and Cactus Graphs

Undirected Outerplanar Graphs. We first prove the follow-
ing lemma, which we then use for outerplanar graphs.

Lemma 1: Let I be the class of undirected WRP with
1) the graph G is planar (w.l.o.g. we have a planar drawing),
2) the maximum capacity is cmax, w.l.o.g. n ≥ cmax ∈ N,
3) s, t and all waypoints touch the outer face F of G,
4) for every node v 6∈ F , Σe : {u,v}∈E(G)c(e) is even.

Then the feasibility of the ordered waypoint routing problem
in the class I is decidable in time O(n2), and the construction
of a feasible solution taking time O(n2 · c2max).

Proof: Let I ∈ I be an instance of the problem.
Suppose s, t are the source and terminal and w1, . . . , wk

are waypoints. Define w0 = s, wk+1 = t. We construct an
equivalent instance of the link-disjoint paths problem as follows.
Replace each link e = {u, v} with capacity c by c ≤ cmax

links with capacity 1, then subdivide those links once, i.e.,
the number of nodes is in O(m · cmax). In the newly created
instance of link-disjoint paths problem:

1) The input graph is planar,
2) all terminal pairs touch the outer face,

3) the degree of every node not on the outer face is even.

If only condition 1) and 2) hold, the problem is NP-hard [38].
But for this class of link-disjoint paths problems, there are
polynomial time algorithms [39] with the following properties:
Let b be the number of nodes on the outer face and n′ be
the total number of nodes. Because the graph is planar we
have m = O(n) and n′ = O(n). The feasibility of the link-
disjoint path problem can be tested in O(bn′) and constructing
the paths can be done in O(n′2) which gives us the desired
polynomial time solutions for the original problem.

This directly implies the following result:

Corollary 2: In undirected outerplanar graphs with a
maximum link capacity of cmax, the waypoint routing problem
is decidable in time O(n2), with an explicit construction
obtainable in time O

(
n2 ·min

{
n2, c2max

})
.

A solution to the shortest waypoint routing problem cannot
be obtained via the same reduction: Brandes et al. [40] showed
the minimum total length link-disjoint path problem to be
NP-hard on graphs satisfying the three conditions mentioned
above, already when the maximum degree is at most 4.

For bidirected cactus graphs of constant capacity, the
ordered waypoint routing problem can be optimally solved
in polynomial time, as we show next.
Bidirected Cactus Graphs The difficulty of BWRP lies in
the fact that the routing from wi to wi+1 can be done along
multiple paths, each of which could congest other waypoint
connections. Hence, it is easy to solve BWRP optimally (or
check for infeasibility) on trees, as each path connecting two
successive waypoints is unique.

Lemma 2: BWRP can be solved optimally in polynomial
time on trees.

For multiple path options, the problem turns NP-hard though
(Theorem 6). To understand the impact of already two options,
we follow-up by studying rings.

Lemma 3: BWRP is optimally solvable in polynomial time
on bidirected ring graphs where for at least one link e holds:
c(e) ∈ O(1).

Proof: We begin our proof with c(e) = c(e′) = 1. Observe
that every routing between two successive waypoints has two
path options P , clockwise or counter-clockwise. We assign
one arbitrary path Pe to traverse e, and another arbitrary path
Pe′ to traverse e′. By removing the fully utilized e and e′, the
remaining graph is a tree with two leaves, where all routing is
fixed, cf. Lemma 2.

We now count the path assignment possibilities for e, e′:
by also counting the “empty assignment”, we have at most
(n+1)n options, where the optimal routing immediately follows
for each option. For these O(n2) possibilities, we pick the
shortest feasible one. I.e., BWRP can be solved optimally in
polynomial time on rings with unit capacity. To extend the
proof to constant capacities c(e) ∈ O(1), we use an analogous
argument, the number of options for assignments to e and e′

are now O
(
n2c(e)

)
∈ P. Thus, the lemma statement holds.

499

w1
w′2

w4

w5

w′3

s, tw2

w3

Fig. 4. In this cactus graph, we illustrate the
algorithm of Theorem 2 w.r.t. the permutation
w1w2w3w4w5.

s, tw2

w3

w′
←

1
←

23→

4→

← 5
6
→

Fig. 5. Once the ring links are contracted,
w′ replaces the whole ring. Consequently, the
permutation reduces to w′w2w3. The sub-routes
are numbered sequentially.

w1
w′2

w4

w5

w′3

1

2

3
4

5

6

7

8

Fig. 6. The permutation induced on the ring is
w1w′

2w
′
3w4w5. In the sub-problem, we have

s = t = w1. The numbers represent the order
of node traversal in the optimal route.

We now focus on the important case of cactus networks.
As mentioned earlier, our empirical study using the Internet
Topology Zoo1 data set shows that one third are cactus graphs.

Theorem 2: BWRP is optimally solvable in polynomial
time on cactus graphs with constant capacity.

Proof: The idea is to 1) shrink the cactus graph down
to a tree, 2) see if for the relevant subset of waypoints (to
be described shortly) the feasibility holds on that tree, 3)
reincorporate the excluded rings and find the optimal choice
of path segments within each ring, and 4) construct an optimal
route by stitching together the sub-routes obtained from the
tree and the segments from each ring.

Let C be the cactus graph (Fig. 4) and TC be the tree obtained
after contracting all the links on each rings. As a result of this
link contraction, those waypoints previously residing on rings
are now replaced by new (super) waypoints in TC (Fig. 5).
Each super node represents either a subtree of adjacent rings
or just an isolated ring. Let W ′ denote the waypoints in TC .
Observe that any feasible route in C through W corresponds
to one unique feasible route in TC through nodes in W ′. Next,
we show that either the feasible route in TC (if exists) can be
expanded to an optimal route for C, or there is no feasible route
in C at all. If TC is not feasible then we are done. Otherwise, let
R be the (unique) route in this tree. For each ring, R induces
some endpoints (Fig. 6), one endpoint on each node that is
either a) the joint of TC and the ring, or b) the joint with its
adjacent rings. Now we focus on the subproblem induced by
this ring and the new waypoint set W ′′ (to be specified) as
follows.

For each endpoint that is visited by R add a waypoint
to W ′′. Then, using the algorithm described in the proof of
Lemma 3, find an optimal route Rring visiting all the nodes
in W ′′ respecting the order imposed by R. If no such route
exists, the instance is not feasible. Otherwise, remove from R
every occurrence of the super node that represents this ring
to get a disconnected route. For each missing part, reconnect
the endpoints using the segment of Rring restricted to these
endpoints. Repeat this for every ring; denote the resulting route
as R′.

Finally, we argue that R′ is optimal. This is the case because
its pieces were taken from sets of sub-routes, where each
set, covers a disjoint–or more precisely, node-disjoint up to

1 See http://www.topology-zoo.org/.

endpoints–component of C. Moreover, the set of sub-routes
taken from an individual (disjoint) component (i.e. tree or ring)
is optimal on that component. Therefore the total length is
optimal.

We next turn our attention to graphs of constant treewidth.

D. Algorithms: Parametrized by Treewidth II/II

Let us quickly recap the results on undirected graphs of
bounded treewidth tw found so far:

1) For constant tw, we can compute walks for k ∈ O(log n)
waypoints, but those walks will not be optimal (shortest)
and the flow has to be of unit size. The same holds for
outerplanar graphs (a class with tw = 2) for k ∈ O(n).

2) For tw = 1 (≡ trees), one can compute shortest walks
with demand changes, even for k ∈ O(n) [14].

As pointed out in the beginning of Section III, many network
topologies have low treewidth, especially in the wide-area and
enterprise context (e.g., the Rocketfuel and Topology Zoo
networks [19]). We now tackle a problem we thus deem to
be realistic: in practice, the number of waypoints visited by a
given flow is likely to be a small constant.

Theorem 3: In undirected graphs with bounded treewidth
tw ∈ O(1) and a fixed number k ∈ O(1) of waypoints, we
can solve the shortest waypoint routing problem with demand
changes in a runtime of O(n).

Proof: Our proof will be via dynamic programming of
a nice tree decomposition [41] T = (T,X) of G. Using the
ideas and terminology of Kloks [34], a tree decomposition
is nice if each bag of T is either a leaf bag, a forget bag
(one node is removed from the separator), an introduce bag (a
node is added), or a join bag (its two children q1, q2 contain
the same nodes). For bags b, we thus define signatures σb,
representing already computed solutions of b, such that by
dynamically programming T bottom-up, we obtain an optimal
walk W at the root bag of T , if such a W exists.

In every optimal solution W , each path from a wi to a wi+1

will cross each separator b of G at most tw times. Due to
optimality, these individual paths will traverse every node at
most once. Hence, a signature σb only needs to represent the
at most k · tw crossings (endpoints) of partial paths through
the subgraph of b, and the link utilizations these paths use in
E(b). We additionally store if a path, for from wi to wi+1,
with only one endpoint in the signature, contains either wi

500

or wi+1. Note that at most one such path each will exist at
any time due to optimality. Due to k,tw ∈ O(1), we have
only O(1) different possible signatures for each bag b, with
each signature containing only O(1) elements. As common,
we assume that we can perform standard operations (additions,
comparisons etc.) of numerical values in constant time, else, an
extra logarithmic factor needs to be included in the total runtime.
We now present the required algorithms for the induction.

• Leaf bags b: In constant time, we can generate all valid
signatures, containing at most k paths (each without any
links). The only restriction is that if v ∈ V (b) is a
waypoint wi, its paths to wi−1 and wi+1 must exist.

• Forget bags b: Let v be the node s.t. for the child q of b
holds: V (q) \ {v} = V (b). If v is not a waypoint, then
the valid signatures of b are exactly those of q which
do not use v as endpoints. If v is a waypoint wi, then
additionally must hold: v must be an endpoint of a path
from wi−1 and the endpoint of a path to wi+1.

• Join bags b: We first 1) describe the program and then 2)
prove its correctness. 1): Given two valid signatures of b’s
children q1, q2, we perform all possible concatenations,
of endpoints of paths for the same wi to wi+1, at the
separator nodes V (b), checking a) that the union of the
link utilizations in E(b) respect the link capacities and b)
that no loops are created (we know the endpoints of each
(sub-)path and the their link utilizations in E(b), if they
share a link outside E(b), a signature of minimum size
will not), which results in valid signatures σb of b. 2):
Assume we missed some valid signature σb of b: Given σb,
we split the paths across the separator, resulting in valid
signatures σq1 , σq2 and their subpaths, a contradiction. For
an illustration of this procedure, we refer to Figure 7.

• Introduce bags b: Again, we first 1) describe the
algorithm and then 2) prove its correctness. 1): For each
signature σq of the child q of b, where V (q)∪{v} = V (b),
we first generate all possible combinations of empty
paths at v. Then, we distribute the link set of E(b)
over the endpoints in all possible variations, checking
if each distribution can generate some valid signature
by possibly moving the endpoints of the subwalks (and
possibly, concatenating some). If the answer is yes, we also

s1 s2 s3

w1 u

v w2

V (b)

Fig. 7. In this example, the separator is shown in the middle, containing
the nodes V (b) = V (q1) = V (q2) = {s1, s2, s3}. By splitting the path
from w1 to w2 along the separator, we obtain multiple paths per side, their
number being bounded by the size of the separator. Observe that when two
sub-paths, between the same set of waypoints, share a node, this node must
be an endpoint for both; otherwise, minimality is violated.

generate all possible signatures out of these distributions,
again by allowing to move the endpoints and allowing to
concatenate paths, always respecting capacity constraints.
As we only handle O(1) elements, we only perform O(1)
operations (covered below). 2): Again, assume we did not
program some valid signature σb of b. We then obtain
a valid signature of q by removing v, splitting all paths
that traverse it into two, or, if they have v as an endpoint,
cutting off v, or, if the path only contained v, by removing
these paths. As the reverse operation will be performed
by the prior algorithm, σb would have been obtained.

Each of the above programs be be run in a time of O(1),
assuming constant size b,tw, k ∈ O(1).

Furthermore, we implicitly assumed that for each signature,
we also store a representative set of paths s.t. their total length
is minimized. I.e., when generating signatures multiple times
for introduce and join nodes, we only keep representatives of
minimum total length. Hence, after dynamically programming
the nice tree decomposition T bottom-up, we consider all
solutions at the root node: If an optimal solution exists, it will
be represented by a signature, and thus, we can choose a walk
through the waypoints of minimum length.

It remains to prove the desired runtime of O(n): For constant
treewidth tw ∈ O(1), we can obtain a nice tree decomposition
of width O(tw) with O(n) bags in a runtime of O(n) using
the methods from [34], [36]. As the dynamic program requires
time O(1) for each of the O(n) bags, and as each of the O(1)
possible solutions can be checked in time O(n), the claim
follows.

IV. HARDNESS

In the previous Section III we presented various polynomial-
time algorithms for undirected and directed graphs. In this
section we present complementing hardness results, to clar-
ify the corresponding intractability bounds. In comparison,
previous work [14] provided NP-hardness results for general
graphs, leaving the finer details where the border lays between
polynomial-time algorithms and intractability to future work.

We begin by studying the treewidth of undirected graphs
in Section IV-A, followed by the NP-hardness on (un)directed
unicyclic graphs under flow-size changes in Section IV-B.
Lastly, we investigate general bidirected graphs in Section IV-C,
where hardness already strikes without flow-size changes, as
in Section IV-A on undirected graphs.

A. Hardness: Parametrized by Treewidth

We have shown that for a large graph family of treewidth at
most 2, the outerplanar graphs (which also include cactus
graphs for example), the routing paths can be computed
efficiently on undirected graphs. This raises the question
whether the problem can be solved also on graphs of treewidth
larger than 2, or at least for all graphs of treewidth at most 2.
While the latter remains an open question, in the following we
show that problems on graphs of treewidth 3 (namely series-
parallel graphs with an additional node connected to all other
nodes) are already NP-hard in general.

501

Theorem 4: The problem of routing through an arbitrary
number of waypoints is strongly NP-complete on undirected
graphs of treewidth at most 3.

Proof: We reduce the ordered waypoint routing problem
in graphs of treewidth at most 3 from the link-disjoint paths
problem in series-parallel graphs, the latter being strongly
NP-complete [42].

Let I be an instance of the link-disjoint paths problem
in a series parallel graph G with terminal pairs TI =
{(s1, t1), . . . , (sk, tk)}. We construct a new instance I of the
ordered waypoint problem as follows. Create a graph G′ := G,
then add one new node v to G′ and links {ti, v}, {sj , v}
for i, j ∈ [k], j 6= 1, i 6= k.

For simplicity, set for now s := s1, w1 := t1, w2 :=
v, w3 := s2, w4 := t2, w5 := v, . . . , t := tk, i.e., the order
of waypoints is s1, t1, v, . . . , v, si, ti, v, si+1, ti+1, v, . . . , tk,
with 3k− 2 waypoints in total. I.e., v “hosts” k− 1 waypoints,
with a degree of 2(k−1). We will show later in the proof how
to ensure at most one waypoint per node.
Claim: In any solution for I, the union of the k − 1 link-
disjoint walks from si via v to ti+1 occupy all links incident
to v.
Proof: Any walk from si via v to ti+1 must leave and enter v,
using two links. Hence, the union of all these k−1 link-disjoint
walks occupy all 2k − 2 links incident to v. �

We can now prove the theorem: If I is a yes-instance, then I
is a yes-instance as well: We take the k si, ti-paths from I ,
connect them in index-order with the k − 1 paths ti, v, si+1,
and obtain the desired ordered waypoint routing.

It is left to show that if I is a yes-instance, then I is a
yes-instance as well: Let I be a yes-instance. Define the path
from si to ti as in I . As these paths do not use v or any of the
links adjacent to it (otherwise the capacity of one of these links
would be exceeded), these paths show that I is a yes-instance.

On the other hand, the treewidth of G′ is at most the
treewidth of G plus 1 (we can just put v in all bags of an optimal
tree decomposition of G). To obtain at most one waypoint on
v, we create k − 1 cycles of length four, placing a waypoint
on each, and merging another node with v. This construction
does not increase the treewidth and also retains earlier proof
arguments. As series-parallel graphs have a treewidth of at
most 2 [43, Lemma 11.2.1], G′ has a treewidth of at most 3.
As the problem is clearly in NP, with the reduction being
polynomial, the proof is complete.

We conjecture that it is possible to directly modify the proof
presented in [42], to prove that the feasibility of the waypoint
routing problem is hard even in series-parallel graphs.

B. Hardness: Flow-size changes and a single cycle

In case of non-flow conserving waypoints, NP-hardness
strikes earlier already, namely on unicyclic graphs, which
contain only one cycle, and thus have tw ≤ 2.

Theorem 5: On undirected unicyclic graphs in which
waypoints are not flow-conserving, computing a route through
O(n) waypoints is weakly NP-complete, even if all waypoints

can just increase (or, just decrease) the flow size by at most a
constant factor.

Proof: Reduction from the weakly NP-complete PARTI-
TION problem [44], where an instance I contains ` non-negative
integers i1, . . . , i`,

∑`
j=1 ij = S, with the size of the binary

representation of all integers polynomially bounded in `.
We begin with the case that waypoints can change the flow

size arbitrarily. W.l.o.g., let ` be even and i1 ≤ i2 ≤ · · · ≤ i`.
We create two stars (denoted left and right star) with 1 + `/2
leaf nodes each, where all links have a capacity of S. We
connect both star center nodes in a cycle, with the cycle links
having a capacity of S/2 each, respectively.

Next, we place s, here also identified as w1, on a leaf of
the left star and t on a leaf in the right star. To distribute the
remaining `− 1 waypoints w2, . . . , w`, corresponding to the
integers, we place the ones with even indices on leaves in the
left star, and those with odd indices in the right star.

Suppose the routing starts with a size of i1, is changed to
i2 by w2 and so on. Then, solving the PARTITION instance I
is equivalent to computing a waypoint routing, as the paths
going along the cycle have to be partitioned into two sets, each
having a combined demand of S/2.

So far, we assumed that waypoints can change the flow size
arbitrarily – but hardness also holds if each waypoint can just
increase (or, just decrease) the flow size by a constant amount.
In order to do so, we replace the leaf nodes of the stars with
paths of O(logS) waypoints, which are used to increase the
demands to the desired size.

The directed graph case is analogous by putting all waypoints
to one star, creating the same amount of intermediate dummy
waypoints in the other star, which do not change the flow size,
and replacing all undirected links with two directed links of
opposite directions and identical capacity.

Corollary 3: On directed graphs, with the underlying
undirected graph being unicyclic and where waypoints are not
flow-conserving, computing a route through O(n) waypoints
is NP-complete, even if all waypoints can just increase (or,
just decrease) the flow size by at most a constant factor.

For these two proofs, we used flow sizes that can be
exponential in the graph size (binary encoded). Nonetheless,
we refer to Table II, which shows that the problem also stays
strongly NP-complete on general graphs.

C. Hardness: Bidirected graphs without flow-size changes

It follows from the earlier Corollary 3 that waypoint routing
is already NP-hard on unicyclic bidirected graphs, when
allowing flow-size changes. It remains to study NP-hardness
in the case that the flow-size remains unchanged:

Theorem 6: Solving BWRP optimally is NP-hard.
Proof: Reduction from the NP-hard link-disjoint path

problem on bidirected graphs G = (V,E) [16]: given k
source-destination node-pairs (si, ti), 1 ≤ i ≤ k, are there
k corresponding pairwise link-disjoint paths?

For every such instance I , we create an instance I ′ of BWRP
as follows, with all unit capacities: Set s = s1 and t = tk,

502

Waypoints Feasible Optimal Demand Change Feasible Optimal

Undirected
1 P Strongly NPC

constant P ?
arbitrary Strongly NPC

Directed
1

Strongly NPCconstant
arbitrary

TABLE II
OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS AS PROVIDED BY [14].

also setting waypoints as follows: w1 = t1, w3 = s2, w4 = t2,
w6 = s3, w7 = t3, . . . , w3k−3 = sk. We also create the
missing k−1 waypoints w2, w5, w8, . . . , w3k−4 as new nodes
and connect them as follows, each time with bidirected links
of weight γ: w2 to w1 = t1 and w3 = s2, w5 to w4 = t2 and
w6 = s3, . . . , w3k−4 to w3k−3 = sk and w3k−5 = tk−1. I.e.,
we sequentially connect the end- and start-points of the paths.

Observe that BWRP is feasible on I ′ if I is feasible: We
take the k link-disjoint paths from I and connect them via the
k − 1 new nodes in I ′.

We now set γ to some arbitrarily high weight, e.g., 3k times
the sum of all link weights. I.e., it is cheaper to traverse every
link of I even 3k times rather than paying γ once. Thus, if I
is feasible, the optimal solution of I ′ has a cost of less than
2 · k · γ.

Assume I is not feasible, but that I ′ has a feasible solution
R. Observe that a feasible solution of I ′ needs to traverse the
k− 1 new waypoints, i.e., has at least a cost of 2(k− 1)γ. As
I was not feasible, we will now show that traversing every new
waypoint w2, w5, . . . only once is not sufficient for a feasible
solution of I ′. Assume for contradiction that one traversal of
w2, w5, . . . suffices: for each of those traversals of such a wj , it
holds that it must take place after traversing all waypoints with
index smaller than j. Hence, we can show by induction that
the removal of the links incident to the waypoints w2, w5, . . .
from R contains a feasible solution for I . Thus, at least one
of the waypoints w2, w5, . . . must be traversed twice, i.e., R
has a cost of at least 2 · k · γ.

We can now complete the polynomial reduction, by studying
the cost (feasibility) of an optimal solution of I ′: if the cost
is less than 2 · k · γ, I is feasible, but if the cost is at least
2 · k · γ (or infeasible), I is not feasible.

While many BWRP instances are not feasible (already
in Figure 3), we conjecture that the feasibility of BWRP
with arbitrarily many waypoints is NP-hard as well. This
conjecture is supported by the fact that the analogous link-
disjoint feasibility problems are NP-hard on undirected [44],
directed [26], and bidirected graphs [16], also for undirected
and directed ordered waypoint routing, see Table II.

V. RELATED WORK

While waypoint routing has recently received much attention
in the literature, especially in the context of service function
chaining [7], [9], [45], [46], we are not aware of any systematic
study of the underlying algorithmic problem besides [14] which

however does not consider special network families. We provide
Table II for an overview of their results on general graphs.

In particular, our work is different from existing literature on
the computation of routes through unordered waypoints [31]:
the computation of shortest (link- and node-disjoint) paths and
cycles through a set of k waypoints is a classic problem [47]
which has traditionally been motivated by many different appli-
cations. Well-known results include, e.g., linear-time algorithms
for k = 3 waypoints [26], [48] polynomial-time algorithms
for constant k [24], polynomial-time deterministic algorithms
to compute feasible paths for small k = O((log logn)1/10),
or a randomized algorithm (based on algebraic techniques) to
compute a shortest simple cycle through a given set of k nodes
or links in an n-node undirected network. These approaches
however cannot be applied to compute routes through ordered
waypoints.

Our work is also different from existing work which
focuses on how to admit and allocate multiple walks, e.g.,
using randomized rounding and tolerating some capacity
augmentation [49], [50], [51]. There are also extensions to
more complex requests such as trees [51], [52]. In contrast, we
in this paper focus on the allocation of a single walk, without
violating capacity constraints.

Bibliographic Note. A first version of the results on bidirected
graphs was presented at the Algocloud workshop [53].

VI. CONCLUSION

Waypoint routing is emerging as an important concept
in various applications, however, the underlying algorithmic
problem is not well-understood. With this paper, we have
made a first step to put the waypoint routing problem into
perspective. We presented a comprehensive characterization
of the algorithmic complexity of the problem regarding the
“special” network families which support a polynomial-time
solution. In particular, we presented algorithms and hardness
results for networks of different treewidth, and discussed
implications of more directed networks. In our future work,
we aim to investigate the implications of waypoint routing on
specific applications, in particular, Traffic Engineering.

Acknowledgments. We like to thank Thore Husfeldt for
inspiring discussions. Research partly supported by the Villum
project ReNet as well as by Aalborg University’s PreLytics
project. Saeed Amiri’s research was partly supported by the
European Research Council (ERC) under the European Union’s

503

Horizon 2020 research and innovation programme (grant
agreement No 648527).

REFERENCES

[1] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, 2012.

[2] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently secure
network updates,” in Proc. ACM SIGMETRICS, 2016.

[3] A. Matos, S. Sargento, and R. L. Aguiar, “Waypoint routing: A network
layer privacy framework,” in Proc. IEEE GLOBECOM, 2011.

[4] S. Ghorbani and B. Godfrey, “Towards correct network virtualization,”
in Proc. SIGCOMM HotSDN, 2014, pp. 109–114.

[5] P. Skoldstrom et al., “Towards unified programmability of cloud and
carrier infrastructure,” in Proc. EWSDN, 2014.

[6] ETSI GS NFV-IFA 003, “Network functions virtualisation (nfv); acceler-
ation technologies; vswitch benchmarking and acceleration specification,”
in Group Specification, 2016.

[7] R. Soulé et al., “Merlin: A language for provisioning network resources,”
in Proc. ACM CoNEXT, 2014.

[8] P. S. et al., “Towards unified programmability of cloud and carrier
infrastructure,” in Proc. EWSDN, 2014.

[9] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach to
control forwarding paths in carrier-grade networks,” in Proc. SIGCOMM,
2015.

[10] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in Proc. GLOBECOM, 2015.

[11] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized network
traffic engineering using segment routing,” in Proc. IEEE INFOCOM,
2015, pp. 657–665.

[12] C. Filsfils et al., “Segment routing architecture,” in Internet draft, 2014.
[13] C. Filsfils, P. Francois, S. Previdi, B. Decraene, S. Litkowski, M. Hornef-

fer, I. Milojevic, R. Shakir, S. Ytti, W. Henderickx, J. Tantsura, S. Kini,
and E. Crabbe, “Segment routing architecture,” in Segment Routing Use
Cases, IETF Internet-Draft, 2014.

[14] S. Akhoondian Amiri, K.-T. Foerster, R. Jacob, and S. Schmid, “Charting
the Complexity Landscape of Waypoint Routing,” SIGCOMM Comput.
Commun. Rev, vol. 48, no. 1, January 2018.

[15] J. Edmonds and E. Johnson, “Matching: a well-solved class of linear
programs,” in Combinatorial Structures and their Applications: Proceed-
ings of the Calgary Symposium. New York: Gordon and Breach, 1970,
pp. 88–92.

[16] P. Chanas, “Reseaux atm: conception et optimisation,” Ph.D. dissertation,
University of Grenoble, 1998, these de doctorat dirige par Finke, Gerd et
Burlet, Michel Sciences appliques Grenoble 1 1998. [Online]. Available:
http://www.theses.fr/1998GRE10113

[17] A. Jarry and S. Pérennes, “Disjoint paths in symmetric digraphs,” Discrete
Applied Mathematics, vol. 157, no. 1, pp. 90–97, 2009.

[18] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[19] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[20] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” Selected Areas in Communications, IEEE Journal
on, vol. 29, no. 9, pp. 1765 –1775, october 2011.

[21] G. Chartrand and F. Harary, “Planar permutation graphs,” Annales de
l’I.H.P. Probabilites et statistiques, vol. 3, no. 4, pp. 433–438, 1967.

[22] D. Geller and B. Manvel, “Reconstruction of cacti,” Canad. J. Math,
vol. 21, pp. 1354–1360, 1969.

[23] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed, “The disjoint paths
problem in quadratic time,” J. Comb. Theory, Ser. B, vol. 102, no. 2, pp.
424–435, 2012.

[24] N. Robertson and P. D. Seymour, “Graph Minors .XIII. The Disjoint
Paths Problem,” J. Comb. Theory, Ser. B, vol. 63, no. 1, pp. 65–110,
1995.

[25] A. Björklund and T. Husfeldt, “Shortest two disjoint paths in polynomial
time,” in Proc. ICALP, 2014.

[26] S. Fortune, J. E. Hopcroft, and J. Wyllie, “The directed subgraph
homeomorphism problem,” Theor. Comput. Sci., vol. 10, pp. 111–121,
1980.

[27] J. Bang-Jensen, “Edge-disjoint in- and out-branchings in tournaments
and related path problems,” J. Comb. Theory, Ser. B, vol. 51, no. 1, pp.
1–23, 1991.

[28] A. O. Fradkin and P. D. Seymour, “Edge-disjoint paths in digraphs with
bounded independence number,” J. Comb. Theory, Ser. B, vol. 110, pp.
19–46, 2015.

[29] A. M. Frieze and L. Zhao, “Optimal construction of edge-disjoint paths
in random regular graphs,” Combinatorics, Probability & Computing,
vol. 9, no. 3, pp. 241–263, 2000.

[30] A. M. Frieze, “Edge-disjoint paths in expander graphs,” SIAM J. Comput.,
vol. 30, no. 6, pp. 1790–1801, 2000.

[31] S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid, “Walking Through
Waypoints,” in LATIN, ser. Lecture Notes in Computer Science, 2018.

[32] H. L. Bodlaender, “Treewidth: Structure and algorithms,” in SIROCCO,
ser. Lecture Notes in Computer Science, vol. 4474. Springer, 2007, pp.
11–25.

[33] ——, “A tourist guide through treewidth,” Acta Cybern., vol. 11, no. 1-2,
pp. 1–21, 1993.

[34] T. Kloks, Treewidth, Computations and Approximations, ser. Lecture
Notes in Computer Science. Springer, 1994, vol. 842.

[35] X. Zhou, S. Tamura, and T. Nishizeki, “Finding edge-disjoint paths in
partial k-trees,” Algorithmica, vol. 26, no. 1, pp. 3–30, 2000.

[36] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov,
and M. Pilipczuk, “An approximation algorithm for treewidth,” in Proc.
FOCS, 2013.

[37] G. J. Woeginger, “Exact algorithms for np-hard problems: A survey,” in
Combinatorial Optimization, ser. LNCS, vol. 2570. Springer, 2001, pp.
185–208.

[38] W. Schwärzler, “On the complexity of the planar edge-disjoint paths
problem with terminals on the outer boundary,” Combinatorica, vol. 29,
no. 1, pp. 121–126, 2009.

[39] M. Becker and K. Mehlhorn, “Algorithms for routing in planar graphs,”
Acta Informatica, vol. 23, no. 2, pp. 163–176, 1986.

[40] U. Brandes, G. Neyer, and D. Wagner, “Edge-disjoint paths in planar
graphs with short total length,” 1996, Konstanzer Schriften in Mathematik
und Informatik; 19.

[41] H. Bodlaender, “Dynamic programming on graphs with bounded
treewidth,” Automata, Languages and Programming, pp. 105–118, 1988.

[42] T. Nishizeki, J. Vygen, and X. Zhou, “The edge-disjoint paths problem
is NP-complete for series–parallel graphs,” Discrete Appl. Math., vol.
115, 2001.

[43] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey.
Philadelphia, PA, USA: SIAM, 1999.

[44] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[45] ETSI, “Network functions virtualisation – introductory white paper,”
White Paper, oct 2013.

[46] J. Napper, W. Haeffner, M. Stiemerling, D. R. Lopez, and
J. Uttaro, “Service Function Chaining Use Cases in Mobile
Networks,” Internet-Draft, Apr. 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

[47] L. Perković and B. A. Reed, “An improved algorithm for finding tree
decompositions of small width,” Int. J. Found. Comput. Sci., vol. 11,
no. 3, pp. 365–371, 2000.

[48] H. Fleischner and G. J. Woeginger, “Detecting cycles through three fixed
vertices in a graph,” Inf. Process. Lett., vol. 42, no. 1, pp. 29–33, 1992.

[49] G. Even, M. Medina, and B. Patt-Shamir, “Online path computation and
function placement in sdns,” in Proc. SSS, 2016.

[50] T. Lukovszki and S. Schmid, “Online admission control and embedding
of service chains,” in SIROCCO, 2015.

[51] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in SDNs,” in SIROCCO, 2016.

[52] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion
mapping in a cloud,” in Proc. ACM PODC, 2011.

[53] K.-T. Foerster, M. Parham, and S. Schmid, “A walk in the clouds: Routing
through vnfs on bidirected networks,” in ALGOCLOUD, ser. Lecture
Notes in Computer Science, vol. 10739. Springer, 2017, pp. 11–26.

504

Complex Services Offloading

in Opportunistic Networks

The An Binh Nguyen∗, Marius Rettberg-Päplow∗, Christian Meurisch†, Tobias Meuser∗,

Björn Richerzhagen∗, Ralf Steinmetz∗

∗Multimedia Communiations Lab (KOM), TU Darmstadt, Germany

Email: {firstname.lastname}@kom.tu-darmstadt.de, mberg@hotmail.de
†Telecooperation (TK), TU Darmstadt, Germany

Email: meurisch@tk.tu-darmstadt.de

Abstract—Situation awareness is important to plan relief work
in emergency response. However, impaired communication and
computation infrastructure makes it difficult to acquire and an-
alyze information. Accordingly, complex and resource-intensive
information processing can be offloaded through opportunistic
ad hoc contact to, e.g., first responder mobile devices, leveraging
their idle resources. Ensuring complete service execution without
overloading individual devices is a challenging task in such dy-
namic networks. In this work, we propose handover mechanisms
that utilize the current context of individual mobile devices
to balance load and achieve complete task execution without
requiring a global view on the opportunistic network. We study
their scalability and performance by combining them with our
unified message template for distributed service processing in the
OMNeT++ simulation environment. The evaluation shows that
our handover mechanisms increase the success rate significantly
and achieve distributed load balancing.

I. INTRODUCTION

In recent years, mobile services become more computation-

intensive and more complex, requiring multiple processing

stages and highly-specialized hardware. Executing such ser-

vices on a single device is therefore impractical. To alleviate

a device with limited computing capacity, a complex mobile

service can be offloaded as a task to a remote cloud for

execution. However, offloading to the cloud is not always

possible due to overloaded or impaired infrastructures, which

can occur, for instance, in emergency situations such as

disaster scenarios. Opportunistic offloading [1] has been in-

troduced as an emerging solution for offloading computation.

Hereby, the computation tasks can be offloaded to a nearby

stationary computing unit such as cloudlet [2], or to an

opportunistic network formed by mobile devices [3]. While

both approaches share the common idea of leveraging nearby

available computing resources, offloading in an opportunistic

network provides more flexibility and more advantages in

favor of executing complex tasks with multiple processing

stages. A complex task can be divided into several subtasks,

and distributed to the participating mobile devices, leveraging

their idle, and heterogeneous capabilities. Besides ensuring

successful execution of the offloaded tasks, balancing services

execution among the participating devices is also essential, and

beneficial. On the one hand, load balancing relieves overloaded

devices, effectively leading to improved overall performance.

On the other hand, the energy consumption for executing

the offloaded tasks by participating devices can be decreased

through load balancing, resulting in (i) longer lifetime of op-

portunistic networks, which serves as communication medium

during critical situations, and (ii) more acceptance of users to

contribute their resources. Most approaches dealing with load

balancing in mobile systems are based on global knowledge

of the network to formulate the load balanced assignment

as an optimization problem. In line with the dynamic nature

of opportunistic networks, the optimization problem can also

be solved in a distributed manner, as proposed in [4]. Still,

rapidly changing environments require a flexible and adaptive

approach to load balancing that takes changing conditions,

resource constraints, heterogeneity of tasks and services, and

mobility into account.

In this work, we propose several handover mechanisms for

load balancing in complex services offloading based on the

currently available context of single devices. To this end, we

extend our previous work [5] on a task message template that

allows the user to define a task and the services required to

accomplish the defined task. Our message template bundles

the control information and the corresponding payload data

into a single message. This enables mobile devices to decide

autonomously whether and how to participate in service pro-

cessing. We implement our proposed mechanisms within the

OMNeT++ simulator [6], allowing for an in-depth evaluation

of their performance in terms of load balancing and success

rate and their cost in terms of message overhead and latency.

In summary, the contributions of this paper are threefold:

• We propose several load balancing (LB) mechanisms for

distributing complex tasks across devices in an oppor-

tunistic network, optimizing resource utilization and suc-

cess rate, while minimizing the communication overhead.

• We develop a simulation environment based on OM-

NeT++, which integrates our earlier work on an adaptive

task oriented message template [5].

• We conduct an extensive evaluation of our LB mecha-

nisms within the OMNeT++ simulation environment. We

show the overall performance gain, improved fairness,

and inherited trade-offs of our proposed LB mechanisms.ISBN 978-3-903176-08-9 c© 2018 IFIP

The remainder of this paper is organized as follows. First,

we discuss related work. Second, we give a brief introduction

in our adaptive task message template (namely ATMT) for

distributed in-network processing, and highlight an impor-

tant open research challenge, namely, distributed fair load

balancing. Third, we present our load balancing handover

mechanisms and an in-depth evaluation relying on OMNeT++

simulations, before concluding the paper.

II. RELATED WORK

Offloading computational workload in mobile systems, aim-

ing to reduce network traffic have been studied in several

research work. [7] propose a decentralized optimization model

for the underlying operator placement problem. This ap-

proach, however, does not consider dynamic changes of the

environment. Recent research on Complex Event Processing

(CEP) in the context of vehicular networks has put more

attention to adaptive mechanisms; an example is CEP operator

migration [8]. Another research direction is edge computing,

in which computation tasks are offloaded to nearby computing

resources such as cloudet-upgraded router for processing [2].

In the aforementioned work, balancing computational work-

load is neglected.

Load balancing or fair resource allocation have always been

an important research aspect in mobile networks. To analyze

fair resource allocation, Fossati et al. [9] propose to extend

the Jain’s fairness index with a satisfaction factor of users.

The problem of resource allocation is modeled through game

theory, using their proposed metric. Tham et al. [4] target mo-

bile edge networks and formulate a constrained optimization

problem to achieve load balancing. The problem, however, has

to be solved by a central entity. Fernando et al. [10] incorporate

work stealing concepts in mobile crowd computing, allowing

a worker device to take over workload from other devices.

The authors focus on the practical implementation using

mobile devices and, thus, do not consider work stealing in

a large scale setup. Centralized coordination is impractical

in an opportunistic network. Consequently, Benchi et al. [11]

study the consensus problem in opportunistic networks, which

allows each node to make a consent decision upon receiving

enough votes from others. Comparable to our work is load

balancing for services composition in opportunistic networks.

Viswanathan et al. [12] use a time deadline for services

composition to formulate an optimization problem, which can

be solved by service providers in a distributed manner. The

complexity of such optimization formulation is high, thus

cannot cope well with the rapid changes of an opportunistic

network. In [13], Sadid et al. introduce a hop by hop compo-

sition model designed for opportunistic networks, considering

load and mobility of the devices. The authors propose to

let each service provider decide on the next composition to

cope with dynamic changes. Our work differentiates from [13]

in that we explicitly incorporate uncertainty factors in our

local optimization mechanisms to increase their robustness.

Furthermore, we provide a thorough evaluation focusing on

the quality of load balancing.

III. SCENARIO: IN-NETWORK DATA ANALYSIS IN

EMERGENCY SITUATIONS

A. Scenario Description

To plan relief operations in emergency response situations

efficiently, the relief workers need to have situational informa-

tion. The required raw sensing data can be obtained through

built-in sensors on the mobile devices as shown in [14].

Thereafter, these data have to be processed and analyzed to

extract valuable information. A concrete example can be found

in [15]. In this work, image processing techniques are applied

to extract faces of victims through pictures shot by smart

phones. To capture the situational overview, a large amount

of data might be required. Processing all these data in a

single device of the relief worker is inefficient. Two options

are possible: (i) offloading the data analysis to cloud servers,

(ii) offloading the data analysis to several surrogate devices

for distributed processing. The first option is not always

possible in case of impaired communication infrastructure,

which often occurs in disaster situations. The second option

provides a more flexible solution to analyze data, leveraging

idle resources available in opportunistic network.

Delegator

Operator

Operator

OP1 OPn...

OP1 OPn...

Operator

1

2

2
OP3 OPn...

OP1 OPn...

Operator

3

n

...

3

n

...

Direct WiFi Ad Hoc
Mobility based Ad Hoc

DTN

Message

Message

Message

Message

Fig. 1: Abstract system model of disseminating ATMT task

messages in opportunistic networks for processing.

To facilitate distributed processing through mobile devices

in the elaborated scenario, the adaptive task-oriented message

template (ATMT) is proposed in [5]. The objective of this

message template is to allow users to define an analysis goal

and the operations/services required to accomplish this goal.

Using the task message template, the data analysis is handed

over from one device to the next device, wheres each device

can perform one or several operations. Hence, the task is

divided and processed in a distributed manner. The workflow

of processing an ATMT message is illustrated in Figure 1.

In this illustration, a device (called delegator) with required

domain knowledge of how to process the data analyis, defines

n operations (op1..opn) and disseminate the message into the

opportunistic ad hoc networks. Each device participating in the

processing (called operator) executes the operations provided

by this device and hands over the processed message upon

opportunistic contact with other devices for further executions.

506

B. Adaptive Task Message Template

The construction of the ATMT task message template

designed in our previous work [5] is illustrated in Figure 2. To

facilitate distributed processing in opportunistic networks, one

of the objectives of ATMT is to allow the participating devices

to cooperate without having to rely on any centralized coordi-

nation. Due to this reason, an ATMT message contains both

meta-information required for processing and the belonging

payload data. The meta-information is stored in the ATMT

header, consisting of two parts, i.e., message header and

analysis header. The first part is the fix-sized message header,

which contains an UUID for identification, a checksum on

the status of the processing and the length of the header. By

comparing the checksum in the message header, a device can

check on the current status of the processing and decides

to merge, drop or to handover a task, without parsing the

whole message content. The analysis header composes of an

operations graph and a data dictionary. The operations graph

is based on an acyclic directed graph, that is used to model

the processing goal, the required operations/services, and the

processing order. The data dictionary in the header maps the

operations in the operations graph to the respective data pieces

in the ATMT payload. When an operation is completed by

a device, this device can replace the old payload data with

the processed result. All in all, the construction of an ATMT

message allows each device to make autonomous decision.

ATMT Header

Message Header

(UUID, Checksum,

Length)

Analysis Header

Operations Graph

ATMT Payload

OP1
OP3

OP2
OP4

Data#1 Data#2 Data#3 ..
Data

Dictionary

Fig. 2: Construction of ATMT task message template as

designed in [5].

A system utilizing ATMT message to perform in-network

data analysis as the aforementioned scenario depends on

the heterogeneous capabilities of the devices, which can be

translated into different roles. Four roles are conceived, i.e.,

sensors for obtaining raw data, delegators with the domain

knowledge for constructing the operations graph which can

be understood as a way to coordinate the devices in a dis-

tributed manner, operator for performing operations/services,

and forwarder to handover the ATMT messages. As briefly

described in the previous section, Figure 1 shows a sample

workflow using ATMT concept. Sensor devices are omitted

in the illustration. A delegator device receiving data from the

sensors constructs an ATMT message, and hands over this

message to its directly connected operators via WiFi ad hoc

communication. Each operator processes the ATMT message

and executes the operations/services required in the operations

graph according to its available resource and services. The

resulting ATMT messages can be forwarded through store,

carry and forward concept of opportunistic mobile networks to

another operator at later time for further processing. In doing

so, the chances for successful execution of a complex analysis

task can be increased.

IV. CHALLENGES AND ASSUMPTIONS

Based on the description of the ATMT construction and the

in-network data analysis workflow, we can identify several

challenges. (i) A centralized coordination with the complete

view over the services available in all mobile devices does

not exist. Consequently, each device only has a partial view

of the network. (ii) The devices considered in this work are

highly dynamic and mobile. This requires adaptive mecha-

nisms. (iii) Due to the challenges elaborated in (i) and (ii),

the handover of ATMT messages in an uncoordinated way

might lead to massive communication overhead and processing

redundancies, i.e., workload waste. Optimizing both successful

execution of complex ATMT tasks and load balancing under

the aforementioned challenges is thus our main target.

With respect to the challenges and the elaborated application

scenario, the following assumptions are made:

• Decentralized opportunistic ad hoc network: we focus on

complex services offloading and distributed processing in

an opportunistic ad hoc network. Thus, we assume that

the devices are mobile and they are able to communicate

if they are in WiFi range of each other.

• Heterogeneous resource and services: we assume that

the participating devices possess different capabilities,

i.e., each device has different resource capacity left, can

provide different services, perform different operations.

• Cooperative behaviour: we assume that no participating

device has malicious intention. To establish a trustworthy

distributed processing environment in a mobile system,

trust measurement concept such as in [16] can be utilized.

• Location-aware: we assume that each device is able to

determine its own location.

V. HANDOVER MECHANISMS

We design our handover mechanisms with special focus

on load balancing. Our target is to improve the distribution

of workload among participating devices in an opportunistic

network, taking into account the challenges and assumptions

as previously discussed. According to Alakeel [17], we have

to consider three main aspects when designing load balancing

mechanisms for distributed systems, i.e., transfer strategy,

location strategy, information strategy. Transfer strategy is

the decision whether to offload/handover the task, location

strategy indicates which destinations should the tasks be

offloaded to, and information strategy refers to the context

information which can be used to devise transfer strategy

and location strategy. Accordingly, the information strategy

is the most important component of handover mechanisms.

W.r.t. our scenario, the information strategy is limited, since a

global view of all devices in an opportunistic network is not

possible. Therefore, a device in an opportunistic network can

only use either (i) its own context information or (ii) a partial

view of the network through information shared by other

devices via opportunistic contact. Based on this observation,

507

we devise three categories for handover mechanisms, i.e.,

naive, work stealing, and local optimization. A device using

naive mechanism only requires its own resources utilization

as context to make handover decision; while a device using

work stealing and local optimization requires shared context

from other devices. The details of each devised mechanisms

will be elaborated in the following.

A. Naive

Naive mechanism does not require any sophisticated shared

context; the decision is made by single device’s context with

respect to the resource utilization on this device. To this end,

each participating device in our system maintains a queue of

ATMT tasks. The size of ATMT tasks queue indicates the

total resource, which a device can contribute. Two options

are possible for naive handover. (i) Since an ATMT message

represents a complex task that requires the execution of several

services in a predefined order, the successful completion of a

task is not guaranteed in opportunistic network. Consequently,

to increase the success rate, a naive node simply contributes

all of its resource available in ATMT tasks queue and passes

the processed ATMT tasks to all neighbours. This behavior

resembles the well-known epidemic routing [18]. Hence, the

common observed characteristics of epidemic routing can also

be applied for our naive mechanism; i.e., the success rate

is improved by scarifying communication and computation

overhead. Due to this reason, a naive mechanism utilizing full

resources of participating devices, serves well as the baseline

for benchmarking purpose. (ii) It can also be observed that,

in dense opportunistic networks, a high number of devices

providing similar services can exist. On the one hand, the

resource on these devices will be used redundantly, following

a greedy naive behavior. On the other hand, the success rate

when reducing the size of ATMT tasks queue and rejecting

ATMT tasks upon reaching a limit, can be compensated by the

high number of participating devices with similar capabilities.

In such cases, reducing the size of the ATMT tasks queue

and rejecting tasks can decrease the number of redundantly

executed operations, while preserving the high success rate

and leading to improved load balancing. This intuition will be

analyzed later in the evaluation (cf. Section VI). In summary,

a naive device in our system will either fully utilize all its

available resource, i.e., epidemic flooding of ATMT tasks in

the whole network, or a device can intentionally reduce its

tasks queue and drop upcoming received tasks.

B. Work Stealing

The term work stealing is coined in the context of parallel

computing [19]; it refers to the act of an underutilized pro-

cessor stealing threads from over-utilized processor, aiming

to relieve over-utilized processors from high workload, thus

a better load balancing among processors can be achieved.

Fernando et al. [10] incorporates the concept of work stealing

in the context of mobile crowd computing. Our devised work

stealing strategy extends this idea for a more decentralized

dynamic system, i.e., mobile devices in opportunistic network

with the ability to act autonomously.

In our system, each operator device is qualified as a work

stealer, i.e., if an operator device deems itself to be under-

utilized, this device can ask to take over ATMT tasks from

the nearby devices. Underutilization is determined based on

the current number of ATMT tasks in the tasks queue. If this

number is less than a work stealing limit, then an operator

device will ask the surrounding operators to handover ATMT

tasks. An operator device triggers the work stealing process

by sending a work stealing message, indicating the number of

ATMT tasks (nws) that this work stealing operator is willing to

accept and the list of its providing operations. In order not to

exhaust the maximum resource of the work stealing operator,

nws should not exceed the maximum size of the ATMT tasks

queue on the device. Furthermore, to avoid egoistic behavior of

the participating operators, when receiving the work stealing

message with the indicated capacity nws, a device is allowed

to handover maximum up to nws tasks, however a minimum

number of task nkeep should always be kept back in the tasks

queue. To decide how many tasks should be handed over to

the work stealing operator, three options are conceived: (i)

Devices receiving work stealing message try to exploit the

maximum capacity indicating by the work stealing operator

without any coordination from the work stealing device. (ii)

The work stealing device assumes the local coordination and

divides the number of allowed ATMT tasks equally for its

neighbors. (iii) The work stealing device accepts tasks from

its neighbors following first come first serve principle. As soon

as the maximum threshold is reached, the work stealing device

will notify the neighboring devices to stop handing over tasks.

Assignment of next

Service

Operator

OPi OPn...

Message

Operator

i

Operator

Operator

x

Operator

x

Operator

j

OPj OPn...

Message

Context Information

Exchange

Fig. 3: Illustration of local optimization concept, choosing to

the best next handover destination benefiting load balancing.

C. Local Optimization

Local optimization is inspired by the observation of Eager

et al. [20], that a simple load adaptation locally in a distributed

environment can lead to the overall improved performance

of the whole system. Additionally, in the context of services

composition in opportunistic network, Sadid et al. [13] show

that the overall performance of opportunistic hop by hop

composition is comparable to the performance of composition

508

orchestrated by a centralized entity. Following this line of

thought, we devise strategies for tasks handover decision at an

operator device in our system, requiring only local knowledge

obtained through shared context of the neighboring devices.

Our target is to optimize the load sharing among several

devices locally by handing over the tasks to the next best

destination within a close proximity. The local optimization is

done by single devices autonomously, but still in a collabora-

tive manner through shared context. The overall workflow of

local optimization strategy is illustrated in Figure 3.

In opportunistic networks, the context of devices can be

shared either in a reactive or proactive manner. Reactive

context sharing is triggered only if a device receives an explicit

query asking for its context. However, in a highly dynamic

environment, a long time might elapse since the query is sent,

until the information comes back to the query initiator. Due

to this reason, proactive context sharing seems to be more

favorable in opportunistic network. The context information is

thus exchanged at any opportunistic contact of two devices in

our system. Two devices exchange the summary of the context

information about themselves and about the other devices that

these two have seen in the past. Through this way, every

devices have a snapshot of the shared context information.

The context information required for local optimization of load

balancing are generated by each device as a list of available

operations (opi..opj), the currently-used capacity (nu), the

current position ((long, lat)), moving direction (~v) and a time

stamp (tinfo) when generating context information. When an

operator device triggers the local optimization, it checks the

current shared context and filters the nodes within a proximity

of distance dmax, that possess the required operations, as

potential destinations for task handover. The potential des-

tinations can be further filtered, omitting devices that have

distance around dmax and currently move farther away from

the initiating device. To choose destinations benefiting the

load balancing, we use a cost function covering three aspects

for local optimized assignments, which are the currently-

used capacity in the tasks queue (nu), the distance and the

uncertainty of the shared context information about operator

O, i.e., (µ(NO)). The cost function is defined as follows:

c(NA, NO,#OP) = (wl ∗ cl ∗#OP + wd ∗ cd) ∗ µ(NO) (1)

in which:

µ(NO) = 1 +
tcurrent − tinfo

tkeepAlive

cl(NO) =
nmax − nu

nmax

cd(NA, NO) =
d(NA, NO)

dmax

(2)

In Equation 1, NA is the node that wants to trigger the

handover, to assign some of its tasks to other operator; NO

is a potential destination operator, to which the tasks can

be assigned. #OP is the number of operations that will be

handed over. wl and wd are weighting factors for cost values

of load (cl) and distance (cd), respectively. In Equation 2, the

uncertainty factor µ(NO) is captured using the time elapsed

since the context information of operator O are generated until

recently. The main cause of the uncertainty is the high dynamic

of the network, caused by mobility or by disappearance upon

exhaustive utilization of the devices. Consequently, outdated

context information, which results in a higher uncertainty

factor µ(NO), can lead to a negative handover decision,

increasing the total cost. The cost for load component in

the equation is considered based on the number of currently

utilized tasks in the tasks queue and the maximum size of

the task queue (nmax). The distance component is determined

by the ratio between the current distance d(NA, NO) from

the assigner to the operator and the search radius (dmax),

as in Equation 2. This is based on the intuition, that the

communication overhead for a nearer node is less than that

for the farther node; since more hops might be required to

reach an operator at larger distance.

In order to improve load balancing, each device can trigger

the local optimization to find the best destination with mini-

mum handover cost for the upcoming operations of an ATMT

task. We propose two modes to trigger local optimization

to find the best next handover destination, i.e., (i) proactive

mode: every time the shared context information are updated,

indicating possible better destination for the next handover or

(ii) reactive mode: only when a device receives more tasks than

the current size of its task queue, indicating over-utilization.

Regardless of trigger modes, to ensure effective dissemination

of shared context information, every time a device detects a

new neighbor, this device exchanges its summarized context

information with the new neighbor.

VI. EVALUATION

We implement and evaluate the task handover mechanisms

as detailed in Section V, using a customized OMNeT++

module compatible with our designed ATMT message [5]. In

this section, we first elaborate on the evaluation methodology,

the simulation setup, and the evaluation metrics. Next, we

study each handover mechanisms independently w.r.t. the

evaluation metrics to identify the best performing option

within each category. Last, we compare the proposed handover

mechanisms against each other and point out the trade-off

between the performance and load-balancing metric.

A. Scenario Modelling, Setup and Evaluation Metrics

Since the main target of our evaluation is the analysis of

computation balancing, we model a simulation scenario to

enable the dissemination of ATMT tasks into an opportunistic

network. This network consists of several mobile nodes that

move around a 500× 500m2 simulation area. Two nodes can

communicate within 75m WiFi range. We abstract from a

WiFi ad hoc model to enhance the scalability of the simulation

and assume that the congestion will be handled by Link

Layer mechanisms [21]. We set up five static nodes, one main

delegator and four helper delegators which are connected to the

main delegator. The main delegator generates ATMT-tasks and

509

0 100 200 300 400 500
Position[m]

0

100

200

300

400

500

Po
si
ti
on

[m
]

(a) 20 devices

0 100 200 300 400 500
Position[m]

0

100

200

300

400

500

Po
si
ti
on

[m
]

(b) 40 devices

0 100 200 300 400 500
Position[m]

0

100

200

300

400

500

Po
si
ti
on

[m
]

(c) 60 devices

0 100 200 300 400 500
Position[m]

0

100

200

300

400

500

Po
si
ti
on

[m
]

(d) 80 devices

Fig. 4: Contacts among nodes for varied number of devices.

(a) Contact duration

20 40 60 80
Number of devices

1

2

3

4

5

6

N
um

be
r

of
 n

ei
gh

bo
ur

s

(b) Number of neighbors

Fig. 5: Average contact duration and number of neighboring

devices according to the used Levy Walk mobility model.

injects these tasks to the network through the helper delegators.

The reason for this particular setup is to allow the initial

ATMT tasks to reach more operator nodes even under sparse

network as in case of 20 devices (cf. Fig. 4a), aiming solely

at generating a similar start configuration in both dense and

sparse setups. The performance of the handover mechanisms,

which rely on the behavior of the participating nodes during

the simulation run, is not affected by this setup. We create two

types of task; a simple task which contains between two or

three operations, and a complex task which always contains

five operations. The delegator nodes are marked in red as

shown in Fig. 4. To control the movement of the simulated

mobile nodes, we use the Levy Walk mobility model. This de-

cision is based on the fact, that the Levy Walk mobility model

is reported in [22] to resemble the human mobility patterns. We

generate mobility traces accordingly using BonnMotion [23].

The direct contacts among mobile nodes from the generated

traces are illustrated in Fig. 4. Fig. 5 shows the observed

characteristics of the generated traces, which suggest a longer,

more stable contact duration and an increasing number of

direct neighbors with more devices in the network. As such, 20

nodes represent a sparse opportunistic network, while 80 nodes

represent a dense opportunistic network. The most important

simulation parameters are summarized in Table I.

TABLE I: Simulation Setup

Simulated Area Size 500× 500m
2

Simulation Time one hour

Number of Nodes 20, 40, 60, 80

WiFi Transmission Range 75 m

Mobility Model LevyWalkMobilityModel

#ATMT-Tasks 100, 1000

Naı̈ve Greedy full, limited

Work Stealing full, FCFS, equalized

Local Optimization proactive, reactive

We repeated each simulation ten times and plotted all

obtained results with 90% confidence intervals. The following

evaluation metrics were used to analyze the results:

(a) Success rate denotes the ratio between the number of

successfully completed ATMT tasks that can be delivered

back to the main delegator and the total number of tasks.

(b) Communication overhead is defined as the total number

of ATMT messages that are generated and duplicated by

the handover strategies.

(c) Completion time is the time elapsed since the main del-

egator injects tasks into the network, until all processed

results come back to the main delegator.

(d) Jain index is proposed by Jain et al. in [24] as follows:

JI(x1, x2, ..., xn) =
(
∑

n

i=1
xi)

2

n∗
∑

n

i=1
x2

i

, wheres xi denotes the

resource consumed (in our scenario the number of oper-

ations executed) by node i. Jain index with value closer to

1 indicates higher fairness among the resources consumed

by all nodes. Thus, Jain index is able to quantify the

quality of load balancing mechanisms.

(e) Redundancy factor is defined as the ratio between the

number of redundantly executed operations and the orig-

inal number of operations in the network.

B. Handover Mechanisms Analysis

Naive: The evaluation for naive mechanisms has two objec-

tives: (i) assessment of ATMT tasks dissemination in scarce

and dense opportunistic networks and (ii) identification of

suitable tasks queue’s size which benefits load balancing

quality as a baseline for further analysis.

In our simulation, each node possesses a number of prede-

fined services which this node can execute. For evaluation of

naive mechanisms, we set up three different classes character-

izing the availability of the services on all nodes, i.e., high,

medium, low. The distribution of the services availability on

the nodes in each class follows a normal distribution. The high

class assigns 50% of the nodes with all 5 available services

required for the operations defined in the ATMT task; the

medium class assign 50% of the nodes with between 2 and

3 available services; and the low class assign 50% of the

nodes with no services, the majority of the rest are assigned

only 1 single service. Fig. 6a and 6b show the dependency of

success rate on the availability of the services. Low services

availability decreases the success rate, which is visible in case

complex tasks are executed in sparse network with only 20

510

High Medium Low

1000(Complex) 1000(Simple) 100(Complex) 100(Simple)
Task Type

0

20

40

60

80

100

Su
cc

es
s

%

(a) Success rate with 20 nodes

1000(Complex) 1000(Simple) 100(Complex) 100(Simple)
Task Type

0

20

40

60

80

100

Su
cc

es
s

%

(b) Success rate with 80 nodes
40 Devices 60 Devices 80 Devices

20 40 60 80 100
Available resource in queue

0.40

0.45

0.50

0.55

0.60

0.65

0.70

JI(
O

ps
)

(c) Jain index

20 40 60 80 100
Available resource in queue

100

150

200

250

300

350

400

450
Ti

m
e

[s
]

(d) Completion time

Fig. 6: Analysis of naive handover.

nodes. The success rate in this case only reaches around 20%

(cf. Fig. 6a). However, the success rate despite low services

availability can be compensated through higher number of

devices as we anticipated. Fig 6b shows, that the success

rate for complex tasks with low services availability can be

improved from 20% (with 20 nodes) to 80% (with 80 nodes).

The effect of tasks queue’s size on the performance and the

quality of load balancing was examined. Fig. 6c shows slightly

better values for Jain index over the executed operations when

decreasing task queue’s size, compared to the maximum size

(100 in our simulation), indicating slightly improved fairness

in the system. Shorter queue size also means less resource has

to be contributed by the nodes. With respect to the completion

time, a shorter tasks queue does not have any negative effect.

Rather, the completion time depends on the number of devices,

i.e., faster completion time can be achieved with more devices

in the network as shown in Fig. 6d. Overall, the analysis of

naive handover mechanisms suggests reducing the size of the

tasks queue, thus frees resources for participating nodes.

Work Stealing: We compare thee options for work stealing

as introduced in Section V-B against naive flooding handover

mechanisms (N-Full). The 3 options for work stealing are

respectively: WS-Full which tries to exploit the full capacity of

the work stealing node, WF-Equal in which the work stealing

node divides the accepted capacity equally among neighbors,

and WS-FCFS which follows first come first serve principle.

It can be observed that greedy behavior when handing over

tasks in WS-Full decreases the success rate (down to 70%

with 80 nodes), while generating even more communication

overhead compared to the naive handover N-Full. This neg-

ative effect is due to the redundant task handovers triggered

by the neighbors in WS-Full, which the work stealing nodes

have to drop at overloaded capacity. On the contrary, the two

other work stealing options, WS-Equal and WS-FCFS slightly

N-Full WS-Full WS-Equal WS-FCFS

40 60 80
Number of Devices

0

20

40

60

80

100

Su
cc

es
s

%

(a) Success rate

40 60 80
Number of Devices

0

100000

200000

300000

400000

500000

600000

AT
M

T
O

ve
rh

ea
d

(b) Communication overhead

40 60 80
Number of Devices

0

100

200

300

400

500

600

700

800

Ti
m

e
[s

]

(c) Completion time

40 60 80
Number of Devices

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

JI(
O

ps
)

(d) Jain index

Fig. 7: Analysis of work stealing mechanisms.

80 proactive nodes 80 reactive nodes

75 100 125 150 175
Search Radius [m]

0

20

40

60

80

100
Su

cc
es

s
%

(a) Success rate

75 100 125 150 175
Search Radius [m]

0

25000

50000

75000

100000

125000

150000

175000

200000

AT
M

T
O

ve
rh

ea
d

(b) Communication overhead

75 100 125 150 175
Search Radius [m]

250

300

350

400

Ti
m

e
[s

]

(c) Completion time

75 100 125 150 175
Search Radius [m]

0.3

0.4

0.5

0.6

0.7

0.8

JI(
O

ps
)

(d) Jain index over executed op-
erations

Fig. 8: Analysis of different modes for local optimization.

improve the success rate and even the completion time in some

cases compared to N-Full (cf. Fig. 7a, 7c). The reason is,

work stealing with WS-Equal and WS-FCFS can free some

resources of the nodes locally; in contrast, naive handover

mechanism generates more redundant operations (cf. overall

comparisons, Fig. 9b). However, depending on the distribution

of the nodes in the area, the chance for a work stealing node

and an overloaded node to meet cannot always be guaranteed.

Correspondingly, Jain index values obtained through work

stealing display no major load balancing improvement using

work stealing concept (cf. Fig. 7d).

Local Optimization: Since the local optimization looks for

the best next destination within a search radius to assign the

handover, we anticipate the size of this search radius affects

511

N-Full N-Limited WS-FCFS LOpt-P LOpt-R

20 40 60 80
Number of Devices

0.2

0.4

0.6

0.8

JI(
O

ps
)

Low Load High Load

(a) Jain index over executed operations.

20 40 60 80
Number of Devices

0

1

2

3

4

O
p

Re
du

nd
an

cy
 F

ac
to

r

Low Load High Load

(b) Redundancy factor.

20 40 60 80
Number of Devices

0

20

40

60

80

100

Su
cc

es
s

%

Low Load High Load

(c) Success rate.

Fig. 9: Comparison of handover mechanisms.N-Full denotes the flooding based naive handover; N-Limited denotes the naive

handover with limited task queue; WS-FCFS represents work stealing, using first come first serve; LOpt-P denotes the proactive

local optimization; LOpt-R denotes the reactive local optimization.

N-Full N-Limited WS-FCFS LOpt-P LOpt-R

20 40 60 80
Number of Devices

0

200

400

600

800

1000

Ti
m

e
[s

]

Low Load High Load

Fig. 10: Completion time of handover mechanisms.

all evaluation metrics. Hence, we vary the size of the search

radius and analyze the corresponding influences. The results

are shown in Fig.8. We evaluate two modes of the local

optimization as introduced in Section V-C, i.e., proactive mode

which triggers the local optimized handover upon receiving

new shared context, and reactive which triggers the local

optimized handover only for overloaded situations.

The success rate for both proactive and reactive modes

are high (almost always at 100%) regardless of the size of

the search radius. Obviously, larger search radius leads to

more communication overhead. Proactive local optimization

generates more communication overhead compared to reactive

local optimization; since the context in an opportunistic mobile

network tends to change rapidly, leading to more frequent

information exchange in proactive mode (cf. Fig. 8b). A

longer completion time for proactive mode is visible when

increasing the size of the search radius, which is the trade-

off for obtaining better result for optimization. In contrast,

the completion time for reactive mode is quite stable, since

it only triggers the local optimization at circumstances (cf.

Fig. 8c). Fig. 8d shows improved Jain index values with

larger search radius. With proactive mode, the Jain index

value increases from 0.37 with 75 m search radius, up to

0.75 with 125 m search radius. Reactive mode increases the

Jain index value from 0.5 at 75m, up to 0.65 at 125 m.

Increasing the search radius more than 125 m shows no more

fairness improvement, suggesting converge quality for load

balancing. Hence, the search radius should be restricted in

order not to waste communication overhead. Between two

modes, proactive local optimization yields better quality for

load balancing than reactive mode at larger search radius. This

can be explained by the fact, that proactive mode reacts on the

context changes of the network, while reactive mode waits for

an overloaded situation.

C. Handover Mechanisms Comparison

Having analyzed the handover mechanisms individually in

Section VI-B, we now compare all mechanisms against each

other. To cover the performance indicators for both sparse and

dense network situations, we use two setups: (i) a low load

setup with 100 tasks distributed to 20 or 40 nodes and (ii)

a high load setup with 1000 tasks distributed to 60 or 80

nodes. Selected results for the comparison regarding the Jain

index, redundancy factor, success rate and completion time

are presented accordingly in Fig. 9a, 9b, 9c, 10. For a sparse

network, the quality for load balancing fluctuates, regardless

of handover mechanisms. It is to be expected, since a sparse

opportunistic network tends to be partitioned; many nodes

are therefore isolated the whole time, providing no way for

their resources to be exploited. Evidently, the quality for load

balancing can be improved with more nodes in the network.

Fig. 9a shows that our proposed proactive local optimization

can achieve the best Jain index value (around 0.8 in case of 80

nodes), outperforms other handover mechanisms. The quality

of load balancing obtained by reactive local optimization,

despite being less than proactive local optimization, is still

comparable to flooding based naive handover (both achieve

Jain index values at around 0.65 with 80 nodes). Proactive

local optimization yields the lowest redundancy factor (at avg.

1.5), compared to a very high redundancy factor of N-Full

(at avg. 2.5, the worst case up to more than 4) (cf. Fig. 9b).

512

This confirms that the resources in naive mechanisms are used

redundantly, while our proposed local optimization mecha-

nisms help to alleviate this problem. As already discussed in

the analysis of work stealing, work stealing cannot improve

the overall load balancing, but can achieve higher success

rate compared to naive mechanisms. The result shown in

Fig. 9c again confirms this observation. The same result also

demonstrates that our proposed local optimization mechanisms

not only outperform other mechanisms w.r.t. load balancing,

but are also able to outperform others w.r.t. success rate. More-

over, the marginal variances shown in the box plot obtained

from the results of both local optimization modes, prove the

robustness of the mechanisms, against the rapid changes in

dynamic, mobile networks. The improvements achieved by

local optimization mechanisms, however, have to take into

account longer completion time (cf. Fig. 10).

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended the adaptive task-oriented mes-

sage template (ATMT) defined in our previous work [5]

and proposed several handover mechanisms that enable load

balancing for distributed processing of complex tasks. Our

proposed mechanisms were designed focused mainly on op-

portunistic networks, thus do not require any centralized

coordination. The evaluation results show that we were able

to achieve better load balancing through local optimization,

leveraging only locally shared context information. Overall,

our proposed task message template facilitates distributed

coordination and is thus suitable for decentralized, highly

dynamic environment.

Several directions are possible as our future work. First,

the load balancing mechanisms proposed in this work can be

further evaluated using real hardwares, which allows us to

determine over-utilized situation in realistic conditions, e.g.,

based on CPU load or energy consumption level. This will also

allow us to incorporate, and consequently study the effect of

heterogeneity in terms of hardware configuration, energy con-

sumption when executing a complex operation on distributed

load balancing. Second, the handover mechanisms, especially

work-stealing can be further augmented by prioritizing tasks,

i.e., setting higher handover priority for nearly completed

tasks can benefit the success rate, while setting higher priority

for computation-intensive tasks will work in favor of load

balancing. Third, within the context of information centric

ad hoc network (ICN), it is shown that situational data can

be collected by mobile devices [14]. Hereby, we want to

combine the design of ATMT with data transport phase in ICN

to deliver processed high-valuable information to the query

initiator.

ACKNOWLEDGMENT

This work has been co-funded by the LOEWE initiative

(Hessen, Germany) within the NICER project and by the

German Federal Ministry of Education and Research (BMBF)

Software Campus project ”OppEPM” [01IS12054].

REFERENCES

[1] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and J. Crowcroft, “A
Survey of Opportunistic Offloading,” IEEE Communications Surveys &

Tutorials, 2018.
[2] C. Meurisch, J. Gedeon, T. A. B. Nguyen, F. Kaup, and M. Mühlhäuser,

“Decision Support for Computational Offloading by Probing Unknown
Services,” in IEEE ICCCN, 2017.

[3] E. Borgia, R. Bruno, M. Conti, D. Mascitti, and A. Passarella, “Mobile
edge clouds for Information-Centric IoT services,” in IEEE ISCC, 2016.

[4] C.-K. Tham and R. Chattopadhyay, “A Load balancing Scheme for
Sensing and Analytics on a Mobile Edge Computing Network,” in IEEE

WoWMoM, 2017.
[5] T. A. B. Nguyen, C. Meurisch, S. Niemczyk, D. Böhnstedt, K. Geihs,

M. Mühlhäuser, and R. Steinmetz, “Adaptive Task-Oriented Message
Template for In-Network Processing,” in IEEE NetSys, 2017.

[6] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in SIMUtools, 2008.

[7] B. J. Bonfils and P. Bonnet, “Adaptive and Decentralized Operator Place-
ment for In-network Query Processing,” Telecommunication Systems,
vol. 26, no. 2-4, pp. 389–409, 2004.

[8] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “Mcep: A mobility-aware Complex Event Processing
System,” ACM Transactions on Internet Technology, vol. 14, no. 1, p. 6,
2014.

[9] F. Fossati, S. Moretti, and S. Secci, “A Mood Value for Fair Resource
Allocations,” in IFIP Networking, 2017.

[10] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile Crowd Computing
with Work Stealing,” in IEEE NBiS, 2012.

[11] A. Benchi, P. Launay, and F. Guidec, “Solving Consensus in Oppor-
tunistic Networks,” in ACM ICDCN, 2015.

[12] H. Viswanathan, E. K. Lee, I. Rodero, and D. Pompili, “Uncertainty-
aware Autonomic Resource Provisioning for Mobile Cloud Computing,”
IEEE transactions on parallel and distributed systems, vol. 26, no. 8,
pp. 2363–2372, 2015.

[13] U. Sadiq, M. Kumar, A. Passarella, and M. Conti, “Service Composition
in Opportunistic Networks: A Load and Mobility aware Solution,” IEEE

Transactions on Computers, vol. 64, 2015.
[14] T. A. B. Nguyen, P. Agnihotri, C. Meurisch, M. Luthra, R. Dwarakanath,

J. Blendin, D. Bohnstedt, M. Zink, R. Steinmetz et al., “Efficient Crowd
Sensing Task Distribution Through Context-aware NDN-based Geocast,”
in IEEE LCN, 2017.

[15] P. Lampe, L. Baumgärtner, R. Steinmetz, and B. Freisleben, “Smart-
face: Efficient face detection on smartphones for wireless on-demand
emergency networks,” in IEEE ICT, 2017.

[16] R. Dwarakanath, B. Koldehofe, Y. Bharadwaj, T. A. B. Nguyen, D. Ey-
ers, and R. Steinmetz, “TrustCEP: Adopting a Trust-Based Approach
for Distributed Complex Event Processing,” in IEEE MDM, 2017.

[17] A. M. Alakeel, “A Guide to Dynamic Load Balancing in Distributed
Computer Systems,” International Journal of Computer Science and

Information Security, vol. 10, no. 6, pp. 153–160, 2010.
[18] A. Vahdat and D. Becker, “Epidemic Routing for partially connected

Ad Hoc Networks,” Duke University, Tech. Rep., 2000.
[19] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Compu-

tations by Work Stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[20] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing
in homogeneous Distributed Systems,” IEEE transactions on software

engineering, no. 5, pp. 662–675, 1986.
[21] C. Lochert, B. Scheuermann, and M. Mauve, “A Survey on Congestion

Control for Mobile Ad Hoc Networks,” Wireless communications and

mobile computing, vol. 7, no. 5, pp. 655–676, 2007.
[22] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On

the Levy-Walk Nature of Human Mobility,” IEEE/ACM transactions on

networking (TON), vol. 19, no. 3, pp. 630–643, 2011.
[23] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,

“BonnMotion: A Mobility Scenario Generation and Analysis Tool,” in
SIMUTools, 2010.

[24] P. N. D. Bukh and R. Jain, “The Art of Computer Systems Performance
Analysis, Techniques for experimental Design, Measurement, Simulation
and Modeling,” 1992.

513

PPAD: Privacy Preserving Group-Based
ADvertising in Online Social Networks

Sanaz Taheri Boshrooyeh
Koç University, İstanbul, Turkey

staheri14@ku.edu.tr

Alptekin Küpçü
Koç University, İstanbul, Turkey

akupcu@ku.edu.tr

Öznur Özkasap
Koç University, İstanbul, Turkey

oozkasap@ku.edu.tr

Abstract—Services provided as free by Online Social Networks
(OSN) come with privacy concerns. Users’ information kept by
OSN providers are vulnerable to the risk of being sold to the
advertising firms. To protect user privacy, existing proposals
utilize data encryption, which prevents the providers from mon-
etizing users’ information. Therefore, the providers would not be
financially motivated to establish secure OSN designs based on
users’ data encryption. Addressing these problems, we propose
the first Privacy Preserving Group-Based Advertising (PPAD)
system that gives monetizing ability for the OSN providers. PPAD
performs profile and advertisement matching without requiring
the users or advertisers to be online, and is shown to be secure
in the presence of honest but curious servers that are allowed to
create fake users or advertisers. We also present advertisement
accuracy metrics under various system parameters providing a
range of security-accuracy trade-offs.

I. INTRODUCTION

Online Social Networks (OSN) such as Facebook, Twitter,
and Google+ are in the center of people’s attention due to the
functionality and networking opportunities they offer. OSNs
consist of three main entities: Server, user, and advertiser.
Server supports the OSN’s functions using its storage and
computational resources. Users are able to share their personal
information with each other and establish new friendships
via OSN. Advertisers ask Server’s help to detect their target
customers out of OSN’s users. Despite the attractive services
that OSNs offer to the users, sharing personal information
with these networks raises privacy problems where servers
monetize users’ information by selling them to the advertising
companies [24], [27]. To prohibit the accessibility of OSN
providers to the plain information of users, secure OSN
designs that employ data encryption are proposed [12], [11],
[31], [33], [3], [4]. While these solutions provide tangible
benefits to the users’ privacy, they neglect the role of advertiser
as part of the OSN, which results in monetizing inability for
the server [32]. Thus, OSN servers are left with no financial
motivation to establish such secure OSN services.

The lack of a convincing commercial model for secure
OSNs is our main motivation to propose a Privacy Preserving
ADvertising (PPAD) system for OSNs. PPAD can be incorpo-
rated into secure OSN designs (where the OSN’s functionality
meet data confidentiality) to provide advertising service. Yet,
achieving the best of both worlds is impossible: we provide a
trade-off between personalized advertising accuracy and user
profile privacy. We first define these terms, explain why it is

impossible to achieve some goals simultaneously, and show
how we achieve a solution whose parameters can be tweaked
for various settings.

In PPAD, we introduce the notion of group-based adver-
tising on the encrypted data. By group-based advertising, we
aim to cope with the security issues raised by the personalized
counterparts [36], [21]. In fact, performing personalized adver-
tising on the encrypted data will ultimately violate user pri-
vacy. The reason is that knowing that a particular advertising
request (which is a set of attributes) is matched to an encrypted
profile implies that the profile entails the attributes listed in that
request. Therefore, although the matching is performed on the
encrypted data, the server is able to learn the profile content
i.e., user’s attributes. This cannot be prevented using any
(cryptographic) method unless one (unrealistically) assumes
that the adversarial server cannot create fake advertisement
requests targeting known attributes.

One remedy of this problem is that the final matching result
must be computed in the encrypted format (server does not
learn the result) and then the results are sent to the user to
open and read. However, this approach is cumbersome as the
user has to open (decrypt) all the matching results (which is
linear in the total number of advertising requests) and retrieve
the matched advertisements from the server in an oblivious
way (which again incurs a high load).

Due to this privacy concern, we define a new advertis-
ing paradigm called group-based advertising. In short, we
(randomly) partition users into groups of equal size at the
registration phase. Then, each advertising request is compared
to the profiles of a group of users and not a single user. The
matching result indicates whether there exist some threshold-
many target users among the group members. If it happens,
then the advertising is shown to all the group members. Note
that the matching result reveals neither the identity of the
matched user nor the number of matched users but only the
existence of at least threshold-many matches. By this method,
the matching result is unlikable to an individual profile. We
propose a formal security definition to capture this notion of
unlinkability.

Another property of PPAD is to keep the advertising pro-
cedure transparent to the users/advertisers, similar to the
insecure counterparts. That is, users and advertisers carry no
overhead except uploading their data to the social network.
Henceforth, the matching process is operated only by theISBN 978-3-903176-08-9 c© 2018 IFIP

server and needless to any constant online connection of the
user or the advertiser. Prior solutions [34], [15], [6], [17], [29],
[22] fail to provide the transparency feature. User’s involve-
ment in the matching procedure adds an overhead to the user
that grows linearly with the number of advertising requests.
This overhead demotivates the user from participating in the
PPAD protocol as the user is obliged to stay online until the
server matches user’s profile to the advertising requests. It
also negatively affects the system’s efficiency as the servers’
working-time depends on the users’ online time. In PPAD,
users receive relevant advertisements, which are found by the
server during the users’ and advertisers’ off-time. We enable
this by utilizing a privacy service provider (PSP) that assists
OSN providers to protect the privacy of their users. A PSP
can be a non-profit or governmental entity that can help users
and multiple providers achieve privacy-preserving advertising
and can be implemented with low cost. Due to their fame and
reputation, PSPs are assumed to be non-colluding parties and
hence are used in similar privacy-concerned applications [35].

Our contributions in this paper are as follows.
• We propose PPAD advertising system that preserves user

privacy and is applicable on the secure OSNs where
users’ information are encrypted.
• In contrast to the existing solutions where secure match-

ing requires both user and advertiser to be permanently or
simultaneously online, PPAD allows users and advertisers
to be offline after the registration. Once the matching
is performed offline by the server, the advertisement is
shown to relevant users the next time they appear online
(or via push notifications, etc.).
• We present a formal security definition for user privacy.

We argue that a meaningful security definition in this
setting must allow the adversarial server to control some
advertisers and users. Our system is formally proven to
be secure against the privacy service provider as well as
the server that may additionally employ a number of fake
users or advertisers.

• We define two performance metrics of Target accuracy
and Non-Target accuracy to be used in group-based
advertising systems. Using empirical analysis, we capture
the effect of group size and threshold value on the system
performance and discuss their security implications.

II. SYSTEM OVERVIEW
Model: An overview of PPAD is shown in Figure 1. The
participants are users, advertisers, and the OSN provider
(Server) who gets help from a third party that is a privacy
service provider (PSP). In PPAD, the advertiser specifies
the attributes of its target users, and uploads an advertising
request to the Server as a Bloom filter. We define an adver-
tising request to be a conjunction of several attributes e.g.,
{Artist,Player,Scientist}. Users are (randomly) partitioned
into groups of size k at the registration phase. As discussed,
this grouping is necessary for user privacy, and must not be
done based on similar interests. To preserve confidentiality,
users encrypt their Bloom filters using additive homomorphic
encryption and secret sharing techniques before submission to

Social	Network	Provider
(Server)

Advertiser	Registers	an	
Advertising	Request

User

Stores	Advertising	
Requests	and	

Encrypted	Profiles

Privacy	Service	Provider	(PSP)

Secret Key User	Receives	Group	
Information

Advertiser

• User	Registers	or	Updates	the	
Encrypted	Profile

• User	Receives	Advertisements

PSP	and	Server	Find	
the	Matching	Results

Fig. 1: PPAD system overview

Server. To provide provable security, PPAD requires users to
encrypt their data using two different public keys PK1 and
PK2. The decryption power i.e. the corresponding secret keys
SK1 and SK2 are given only to PSP, but PSP never receives
these individual profiles.

For each group, if at least threshold-many group members’
profiles entail the same attributes listed in the advertising
request, the group is marked as a target group. The adver-
tisement is then presented to all members of the target groups
(since advertising to a subset would require violating privacy).
Afterwards, the social network provider charges the advertiser
based on the number of target groups (hence users) found
for its advertising requests. The group size and threshold are
parameters that affect both advertisement accuracy and user
privacy. We analyze this trade-off in Section V.
Security Goals: In PPAD, our security goal is to protect the
link-ability of a successful match to a specific member. That
is, when a group is marked as a target group, the server should
not be able to say which members of that group exhibit the
attributes in the advertising request.

However, it is important to realize that there is always
an implicit and inherent privacy leakage in any advertising
system, regardless of how secure it is designed. This leakage
is that as soon as the server obtains the matching result,
it understands the inclusion or exclusion of some specific
attributes among the group members, although the matching
is performed entirely on the encrypted profiles. In group-
based advertising, the inclusion or exclusion of attributes in
the group is unlinkable to a particular group member, while in
the personalized counterpart, the matching result immediately
breaks user privacy.
Security Assumptions: What we presume in PPAD is that
the main adversary of user privacy is the social network
provider, i.e., Server, (or an attacker controlling it) who may
be curious to link the matching results of each group to the
individual members. In this regard, the server may employ
polynomially-many advertisers and take control of some of
the users in each group. If the Server manages to control
all but one member of some group, the same arguments
against the impossibility of providing privacy in a personalized
advertisement system apply. Therefore, we necessarily assume
that at least two users per group are honest.

Moreover, the Server is assumed not to be able to collude
with the privacy service provider, i.e., PSP. We believe that
such a non-profit or governmental organization would not
cooperate with the social network provider against user privacy

515

due to the fame and reputation concerns. Hence, privacy
service providers are assumed to be non-colluding parties and
are used in similar privacy-concerned applications [35]. In
Section VI-B, we formally prove that neither PSP nor the
Server would be able to violate user privacy.

Since we employ PSP as an external entity, it is important
that it can be implemented with low cost, requiring minimal
change in the OSN system. In PPAD, users contact PSP
only during registration to receive some anonymous, non-
personalized group parameters. Advertisers never need to
contact PSP. Moreover, when PSP helps Server during the
matching process, it performs two decryptions and some arith-
metic operations per matching (6 milliseconds per matching).
Section V-B presents more details on performance.
Preventing Compound Group Matching Although group
matching preserves user privacy, the social network provider
may learn the identity of the target users by arbitrarily com-
bining profiles of users from different groups and analyzing
the changes in the matching results. To avoid this misbehavior,
users of each group are given zero-sum secret shares by PSP.
They embed their secret shares in their encrypted profiles.
Decryption of individual profiles with different embedded
secret shares results in garbage values. Thus, any attempt
by Server toward grouping arbitrarily chosen users’ profiles
fails. The only way to cancel out the secret sharing is to
aggregate the profiles of users of the same group, as then
the secret shares’ summation would be zero. Thus, Server
has to aggregate profiles of each group separately and sends
the aggregated data to PSP. Finally, PSP decrypts and de-
aggregates the data to find the number of matching users
in the group. We enable aggregation and de-aggregation of
profiles using super increasing sets (more details are presented
in sections III and IV-A4).
Profile Update Insecurity Performing profile update in
secure group-based advertising systems comes with a serious
privacy issue, whose solution hugely degrades system effi-
ciency. Essentially, when a member of group modifies her
profile (by adding or removing some attributes), Server can
analyze the changes in the matching results of that group
(against advertising requests) before and after user’s profile
update and realize which attributes the user has modified in
her profile. Also, the group-mates are vulnerable to the same
security risk. Due to this security problem, if a user wants to
modify her profile, she has to join a new group (similarly her
group-mates), and the old group is now disfunctional. This is
regardless of the underlying (cryptographic) tools employed.

Prior studies with the profile update functionality are not
applicable to the context of advertising in social networks since
they assume that the user does not share its profile with the
server [34] or they employ an IP Proxy server [13] so that users
anonymously add new preferences to their profiles. The former
contradicts with the advertising transparency and degrades the
performance. The latter is not applicable to OSNs since users
access the social network via a particular account and hence
the server observes that the update operation is done under a
particular account.

III. PRELIMINARIES

Bloom Filters: Bloom filters [8] are used to represent sets, and
efficiently check whether an element belongs to a set. A Bloom
filter is constructed with an array of p bits, initially zero, and d
hash functions, H1(.),...,Hd(.). p is called the size of the Bloom
filter. To insert an element x1 into the Bloom filter, all the hash
functions are applied on x1 (i.e. i1 = H1(x1),..., id = Hd(x1))
and the array cells at indices corresponding to the hash outputs
are set to 1. Testing the membership of an element is done by
applying all the hash functions on it (similar to the insertion),
and checking that whether all the corresponding indices are
equal to 1. If one of them is not equal to 1, then that element
does not belong to the set. Otherwise, with the false positive

probability of 1− (1− ((1− 1
p)

d
)

e
)

d
the element belongs to

the set, where e is the number of elements inserted into the
Bloom filter. In the rest of the paper, BFCreate(inSet) creates
a Bloom filter with inSet being the set of input elements.
Super Increasing Set: A super increasing set [9] of length
g is a series of g positive real numbers, {s1,s2, ...,sg}, where
each element is greater than the sum of its preceding elements
i.e., (∀ j ∈ {2, ...,g} : s j > ∑

j−1
i=1 si).

Additive Homomorphic encryption scheme: A public key
encryption scheme (KeyGen,Enc,Dec) is called additive ho-
momorphic [19] if for all m0,m1 from the message space
C0�C1 = Enc(m0)�Enc(m1) = Enc(m0 +m1) where � is
an operation defined over ciphertexts. Example is Paillier
encryption [28] where� corresponds to the multiplication over
ciphertexts.
Negligible Function: A function f is called negligible if ∀
positive polynomials p(.) ∃I s.t. ∀i > I (where i is a real
number): f (i)< 1

p(i) .
Secret Sharing Secret sharing [5] is a method to disseminate
a secret among a set of parties. Consider zero as the secret,
one way to create k shares of zero is to generate k−1 shares
randomly (SSi, i ∈ {1, ...,k−1}) and then set the last share to
SSk = 0−∑

k−1
i=1 SSi mod q where q indicates the modulus. The

length of the secret shares must be long enough to hide the
data content (longer than the maximum data size). We define
SSGen(k,q) as a function which generates k zero-sum secret
shares out of the given message space (i.e., modulus) q.

IV. PPAD
A. Full Construction

This section presents our full construction, explaining which
party runs which algorithm at which stage. Throughout the
explanations, x← X demonstrates picking an element x uni-
formly at random from set X , and || represents concatenation.

The OSN initialization is launched by PSP to generate
system parameters. Users register their encrypted profiles in
User Registration. A profile is a modified variant of a
Bloom filter whose elements are separately encrypted under an
additive homomorphic encryption scheme. Advertisers engage
in Advertiser Registration protocol to submit an advertising
request as a Bloom filter. The Server cooperates with PSP in
the Advertisement protocol to find the target groups for each
advertising request. In short, for every group and advertising

516

request pair, the Server aggregates encrypted profiles of users
in that group and sends the aggregate as well as the adver-
tising request to PSP. Consequently, PSP checks if the group
matches to the request and responds to Server accordingly.

1) OSN initialization (OSNInit)
Server: The Server initializes a database as DB.
PSP: PSP determines the security parameter 1λ and the thresh-
old value. It establishes an additive homomorphic encryption
π=(KeyGen,Enc,Dec) scheme with message space MSpace,
and generates (PK1, SK1) and (PK2, SK2) as two pairs of public
and private keys. We need two sets of key pairs for the security
proof to work. The reason will be apparent in Section VI-B.

2) User Registration (UReg)
UReg protocol is shown by Figure 2.

PSP: User connects to PSP via a secure and server authenti-
cated channel to receive its group related information. Initially,
PSP determines the group identifier GID of the user. GIDs
can be assigned according to the users’ arrival i.e., the first k
users are assigned to the first group and the second k users
to the second group, etc. Note that a group needs to be full
to be advertised to, since the secret shares will not sum up to
zero otherwise. PSP generates a fresh set of k secret shares
as GSS = {SS1, ...,SSk} per group and assigns shares to the
users.

Also, PSP assigns a delimiter, D, to each user such that D
is unique among group-mates. Each user embeds its delimiter
in the profile. The structure of delimiters is given in Equation
1. Delimiters exhibit the property of a superincreasing set and
help in aggregation and de-aggregation of members’ profiles
during the advertisement protocol. PSP generates a set of k
delimiters denoted by DSet once and uses them for every
group.

∀ j ∈ {1, ...,k},D j >
j−1

∑
i=1

Di ∗ p (1)

User: To make a profile, users may enter their preferences into
a well-structured form like a Facebook profile. However, the
presentation of profile form to the users is an orthogonal issue
to the PPAD. Ultimately, all the collected attributes (denoted
by AttSet) are transformed to a modified version of a Bloom
filter at the user side. In Algorithm 1, first a Bloom filter,
P f , is generated out of AttSet. Then, each bit i of Bloom
filter i.e., P fi is updated to P fi ∗D+SS. In words, we replace
the 0-bit values of Bloom filter with user’s secret share and
the set bit values with the summation of the user’s secret
share and delimiter. This modification helps in two regards,
first, to enable aggregation and de-aggregation by the help of
delimiters, and second, to prevent compound group matching
using secret shares (see the advertisement protocol). Finally,
each modified element of Bloom filter is encrypted under the
public encryption key PK given as input to the Algorithm 1.

The user selects its username UName, and generates two
encrypted profiles EP f and ˆEP f by running Algorithm 1
under two public keys PK1 and PK2, respectively. Then it
uploads its encrypted profiles EP f , ˆEP f alongside UName
and GID to Server.

Algorithm 1 PCreate(AttSet, D, SS, PK)

1: P f = BFCreate(AttSet)
2: EP f = {EncPK(P fi ∗D+SS)}1≤i≤p
3: return EP f

Server: Server receives the encrypted profiles and inserts
them into the database DB.

Fig. 2: User Registration protocol (UReg)

Fig. 3: Advertiser registration protocol (AdReg)

Fig. 4: Advertisement protocol (Ad)

3) Advertiser Registration (AdReg)
AdReg is shown in Figure 3. During AdReg, the advertiser

registers its advertisement request under its name i.e. PName
into the OSN. Advertiser specifies a set of attributes denoted
by TAud for its target audience. The advertiser creates a
request as a Bloom filter out of TAud. Then, it submits
the Bloom filter, its name and the product to be advertised
to Server. Advertising request preserves the AND operation
between the targeted attributes. For example, a single request
may target users with both attributes X AND Y. However, an
advertising request which targets X OR Y must be split and
submitted as two separate requests: one for X and the other
for Y. Server registers the request, assigns a unique request
identifier RID, and sends RID to the advertiser.
4) Advertisement (Ad)

Figure 4 represents the Ad protocol. During the Ad
protocol, Server first retrieves an advertising request i.e.,
(RID,PName,Product,Req) from DB. Next, to find the match-
ing between the request and each group of users, Server and
PSP interact as follows (both users and advertisers are
offline during this procedure, which is one of our main
contributions):
Server Aggregate: Server checks whether the advertising
request is already matched against the group or not. If it is not
matched, then Server retrieves profiles of group members and
proceeds to the aggregation phase. As we already mentioned,

517

the aggregation helps cancel out the secret shares embedded
in users’ profiles (as discussed in Section II, the purpose of
secret shares is to prevent compound group matching).
To aggregate profiles, we utilize the fact that a profile P f
(which is a Bloom filter according to Algorithm 1) matches
the advertising request Req if for every set bit position of Req
the corresponding bit in P f equals to 1. More formally, P f is
a target for Req if

∀1≤ i≤ p s.t. Reqi = 1 → P fi = 1 (2)
Stated differently, P f matches Req if the sum of set bit
values of Req (we denote it by |Req|) equals to the sum of
corresponding bit values in P f . Due to this reason, we are
only interested in the elements of a profile corresponding to
the set bit positions of Req. As the first step of aggregation, we
take out and sum up the encrypted elements of each profile in
accordance with the set bit positions of Req. More formally,

A = ∏
1≤i≤p|Reqi=1

EP fi = EncPK(∑
1≤i≤p|Reqi=1

P fi ∗D+SS) (3)

The second part of equality in Equation 3 holds due to
utilization of an additively homomorphic encryption scheme.
The Server performs this procedure for each profile of the
group and obtains A1, ...,Ak. Finally, the Server sums up A j
values and obtains

EAggGP f =
k

∏
j=1

A j = EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j +SS j)

= EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j +
k

∑
j=1

∑
1≤i≤p|Reqi=1

SS j)

= EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j + ∑
1≤i≤p|Reqi=1

k

∑
j=1

SS j︸ ︷︷ ︸
=0

)

= EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j)

= EncPK(
k

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i) (4)

As it can be easily verified from Equation 4, EAggGP f is
the encryption of sum of bit values of profiles (Bloom filters)
multiplied by their corresponding delimiters (D j). PSP will
employ delimiters to extract individual matching results. The
aggregation procedure is summarized in Algorithm 2.

Algorithm 2 Aggregate(EP f1, ...,EP fk,Req)

1: for 1≤ j ≤ k do
2: A = ∏1≤i≤p|Reqi=1 EP f j,i
3: end for
4: EAggGP f = ∏

k
j=1 A j

5: return EAggGP f

PSP: PSP decrypts the aggregated data (PSP possesses two
secret keys SK1 and SK2. It may use one or both of the keys
to obtain the plaintext data. Since Server is assumed to be
honest but curious, the encryption under PK1 is consistent with
the encryption under PK2). Then, PSP counts the number of
profiles matched to the request by proceeding as follows. We

denote the decryption of EAggGP f by AggGP f , that is

AggGP f =
k

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i (5)

Let us reformulate AggGP f by extracting the first term of the
outer summation as

AggGP f = Dk ∗ ∑
1≤i≤p|Reqi=1

P fk,i +
k−1

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i

(6)
Using Equation1, we know that

Dk >
k−1

∑
j=1

D j ∗ p >
k−1

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i (7)

Therefore, if we divide AggGP f by Dk we obtain the quotient
and the remainder as indicated in Equation 8:

AggGP f = Dk ∗ ∑
1≤i≤p|Reqi=1

P fk,i︸ ︷︷ ︸
Quotient

+
k−1

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i︸ ︷︷ ︸
Remainder

(8)
The Quotient is the summation of bit values of P fk in
accordance with the set bit positions of Req. Thus, if the
Quotient equals to |Req|, then P fk is a match. PSP continues
the iteratively on the Remainder, using Dk−1 for the next
division. At any step that the number of target users exceeds
the threshold, PSP sends Yes to the Server and stops. If it was
not the case, PSP responds No. The process of matching is
presented in Algorithm 3. Note that, the delimiters enabled us
to extract the matching result of individual members from the
aggregate, but PSP does not have any information regarding
the individual profiles and usernames.
Algorithm 3 Match(AggGP f , |Req|)

1: count = 0
2: for D j ∈ DSet, j ∈ {k, ...,1} do
3: if AggGP f

D j
== |Req| then

4: count = count +1
5: if count == T hreshold then return Yes
6: end if
7: end if
8: AggGPf= AggGPf mod D j
9: end for

10: return No

Server Show: Based on the PSP’s response, Server either
advertises the Product for all the members of the group, or
skips that group. The total number of target groups is counted
and stored for monetizing purposes.

For each advertisement request, the protocol above is re-
peated for each group that is not yet matched with the request.
Since we prevent group compounding, matchings can be
performed in parallel. This means, while the computational
complexity scales, communication rounds do not need to
increase with the number of yet unmatched groups.

V. PERFORMANCE
A. Asymptotic Performance

Table Ia shows the computational overhead of each entity
in PPAD based on the number of homomorphic operations. n
corresponds to the total number of users in the OSN, and m

518

Overhead\Entity User Advertiser Server PSP
User registration O(p) - - -

Advertiser registration - O(1) - -
Advertisement - - O(k.|Req|) O(1)

(a) Running Time (per matching)

Overhead\Entity User Advertiser Server PSP
User registration O(p) - O(p) -

Advertiser registration - O(p) O(p)
Advertisement - - O(1) O(1)

(b) Communication Complexity (per matching)

TABLE I (a) Running time based on the homomorphic operations.
(b) Communication complexities (number of message transmis-
sions). k: number of users per group. p: size of Bloom filter. |Req|:
number of set bits in each advertising request, which is O(e.d)
where e is the number of attributes in each request and d is the
number of hash functions used in the Bloom filter construction.

corresponds to the total number of advertising requests.
Users The user carries O(p) computational overhead, only
once, to element-wise encrypt its Bloom filter under PSP’s
public keys where p is Bloom filter’s size.
Advertisers The advertiser does not perform any crypto-
graphic operation.
Server The running time complexity of Server to aggregate
users’ profiles within their corresponding groups is O(k.|Req|)
where |Req| is the number of set bits in the Bloom filter of
the advertising request. Server carries this overhead per group
and advertising request pair. In total, there are n

k groups and m
advertising requests, hence the total overhead of Server yields
to O(m. n

k .k.|Req|) = O(m.n.|Req|).
PSP: For a single matching, PSP has the running time com-
plexity of O(1) (to decrypt the group aggregated profiles). PSP
performs the matching procedure per group and advertising
request pair, which in total leads to the complexity of O(m. n

k)
for its lifetime.

Table Ib demonstrates the communication complexity of
each entity during the execution of each protocol. Users and
advertisers need to share their Bloom filters with Server.
Thus, O(p) message transmission is required. Server and PSP
communicate O(1) messages to check the matching between a
single group and an advertising request. For n users (n

k groups)
the total communication overhead of Server and PSP is O(n

k).

B. Concrete Performance

The running times are computed by executing PPAD over
1000 randomly generated profiles of 400 attributes (based
on our personal experience of Facebook advertising, 400
attributes is approximately the maximum number) under the
group size of 5. The advertising request is presumed to have 30
attributes (for randomly generated profiles, almost no match is
found for an advertisement with more than 30 attributes). The
results are taken on an Intel i5 2.60 GHz CPU, using 2048 bit
keys for Paillier encryption scheme. Under this configuration,
Server matches a single advertising request to a single group
in 50 ms whereas running time of PSP is 6 ms, which is
almost an order of magnitude better than that of Server. Profile
creation time is 750 ms (done once per user) and creating an
advertising request takes 0.5 ms.

C. Advertisement Accuracy Metrics
In order to analyze the effect of different group sizes and

threshold values on the advertising performance, we define
two performance metrics, namely Target accuracy and Non-
Target accuracy.

Target accuracy indicates the fraction of target users who
are served by the advertisement, as formulated in Equation 9

Target accuracy =
Number of target users served by the
advertisement
Total number of target users

(9)
This metric is in compliance with the advertiser desire who
wants to reach as many target users as possible. Due to the
nature of group-based advertising, the Target accuracy is not
always 100% since the target users in groups with fewer than
threshold-many target users are not shown the advertisement.

Non-Target accuracy as shown in Equation 10 is the
fraction of non-target users that are not served an (irrelevant)
advertisement.

Non-Target accuracy=

Number of non-target users not
served by the advertisement
Total number of non-target users

(10)
The higher value of this metric indicates that users are less
likely to be shown irrelevant advertisement (hence more ac-
curate is the advertising and less disturbing).

Note that the Target accuracy and Non-Target accuracy are
meaningful only in the group-based advertising paradigm and
not in personalized counterparts (where both measures are
perfectly satisfied with the cost of privacy loss).

We additionally define the notion of target coverage, which
is the fraction of target users, as follows:

Target Coverage =
Number of target users
Total number of users

(11)
The coverage value depends on the attribute distribution in
profiles as well as the content of the advertisement. In our
experiments, we target various levels of coverage and analyze
the effect of our system parameters.
D. Advertisement Accuracy Results

We explore the effect of group size and threshold value
on the Target accuracy and Non-Target accuracy. The results
are taken over 100,000 profiles with three different target
coverage values (10%, 50% and 90%) as demonstrated in
Figure 5. The results present that under a specific group
size, increasing the threshold value improves the Non-Target
accuracy. This behavior is expected since having a higher
threshold guarantees that more target customers are in the
target groups (compared to the lower thresholds). Hence in
such settings, the higher percentage of target group members
are real target customers i.e., the Non-Target accuracy is
higher. On the contrary, the Target accuracy has the inverse
relation with the threshold value. Indeed, higher threshold
imposes more constraint on the group for being selected as
a target. Consequently, the advertiser loses some of his target
customers in the groups which do not have enough target users.

On the other hand, with a fixed threshold, as the group size
increases, Target accuracy increases but Non-Target accuracy

519

decreases. This happens for all target coverages, since in a
larger group with the same threshold, it is easier to find
matching groups, but it also means that potentially more non-
target users are shown an irrelevant advertisement.

By inspecting the behavior of Target accuracy and Non-
Target accuracy, we find out that a perfect balance between
these two metrics is met when the ratio of the threshold to
the group size i.e., T hr

Group Size is close to the target coverage. We
refer to this threshold value as "balanced threshold". For
instance, under the target coverage 50% and group size 19, the
balanced threshold is 10 with 10

19 = 0.52≈ 0.5. At this balance
threshold, Target accuracy and Non-Target accuracy are 58%
and 60%, respectively. We refer to the accuracy achieved at
the balance threshold by balanced accuracy. In Figure 5, the
x coordinate of the point where two curves of the same color
(i.e., same group size) collide indicates the balanced threshold
and the accuracy at that point (y coordinate) is the balanced
accuracy. After the balanced threshold, the Target accuracy
drops while the Non-Target accuracy increases. The inverse
occurs for values less than the balanced threshold.

The simulation results demonstrate that as the group size
increases, the balanced accuracy degrades. For example, under
the target coverage of 50%, the balanced accuracy of group
size 7 (at balanced threshold 4) is 65% whereas in group size
19 (at balanced threshold 10) it drops to 58%. The correctness
of this fact can be verified by coverage 10 and 90 as well. This
implies that smaller group sizes are better for accuracy at their
respective balanced thresholds.

In general, threshold being equal to group size k would
mean that all users in a matched group have the same attributes
in the advertisement in common. Similarly, threshold of 1
where the advertisement is not matched would reveal that
no user in that group contains all the attributes in the ad-
vertisement. Such leakages are independent of the underlying
methodology, and hence are not analyzed, but should be
considered when selecting the parameters.

VI. SECURITY
A. Security Definition

PPAD preserves user privacy if no adversary can link a
successful group-matching result to a particular group member.
In another word, the advertising result should not help an ad-
versary to identify which user possesses (or does not possess)
which attributes. The adversary controls either Server or PSP
(since they are non-colluding), together with some users and
advertisers. The adversary is challenged to break the user’s
privacy in a single group. This challenge is modeled as a game
played between a challenger and the adversary A. Since the
groups are independent of each other and the protocol is the
same for every group, the failure of the adversary in this game
implies that PPAD preserves privacy of all the users.

In this game, the adversary is allowed to control k− t
users where k is the group size and t is the number of
honest users in that group. Adversary registers k− t users
of the group into the system and receives all of their secret
information. Assume UName1, ..., UNamet are the usernames
of the honest users. Adversary is asked to select t sets of

Fig. 5: Target accuracy and Non-Target accuracy
vs threshold for group sizes 2-20. Dashed curves
represent Non-Target accuracy and solid ones the

Target accuracy. X axis: threshold. Y axis: accuracy

attributes, AttSet1,...,AttSett . The challenger randomly and pri-
vately assigns the attribute sets to the usernames and registers
them into the OSN. Then, the adversary is allowed to register
polynomially-many advertising requests and obtain the results
of matching between the requests and the group. Finally, the
adversary is challenged to guess which attribute set is assigned
to which username. To win the game and break security, the
adversary needs to perform noticeably better than the random
guessing probability of 1

t .
Observe that as t gets smaller, the adversary has more

control over the group, and hence has more power. But, for
t = 1, the adversary wins the game with the probability of 1;
therefore t = 2 is the minimum feasible value.

UPrivacyA(λ): In this game, the challenger acts as the
honest users and honest advertisers. One of the Server or
PSP is run by the challenger while the other one is controlled
by the adversary A. Adversary A is honest but curious, and
may control polynomially-many advertisers and k-2 users per
group. The game is played within one group.

1) A runs OSNInit with the challenger.
2) Query phase 1:

520

a) A runs UReg protocol, acting as a user, with the
challenger.

b) A specifies user’s inputs UName,AttSet and asks the
challenger to run UReg protocol over the given inputs.
Challenger acts as user.

Part (a) allows the adversary register users fully under her
control. Part (b) allows the adversary to register honest
users whose usernames and profiles are known to the
adversary.

3) Challenge phase:
a) A sends two usernames i.e. Uname0 and UName1 and

two different sets of attributes, AttSet0 and AttSet1.
UName0 and UName1 are never registered in any
query phase.

b) Challenger picks a bit randomly, b←{0,1}, and ex-
ecutes the UReg protocol for (Uname0, AttSetb) and
(UName1, AttSet b̂) on behalf of users. b̂ is the com-
plement of b.

4) A repeats the query phase 1 until all the k users of the
group are registered into the OSN.

5) Query phase 2:
a) A creates and registers an advertising request by exe-

cuting AdReg protocol acting as the advertiser.
b) A selects the inputs of the advertiser for AdReg protocol

and asks the challenger to execute AdReg protocol as
an advertiser.

Similar to query phase 1, part (a) allows the adversary
register advertisement requests fully under her control.
Part (b) allows the adversary to register honest advertising
requests of which are known to the adversary.

6) Query phase 3: A executes the Ad protocol with the
challenger for an advertising request registered as RID.

7) A may adaptively repeat the query phase 2 and 3 poly-
nomially many times.

8) A guesses a bit b
′
. If b = b

′
the output of game is 1 (A

wins), otherwise 0 (A loses).
Definition 6.1: An OSN with the (OSNInit, UReg, AdReg,

Ad) protocols preserves the user’s privacy, if for every prob-
abilistic polynomial time (PPT) adversary A, there exists a
negligible function negl(λ), where λ is the security parameter,
such that: Pr[UPrivacyA(λ) = 1]≤ 1

2 +negl(λ)
B. User Privacy Against Server

The security of our design against Server relies on the CPA-
security of the underlying encryption scheme. We show that
if a PPT adversary A can win the UPrivacy game with non-
negligible advantage, then we can construct a PPT adversary B
who runs A as a subroutine and breaks the CPA-security of the
encryption scheme. At a high level, since group matching does
not reveal the identity of the targeted users, but only provides
a Yes/No type answer, Server cannot map users’ profiles
and usernames using the result of advertising. Therefore, the
information of Server is restricted to the encrypted data. Thus,
the success of adversary A in UPrivacy game implies that B
can distinguish between the encrypted profiles of users. This
means that encryption scheme is not CPA-secure which is a
contradiction to the initial assumption. So, using a CPA-secure

encryption scheme, our design is secure against Server. The
formal proof is provided in the full version [1].
C. User Privacy Against PSP

PPAD provides information-theoretic privacy for users
against PSP. PSP never receives the usernames during the
execution of any protocol. This implies the inability of PSP
to obtain a mapping between the data contents, i.e., attributes,
and the identity of the data owners.

VII. RELATED WORKS
A. Secure Online Behavioral Advertising (SOBA)

In SOBA models, a broker is connected to a set of
publishers who are web page owners. The broker creates
a behavioral profile per user according to the user’s visits
on those pages. Broker monetizes by putting the advertiser’s
products on the publishers’ web pages according to the users’
behavioral profiles. We classify SOBA models as publisher-
subscriber and push-based designs as shown in Table II.a (also
considering PPAD applied to such a setting). In publisher-
subscriber designs [34], [15], [13], users subscribe to the
advertisers’ products. In push-based designs [6], [2] a server
receives both the users’ profiles and advertising requests, and
advertises each product for a set of target users. Some SOBA
studies require users or advertisers to be online during the
advertising procedure [34], [15], [6], while others allow them
to remain offline [2]. Some studies [15], [6] enforce direct
communication between users and advertisers. Outsourced
profiling [6] does not consider user privacy. ObliviAd [2] relies
on a trusted hardware (CPU) to protect user privacy.
B. Server Assisted Private Set Intersection (PSI)

In the PSI problem, two parties who have two different sets
of elements execute a protocol to find the intersection of their
sets. In the server assisted variant of PSI, a server helps the
parties to find the intersection of the sets, improving efficiency.
Table II.b summarizes the comparison between PPAD and
papers of the server-assisted PSI concept. In the server-assisted
PSI studies, the role of the server is to reduce the workload
of parties by carrying the main portion of the computations.
However, at least one party still needs to be involved per
protocol execution as in [17], [29], [22] and the oblivious
service provider method of [21]. Parties also need to have
direct communication for sharing some secret information be-
fore the execution of the intersection (advertisement) protocol.
The public output method of [21] and [36] support offline users
and advertisers, but they fail to protect the privacy of users. In
fact, their solution is vulnerable to the plaintext guess attack
where the server guesses some elements and checks whether
they belong to the user’s and advertiser’s sets or not.
C. Server Assisted Two-Party Computation (2PC)

In server assisted 2PC protocols, two parties, with the help
of a third party, compute a function over their respective inputs
while no party learns the other party’s input. Server-assisted
2PC solutions either employ a server to guarantee the fairness
of the protocol execution [14], [23], [25] or to ease the other
parties’ duties by delivering the main computation overhead to
the server. However, users and advertisers are required to be
online and provide some information per function evaluation

521

Type Method Offline User Offline Advertiser EDC User Privacy No IP Proxy No Trusted-Hardware Sec-Def

PS
Adnostic [34] 7 3 3 3 3 3 7

Targeted advertising [15] 7 7 7 3 3 3 3

Privad [13] 3 3 3 3 7 3 7

PB
Outsourced profiling [6] 7 7 7 7 3 3 7

ObliviAd [2] 3 3 3 3 3 7 3

PPAD 3 3 3 3 3 3 3

(a)

Method Offline User Offline Advertiser EDC PGA

Privacy aware Genome Mining [29], Scaling PSI to billion elements [17] 7 7 7 3

VDSI [36],Collision Resistant outsourcing PSI [21] public output 3 3 3 7

Collision Resistant outsourcing PSI [21] Oblivious Service Provider 7 7 3 3

Outsourced PSI using homomorphic encryption [22] 3 7 3 3

PPAD 3 3 3 3

(b)

TABLE II (a) SOBAs vs. PPAD. (b) Server Assisted PSIs vs. PPAD. PS: publisher-subscriber, PB: push-based. EDC: Elimination of
direct communication between users and advertisers. Sec-Def: Existence of formal security definition and proof. PGA: Security against
plaintext guess attack.

(advertisement in this case) [18], [20], [14], [26], [16], [10],
[7]. [30] proposed a solution which mitigates the necessity of
online users and advertisers by applying two servers, similar
to our approach. But, the number of messages transferred be-
tween two servers depends on the function definition (number
of multiplication operations), whereas PPAD supports constant
communication compexity between two servers.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the first privacy preserving
advertising system PPAD for secure OSNs with transparency
and group advertising. PPAD protects users’ privacy by em-
ploying an external non-colluding privacy service provider. We
proposed a security definition and formally proved the security
of our design under the honest-but-curious adversarial model
where the adversary is additionally allowed to control some
(fake) advertisers and users. As future work, our aim is to
extend PPAD to be secure against fully malicious adversaries,
and to efficiently support any Boolean function of the attributes
in a single advertising request. We also plan to improve our
solution to reduce the computational cost associated with
profile updates. We believe PPAD constitutes an important first
step regarding monetization for secure OSNs.

ACKNOWLEDGEMENTS
We acknowledge the support of the Turkish Academy of

Sciences, Royal Society of UK Newton Advanced Fellowship
NA140464, and EU COST Action IC1306.

REFERENCES
[1] https://archive.org/details/staheri14_ku_PPAD.
[2] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably

secure and practical online behavioral advertising. In Security and
Privacy (SP). IEEE, 2012.

[3] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin.
Persona: an online social network with user-defined privacy. In ACM
SIGCOMM, 2009.

[4] A. Barenghi, M. Beretta, A. Di Federico, and G. Pelosi. Snake: An
end-to-end encrypted online social network. In ICESS. IEEE, 2014.

[5] A. Beimel. Secret-sharing schemes: a survey. Springer, 2011.
[6] D. Biswas, S. Haller, and F. Kerschbaum. Privacy-preserving outsourced

profiling. In CEC. IEEE, 2010.
[7] M. Blanton and F. Bayatbabolghani. Efficient server-aided secure two-

party function evaluation with applications to genomic computation.
PET, 2016.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
1970.

[9] A. A. Bruen, M. A. Forcinito, A. G. Konheim, C. Cobb, A. Young,
M. Yung, and D. Hook. Applied cryptography: protocols, algorithms,
and source code in c. 1996.

[10] H. Carter, B. Mood, P. Traynor, and K. Butler. Outsourcing secure two-
party computation as a black box. In Cryptology and Network Security.
2015.

[11] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams. Humming-
bird: Privacy at the time of twitter. In Security and Privacy (SP). IEEE,
2012.

[12] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten. Social
networking with frientegrity: Privacy and integrity with an untrusted
provider. In USENIX, 2012.

[13] S. Guha, B. Cheng, and P. Francis. Privad: practical privacy in online
advertising. In NSDI, 2011.

[14] A. Herzberg and H. Shulman. Oblivious and fair server-aided two-party
computation. Information Security Technical Report, 2013.

[15] A. Juels. Targeted advertising... and privacy too. In CT-RSA. 2001.
[16] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party

computation. IACR Cryptology ePrint Archive, 2011.
[17] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. Scaling private

set intersection to billion-element sets. In FC. 2014.
[18] S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided

secure function evaluation. In CCS. ACM, 2012.
[19] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC

press, 2014.
[20] F. Kerschbaum. Adapting privacy-preserving computation to the service

provider model. In CSE. IEEE, 2009.
[21] F. Kerschbaum. Collusion-resistant outsourcing of private set intersec-

tion. In Applied Computing. ACM, 2012.
[22] F. Kerschbaum. Outsourced private set intersection using homomorphic

encryption. In CCS. ACM, 2012.
[23] H. Kılınç and A. Küpçü. Efficiently making secure two-party computa-

tion fair. In FC, 2016.
[24] B. Krishnamurthy and C. E. Wills. Characterizing privacy in online

social networks. In WOSN. ACM, 2008.
[25] A. Küpçü and P. Mohassel. Fast optimistically fair cut-and-choose 2pc.

In FC, 2016.
[26] P. Mohassel, O. Orobets, and B. Riva. Efficient server-aided 2pc for

mobile phones. PET, 2015.
[27] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In

Security and Privacy. IEEE, 2009.
[28] P. Paillier. Public-key cryptosystems based on composite degree resid-

uosity classes. In EUROCRYPT, 1999.
[29] C. Patsakis, A. Zigomitros, and A. Solanas. Privacy-aware genome

mining: Server-assisted protocols for private set intersection and pattern
matching. In CBMS. IEEE, 2015.

[30] A. Peter, E. Tews, and S. Katzenbeisser. Efficiently outsourcing
multiparty computation under multiple keys. IEEE T-IFS, 2013.

[31] J. Sun, X. Zhu, and Y. Fang. A privacy-preserving scheme for online
social networks with efficient revocation. In INFOCOM. IEEE, 2010.

[32] S. Taheri-Boshrooyeh, A. Küpçü, and Ö. Özkasap. Security and privacy
of distributed online social networks. In IEEE ICDCSW, 2015.

[33] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr: better
privacy for social networks. In CoNEXT. ACM, 2009.

[34] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas.
Adnostic: Privacy preserving targeted advertising. In NDSS, 2010.

[35] T. Veugen, R. de Haan, R. Cramer, and F. Muller. A framework for
secure computations with two non-colluding servers and multiple clients,
applied to recommendations. IEEE T-IFS, 2015.

[36] Q. Zheng and S. Xu. Verifiable delegated set intersection operations on
outsourced encrypted data. In IC2E. IEEE, 2015.

522

Is There a Case for Parallel Connections
with Modern Web Protocols?

Jawad Manzoor1, Ramin Sadre1, Idilio Drago2, and Llorenç Cerdà-Alabern3

1Université Catholique de Louvain, 2Politecnico di Torino, 3Universitat Politècnica de Catalunya

Abstract—Modern web protocols like HTTP/2 and QUIC aim
to make the web faster by addressing well-known problems of
HTTP/1.1 running on top of TCP. Both HTTP/2 and QUIC are
specified to run on a single connection, in contrast to the usage
of multiple TCP connections in HTTP/1.1. Reducing the number
of open connections brings a positive impact on the network
infrastructure, besides improving fairness among applications.
However, the usage of a single connection may result in poor
application performance in common adverse scenarios, such as
under high packet losses. In this paper we first investigate
these scenarios, confirming that the use of a single connection
sometimes impairs application performance. We then propose
a practical solution (here called H2-Parallel) that implements
multiple TCP connection mechanism for HTTP/2 in Chromium
browser. We compare H2-Parallel with HTTP/1.1 over TCP,
QUIC over UDP, as well as HTTP/2 over Multipath TCP, which
creates parallel connections at the transport layer opaque to the
application layer. Experiments with popular live websites as well
as controlled emulations show that H2-Parallel is simple and
effective. By opening only two connections to load a page with
H2-Parallel, the page load time can be reduced substantially in
adverse network conditions.

Index Terms—HTTP/2, QUIC, MPTCP, Performance, Mea-
surements

I. INTRODUCTION

The web has become an essential part of our daily lives. We
see a continuous trend of migrating traditional applications to
the cloud, e.g., Microsoft Office 365 and Google Apps. As a
result, modern web content has become extremely complex.
This complexity requires efficient web delivery protocols to
maintain users’ experience regardless of the technology they
use to connect to the Internet and despite variations in the
quality of users’ Internet connectivity.

HTTP, which is the de facto standard protocol of the web
was developed in early 1990s as a simple request/response
protocol to deliver content over the Internet. Its first versions,
HTTP/1.0 and HTTP/1.1, have inherent inefficiencies when
dealing with modern web content. For example, they suffer
from head-of-line (HOL) blocking, where responses must
arrive sequentially, following the order of requests. As web
pages were getting more and more complex over the years,
these inefficiencies started to hurt Page Load Time (PLT).1

Despite these limitations, HTTP/1.1 over TCP has maintained
a dominant position for around 20 years due to well-known
challenges in replacing popular Internet protocols.

1Page Load Time is the time from when a user fires a web page request
(e.g., by clicking on a link) until the page is fully loaded by the browser.

Browser vendors have reacted to HTTP/1.1 inefficiencies
throughout the years by deploying ad-hoc optimizations to
speed up PLT. One such optimization is the opening of several
persistent TCP connections towards each web server when
retrieving pages. Browsers can issue requests in parallel in the
multiple connections, reducing the effect of HOL blocking. As
a side effect, they compete for resources with other applica-
tions in the network more aggressively. For example, while the
transfer rate of a single TCP connection is limited by the small
congestion window (cwnd) during TCP slow start, multiple
connections sum up their cwnd, resulting in faster startup
rates. The fierce competition among browser manufacturers
has pushed browsers to open a large number of parallel
connections in an attempt to speed up page rendering [1].

Only recently, with Google’s development of SPDY and
QUIC, new protocols to replace HTTP/1.1 have gained mo-
mentum. The successful deployment of SPDY over TLS has
opened the way for the HTTP evolution, triggering the stan-
dardization of HTTP/2 [2]. HTTP/2 borrows many of SPDY’s
principles and solves several shortcomings of HTTP/1.1. In
particular, HTTP/2 multiplexes requests in a single TCP
connection, eliminating the HOL blocking bottlenecks. This
feature has prompted the IETF to recommend clients to
open a single TCP connection per host-port pair for HTTP/2
transactions [2].

QUIC (Quick UDP Internet Connections) is another promis-
ing protocol developed by Google that provides multiplex-
ing, congestion control and security functionality similar to
HTTP/2, TCP and TLS, respectively, on top of UDP. It
implements several optimizations including 0-RTT connection
establishment, where clients can start repeated sessions with
a known server without a three-way handshake, improved
congestion control and better RTT estimation and loss recovery
mechanism than TCP [3].

Recent studies have tracked the adoption of HTTP/2 and
QUIC, showing not only a manifold increase in their usage,
but also real performance gains [4], [5], [6]. However, both
protocols use a single connection by design, which may result
in poor application performance under adverse network condi-
tions, in particular if different protocols compete for resources.
For example, HTTP/2 is known to be particularly vulnerable
in WiFi networks with high random packet losses. Equally,
whereas QUIC uses a different congestion control strategy that
reduces the effects of random packet losses, the implications

ISBN 978-3-903176-08-9 c© 2018 IFIP

of QUIC’s use of a single connection – e.g., during congestion
in load-balanced links – are not fully understood yet.

In this paper we investigate the performance of browsing
using modern web protocols in some adverse network sce-
narios. We use both active measurements with live websites
and emulations in a testbed. We first confirm that HTTP/2
(and to a lesser extent QUIC) suffers more than HTTP/1.1
with multiple TCP connections in the tested scenarios. The
use of a single connection partly explains the results. We then
test whether adopting multiple TCP connections with HTTP/2
helps in mitigating the problems. We call this practical solution
H2-Parallel, and implement it by modifying the source code of
the Chromium browser. We compare H2-Parallel with HTTP/2
using a single TCP connection, HTTP/1.1 (both cleartext and
encrypted) using multiple TCP connections, QUIC over a
single UDP connection, as well as HTTP/2 over Multipath
TCP (hereafter called H2-MP). The latter creates parallel
connections at the transport layer opaque to the application
layer. Note that HTTP/2 and QUIC always employ encryption
by default.

Our experiments with popular live websites as well as con-
trolled emulations show that H2-Parallel has some interesting
advantages. It reduces PLT when compared to HTTP/2 over
a single connection. In a scenario with around 2% of packet
loss, H2-Parallel with only two parallel connections reduces
the average PLT of HTTP/2 by 55%, and practically makes
the performance of HTTP/2 similar to what is obtained by
HTTP/1.1 with several parallel connections. Although QUIC
is not affected by packet losses as severely as HTTP/2 over
TCP thanks to its new congestion control strategy, we show
that QUIC can also benefit from the use of parallel connections
in some scenarios. Finally, H2-Parallel and H2-MP present
similar performance with different practical trade-offs.

We make the following contributions:

• We identify scenarios that challenge HTTP/2 and QUIC
performance, namely (i) packet losses in wireless net-
works and (ii) congestion in ISP networks with load
balancers, a scenario not addressed in prior work yet;

• We implement H2-Parallel, a Chromium-based user agent
that fans out HTTP/2 requests to a destination over
multiple TCP connections;

• We compare H2-Parallel against the major web protocols.
Our results differ from previous works by (i) including
all relevant web protocols, instead of only a subset of
them; (ii) considering real websites and browsers instead
of simplistic downloads or TCP transfers, thus giving a
view on how users perceive performance while browsing;
(iii) testing the latest protocol versions (e.g., QUIC 39).

• We evaluate whether the protocols are fair to one another
when competing for bandwidth and find that H2-Parallel
and QUIC behave similarly for long transfers.

To simplify the terminology, in the remainder of this paper,
we will refer to the non-encrypted (i.e., cleartext) version of
HTTP/1.x as H1C, to HTTP/1.x over TLS as H1, and to
HTTP/2 over TLS as H2.

The rest of the paper is organized as follows. Section II
discusses the related work. In Section III we discuss scenarios
in which H2 and/or QUIC may exhibit poor performance.
We present our measurement methodology in Section IV, and
discuss results in Section V. Section VI concludes the paper.

II. RELATED WORK

Zimmermann et al. [5] investigate H2 adoption. They show
that around 12.5% of Alexa top-million domains provide full
H2 support, with a 66% increase in H2 enabled domains
between Sep 2016 and Jan 2017. They also study H2 perfor-
mance, but in contrast to our work, they focus on the impact
of H2 server push functionality, showing that some websites
profit from the feature to speed up PLT.

Other works characterize the performance of websites ac-
cording to the used HTTP versions. Zarifis et al. [7] explore
the PLT differences between H1 and H2 using data collected
from real users of the Akamai CDN. They find that in around
60% of the time H2 has lower PLT than H1. Varvello et al. [4]
build a measurement platform to actively monitor H2 adoption
by probing Alexa top-million websites. They show that around
80% of the websites adopting H2 improve PLT.

Saxcé et al. [8] compare the performance of H1 and H2.
They clone the Alexa top-20 websites and find that, apart from
network conditions, PLT depends on the website structure and
content. Erman et al. [9] focus on mobile browsing. They
measure PLT for the top-20 Alexa websites using SPDY and
H1 proxies in a 3G network and find that SPDY performs
poorly due to the large number of retransmissions and TCP
backoff. Elkhatib et al. [10] reach similar conclusions by
comparing the performance of SPDY with H1 in simulated
networks. All these works however do not explore possible
solutions for the scenarios where H2 performance degrades.

Wang et al. [11] perform experiments with synthetic pages
and cloned pages (Alexa top-200). They propose a solution for
SPDY inefficiencies by tuning TCP: increasing initial window,
increasing receive window and reducing backoff rate in case of
packet loss. This solution is not practical since making changes
to TCP is hard and can take years to be widely deployed.

Recently, there has been a lot of interest in QUIC. Carlucci
et al. [12] investigate QUIC (v. 21) on emulated network
environments using synthetic pages. They report that QUIC
performs worse than H1, but better than SPDY, with large
web pages and 2% random packet loss rate. Without packet
loss, QUIC performs better than H1 and SPDY for small and
medium web pages, but worse for large pages due to the usage
of only six parallel streams.

Megyesi et al. [13] test QUIC (v. 20) while emulating
different values for bandwidth, delay and packet loss. They
host four synthetic pages having different size and number of
images. They show that, with packet loss, SPDY performs the
worst, followed by QUIC and H1. In case of high bandwidth
and large page size, QUIC’s PLT is three times larger than
H1 and SPDY. Kakhki et al. [14] show the root-cause for the
problem, which prevented slow start threshold update (fixed in
newer QUIC versions). The authors show that QUIC (v. 34)

524

Fig. 1: Congestion on one of the load-balanced paths in ISP network Fig. 2: Random packet losses in WiFi network

always outperforms H2, except with a very large number of
small objects. QUIC (v. 34) is however unfair with other
protocols, taking more than 50% of the bottleneck bandwidth
when competing with 2 or even 4 TCP connections, a result
that we will revisit with the newest version of QUIC.

In our prior work [15] we showed that some browsers
arbitrarily create up to 6 connections towards a destination
when using H2, but this was due to an issue only recently
discovered by the developers [16] (fixed in Chromium v. 61),
and not a performance improvement feature. In this paper we
implement such a solution for H2 (i.e., H2-Parallel) and show
its effectiveness.

Other studies have investigated the use of newer trans-
port protocols such as MPTCP to alleviate the performance
degradation of H2 and SPDY in presence of packet losses.
Han et al. [17] provide the first measurement study of mobile
web performance over MPTCP using SPDY and H1. They
download 25 websites from Alexa top-100 list and measure
PLT by combining LTE and WiFi with MPTCP. They show
that MPTCP helps in mitigating performance penalties of
SPDY under packet loss. In [18] the same authors provide
a cost-benefit analysis of MPTCP in terms of improved user
experience and energy consumption on mobile devices. The
assumption in these studies is that clients are multi-homed –
e.g., WiFi and LTE can be used simultaneously. Our work has
a different scope: we check whether MPTCP has an impact on
H2 performance even on single-homed devices, e.g., laptops
or PCs with WiFi only. We will show that MPTCP can create
multiple TCP connections and help in reducing the impact of
packet losses and congestion in the network.

III. CONSIDERED SCENARIOS

We consider real-world scenarios where H2 and QUIC may
perform poorly. These scenarios are described in the following
and investigated in the next sections.

A. Random packet losses in WiFi networks

Random packet losses in WiFi networks are common under
real-world conditions due to various factors like noise and
the distance from clients to the access point. The impact of
packet loss on the performance of H1, SPDY and H2 has
been thoroughly studied in prior work [10], [11], [8], [17].
There is a consensus that H2 performs poorly compared to
H1 when there is high packet loss rate. We investigate the

extent to which other protocols suffer from similar problems,
and propose a practical solution applicable to regular H2 over
TCP.

B. Load balancers and congestion in ISP networks

A large percentage of the Internet traffic between source-
destination pairs traverses multiple paths due to deployment
of load-balancing routers [19], [20] in ISP networks. These
routers split packets across multiple paths using techniques
like Equal-Cost Multipath Routing (ECMP). Since traditional
Internet measurement tools like traceroute may fail to identify
these paths, alternative tools such as Paris traceroute have
been developed to quantify multipath routing in the Internet.
Augustin et al. [21] performed a large scale measurement using
over 68 thousand destinations and showed that around 70% of
paths between source and destination networks traverse a load
balancer.

Three different load-balancing schemes exist: packet-based,
destination-based and flow-based. Packet-based algorithms
distribute all incoming packets evenly on all network paths,
e.g., in a round robin fashion. Since different paths can have
different delay, this approach may result in massive packet
reordering and hence out-of-order delivery of the packets [22].
Therefore it is rarely used in practice. The destination-based
scheme routes all traffic destined to the same host over the
same path. This scheme can lead to uneven traffic distribution.
The flow-based scheme is more popular. It defines a flow
using different fields in the packet header, such as source
and destination IP addresses, port numbers and protocol.
All packets belonging to the flow according to the chosen
definition are sent over the same path.

However, optimal load balancing is hard. Figure 1 shows
a load-balancing headend router with two equal-cost paths in
an ISP network where one of the paths is shared by traffic
from other nodes. Despite evenly distributing traffic using
ECMP on the headend router, the shared link may become
overloaded and cause congestion. A number of large scale
measurements [23], [24], [25], [26] show that congestion pre-
dominantly occurs in ISP networks and the described scenario
happens quite often. In such a scenario H2 and QUIC may
perform poorly as the browser will open a single connection,
and that connection may be routed over the congested path.
Hence they cannot exploit the underlying path diversity of

525

the network. H1 on the other hand establishes multiple con-
nections which may be distributed across the available paths
by the load-balancing routers. Therefore, the performance is
not significantly affected while downloading pages with H1
in such a scenario. This is an important scenario, yet it has
not been investigated in prior studies. To quantify the extent
of severity of this scenario by performing experiments in the
Internet is an interesting topic for future work, but is out of
scope for this paper.

C. Fairness among competing connections

In the recent years the traffic share of H2 and QUIC has
rapidly increased and today, connections belonging to H1,
H2 and QUIC co-exist in web traffic. These connections
essentially compete for the bottleneck bandwidth. Maintaining
fairness is very important for the network as unfairly taking
bandwidth share from other protocols may lead to substantial
performance degradation for some applications. While it is
clear that H1 is unfair to H2 because of its aggressive use of
connections, it is more interesting to see how QUIC competes
with H1 and H2. In a recent study [14] on QUIC (v. 34) it
was shown that QUIC is unfair to 2 and even 4 competing
TCP connections. Since QUIC is evolving rapidly with major
changes and improvements in each new version, we want
to observe whether this behavior has changed in the most
recent version (v. 39). Moreover, we want to verify how QUIC
compares to our H2-Parallel implementation.

IV. METHODOLOGY

We now explain the design of H2-Parallel and H2-MP, our
testbed, and measurement of PLT and cwnd of TCP and QUIC.

A. H2-Parallel

H2-Parallel is our Chromium-based user agent that fans
out H2 requests over parallel TCP connections to mitigate
the negative impact of a single connection on H2 PLT. Our
objective is to verify that allowing the user agent to open
parallel TCP connections for H2, similar to what most user
agents do for H1, would improve the PLT.

Chromium browser maintains a single H2 session per do-
main, in accordance with the H2 specification. H2 sessions
are tracked by a key consisting of the destination host–port
pair. Each H2 session goes on a separate socket. In order to
allow two TCP connections per domain, we have modified
Chromium such that it stores two keys for each host-port pair.
When issuing a new request, the state of the H2 session is
controlled. First we check if we already have two keys for
destination host-port pair of the current request. If not, we
create a session with the new key and initialize the TCP
connection. For each subsequent request, we call a function
that returns one of the two available connections and use it
for the request.

To keep the modifications as straightforward as possible, we
have implemented a basic scheduler that assigns requests in a
round robin fashion to one of the two connections. Note that
requests assigned to the same connection are still multiplexed

TABLE I: Statistics of cloned web pages. The columns HTML,
CSS, etc. show the number of objects of that respective type.

Website HTML CSS JS Image Other Total Size
(kB)

Baidu 1 1 1 6 1 10 50
Google 2 1 3 5 1 12 56

Live 2 2 2 2 0 8 262
Twitter 6 1 4 2 3 16 421

Wikipedia 1 1 2 20 1 25 441
Reddit 4 2 5 26 2 39 470
Yahoo 16 13 5 48 4 86 839

VK 4 1 14 3 1 23 920
Taobao 2 2 7 38 4 53 1 320

Instagram 3 1 7 25 1 37 1 409
QQ 15 6 19 115 6 161 1 728

Sohu 13 11 33 167 4 228 2 056
YouTube 8 3 5 113 20 149 2 911
Facebook 1 1 8 123 1 134 3 560
Amazon 5 2 14 41 2 64 3 723

TABLE II: Statistics of the pages in live websites

Website Objects Size Domains Connections
(kB) H2 H2-Parallel H1

Google 17 286 1 1 2 4
Bing 32 421 1 1 2 2

Wikipedia 36 882 2 2 4 4
Mozilla 37 931 2 2 4 8
Poloniex 19 1 028 2 2 4 7
Paypal 64 1 415 2 2 4 12

Instagram 35 1 785 3 3 6 14
Blogger 61 2 061 2 2 4 11
Twitter 18 2 429 2 2 4 5

Facebook 86 4 266 2 2 4 12

by H2. For the server, the two connections look like two
regular H2 sessions from the same source IP. Despite this
approach being simple, it distributes the requests fairly equally
over the two connections.

B. H2-MP

H2-MP uses MPTCP to create parallel subflows to the
servers to load a web page. We use H2-MP to compare
the performance of creating parallel connections at transport
layer versus application layer(as implemented by H2-Parallel).
MPTCP is an enhancement of TCP that allows bandwidth
aggregation and improved reliability by utilizing multiple
paths simultaneously. It provides the same socket interface
as TCP and spreads the data across several subflows without
requiring applications or upper-layer protocols to be aware of
the multiple paths. An MPTCP connection is initiated with
the usual TCP 3-way handshake over one path. The handshake
however includes a MP_CAPABLE message in the options field
of the SYN, SYN/ACK and ACK packets. Further (sub-)flows
can be added to the MPTCP session by sending MP_JOIN in
the option field of additional 3-way handshakes regardless of
the path used to open the flow.

526

We use stable release v0.91 of MPTCP and use the ndiff-
ports path manager with the number of subflows set to 2,
which creates two subflows between the same pair of IP-
addresses by modifying the source port. We set the default
scheduler which starts by sending data on the subflow with the
lowest RTT. When its cwnd is full, it sends data on the subflow
with the next lowest RTT. This is the recommended scheduler
as it is known to provide the best performance. Hence two TCP
connections are established between client and server without
any modification of the browsing applications and having a
complete view of the state of the connections at the transport
layer. However, it requires MPTCP-compatible network stacks
in the client and in the server.

C. Mininet testbed setup

We use Mininet [27] version 2.3 to emulate the three
scenarios described in Section III. Mininet emulates a large
network comprising multiple hosts, links and switches running
real kernel and application code. We run Ubuntu Linux kernel
4.1.38 with the stable release v0.91 of MPTCP on the client
and server and use Cubic congestion controller on both sides.
We use Chromium browser version 60 on the client which
supports H1, H2 and QUIC(v. 39). The server node hosts H2O
web server2 which provides an open-source implementation
of H2, and quic-go web server which is an implementation
of the QUIC protocol in Go3. We use Linux’s Traffic Control
(tc) and Network Emulation tools to configure network path
characteristics such as bandwidth, delay and packet loss.

1) Emulating ECMP and congestion: For the scenario of
ECMP with congestion, we emulate a typical home network
shown in Figure 1 where a client’s home router is connected
to the headend router of an ISP with a 10 Mbps link [28]. The
link from the ISP to the web server is configured with 1 Gbps
bandwidth capacity. The headend router at the ISP performs
load balancing using two paths. We emulate the congested
bottleneck link in the lower path by generating traffic on it with
90% of its bandwidth capacity using iPerf with 8 connections.

We use flow-based routing in the load-balancing router for
the reasons explained in Section III-B. Flow-based ECMP
routing is not available in the latest MPTCP-capable Linux
kernel that we use in our experiments. Therefore, we build
a custom Linux kernel and implement a flow-based routing
algorithm where the next hop is selected by hashing the flow
5-tuple, i.e., source address (SA), destination address (DA),
source port (SP), destination port (DP), and protocol type (PT)
of a connection. Our hash function H is defined as

H = SA⊕DA⊕ SP ⊕DP ⊕ PT

where ⊕ is the bitwise XOR function. We calculate H mod 2
to select either the first path or the second path.

This design avoids any informed decision at the router on
how the multiple flows of a single H1, H2-Parallel or MPTCP
session are routed through the paths. For instance, the MPTCP

2https://h2o.examp1e.net/
3https://github.com/lucas-clemente/quic-go

or H2-Parallel flows may all take the congested or the non-
congested paths during emulations. Obviously, each protocol
will react to path choices differently. For instance, MPTCP is
able to detect congestion and move traffic to non-congested
paths, if at least one subflow is routed to the non-congested
path. H2-Parallel instead will blindly schedule requests on the
multiple connections.

2) Emulating random losses in WiFi: We emulate the net-
work shown in Figure 2. The WiFi link has 7 Mbps bandwidth
and 50 ms delay representing realistic network conditions
based on large-scale measurement study [29] and also used
in prior studies [17], [18]. We perform tests without and with
packet loss in the WiFi link. For the latter, we inject random
packet losses using netem. We use 2% packet loss rate as
suggested in prior work [11], [12], [13]. We also perform
experiments using other loss rates but the results are not shown
due to space limitation.

D. Measuring page load time

We have selected 15 websites from Alexa’s top 100 list and
downloaded their landing pages or other publicly available
pages onto the H2O server. The selected websites are a mix
of social networking, online shopping, news and search. The
main characteristics of the cloned pages are summarized in
Table I. Chromium browser is used on the client to load the
pages from the server. We configure dnsmasq 4 on the client
to ensure that all hostnames resolve to the IP address of the
server and do not leave the testbed. We have also selected
10 popular H2 enabled websites for live experiments listed in
Table II. The key requirement for this selection is that all of
the content must be delivered by the server using H2.

To automate the page loading we create a script that uses
Chrome-HAR-capturer5 to connect to the browser via its
remote debugging API and load each page multiple times with
cold cache. When the experiment ends, an HTTP Archive
(HAR) file is created, containing detailed performance data.
Our script parses the HAR file, extracts PLT for each of each
run and calculates the arithmetic mean of all runs. We load
the web pages using H1C, H1, H2, H2-Parallel, H2-MP and
QUIC.

E. Measuring cwnd changes

We monitor the changes in the cwnd size for TCP using the
tcpprobe6 module. In case of H1 we calculate the sum of the
cwnd sizes of all individual connections. In case of QUIC we
instrument the source code of quic-go web server to collect
logs that allow tracking of the cwnd size on each ACK.

V. MEASUREMENT RESULTS

A. Impact of packet loss on single connection

We start our experiments by determining the impact of
packet losses on the performance of various protocols by
monitoring changes in cwnd size while loading a web page.

4http://www.thekelleys.org.uk/dnsmasq/doc.html
5https://github.com/cyrus-and/chrome-har-capturer
6https://wiki.linuxfoundation.org/networking/tcpprobe

527

	0

	20

	40

	60

	80

	100

	120

	140

	0 	1 	2 	3 	4 	5

cw
nd

	(
K
B
)

Time	(s)

H1
H2

H2-Parallel
H2-MP
QUIC

(a) Comparison of cwnd of all protocols

	0

	5

	10

	15

	20

	25

	30

	35

	2 	2.5 	3 	3.5 	4 	4.5 	5

c
w
n
d
	(
K
B
)

Time	(s)

H2
QUIC

(b) 3-second zoom comparing cwnd of H2 and QUIC

Fig. 3: Timeline showing the impact of packet losses on
congestion window size during a page load

We perform an experiment where we host a static web
page comprising several JPG images on our web server and
load it on the client using Chromium browser via H1, H2,
H2-Parallel, H2-MP and QUIC. We configure the bottleneck
link with 7 Mbps bandwidth, 50ms RTT, 45 kB buffer size and
inject 2% random packet losses into the network path using
tc and netem. We log the changes in cwnd sizes.

Figure 3a shows a 5-second zoom of the cwnd size compar-
ison of the protocols. We can see that H1 has a much higher
cumulative cwnd size than others. This is because browsers
usually maintain up to 6 parallel connections to each server
for H1 transfers and only some connections may be affected
by random losses at a time. So the sum of cwnd size of
all individual connections remains high. On the other hand,
since browsers establish only one connection to the server
when using H2, the same connection keeps experiencing the
losses resulting in continuous reduction of cwnd. This limits
the cwnd to a very small size which in turn results in very
low throughput and long page load time. We can also see that
QUIC has almost twice the size of cwnd as compared to H2
although both use a single connection and face the same rate of
packet losses. There are several reasons for this behavior. First,
note that the initial window size in QUIC is around 45 kB (32
segments) while for H2 (and others based on TCP) the size is
around 15 kB (10 segments). Second, QUIC has an advantage
over H2 because it uses its congestion controller to emulate the
behavior of two TCP connections over UDP (in QUIC version
39). In other words, in the event of packet loss the cwnd is
reduced at half the rate of H2, depicted by red double-headed
arrows in Figure 3b. Finally, QUIC recovers more quickly
from packet losses than H2, which can be observed by a steep
upslope as shown by green arrows in Figure 3b.

In case congestion in network with load-balancers, the
packet losses are dynamic, however, the results that we observe
are almost the same and are not shown here. In such a scenario,
the single connection of H2 and that of QUIC suffers losses
when it is on the congested path, while H1, H2-Parallel and
H2-MP are able to use the non-congested path simultaneously
for part of their traffic.

B. Impact of packet loss in WiFi networks

1) Packet loss in live websites: When visiting a live web-
site, several aspects influence the PLT perceived by the user,
e.g., delays of DNS queries or of server-side operations to
prepare the content. Furthermore, a live website might consist
of objects coming from different domains (e.g., due to domain
sharding) that are not delivered from the same host.

We study the performance of H1, H2 and H2-Parallel with
live websites. We do not perform experiments with MPTCP
since none of the top websites support it at the server side. We
also skip QUIC as it is only available for Google services and
we cannot compare it with other websites. The only parameter
that we will vary in our experiments with live websites is
the random packet loss rate. To this end, we have selected
10 H2 enabled websites. The page characteristics are shown
in Table II, where we give the number of objects per tested
page, the total size in kBytes and the number of domains
delivering the objects. The latter determines the number of
TCP connections opened by the browser (also shown in the
table). For each domain Chromium opens one TCP connection
with H2, two with our H2-Parallel implementation, and up to
six connections with H1. Note that the pages loaded from live
websites are not exactly identical to those we cloned onto our
testbed.

The RTT to the web servers is in the 15–165 ms range. We
load each page 15 times with an empty cache. Figure 4 shows
the average PLT (and its standard deviation) when using H1,
H2 and H2-Parallel without packet loss and with 2% packet
loss.

Focusing on Figure 4a, we notice how the performance
of H2 is mostly better than H1. Whereas differences are not
extremely large, these results are significant if we consider the
number of TCP connections opened by the browser for each
protocol (see Table II). Our implementation of H2-Parallel
achieves similar performance as H2 when network conditions
are good, although a small overhead for opening and managing
the extra TCP connections are visible in some cases.

Obviously, the PLT increases significantly when packet loss
is introduced – see Figure 4b (note the different scale of
the y-axes). However, the increase of PLT with H1 is less
pronounced than with H2, thanks to the use of multiple TCP
connections by the former. H2 suffers severely under the
packet loss. We notice how the PLT for Facebook reaches
almost 12 s on average for H2, whereas it is around 8.5 s for
H1 with 2% packet loss. The figure also shows that H2-Parallel
achieves similar performance to H1 thanks to its second TCP
connection. We are able to achieve 53% reduction in PLT on
average for all websites by using H2-Parallel.

528

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

Go
og

le
Bi
ng

W
iki

pe
dia

Moz
illa

Po
lon

eix

Pa
yp

al

In
sta

gr
am

Bl
og

ge
r

Tw
itt
er

Fa
ce

bo
ok

PL
T	

(s
ec

)
H1 H2 H2-Parallel

(a) Average PLT and std dev without
packet loss

	0

	2

	4

	6

	8

	10

	12

	14

Go
og
le
Bi
ng

W
iki
pe
dia

Mo
zil
la

Po
lon
eix

Pa
yp
al

In
sta
gr
am

Bl
og
ge
r

Tw
itt
er

Fa
ce
bo
ok

PL
T	
(s
ec
)

H1 H2 H2-Parallel

(b) Average PLT and std dev with 2%
packet loss

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

G
oo

gl
e

Bin
g

W
ik
ip
ed

ia

M
oz

illa

Pol
on

ie
x

Pay
pa

l

In
st
ag

ra
m

Blo
gg

er

Tw
itt
er

Fac
eb

oo
k

0

25

50

75

100

by
te

s
(%

)

(c) Percentage of data transferred on each
connection with H2 and H2-Parallel (H2P)

Fig. 4: Performance comparison of live websites with and without packet loss

	0

	1

	2

	3

	4

	5

	6

	7

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o

o
o o o

o

(a) WiFi with 0% packet loss rate

	0
	2
	4
	6
	8
	10
	12
	14
	16
	18

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o
o

o

o o o

(b) WiFi with 2% packet loss rate

-1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

Ba
idu

Go
og
le
Liv
e

Tw
itt
er

W
iki
pe
dia

Re
dd
it

Ya
ho
o Vk

Ta
ob
ao

In
sta
gr
am QQ

So
hu

Yo
ut
ub
e

Fa
ce
bo
ok

Am
az
on

H
2	
S
pe
ed
up
	(
se
c)

H2-Parallel,	2%	packet	loss
H2-MP,	2%	packet	loss

H2-Parallel,	no	packet	loss
H2-MP,	no	packet	loss

(c) H2 speedup against a single connection

Fig. 5: Emulation of WiFi network. Note differences in y-axes.

	0

	0.5

	1

	1.5

	2

	2.5

	3

	3.5

	4

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o

o
o o o

o

(a) No congestion on any path

	0

	2

	4

	6

	8

	10

	12

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o
o

o

o o
o

(b) Congestion on one path

-1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

Ba
idu

Go
og
le
Liv
e

Tw
itt
er

W
iki
pe
dia

Re
dd
it

Ya
ho
o Vk

Ta
ob
ao

In
sta
gr
am QQ

So
hu

Yo
ut
ub
e

Fa
ce
bo
ok

Am
az
on

H
2	
S
pe
ed
up
	(
se
c)

H2-Parallel,	congestion
H2-MP,	congestion

H2-Parallel,	no	congestion
H2-MP,	no	congestion

(c) H2 speedup against a single connection

Fig. 6: Emulation of ECMP routing in the network. Note differences in y-axes.

Figure 4c shows the number of connections established with
the server to load a website (depicted with different colors)
and the percentage of bytes transferred with each connection
(depicted by the size of the bar of each color) using H2 and
H2-Parallel. We can see that with H2, while in some cases
multiple connections are established due to multiple domains
on the server side, most of the data (83% on average for all
tested websites) is still transferred using only one connection.
In case of H2-Parallel, a single connection carries 52% of
traffic on average, thus distributing the load more evenly across
multiple connections and reducing the probability of a single
connection experiencing packet losses repeatedly.

2) Packet losses in emulated environment: We perform
emulations in a controlled mininet environment for repro-
ducibility of results. In this experiment we measure the effect
of random packet losses on the performance of the different
web protocols using cloned web pages. Since the web server
is under our control we can test QUIC and MPTCP and
compare them with other protocols for the same pages, which
was not possible with live websites. We load each page 30
times with empty cache using automated scripts. Note that the
performance of H1 and H2 in scenarios with packet losses in
WiFi networks has been studied in [10], [8], [9], [11], [17].
We confirm results from the previous works and evaluate to
what extent H2-Parallel and H2-MP improve performance.

529

	0
	1
	2
	3
	4
	5
	6
	7
	8

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90

Th
ro
ug
hp
ut
	(
M
bp
s)

Time	(s)

QUIC H2

(a) QUIC competing with H2

	0
	1
	2
	3
	4
	5
	6
	7
	8

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Th
ro
ug
hp
ut
	(
M
bp
s)

Time	(s)

QUIC H2-Parallel

(b) QUIC competing with H2-Parallel

	0
	1
	2
	3
	4
	5
	6
	7
	8

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90

Th
ro
ug
hp
ut
	(
M
bp
s)

Time	(s)

QUIC H1

(c) QUIC competing with H1

Fig. 7: Comparison of fairness of bandwidth share among competing connections of different protocols

In the following, box-whisker plots show the arithmetic
mean (small circle), the median (middle horizontal line), the
first and third quartiles (upper and lower box edges) and the
minimum and maximum (whiskers) of the PLT over all 15
web pages. In our experiments, minimum and maximum will
typically be several seconds apart. This is due to the large
difference in characteristics of the selected web pages, i.e.,
small web pages like Google have very small PLT (represented
by the lower end of the whisker) while large web pages like
Facebook or Amazon have very large PLT (represented by the
upper end of the whisker).

Figures 5a and 5b show plots of the PLT measured over all
web pages without and with 2% packet loss, respectively. As
expected, H2 performs better than H1 when there is no packet
loss, and H2-Parallel and H2-MP do not show significant dif-
ferences under good network condition. However, with packet
loss, H2’s PLT increases greatly while the other protocols see
only a moderate increase by around 20%. Again, H2 is affected
the most due to the use of a single TCP connection by the
browser. Another disadvantage using H2 is that when there is
a packet loss event, all streams get stalled until packet recovery
due to the in-order delivery guarantee of TCP. Using QUIC,
only the stream related to that packet gets blocked while others
keep functioning normally. QUIC also maintains larger cwnd
size as compared to H2 as shown in Figure 3a. Due to these
reasons its performance is not affected as severely as H2.

Both H2-Parallel and H2-MP are able to reduce the per-
formance penalty of packet losses and achieve a performance
similar to H1 by increasing the cumulative cwnd size.

Figure 5c shows the average speedup (in seconds) that
H2-MP and H2-Parallel achieve relative to regular H2 for each
tested website (sorted by their size, with the smallest on the
left). It can be seen that the speedup relative to regular H2 with
packet loss is particularly pronounced for large web pages.

C. ECMP and network congestion in emulated environment

We now emulate the ECMP scenario with Mininet using
H1C, H1, H2, H2-Parallel, H2-MP and QUIC. For each con-
sidered protocol, the client loads each web page 30 times with
an empty cache. Remember that we do not actively control
how the multiple flows are load-balanced in the available paths
to emulate realistic scenarios. That is, in some experiment
rounds, the multiple MPTCP or H2-Parallel flows may both
take the congested or the non-congested path by chance. We
can see in Figure 6a that, without congestion, H2 performs

slightly better than H1 thanks to its various optimizations and
new features. Not a surprise, H1C is faster than H1 because
of the TLS overhead in the latter. Using two connections
(H2-Parallel and H2-MP) in good network conditions brings
no noticeable advantage while QUIC performs slightly better
than others in the mean and median case.

However, the situation changes drastically in the presence
of congestion. H2’s PLT shoots up, with some pages taking
as much as 12 s on average and up to 20 s in the worst
case (not shown) to be fully loaded. H1C, H1, H2-Parallel
and H2-MP are only slightly affected thanks to the parallel
connections, which may be routed in the two available paths.
In fact H2-MP performs the best as it can route the traffic away
from the congested path on the fly and move it to the good
path, which is not possible with any other protocol. QUIC is
not affected as severely as H2 because its congestion controller
reduces the cwnd size less aggressively when dealing with
packet losses due to congestion. However, it still performs
worse than H2-Parallel and H2-MP because in many cases
it cannot take advantage of the non-congested path due to
the use of a single connection. QUIC is 34% slower than
H2-Parallel and H2-MP on average for medium and large
websites but the situation is different in case of small websites.
QUIC loads small websites quite fast due to 0-RTT connection
establishment, and even with a single connection it performs
slightly better than H2-Parallel and H2-MP. In fact for small
websites creating parallel connections doesn’t provide much
benefit because most of the data is already transferred on the
first connection before the second connection gets its turn.

Finally, in Figure 6c we can see that there is no speedup
using H2-Parallel and moderate speedup using MPTCP when
both network paths are congestion-free. When congestion is
created on one path, both H2-Parallel and MPTCP achieve
impressive speedups particularly for large pages.

Among the tested protocols, QUIC looks the most promis-
ing. Although it does suffer from performance degradation
in the above scenario, we believe that using two connections
with QUIC (similar to H2-Parallel) instead of emulating two
connections using the congestion controller could improve
QUIC performance in this scenario.

D. Fairness comparison

So far we have measured PLT of various protocols while
running in isolation. Now we investigate their behavior while
competing with one another. For this experiment we use two

530

clients connected to two servers using the same 7 Mbps
bottleneck link. We host a synthetic web page with large
JPG images on the web servers and both clients load the
web page at the same time, but using a different protocol.
H2 and QUIC use a single connection, H2-Parallel uses two
connections while H1 uses four connections to load the page.
We measure the throughput of each protocol using tcpdump.
Figure 7 shows the bandwidth share of competing connections
per protocol pair.

In Figure 7a we can see that QUIC gets twice as much band-
width share as compared to H2 as it emulates two connections
using its congestion controller. It has been shown in a recent
study [14] that QUIC version 34 is unfair to TCP even when
competing against 2 or even 4 TCP connections. However, we
do not observe such behavior in our experiments with QUIC
version 39. Figure 7b clearly shows that H2-Parallel using 2
TCP connections and QUIC version 39 get an equal share of
bandwidth, as expected from QUIC’s congestion controller.
Figure 7c shows that H1 using 4 TCP connections is more
aggressive than QUIC and thus has an unfair advantage when
competing with both H2 and QUIC.

VI. CONCLUSION

We presented a performance evaluation of modern web
protocols in adverse real-world scenarios. We confirmed that
H2 exhibits suboptimal performance in such scenarios and
suffers from unfairness when competing with other protocols
due to its use of a single TCP connection. Results showed
that QUIC is not as severely affected, because it implements a
congestion controller that emulates the behavior of two TCP
connections over UDP.

We implemented and evaluated a solution to improve H2
performance, called H2-Parallel, which lets browsers open
multiple TCP connections for H2 as they usually do for H1.
We compared H2-Parallel with QUIC, H1, H2 and H2-MP,
which relies on MPTCP to open parallel subflows. H2-Parallel
has interesting advantages: it presents performance similar to
QUIC, profits from parallel Internet paths similar to H2-MP,
and requires changes only in the client browser thus easing
deployment. Our experiments show that using only two con-
nections with H2-Parallel provides significantly better perfor-
mance than regular H2 in the tested scenarios, hence it avoids
overloading the network with large number of connections like
H1.

REFERENCES

[1] B. Thomas, R. Jurdak, and I. Atkinson, “SPDYing Up the Web,”
Commun. ACM, vol. 55, no. 12, pp. 64–73, 2012.

[2] M. Belsche, R. Peon, and M. Thomson, “RFC 7540 - Hypertext
Transfer Protocol Version 2 (HTTP/2),” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7540

[3] A. Langley et al., “The quic transport protocol: Design and internet-scale
deployment,” in Proceedings of the SIGCOMM, 2017, pp. 183–196.

[4] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and
K. Papagiannaki, “Is the Web HTTP/2 Yet?” in Proceedings of the PAM
Conference, 2016, pp. 218–232.

[5] T. Zimmermann, J. Rüth, B. Wolters, and O. Hohlfeld, “How HTTP/2
Pushes the Web: An Empirical Study of HTTP/2 Server Push,” in
Proceedings of the IFIP Networking Conference, 2017.

[6] J. Manzoor, I. Drago, and R. Sadre, “How HTTP/2 is Changing Web
Traffic and How to Detect It,” in Proceedings of the TMA Conference,
2017.

[7] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and R. Govindan,
“Modeling HTTP/2 Speed from HTTP/1 Traces,” in Proceedings of the
PAM Conference, 2016, pp. 233–247.

[8] H. de Saxcé, I. Oprescu, and Y. Chen, “Is HTTP/2 Really Faster
than HTTP/1.1?” in Proceedings of the IEEE Conference on Computer
Communications Workshops, 2015, pp. 293–299.

[9] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan, “To-
wards a SPDY’ier Mobile Web?” IEEE/ACM Transactions on Network-
ing, vol. 23, no. 6, pp. 2010–2023, 2015.

[10] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY Really Make the Web
Faster?” in Proceedings of the IFIP Networking Conference, 2014, pp.
1–9.

[11] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How Speedy is SPDY?” in Proceedings of the NSDI, 2014, pp. 387–
399.

[12] G. Carlucci, L. De Cicco, and S. Mascolo, “Http over udp: an experi-
mental investigation of quic,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing, 2015, pp. 609–614.

[13] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is quic?” in
Proceedings of the ICC, 2016, pp. 1–6.

[14] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a long look at quic,” 2017.

[15] J. Manzoor, I. Drago, and R. Sadre, “The Curious Case of Parallel
Connections in HTTP/2,” in Proceedings of the CNSM, 2016, pp. 174–
180.

[16] (2017) Chrome opening up to 6 connections with H2. [Online]. Avail-
able: https://bugs.chromium.org/p/chromium/issues/detail?id=718576

[17] B. Han, F. Qian, S. Hao, and L. Ji, “An Anatomy of Mobile Web
Performance over Multipath TCP,” in Proceedings of the ACM CoNEXT,
2015, pp. 5:1–5:7.

[18] B. Han, F. Qian, and L. Ji, “When Should We Surf the Mobile Web
Using Both Wifi and Cellular?” in Proceedings of the 5th Workshop on
All Things Cellular: Operations, Applications and Challenges (ATC),
2016, pp. 7–12.

[19] Cisco. (2017) BGP Best Path Selection Algorithm.
[Online]. Available: https://www.cisco.com/c/en/us/support/docs/ip/
border-gateway-protocol-bgp/13753-25.html

[20] Juniper. (2017) Understanding BGP Multipath. [Online].
Available: https://www.juniper.net/documentation/en US/junos/topics/
concept/bgp-multipath-understanding.html

[21] B. Augustin, T. Friedman, and R. Teixeira, “Measuring Multipath Rout-
ing in the Internet,” IEEE/ACM Transactions on Networking, vol. 19,
no. 3, pp. 830–840, 2011.

[22] J. Bellardo and S. Savage, “Measuring packet reordering,” in Proceed-
ings of the 2nd ACM SIGCOMM Workshop on Internet measurment,
2002, pp. 97–105.

[23] Z. Cataltepe and P. Moghe, “Characterizing Nature and Location of Con-
gestion on the Public Internet,” in Proceedings of the ISCC Symposium,
2003, pp. 741–746.

[24] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation of Wide-
Area Internet Bottlenecks,” in Proceedings of the IMC, 2003, pp. 101–
114.

[25] A. Tachibana, A. Shigehiro, T. Hasegawa, M. Tsuru, and O. Yuji,
“Locating Congested Segments over the Internet Based on Multiple End-
To-End Path Measurements,” IEICE Transactions on Communications,
vol. 89, no. 4, pp. 1099–1109, 2006.

[26] J. Zhang, K. Xi, L. Zhang, and H. J. Chao, “Optimizing Network
Performance using Weighted Multipath Routing,” in Proceedings of the
ICCCN Conference, 2012, pp. 1–7.

[27] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in Proceedings of the
Hotnets Workshop, 2010, pp. 19:1–19:6.

[28] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband Internet Performance: A View from The
Gateway,” in Proceedings of the SIGCOMM, 2011, pp. 134–145.

[29] J. Sommers and P. Barford, “Cell vs. WiFi: On the Performance of
Metro area Mobile Connections,” in Proceedings of the IMC, 2012, pp.
301–314.

531

A Protocol-Ignorance Perspective on
Incremental Deployability of Routing Protocols

Vadim Kirilin
IMDEA Networks Institute and UC3M, Spain

Sergey Gorinsky
IMDEA Networks Institute, Spain

Abstract—New protocols for Internet inter-domain routing
struggle to get widely adopted. Because the Internet consists
of more than 50,000 autonomous systems (ASes), deployment
of a new routing protocol has to be incremental. In this work,
we study such incremental deployment. We first formulate the
routing problem in regard to a metric of routing cost. Then,
the paper proposes and rigorously defines a statistical notion
of protocol ignorance that quantifies the inability of a routing
protocol to accurately determine routing prices with respect to
the metric of interest. The proposed protocol-ignorance model
of a routing protocol is fairly generic and can be applied to
routing in both inter-domain and intra-domain settings, as well
as to transportation and other types of networks. Our model of
protocol deployment makes our study specific to Internet inter-
domain routing. Through a combination of mathematical analysis
and simulation, we demonstrate that the benefits from adopting
a new inter-domain protocol accumulate smoothly during its
incremental deployment. In particular, the simulation shows that
decreasing the routing price by 25% requires between 43% and
53% of all nodes to adopt the new protocol. Our findings elucidate
the deployment struggle of new inter-domain routing protocols
and indicate that wide deployment of such a protocol necessitates
involving a large number of relevant ASes into a coordinated
effort to adopt the new protocol.

I. INTRODUCTION

For a long time, Border Gateway Protocol (BGP) [1] has
remained the only prominent protocol in inter-domain routing
practice. Based on information propagated by neighboring
nodes, a BGP node decides which paths it uses and which rout-
ing information it shares with neighbors. The local selection
and filtering of path announcements by each node provides
the node with means to realize its political, economic, and
security policies.

On the flip side, BGP suffers from serious problems inherent
in its design concept. The local filtering results in unintended
information hiding, which artificially reduces the diversity of
usable paths. BGP is vulnerable to hijacking [2]. Other prob-
lems include slow convergence and lack of support for mul-
tipath routing or end-to-end Quality of Service (QoS). While
refinements of BGP mitigate some of its weaknesses [3]–[5],
a thorough solution to the BGP problems requires changes in
the conceptual design.

Radically different designs for inter-domain routing have
been proposed and yet not deployed widely [6]–[8]. For
example, Route Bazaar is a blockchain-inspired approach that
uses a public ledger to announce, select, and verify end-to-
end QoS-aware routing in a privacy-preserving manner [8].

Such solutions empower an autonomous system (AS) to not
only enforce its security, political, and economic policies but
also obtain flexible secure routing based on global information.
Despite the promise of significant improvements, the new
inter-domain protocols fail to get widely deployed.

This paper studies the problem of deploying a new inter-
domain routing protocol. With the Internet composed by more
than 50,000 ASes, replacement of BGP with a new protocol
has to be incremental because it is virtually impossible for
all the ASes to agree on simultaneously adopting the new
protocol on a flag day. Moreover, the benefits of partially
deploying the new protocol have to be significant compared to
the extra hardware, staff training, and other expenses incurred
by the protocol adopters. We develop a rigorous mathematical
approach to understand how the extent of partial deployment
affects the amount of the benefits realized by the deployment.
The sought understanding is of practical importance due to its
potential to both explain the deployment struggle of new inter-
domain routing protocols and guide a successful deployment
for such a protocol.

The cornerstone of our approach is a novel model of a
routing protocol, which is equally applicable to inter-domain
and intra-domain protocols. The model centers on the ability of
a routing protocol to solve the routing problem with respect to
a metric of routing cost. The metric of interest can be end-to-
end path latency, monetary cost of traffic transit through other
nodes, consumed network capacity, or a hybrid of multiple
simple metrics. Given a global set of paths constrained by
the political, economic, and security policies (if any) of the
network nodes, the protocol determines prices of all net-
work links with respect to the routing-cost metric and then
constructs routing to deliver a global traffic-demand matrix
along the available paths. The considered model of a routing
protocol is fairly generic and can be applied to not only
computer networking but also transportation and other kinds
of networks.

The key innovation in our routing-protocol model is a
statistical notion of protocol ignorance that quantifies the
inability of a routing protocol to accurately determine the price
of a network link with respect to the routing-cost metric. This
inability arises due to various reasons:

1) A protocol is designed to operate with a different metric
than the metric of interest. For example, if the metric
of interest is latency, the routing prices of links are
in general determined inaccurately by BGP, RoutingISBN 978-3-903176-08-9 c© 2018 IFIP

Information Protocol (RIP) [9], and the other routing
protocols that use the hop count as a proxy for latency.

2) Even when the security, political, and economic policies
of any node do not prohibit routing along a link, a pro-
tocol artificially excludes the link from the constructed
paths, which effectively renders the link price infinite.
For instance, this happens in BGP due to its local
filtering and single-path routing.

3) Because the routing-cost metric changes its value over
time, a protocol measures the dynamic value inaccu-
rately. For example, when latency is the metric of
interest, Open Shortest Path First (OSPF) [10] sets the
link price to mean latency and ignores higher moments
of latency, which still reduces the protocol ignorance of
OSPF compared to RIP.

For simplicity, we model a link price as a random variable,
rather than a stochastic process.

What makes our study specific to inter-domain routing pro-
tocols is our model of protocol deployment. With a deployment
trajectory referring to a sequence of network nodes that adopt
a new inter-domain routing protocol, we assume that each
deployment trajectory for the same number of adopting nodes
is equally likely in inter-domain settings because ASes act
as independent players. This feature distinguishes our model
of incrementally deploying an inter-domain routing protocol
from intra-domain settings, where the operator of a domain
can hand-pick adopting nodes and deployment trajectories
to maximize the amount of benefits realized by incremental
deployment of a new intra-domain routing protocol.

Via theoretical analysis and packet-level simulation, we
evaluate how the routing cost changes with incremental de-
ployment of a new inter-domain routing protocol. We ana-
lytically characterize the dependence of the routing cost on
a change in routing. In its turn, the simulation examines
how protocol ignorance affects routing when the new protocol
is incrementally deployed. Combining the two dependencies
reveals that the routing cost changes smoothly during incre-
mental deployment. The main contributions of our paper are
as follows:

• We propose and rigorously define a statistical notion
of protocol ignorance that quantifies the inability of a
routing protocol to accurately determine link prices with
respect to a routing-cost metric. Our protocol-ignorance
model of a routing protocol is equally applicable to inter-
domain and intra-domain protocols.

• Based on the notion of a deployment trajectory, we model
incremental deployment of a new inter-domain routing
protocol.

• Our analysis and simulation show that the routing cost
changes smoothly during incremental deployment of a
new inter-domain protocol. This explains the struggle
of new inter-domain routing protocols to get widely
deployed and indicates that their successful deployment
necessitates a coordinated adoption effort by a large
number of relevant ASes.

Notation Semantics

G = (V , E) Network topology with node set V and edge set E
g = |V | Number of nodes in topology G
n = |E| Number of edges in topology G
Z Set of source-destination pairs
m = |Z| Number of source-destination pairs
z = (sz , dz) Node pair with source sz and destination dz
R = (rz)T Traffic demands of all source-destination pairs z
Pz Set of available paths for source-destination pair z
lz = |Pz | Number of available paths for source-destination pair z
P Set of all available paths in the topology

l = |P | =
m∑
z=1

lz Total number of available paths in the topology

p Path
e Edge
B = (bep) Edge composition of all available paths
Wz = (wzp)T Traffic-demand split for source-destination pair z
W Traffic-demand splits for all source-destination pairs
U All-ones vector
ae Aggregate traffic demand on edge e
F (·) = (fe(·))T Routing-price functions on all edges
Ce Routing cost on edge e
C =

∑
e∈E

Ce Total routing cost

TABLE I: Notation in our model of the routing problem.

The paper has the following structure. Section II presents
our model. Sections III and IV evaluate the model via analysis
and simulations respectively. Section V discusses related work.
Finally, section VI sums up the paper and its contributions.

II. MODELING

A. Routing problem

While our model of a routing protocol focuses on its ability
to solve a routing problem, we first formalize the routing
problem. Table I sums up relevant notation. We model the
network topology as a directed graph G = (V , E) with
g = |V | nodes and n = |E| edges. Set Z of size m contains
all source-destination pairs z = (sz, dz), which have traffic
demands R = (rz)

T . Set Pz of size lz contains all paths
available for source-destination pair z. Then, P =

⋃
∀z∈Z

Pz

of size l =
m∑
z=1

lz constitutes the set of all available paths in

the topology. Matrix B = (bep) of size n × l expresses the
edge composition of all available paths. Bit bep is 1 for path p
containing edge e and equals 0 otherwise.

The considered routing problem is a problem of splitting
all traffic demands R among available paths. Our model
is for multipath routing and includes single-path routing as
its special case. With wzp denoting the fraction of traffic
demand rz routed along path p, we express the split of this
traffic demand as vector Wz = (wzp)

T . Constraint WT
z U = 1

ensures routing for the entire demand of source-destination
pair z, where U is an all-ones vector. To represent the traffic-
demand splits of all source-destination pairs z, we compose
block matrix W of size l ×m by forming its diagonal from

533

Notation Semantics

Ω Traffic demand as a random variable
Λ Edge price as a random variable
X Ω or Λ

φX(t) Characteristic function of X
ΦX(x) Cumulative distribution function of X
k Moment order
µk Estimate for the k-th lowest moment of X by a real protocol
q Number of X’s lowest moments estimated by a real protocol
ρX(t) Estimated characteristic function of X
ψe(·) Estimated routing-price function on edge e
Ψ(·) Vector (ψe(·))T of the estimated routing-price functions
α or β Real routing protocol
iαe Protocol ignorance of protocol α on edge e
iαβe Relative protocol ignorance of protocols α and β on edge e
Jαβ Relative protocol ignorance of protocols α and β

TABLE II: Notation in our model of a routing protocol.

vectors Wz and setting all its other elements to zero. Each row
of matrix W corresponds to the same path as in the respective
column of matrix B. Given the global traffic-demand splits,
we add up the traffic demands on edge e to compute aggregate
traffic demand ae on each edge e.

We define the routing problem with respect to a metric
of routing cost. Following the approach by Roughgarden
and Tardos [11], our model determines routing cost Ce on
edge e as the product of its traffic demand and routing price:
Ce = aefe(ae) where routing-price functions F (·) = (fe(·))T
on all edges are non-negative and monotonic. For example,
the edge price can be a monetary price of transiting one Mbps
of traffic along the edge, latency experienced by the traffic on
the edge, or a combination of multiple simple metrics. The
routing-price functions can represent such effects as limited
edge capacities and congestion, e.g., account for congestion-
induced latency when the price is latency. With C =

∑
e∈E

Ce

denoting the total routing cost for the entire network, we
formulate the routing problem as a minimization of this total
cost:

minimize C = F (BWR)TBWR
under constraints WT

z U = 1 ∀z ∈ Z,
wzp ≥ 0 ∀z ∈ Z ∀p ∈ Pz ,

with inputs G,Z, P,R, F (·), and
with outputs W and C.

B. Routing protocol

While section II-A formalizes the routing problem, we now
present our model of a routing protocol, with Table II reporting
respective additional notation. Our protocol model abstracts
away operational details of the protocol, such as the format of
its control messages, events that trigger them, etc. Instead, we
focus on the inability of a routing protocol to optimally solve
the routing problem with respect to the metric of interest due to
protocol ignorance, which refers to the inability of the protocol
to accurately determine the routing prices of network links.

This section introduces and rigorously defines the stochastic
notion of protocol ignorance. Our protocol-ignorance model
of a routing protocol is fairly general and applicable to not
only inter-domain but also intra-domain routing, as well as to
transportation and other types of networks.

This inability of a routing protocol to know the routing
prices exactly arises due to a variety of reasons. First, the
protocol might be designed to operate with a different metric
than the metric of current interest. For instance, while BGP
and RIP use the hop count as the metric of routing cost, the
metric of current interest might be latency, and the prominent
hop-based protocols determine the routing prices of network
links in regard to the latter metric imprecisely. Furthermore,
the hop count is increasingly becoming a less representative
proxy for path latency due to massive emergence of tunneling
techniques that make some hops invisible to the routing
protocol, e.g., because of remote peering in Internet inter-
domain routing [12].

Second, the design of a routing protocol might unnecessarily
exclude a link from routing some traffic, which effectively
renders the link price infinite for the purposes of routing this
traffic. For example, such link exclusion occurs in BGP due
to local filtering of a path by an AS even when routing along
the excluded link does not violate any economic, political,
or security policy of any AS. Also, single-path routing in
BGP unnecessarily prevents routing of some traffic along
some links, which similarly undermines the ability of BGP to
solve the routing problem optimally. Note that although single-
path routing and local filtering in BGP simplify the protocol
design and improve its scalability, these design choices are not
fundamental for Internet inter-domain routing. For instance,
Route Bazaar is an alternative inter-domain routing approach
that supports multipath routing and uses a decentralized global
public ledger for enabling each AS to make local routing
decisions and enforcing the security, political, and economic
policies of all ASes in a privacy-preserving manner.

Third, even when a protocol is designed for the same routing
metric of interest, the protocol might be unable to exactly
measure the dynamic values of the metric. For example, the
values of path latency continuously change due to packet
queuing in network nodes.

Regardless of the reasons why a particular protocol does
not know the exact routing prices, the statistical notion of
protocol ignorance quantifies this inability. Below, we refer to
a protocol with imperfect knowledge of the routing prices as a
real protocol. An optimal protocol measures the routing prices
exactly.

1) Representation of an optimal protocol: For each edge e,
we view its aggregate traffic demand and routing price as
random variables Ω and Λ respectively and refer to either of
them as X for exposition brevity. The characteristic function
of X is φX(t) = E[eitX] where i is the imaginary unit, and
t ∈ R. In our model, an optimal protocol knows exactly all
moments E[Xk] of X , where k = 1, 2, . . . ,∞. According to
the Hausdorff moment problem [13], the collection of all the
moments uniquely determines the probability density function

534

(PDF) of X . Specifically, assuming that φX(t) is an analytic
function, the optimal protocol expands it into a Taylor series:

φX(t) = 1 +

∞∑
k=1

(it)k

k!
E[Xk] (1)

and recovers the PDF of X from φX(t) through the inverse
Fourier transform as 1

2π

∫
R
φX(t)eitxdt. By integrating the

obtained PDFs of Ω and Λ, the optimal protocol obtains the
cumulative distribution function (CDF) for each of these two
random variables, ΦΩ(x) and ΦΛ(x) respectively. Because
routing-price function fe(·) is monotonic, the optimal protocol
computes it as fe(·) = Φ−1

Ω (ΦΛ(x)) for each edge e and solves
the routing problem of section II-A optimally.

2) Representation of a real protocol: On the other hand, a
real protocol observes only samples drawn from the probability
distribution of variable X and uses them to compute estimates
µk for the q lowest moments of X , i.e., for k = 1, . . . , q. The
real protocol computes an estimated characteristic function
ρX(t), an estimate of φX(t), as:

ρX(t) = 1 +

q∑
k=1

(it)k

k!
µk. (2)

By applying the inverse Fourier transform to ρX(t) and then
integrating the obtained PDF, the real protocol computes
estimated routing-price functions Ψ(·) = (ψe(·))T and uses
them instead of functions F (·) = (fe(·))T when solving
the routing problem of section II-A. Because Ψ(·) are only
estimates of F (·), the real protocol computes routing W and
its total cost C suboptimally in general.

3) Relevance to prominent existing protocols: Whereas
existing routing protocols do not actually perform inverse
Fourier transforms, integration, or other complicated opera-
tions described above, we now show that our model of a
routing protocol realistically represents the handling of routing
prices by prominent existing protocols.

Hop-based protocols. This kind of routing protocols uses
the hop count as the metric of routing cost. BGP and RIP
are prominent representatives of such protocols in the inter-
domain and intra-domain settings respectively. In our model, a
hop-based protocol does not measure any moments of X , i.e.,
µk = 0 for k = 1, . . . ,∞, even when the routing metric of
interest has dynamic values, e.g., when the metric of interest is
latency. Thus, the respective estimated characteristic function
is ρX(t) = 1. The inverse Fourier transform produces the
Dirac delta function as the PDF of X , implying that X is a
constant and that the edge cost is the same for all the edges,
i.e., the model realistically represents the link pricing in a
hop-based protocol.

Mean-measuring protocols. A mean-measuring protocol
measures only the first moment, i.e., mean µ1, of routing
price Λ. OSPF is a prominent mean-measuring intra-domain
protocol when it is configured to measure the routing price
as mean latency, e.g., by using a sliding window estimation.
While the hop-based BGP constitutes the only prominent
existing protocol for inter-domain routing, Route Bazaar is

an alternative Internet connectivity approach where mean-
measuring protocols can be used for inter-domain routing. In
our model of a mean-measuring protocol, the corresponding
estimated characteristic function is ρΛ(t) = 1 + (it)kµ1.
The inverse Fourier transform yields H(x) − µ1δ

′(x) as the
PDF of Λ, where H(x) denotes the Heaviside step function,
and δ′(x) is the derivative of the Dirac delta function. The
integration of this function leads to estimating each edge
cost as the mean of the metric, i.e., the model realistically
represents the handling of routing prices by a mean-measuring
protocol.

4) Mathematical definition of protocol ignorance: To
model how accurately a real protocol α estimates edge price Λ
in comparison to an optimal protocol, we define protocol
ignorance iαe of protocol α on edge e as:

iαe =

∫ c

0

∣∣∣ρΛ(t)− φΛ(t)
∣∣∣dt (3)

where c is a constant ensuring existence of the integral. Based
on equations 1 and 2, we express this protocol ignorance as:

iαe =

∫ c

0

∣∣∣ ∞∑
k=0

(
(it)k

k!
(E[Λk]− µk)

∣∣∣dt (4)

where µk = 0 for k > q. The protocol ignorance of an optimal
protocol equals 0. For a real protocol α, we have iαe > 0. As
the real protocol estimates more moments of Λ and measures
each moment more accurately, iαe decreases toward 0, and the
smaller protocol ignorance enables real protocol α to estimate
the routing-price function on edge e more accurately.

The notion of protocol ignorance forms a basis for com-
paring two real routing protocols α and β. We define relative
protocol ignorance of protocols α and β on edge e as:

iαβe = lim
c→∞

iαe − iβe
c1+max{qα,qβ} (5)

which no longer depends on the choice of constant c. Here,
qα and qβ denote the number of moments estimated for edge
price Λ by protocols α and β respectively. Vector of iαβe for
all edges e in E provides a topology-wide perspective on
the relative protocol ignorance. We define relative protocol
ignorance of protocols α and β as a norm of this vector:

Jαβ =

√∑
e∈E

(
iαβe
)2

. (6)

Example 1. Let α and β refer respectively to hop-based and
mean-measuring protocols. For edge e, protocol β observes
the following five samples of edge latency Λ, which has
an exponential distribution: 0.81, 0.63, 2.10, 1.02, and 0.66.
Using the samples, protocol β computes µ1 = 1.044 as an
estimate of moment E[Λ], and ρΛ(t) = 1

1−it as an estimate
of characteristic function φΛ(t). Then, the protocol ignorance
of protocol β on edge e is iβe = |ln(1 − ic) − c − 0.522ic2|.
Protocol α, which does not measure the edge latency at all,
has a larger protocol ignorance iαe = |ln(1 − ic)|. Thus, the
relative protocol ignorance of protocols α and β on edge e is
iαβe = 0.022, confirming the better awareness of protocol β

535

Notation Semantics

h Number of nodes that adopt the new protocol
j Deployment trajectory
Ψhj(·) Routing-price functions for deployment trajectory j of h nodes
Whj Routing for deployment trajectory j of h nodes
Chj Routing cost for deployment trajectory j of h nodes
Ch Average routing cost Ch for all deployments of h nodes
Θ Edge-sharing matrix
γab Bilinear form
Le Lipschitz constant of estimated price function ψe(·) on edge e
L Maximum Le among all edges e
Υaz Auxiliary block matrix in the proof of theorem 2

TABLE III: Notation in our model of protocol deployment.

about the edge latency. If protocol β estimated the both lowest
moments of edge latency Λ, its protocol ignorance on edge e
would change to iβe = |ln(1−ic)−c−0.522ic2+0.463c3|, and
the relative protocol ignorance of protocols α and β on this
edge would increase to iαβe = 0.13, representing the increased
advantage of protocol β over protocol α in knowing the latency
distribution on edge e. 4

C. Incremental deployment of a new inter-domain protocol

While the model of a routing protocol in section II-B is
equally applicable to inter-domain and intra-domain protocols,
we now present our model for incremental protocol deploy-
ment specific to inter-domain routing protocols. Table III
reports corresponding extra notation.

Suppose that all nodes in topology G support an incumbent
inter-domain routing protocol α. Adopting a new inter-domain
routing protocol β can reduce the routing cost in topology G
because protocol β measures more accurately the routing
prices on those edges where the new protocol is used. Some
nodes deploy protocol β. When a node deploys protocol β,
this protocol is used on all outcoming edges of this node.
Protocol β is backward compatible with protocol α and runs
on top of the incumbent protocol, e.g., by using Generic
Route Encapsulation (GRE) tunnels [14] or another tunneling
technique.

The routing and its cost depend on not only how many
nodes adopt the new protocol but also which specific nodes
are the adopters. Hence, we define a deployment trajectory of
h nodes as a sequence of the first h adopting nodes in the
order of their deployment of protocol β. Because ASes in the
practice of inter-domain routing act as independent players,
we assume that every deployment trajectory of h nodes is
equally likely. The equal likelihood of deployment trajectories
is the main feature distinguishing our inter-domain deployment
model from intra-domain settings, where the domain operator
can cherry-pick h adopting nodes to maximize the reduction
in the routing cost. For the inter-domain settings, we express
average routing cost Ch for all deployments of h nodes as:

Ch =
1

P (g, h)

P (g,h)∑
j=1

Chj (7)

where g is the number of nodes in the topology, Chj refers
to the routing cost for the deployment of h nodes that has the
j-th h-permutation of g as its trajectory, and P (|V |, h) is the
total number of such h-permutations of g.

Let us examine a full deployment of g nodes with trajec-
tory j. Estimated routing-price functions Ψhj(·), routing Whj ,
and routing cost Chj for a deployment of h nodes might
all change at each stage h along this trajectory, where h =
1, . . . , g. As h increases, cost Chj changes due to two con-
flated effects: (a) changes in routing Whj and (b) changes in
estimates Ψhj(·) of routing-price functions F (·). To segregate
the two effects, we can track the value of C̃hj − Cgj at each
stage h, where Cgj is the routing cost with the full deployment
of protocol β, and C̃hj denotes the cost of routing Whj

computed with full-deployment routing-price functions Ψgj(·).

III. ANALYSIS

The salient outcomes of our extensive modeling effort in
section II include the formulation of the routing problem with
respect to a metric of routing cost, statistical notion of protocol
ignorance that quantitatively characterizes the inability of a
protocol to measure routing prices accurately, and model
for incremental deployment of a new inter-domain routing
protocol. This section analyzes such incremental deployment.
Specifically, we assess how much a change in routing affects
the routing cost. The analysis is the first step towards under-
standing why BGP remains the only prominent inter-domain
routing protocol and what fraction of the Internet ASes need
to adopt a new inter-domain routing protocol to substantially
benefit from the adoption.

A. Routing for one source-destination pair

For ease of exposition, we start the analysis by considering
the simple scenario where the routing problem needs to
be solved for only one source-destination pair z1, i.e.,
Z = {z1}. The set of available paths for the pair is P1.
Without loss of generality, we normalize the traffic demand
of pair z1 to r1 = 1. Protocol β computes estimates Ψ(·)
of routing-price functions F (·) as described in section II-B.
With this, protocol β solves the following instance of the
routing problem from section II-A:

minimize C = Ψ(BW1)TBW1

under constraints WT
1 U = 1,

w1p ≥ 0 ∀p ∈ P1,
with inputs G, {z1}, P1, r1 = 1,Ψ(·), and
with outputs W1 and C.

Consider two routings W x
1 and W y

1 that have costs Cx and
Cy respectively. Vector W ε

1 = W x
1 −W

y
1 of size l1 = |P1| rep-

resents the difference between these routings. Let Θ = (θpu)
of size l1 × l1 denote an edge-sharing matrix BTB (where
matrix B expresses the edge composition of all available
paths), and θpu represents the number of edges shared by
paths p and u, implying that θpu is at most the diameter of
topology G. Then, we represent bilinear form (W a

1)TΘW b
1

536

as γab. By construction, estimated routing-price functions Ψ(·)
have Lipschitz continuity. We define constant L = max

e∈E
{Le}

where Le is the Lipschitz constant of estimated routing-price
function ψe(·) on edge e.

Theorem 1. In routing for one source-destination pair, a
change in the total routing cost is bounded from above as
follows:

|Cx − Cy| ≤ L(|γεε|+ 2|γεy|). (8)

Proof. Let Cab denote Ψ(BW a
1)TBW b

1 . Then, we ex-
press cost Cx as Ψ(BW x

1)TB(W y
1 + (W x

1 − W y
1)) =

Ψ(BW x
1)TBW y

1 + Ψ(BW x
1)TW ε

1 = Cxy + Cxε. Similarly,
we express cost Cy as Ψ(BW y

1)TB(W x
1 − (W x

1 −W
y
1)) =

Ψ(BW y
1)TBW x

1 − Ψ(BW y
1)TW ε

1 = Cyx − Cyε. Thus, we
have:

Cx = Cxy + Cxε and Cy = Cyx − Cyε (9)

and express the sum of these two costs as:

Cx + Cy = Cxy + Cyx + Cxε − Cyε. (10)

Using equation 10, we express the difference of the two costs
as:

Cx−Cy = (Cxy −Cy) + (Cyx−Cy) + (Cxε−Cyε). (11)

The three terms on the right-hand side of equation 11
have the following upper bounds: |Cxy − Cy| =
|(Ψ(BW x

1)T − Ψ(BW y
1)T)BW y

1 | ≤ L|εTBW y
1 | = L|γεy|,

|Cyx − Cy| = |Ψ(BW y
1)TBW ε

1 | = |(Ψ(BW y
1)T −

Ψ(BO)T)BW ε
1 | ≤ L|γyε|, and |Cxε−Cyε| = |(Ψ(BW x

1)T −
Ψ(BW y

1)T)BW ε
1 | ≤ L|γεε| where O is a zero vector. Because

the symmetry of matrix Θ implies γyε = γεy , we combine the
above three bounds to derive equation 8.

B. Routing for an arbitrary set of source-destination pairs

Now, we extend the result of theorem 1 for the general
formulation of the routing problem in section II-A, i.e., when
set Z of source-destination pairs and traffic demands R are
arbitrary. The extension is fairly straightforward and largely
related to generalizing the notation from vectors to matrices.
In particular, matrix W ε denotes the difference between two
routings W x and W y , where W ε

z equals W x
z −W y

z . Also, we
define γεεz = (W ε

z)TΘz(W
ε
z) where Θz equals BTz Bz .

Theorem 2. In the general routing problem, a change in the
total routing cost is bounded from above as follows:

|Cx − Cy| ≤ L(|
m∑
z=1

r2
zγ
εε
z |+ 2|

m∑
z=1

r2
zγ
εy
z |). (12)

Proof. By substituting W x
1 and W y

1 with W xR and W yR
respectively, we follow the reasoning pattern in the proof of
theorem 1 to show that

|Cx − Cy| ≤ L(|(W εR)TΘ(W εR)|+ 2|(W εR)TΘ(W yR)|).

Let Υa
z denote an auxiliary block matrix that has the same

size as W . Its z-th block is W a
z , and all the other ele-

ments equal zero. Then, we express W a as
m∑
z=1

Υa
z . Be-

cause (Υa
zR)TΘ(Υb

jR) is zero for j 6= z, we represent
(W aR)TΘ(W bR) as

∑m
z=1(Υa

zR)TΘ(Υb
zR). By expressing

(Υa
zR)TΘ(Υb

zR) as rz(W a
z)TΘz(W

b
z), we derive:

(W aR)TΘ(W bR) =

m∑
z=1

rz(W
a
z)TΘz(W

b
z). (13)

By applying equation 13 to both terms on the right-hand side
of the bound earlier in the proof, we establish equation 12.

The above results demonstrate that a change in the routing
affects the routing cost smoothly, i.e., a small change in routing
do not cause a large change in the routing cost.

IV. SIMULATION

The analytic results in section III tell only half the story.
They show how a change in routing affects the routing cost. To
complete the story, we now examine how the lower ignorance
of an incrementally deployed inter-domain protocol affects
routing.

A. Methodology

We use real network data to conduct packet-level simulation.
Simulating the global Internet faces two steep challenges: scale
and fidelity. Because the Internet consists of more than 50,000
ASes connected by around a million inter-domain links, simu-
lation of the entire topology would require enormous compu-
tational resources. Furthermore, neither the Internet topology
nor its traffic-demand matrix is known with high precision
for such simulation to produce highly accurate quantitative
answers. In dealing with these challenges, we openly admit
necessary limitations of the simulated model (such as using
a single node to represent an AS), avoid a focus on exact
quantitative results, and instead strive to expose the qualitative
dependence of routing on protocol ignorance.

1) Topology: To tackle the challenge of topology scale, we
characterize statistical properties of the global Internet topol-
ogy and generate a family of smaller topologies with the same
statistical properties. Specifically, we reconstruct snapshots of
the AS-level Internet topology from the CAIDA dataset [15]
based on traceroute [16] measurements. Our characterization
of the snapshots confirms the observation that the AS-level
Internet topology is a scale-free graph. Route Views [17]
and other prominent sources of Internet connectivity data can
be used to make the same observation. Based on the scale-
free characterization, we use NetworkX [18], [19] to generate
synthetic topologies that preserve the statistical properties of
the global Internet topology and range in their size from
100 to 1,200 nodes, with the default size of 500 nodes. The
probability to add an edge to a node during the topology
generation varies between 0 and 50%, with 10% being the
default value. The minimum number of edges adjacent to each
node equals 3 by default and changes from 1 to 50.

537

(a) 2,000 runs with 10 runs per setting (b) Deviations of the 2,000 samples (c) Regression for different topology sizes

Fig. 1: Impact of protocol ignorance on the routing price during incremental deployment of the new inter-domain protocol.

2) Traffic matrix: While the Transmission Control Protocol
(TCP) [20] transmits packets in bursts, the basic level of traffic
in the simulation is a packet burst. Each source-destination
pair communicates around 10,000 packet bursts. We size every
packet to 64 KB. The number of packets in a burst varies
from 1 to 32 and is distributed binomially with 32 independent
experiments and success probability 0.5. Time between sub-
sequent packet bursts has a random distribution with a mean
of 1 ms. We consider three such distributions: exponential,
uniform, and Weibull, with the exponential distribution being
used in the default settings. We include the Weibull distribution
due to prior measurement studies [21], [22] and independently
validate it on another CAIDA dataset [23].

3) Routing protocols: The routing metric of interest in the
simulation is latency. For the incumbent and new inter-domain
routing protocols, we respectively consider the hop-based and
mean-measuring protocols described in section II-B.

4) Simulator: To improve scalability of the simulation,
we develop and utilize our own simulator. Unlike ns-3 [24]
and other generic simulators that support many features at
the price of significant overhead, our tool is customized for
the problem in hand to scalably simulate traffic generation,
routing, and delivery for each source-destination pair in the
network topology. The tool is a discrete-time event simulator
that represents each AS as a single node. In addition to
generating packet bursts, every node also forwards packet
bursts from other sources. The node forwards all packets of a
burst together as a whole. The forwarded burst experiences
transmission latency determined by dividing the burst size
by the internal capacity of the AS; this internal capacity
of the node is drawn from a truncated normal distribution.
Additionally, the forwarded packet burst experiences queuing
latency drawn from the exponential distribution with a mean of
0.05 ms. The simulator keeps the average network utilization
at 50% by: (1) setting the capacity of each edge according to
closeness centrality of both nodes incident to this edge and (2)
then characterizing each edge with extra latency drawn from
the same exponential distribution for all edges, with the rate
parameter of this distribution being determined experimentally.

For every simulated setting, we conduct 10 runs and, for
each run, measure the routing price as the average end-to-end
latency in the network. The code of our simulator is available
in [25].

B. Simulation results

1) Impact of protocol ignorance: Figure 1a depicts how the
routing price changes when the fraction of nodes adopting the
new protocol increases with a step of 0.5% from 0 to 100%,
i.e., from no deployment to full deployment. For each of the
10 runs in every simulated setting, we plot the routing price
as a point. Figure 1a also plots a polynomial regression and
its 15th and 85th percentiles for the results, with the elbow
method consistently identifying a quadratic regression as the
best fit. We normalize the plotted results by linearly scaling
them to map interval [f ,n] into [0,1] where f and n refer to the
regression values in the full-deployment and no-deployment
settings respectively. Figure 1b reports a histogram of the
deviations of the individual results from the corresponding
regression values. Figure 1c plots the regression for three other
sizes of the network topology. The dependence of the routing
price on the deployment extent exhibits the same qualitative
profile and only minor quantitative differences. The routing
price undergoes a smooth quadratic decline over the entire
range of incremental deployment. For the four considered sizes
of the topology, between 43% and 53% of all nodes have to
adopt the new protocol to decrease the routing price by 25%.

Combining the simulation insights with the analytical results
from section III, we conclude that the benefits from adopting
the new inter-domain protocol accumulate smoothly during
incremental deployment and that protocol deployment by
natural early adopters [26], [27] is insufficient to incentivize
other ASes to deploy the protocol later. Our findings explain
the struggle of new Internet inter-domain routing protocols to
get widely deployed. Our results also indicate that widespread
deployment of a new inter-domain protocol necessitates in-
volving a large number of relevant ASes into a coordinated
effort to adopt the protocol.

538

(a) Topology size (b) Minimal connectivity (c) Edge addition probability

Fig. 2: Sensitivity of the routing price to parameters of the topology generation algorithm.

2) Parameter sensitivity: Figure 1c already shows that
the topology size makes a small quantitative impact on the
quadratic dependence between the deployment extent and
routing price. We also evaluate sensitivity of this dependence
to the distribution of inter-burst time (exponential, uniform, or
Weibull) and parameters of the topology generation algorithm.
Compared to the results in figure 1c, these sensitivity studies
unveil the same quadratic qualitative profile and even smaller
quantitative differences for the dependence of the routing price
on the fraction of adopting nodes. Due to such similarity and
space constraints, we do not report the respective graphs here.

Figure 2 explores sensitivity of the routing price to three
parameters of the topology generation algorithm when the
fraction of adopting nodes is fixed at 10%, 50%, or 90%. We
normalize the plotted results by linearly scaling them to map
interval [l,h] into [0,1] where l and h refer respectively to the
minimum and maximum routing price across all settings in
these three parameter sensitivity studies.

Figure 2a shows that the routing price grows sublinearly
as the topology size increases from 100 to 1,000 nodes. The
result corroborates the intuition that the topology diameter
grows slower than the topology size. For scale-free graphs,
[28] analytically shows that the diameter grows on average
with rate log(g)

log(log(g)) where g is the number of nodes. Because
the diameter is determined by the longest shortest path, and
the end-to-end routing cost grows on average linearly with the
path length, the dependency depicted in figure 2a matches the
theoretical expectation.

Figure 2b exhibits dependence of the routing price on the
minimal node degree in the topology. With a larger fraction of
adopting nodes, the routing price falls steeper as the minimal
node degree increases from 1 to 50. This happens due to
dependency between the node degree and number of paths in
the topology. Because the incumbent protocol uses the number
of hops as a proxy metric for latency and thus estimates actual
routing prices inaccurately, the decrease in the routing price is
more pronounced for larger deployments of the new protocol.

Figure 2c reports on varying the probability of adding a
random edge during the topology construction. The topology

generation algorithm keeps the number of added edges pro-
portional to the topology size. Whereas the increase of the
minimal node degree in our previous sensitivity study weakens
the scale-free property of the topology, the addition of random
edges strengthens this property without increasing the number
of paths exponentially. Figure 2c demonstrates low sensitivity
of the routing price to the edge addition probability.

Overall, among all conducted sensitivity studies, the routing
price is most sensitive to the topology size and fraction of
adopting nodes.

V. RELATED WORK

While prior work on inter-domain routing is extensive, its
main focuses are not on the problem of incrementally transi-
tioning from BGP to a new protocol. Even those papers that
explicitly consider incremental migration to the new protocol
tend to deal with technical issues of the transition [6] and do
not provide clear answers on economic incentives for adopting
ASes, especially for early adopters [26], [27]. Whereas [29]
proposes a method for service composition that can be used
to combine different routing protocols, the paper develops the
marketplace support without studying incremental adoption of
the marketplaces. [30] argues that it is possible to select a
relatively small set of routing brokers, about 7% of the Internet
ASes, to enable QoS-aware and, in particular, latency-aware
routing for most of the Internet; while [30] hand-picks the
routing brokers among strategically positioned ASes, our work
makes a more realistic assumption that ASes adopt the new
routing protocol voluntarily and randomly.

Incremental deployability attracts more direct attention in
other problem domains of computer networking. In the context
of Internet addressing, [31] studies incremental migration from
IPv4 to IPv6 and estimates its costs. [32] analyzes a potential
way to incrementally deploy a secure version of BGP. Our
paper differs from these previous efforts in not only tackling
a different problem domain but also using a new method based
on protocol ignorance. The distinguishing trait of our work is
its model that captures the inability of a protocol to estimate
costs accurately.

539

Our work leverages various prominent previous efforts. The
protocols designed in [6], [8], [33]–[35] inspire us to develop
the concept of protocol ignorance. Our analysis extends the
classical theoretical work by Roughgarden and Tardos on the
price of anarchy in different types of networks [11]. Their
research paves the way to formalize the routing problem
and characterize dependence of the routing cost on routing.
[11], [36] analyze different scenarios of network behaviour
in its dependency on node behaviour. Our simulations rely
on realistic network topologies [37] and use real traffic traces
collected by CAIDA [15], [23]. The approaches in [21], [22],
[38] guide our modeling work.

[39], [40] report on mathematical modeling of Internet
protocols. Our work belongs to the same type of research.
We develop a novel abstract model for inter-domain routing
that ties together a routing protocol, routing constructed by
the protocol, and cost of the constructed routing.

VI. CONCLUSION

In this paper, we studied incremental deployment of a new
inter-domain routing protocol in the Internet. The paper for-
malized the routing problem in terms of minimizing a metric
of routing cost. Then, we introduced and rigorously defined
a statistical notion of protocol ignorance that quantifies the
inability of a routing protocol to accurately determine routing
prices with respect to the metric of interest. Our protocol-
ignorance model of a routing protocol is fairly generic and
applicable to not only inter-domain but also intra-domain rout-
ing, as well as to transportation and other kinds of networks.
The considered model of protocol deployment made our study
specific to Internet inter-domain routing. Using theoretical
analysis and simulation, we showed that the benefits from
adopting the new inter-domain protocol accumulate smoothly
during incremental deployment. In the simulated topologies,
between 43% and 53% of all nodes had to adopt the new
protocol to decrease the routing price by 25%. Our results
explained the lack of widespread adoption for new inter-
domain routing protocols and indicated that their successful
deployment necessitated a coordinated adoption effort by a
large number of relevant ASes.

VII. ACKNOWLEDGMENTS

This research was financially supported in part by the
Regional Government of Madrid on Cloud4BigData grant
S2013/ICE-2894.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4),” RFC 4271, 2006.

[2] P. Bangera and S. Gorinsky, “Impact of Prefix Hijacking on Payments
of Providers.” COMSNETS, 2011.

[3] J. Karlin, S. Forrest, and J. Rexford, “Pretty Good BGP: Improving BGP
by Cautiously Adopting Routes.” ICNP, 2006.

[4] M. Caesar and J. Rexford, “BPG Routing Policies in ISP Networks,”
IEEE Network, 19(6), 2005.

[5] W. Sun, Z. Mao, and K. Shin, “Differentiated BGP Update Processing
for Improved Routing Convergence.” ICNP, 2006.

[6] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet Routing.”
SIGCOMM, 2009.

[7] V. Valancius, N. Feamster, R. Johari, and V. Vazirani, “MINT: A Market
for INternet Transit.” ReArch, 2008.

[8] I. Castro, A. Panda, B. Raghavan, S. Shenker, and S. Gorinsky, “Route
Bazaar: Automatic Interdomain Contract Negotiation.” HotOS, 2015.

[9] C. Hedrick, “Routing Information Protocol,” RFC 1058, 1998.
[10] J. Moy, “OSPF Version 2,” RFC 2328, 1998.
[11] T. Roughgarden and E. Tardos, “How Bad is Selfish Routing?” Journal

of the ACM, 49(2), 2002.
[12] I. Castro, J. C. Cardona, S. Gorinsky, and P. Francois, “Remote Peering:

More Peering Without Internet Flattening.” CoNEXT, 2014.
[13] J. Shohat and J. Tamarkin, The Problem of Moments. American

Mathematical Society, 1943.
[14] D. Farinacci, S. Hanks, and P. Traina, “Generic Routing Encapsulation

(GRE),” RFC 1701, 1994.
[15] CAIDA, “Anonymized Internet Traces 2012,” 2016. [Online]. Available:

http://www.caida.org/data/request user info forms/ark.xml
[16] V. Jacobson, “Traceroute,” 1989.
[17] University of Oregon, “Routeviews Prefix to AS Mappings

Dataset (pfx2as) for IPv4 and IPv6,” 2005. [Online]. Available:
http://www.routeviews.org/routeviews/

[18] A. Hagberg, D. Schult, and P. Swar, “Exploring Network Structure,
Dynamics, and Function using NetworkX.” SciPy, 2008.

[19] P. Holme and B. Kim, “Growing Scale-Free Networks with Tunable
Clustering,” Physical review E, 65(3), 2002.

[20] Information Sciences Institute University of Southern California, “Trans-
mission Control Protocol,” RFC 793, 1981.

[21] N. Hariri, B. Hariri, and S. Shirmohammadi, “A Distributed Measure-
ment Scheme for Internet Latency Estimation,” IEEE Transactions on
Instrumentation and Measurement, 60(5), 2011.

[22] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King : Estimating Latency
between Arbitrary Internet End Hosts.” IMW, 2002.

[23] CAIDA, “IPv4 Routed /24 Topology Dataset,” 2016. [Online]. Available:
http://www.caida.org/data/passive/passive dataset request.xml

[24] NS-3 Consortium, “ns-3,” 2017. [Online]. Available:
https://www.nsnam.org/

[25] V. Kirilin and S. Gorinsky, “Simulator Source Code,” 2017. [Online].
Available: https://github.com/WVadim/SimulatorC-Large

[26] C. Catalini and C. Tucker, “When Early Adopters Don’t Adopt,” Science,
365(6), 2017.

[27] J. R. Douceur and T. Moscibroda, “Lottery Trees: Motivational Deploy-
ment of Networked Systems.” SIGCOMM, 2007.

[28] B. Bollobás and O. Riordan, “The Diameter of a Scale-Free Random
Graph,” Combinatorica, 24(1), 2004.

[29] S. Bhat, R. Udechukwu, R. Dutta, and G. N. Rouskas, “On Service
Composition Algorithm for Open Marketplaces of Network Services.”
EuCNC, 2017.

[30] D. Lin, D. Hui, W. Wu, T. Liu, Y. Yang, Y. Wang, J. C. Lui, G. Zhang,
and Y. Li, “On the Feasibility of Inter-Domain Routing via a Small
Broker Set.” ICDCS, 2017.

[31] A. Durand, “Deploying IPv6,” IEEE Internet Computing, 5(1), 2001.
[32] H. Chan, D. Dash, A. Perrig, and H. Zhang, “Modeling Adoptability of

Secure BGP Protocol.” SIGCOMM, 2006.
[33] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless Inter-Domain Routing

(CIDR): An Address Assignment and Aggregation Strategy,” RFC 4632,
2006.

[34] V. Kotronis, X. Dimitropoulos, R. Klöti, B. Ager, P. Georgopoulos,
and S. Schmid, “Control Exchange Points: Providing QoS-enabled End-
to-End Services via SDN-based Inter-domain Routing Orchestration.”
ONS, 2014.

[35] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller, “The Locator/ID
Separation Protocol (LISP),” RFC 6830, 2013.

[36] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses, “Selfish Routing
in Capacitated Networks,” Mathematics of Operations Research, 29(4),
2004.

[37] S.-H. Yook, H. Jeong, and A.-L. Barabasi, “Modeling the Internet’s
Large-Scale Topology,” Proceedings of the National Academy of Sci-
ences, 99(21), 2002.

[38] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
and A. Akella, “On the Treeness of Internet Latency and Bandwidth.”
SIGMETRICS, 2009.

[39] F. Kelly, Mathematical Modelling of the Internet. Springer-Verlag,
2001.

[40] C. Papadimitriou, “Algorithms, Games, and the Internet.” STOC, 2001.

540

A-1

Annex to the IFIP Networking 2018 Proceedings

Demonstration and Poster Session

Ahmed Abdelsalam:
Demo: Chaining of Segment Routing Aware and Unaware Service Functions A-3

Fred Aklamanu, Sabine Randriamasy, Eric Renault, Imran Latif, Abdelkrim Hebbar,
Alberto Contem Bilal Al Jamal, Warda Hamdaoui:
Demo: Intent-Based 5G IoT Application Slice Energy Monitoring A-5

The An Binh Nguyen, Christian Klos, Christian Meurisch, Patrick Lampe:
Demo: Enabling In-Network Processing utilizing Nearby
Device-to-Device Communication .. A-7

Vamsi Addanki, Leonardo Linguaglossa, Jim Roberts, Dario Rossi:
Demo: Controlling Software Router Resource Sharing by Fair Packet Dropping A-9

Marie Schaeffer, Roman Naumann, Stefan Dietzel, Björn Scheuermann:
Poster: Impact of Prioritized Network Coding on Sensor Data Collection in
Smart Factories .. A-11

Sina Rafati Niya, Burkhard Stiller:
Poster: Design and Evaluation of a Time Efficient Vertical Handoff Algorithm
between LTE-A and IEEE 802.11ad Wireless Networks .. A-13

Corinna Schmitt, Dominik Bünzli, Burkhard Stiller:
Poster: WebMaDa 2.0 - Automated Handling of User Requests A-15

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP

A-2

.

Demo: Chaining of Segment Routing aware and
unaware Service Functions

Ahmed Abdelsalam
Gran Sasso Science Institute

Abstract—Segment Routing (SR) is a source routing paradigm
that can benefit from both MPLS and IPv6 data planes to steer
traffic through a set of nodes. It provides a simple and scalable
way to support Service Function Chaining (SFC). In this demo,
we propose an NFV architecture based on SR and implemented
in Linux environment. It allows chaining of both SR-aware and
SR-unaware Service Functions (SFs). In order to include SR-
unaware SFs into SR SFC, we use our SR proxy implementation:
srext, a Linux kernel module that handles the processing of SR
information in behalf of the SR-unaware SFs. As SR-aware SFs,
we use two of our implementation; SERA and SR-aware snort.
SERA is a SEgment Routing Aware Firewall, which extends the
Linux iptables firewall, and capable of applying the iptables
rules to the inner packet of SR encapsulated traffic. SR-aware
snort is an extended version of snort that can apply snort rules
directly to inner packet of SR encapsulated traffic. We show
the interoperability between SR-aware and SR-unaware SFs by
including both of them within the same SFC.

Index Terms—Service Function Chaining, Network Function
Virtualization, Segment Routing, Linux networking

I. INTRODUCTION

Telecommunication networks infrastructures are evolving
at a rate rarely seen since the transformation from analog
to digital [1]. Network functions virtualization (NFV) offers
an agile way to design and deploy networking service [2].
In an NFV infrastructure, network functions are decoupled
from proprietary hardware appliances and moved to virtual
servers so they can run in software modules called Virtual
Network functions (VNFs), which are sometimes referred to
as Service Functions (SFs). This dramatically reduces both
capital expenditures (CAPEX) and operating expenses (OPEX)
[3]. A set of these VNFs (SFs), which can be arbitrarily located
in a distributed virtualization infrastructure, are often required
to deliver an end-to-end service, hence Service Function
Chaining (SFC) comes into play.

SFC denotes the process of forwarding packets through the
sequence of SFs [4]. It requires a steering mechanism to force
packets to go through SFs. These steering mechanisms often
require inserting a new header into packets, which carries the
path information. Network Service Header (NSH) and IPv6
Segment Routing header (SRH) are two examples of those
headers. NSH has been proposed by the IETF SFC Working
Group to support the encapsulation of packets with a header
that specifies the sequence of SFs to be crossed [5]. Using
NSH requires creating a state (per each NFV chain) in the
network fabric, which doesn’t make it the preferred solution
in the recent era of networking, where everything is going

towards stateless and simplicity. On the contrary, using SRH
for SFC doesn’t have the need for those state information.

In this demo, we consider the use of the Segment Routing
(SR) architecture to support SFC. SR is a new network
architecture that leverages the source routing paradigm [6]. It
allows to steer packets through an ordered list of nodes, which
are refereed to as segments. SR can be instantiated over both
MPLS (SR-MPLS) and IPv6 (SRv6) data planes. SRv6 defines
a new IPv6 Routing type, named SRH. It allows including a
list of segments in the IPv6 packet header [7]. Each A segment
is encoded as an IPv6 address and represents function to be
called at a specific location in the network. SR enables SFC in
a simple and scalable manner, by associating each SF with a
segment. Such segments are combined together in a segment
list to achieve SFC.

II. SR-AWARE VS SR-UNAWARE SFS

SFs can be categorized into two types, depending on their
ability to properly process SR encapsulated packets. These
are respectively named SR-aware and SR-unaware SFs [8].
An SR-aware SF is able to correctly process SR-encapsulated
packets it receives, which imply being able to process the
original packet despite the fact that it has been encapsulated
within a SR packet, but also being able to process the SRH.
On the contrary, An SR-unaware SF is not able to correctly
process the SR-encapsulated it receives. It may either drop the
traffic or take erroneous decisions due to the unrecognized SR
information. In order to include SR-unware SFs in an SR SC
policy, it is thus required to remove the SR information as well
as any other encapsulation header before the SF receives the
packet, or to alter it in such a way that the SF can correctly
process the packet. SR proxy is an entity, separate from the
service, that performs these modifications and handle the SR
processing on behalf of a SR-unaware service. Srext [9] is
a Linux kernel module providing advanced SR functions. It
supports different SR proxy behaviours detailed in [8].

III. SR/SFC TESTBED

In order to showcase the SFC of SR-aware and SR-unaware
SFs, we built the testbed shown in Figure 1, which consists of
six nodes (R1-R6), implemented as Linux VMs and represent
our SR domain. This SR domain is used to connect two
branches (BR1 and BR2) of an enterprise to an external
network (Ext). All nodes, except R4, support SRv6. Nodes
R1 and R6 respectively represent the ingress and egress nodes,
while nodes R2, R3 and R5 are used as NFV nodes of our

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-3

SRv6 based SFC scenario. Node R4 is a normal IPv6 Linux
router. Service Functions (F1-F3), Branches (BR1 and BR2),
and external network (Ext) are deployed as Linux network
namespaces. F1 is an SR-aware Linux iptables firewall, F2 is
SR-unaware snort, and F3 is an extended SR-aware version
of snort. Nodes R1, and R4-R6 are running kernel 4.14 and
have iproute2 v4.14 installed. Node R2 is running compiled
Linux kernel 4.15-rc2 with SRv6 enabled and SERA firewall
included [10]. Node R3 has the srext [9] kernel module
installed. The links between any two nodes Rx and Ry
are assigned IPv6 addresses in the form fc00:xy::x/64
and fc00:xy::y/64. For example, the two interfaces of
the link between R1 and R2 are assigned the addresses
fc00:12::1/64 and fc00:12::2/64. Each node owns
an IPv6 prefix to be used for SRv6 local SID allocation,
which is in the form fc00:n::/64, where n represents
the node number. As an example, R2 owns the IPv6 prefix
fc00:2::/64. SFs are instantiated on an SR SID of form
fc00:n::fk:/112 where n represents the node hosting
the SF and k is the SF number. For example, F1 which is
running in node R2 is given the prefix fc00:2::f1:/112.
BR1, BR2, and Ext are respectively assigned the IPv6 prefixes
fc00:b1::/64, fc00:b2::/64, and fc00:e::/64.

IV. SR/SFC POLICIES

The testbed in Figure 1 supports two different path, with
different bandwidth and security guarantees, towards Ext. Path
p1 (R1 → R4 → R5 → R6) provides high bandwidth. Path
p2 (R1 → R2 → R3 → R6) has lower bandwidth, but more
security guarantees. Going through p1 implies crossing F1 and
F2. The same way, going through p2 implies crossing F3. BR1
and BR2 have different traffic requirements; BR2 traffic is
very delay-sensitive, while BR1 traffic is highly confidential,
but less delay sensitive. We exploit p1 and p2 to satisfy those
traffic requirement. BR1 traffic is steered through p1, and BR2
traffic is steered through p2. At the ingress node (R1), we
configured two different SR SFC policies (CP1 and CP2) that
steer traffic through p1 and p1. Policy Based Routing (PBR)
is used to classify traffic coming form BR1 and BR2, which
respectively go through CP1 and CP2.

V. DEPLOYMENT AND TESTING

We built our testbed by using VirtualBox [11] as hyper-
visor and Vagrant [12] as VM manager. This makes it easy
to replicate the demo on any commodity hardware. Scripts
required to deploy the demo are open source and can be found
at [13]. To verify the deployment of the demo, we use iperf
[14] to generate traffic from BR1 and BR2. BR1 traffic should
cross both F1 and F2. F1 is configured with iptables rules,
which are applied by SERA firewall directly to inner packet
of received SR traffic. F2 is an SR-unaware snort, which can’t
correctly processes SR packets. We used srext to remove SR
encapsulation from packets before being handed to F2. The
removed SR encapsulation is re-added again to packets after
being processed. F3 is the only SF crossed by BR2 traffic.
It’s an SR-aware snort that can apply configured snort rules

BR1

BR2

R1

R2

R4 SR3

R6

srext

F5

F4
F1 F2

F3

Ext

R3

Fig. 1: Testbed for SR/SFC demo

directly to inner packet. To make sure that BR1 and BR2 traffic
follows the exact path in both upstream and downstream, we
configure two SR SFC policies on the egress node (R6) for the
reverse path. This guarantees that SFs get the traffic in both
directions.

VI. CONCLUSIONS

In this demo, we introduce a Linux NFV infrastructure that
support SFC of both SR-aware and SR-unaware SFs. We used
our SR proxy implementation (srext) to include those SR-
unaware SFs in an SR SFC. As SR-aware SFs, we provided
two implementations of SR-aware SFs. SR-aware and SR-
unaware SFs have been included in the same SFC to show their
inter-operability. We provided an open source implementation
for the SR/SFC testbed been used.

REFERENCES

[1] B. Thekkedath, Network Functions Virtualization For Dummies. Wiley,
2016.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[3] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, 2015.

[4] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Ar-
chitecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015.

[5] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” Internet-Draft, November 2017. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-sfc-nsh

[6] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” in 2015 IEEE Global Communi-
cations Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[7] S. Previdi (ed.) et al., “IPv6 Segment Routing Header (SRH),”
Internet-Draft, September 2016. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-6man-segment-routing-header-02

[8] F. Clad et al., “Segment Routing for Service Chaining,” Internet-
Draft, October 2017. [Online]. Available: https://tools.ietf.org/html/
draft-clad-spring-segment-routing-service-chaining-00

[9] “srext - a Linux kernel module implementing SRv6 Network
Programming model,” Web site. [Online]. Available: https://github.com/
netgroup/SRv6-net-prog/

[10] “SERA - SEgment Routing Aware Firewall,” Web site. [Online].
Available: https://github.com/SRouting/SERA

[11] “VirtualBox home page,” Web site. [Online]. Available: http:
//www.virtualbox.org/

[12] “Vagrant home page,” Web site. [Online]. Available: http://www.
vagrantup.com/

[13] “SRv6 SFC demo,” Web site. [Online]. Available: https://github.com/
SRouting/sr-sfc-demo

[14] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” Web
site. [Online]. Available: http://iperf.fr

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-4

http://tools.ietf.org/html/draft-ietf-sfc-nsh
http://tools.ietf.org/html/draft-ietf-sfc-nsh
http://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02
http://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02
https://tools.ietf.org/html/draft-clad-spring-segment-routing-service-chaining-00
https://tools.ietf.org/html/draft-clad-spring-segment-routing-service-chaining-00
https://github.com/netgroup/SRv6-net-prog/
https://github.com/netgroup/SRv6-net-prog/
https://github.com/SRouting/SERA
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.vagrantup.com/
http://www.vagrantup.com/
https://github.com/SRouting/sr-sfc-demo
https://github.com/SRouting/sr-sfc-demo
http://iperf.fr

Demo: Intent-Based 5G IoT Application Slice
Energy Monitoring

*+Fred AKLAMANU, *Sabine RANDRIAMASY, +Eric RENAULT, *Imran LATIF, *Abdelkrim HEBBAR,
*Alberto CONTE, *Bilal AL JAMMAL, *Warda HAMDAOUI

*Nokia Bell Labs, Nozay, France
firstname.lastname@nokia-bell-labs.com

+Institut Mines-Télécom / Télécom SudParis, Samovar CNRS, France
firstname.lastname@telecom-sudparis.eu

Abstract—Current Telco Network Service Provisioning
requires proficient expertise on Infrastructure equipment.
Moreover the process is tedious and erroneous making Network
Service lifecycle a daunting task for Network Operators (NOs)
and 3rd Party Network Tenants. This paper, proposes an
Over-The-Top Intent Based Network Framework for Network
Slice Energy Monitoring and Provisioning. The aim is to
automate the task of network slicing through a declarative
approach known as Intents while hiding network complexity
enabling NOs monitor Network Slice energy consumption. We
provide an experimental validation of the Intent Framework
with a scenario of a 5G IoT Application Network Slice energy
monitoring.

I. INTRODUCTION

The next generation mobile network, 5G is becoming a
reality. The backbone or foundation of 5G is viewed as
Software Defined Networking [1] and Network Function
(SDN) Virtualisation (NFV) [2]. These technologies provide
potential cost cutting .i.e. Capital Expenditure (CAPEX),
Operational Expenditure (OPEX) and they will help Network
Operators (NOs) maintain elastic networks to meet growing
network demands.

5G will potentially provide a window for NOs to extend
their infrastructure services to Mobile Virtual Network
Tenants (MVNO) and Vertical Markets such as Over-The-Top
Application Providers. The services envisioned by NOs to
potential tenants will include physical or virtual shared
end-to-end network resources known as a Network Slices. This
encompasses network resources from Cloud Radio Access
Network (CRAN) [3] through to Evolve Packet Core Network
(EPC) [4] which traverses a transport network. Both NOs and
Network Tenants will want an idea of how much energy these
network slices consume. This will help NOs to bill their clients
based on network slice energy consumption and other factors.

The current approach to realise network services by NOs
requires proficient expertise on infrasturucture equipments and
moreover the process is tedious and erroneous. They exert a
manual method to deliver the network services to their clients
i.e. MVNOs and vertical markets. Such an approach will not
suffice on 5G mobile networks due to a 30 million expected
connected devices. Intent-Based Networking (IBN) [5] aims to
ease such challenge of manual network service provisioning

through network automation. Networks Tenants will only have
to specify their Intents i.e. “WHAT” network service while an
Intent-Based Management Framework handles the automation
process of realising the Intent, that is, the “HOW”. An Intent
in this paper refers to an Over-The-Top (OTT) Network
Application Slice.

We propose an OTT Intent-Based Network Framework
which provides a simplified and non-technical interface
for MVNOs and vertical markets to request for OTT
Network Application Slice without knowledge of the physical
insfrastructure details such as configuration, topologies and
protocols. The framework enables energy monitoring of such
Network Application Slices.

II. PROPOSED OVER-THE-TOP INTENT BASED
NETWORKING (IBN) FRAMEWORK

The proposed IBN Framework provides network tenants and
NOs with a simple service platform. The framework speeds
up service request placement and provisioning, provides a
feedback for network service feasibility and guarantees the
platform reliability. The modules of the OTT IBN platform
on top of a Cloud-Over-The-Top Application Slicing Platform
(COASP) are shown in Fig. 1.

Fig. 1. OTT IBN Framework

We provide details on the energy monitoring module
for VNFs on the OTT IBN Framework. Details of other

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-5

sub-modules of the framework are skipped here and provided
in our related work on Intent-Based Real Time 5G Cloud
Service Provisioning. We employ the term micro-services
for VNFs. These micro-services are cloud native Docker
containers [6] which provide numerous advantages over
traditional virtual machine. They are lighter and setup time
is in order of few seconds compared to minutes for virtual
machines.

A. Energy Monitoring Module
This module is responsible for microservices energy

consumption monitoring. The module comprises a Software
Defined Network middleware power metering, PowerAPI [7].
This tool enables the power measurements of micro-services
which will be important for NOs about possible VNF
placement decisions and furthermore identify high energy
consuming ones. The energy data will be potentially useful
in the future for data analysis and learning purposes.

III. DEMONSTRATION
The demonstration involves the setup of the physical

insfrastructure. This is made up of two Nokia Airframes
Front-End Unit (FEU) and Edge Cloud (EC) and a laptop for
Central Cloud (CC) interconnected by two switches. The table
I shows the physical platform specifications.

Front End Unit Edge Cloud Central Cloud
OS Ubuntu 16.04 Ubuntu 16.04 Ubuntu 16.04

RAM (GB) 128 128 16
CPU Cores 24 24 8

TABLE I
CLOUD PLATFORMS

The next phase is the virtual network setup, deployment of a
VNF Orchestrator, distributed key-value store, ETCD [8] and
ONOS [9], an SDN controller as a docker container on the
Central Cloud (CC). This phase also involves the installation
of Open Virtual Switches (OVS) [10] on FEU and EC. ONOS
is responsible for the management of the OVS to establish
connectivity for the Virtual Network Infrastructure (VNI).

Phase two involves deployment of 5G helper VNFs, these
are VNFs necessary for the deployment of 5G Network
Application Slices. 3 VNFs and 5 VNFs are deployed on FEU
and EC respectively by a VNF Orchestrator.

The above steps ensure that the VNI is properly set up
to receive network service requests. The Network Tenant
provides the type of service (Intent), which is a 5G IoT
Application Slice from a GUI interface. Energy monitoring
option is activated for End-to-End Network Slice monitoring.
End-to-End Network Slice monitoring comprise energy
monitoring of all micro-services on the VNI. The tenant
request is transmitted to the Intent Engine for feasibility of
service deployment. In the absence of any problem, a 5G
IoT VNF is deployed as well as PowerAPI docker containers
for individual microservices monitoring on the VNI. The
individual consumption of the VNFs are summed and stored in
a real-time database, influxDB. The total network slice energy
consumption is displayed on a dashboard as shown in Fig. 2.

Fig. 2. 5G IoT Application Slice Energy Consumption

IV. CONCLUSION AND FUTURE WORKS

Our proposed OTT Intent Based Networking Framework
simplifies network slice energy monitoring through
automation. The NO does not need to manually setup
different configuration for OTT Application Network Slice
components for energy monitoring.

V. ACKNOWLEDGMENT

The power metering virtualization was done within the
studies of the Celtic-Plus project SooGREEN [11].

REFERENCES

[1] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking
(sdn): A reference architecture and open apis,” in ICT Convergence
(ICTC), 2012 International Conference on. IEEE, 2012, pp. 360–361.

[2] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” vol. 51, no. 11. IEEE,
2013, pp. 24–31.

[3] e. Imran Latif, “Cloud ran architecture for smart cities,” in The 1st
American University in The Emirates International Research Conference
(AUEIRC). Springer, 2017.

[4] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “Nfv: state of the
art, challenges, and implementation in next generation mobile networks
(vepc),” vol. 28, no. 6. IEEE, 2014, pp. 18–26.

[5] SDxCentral, “Intent: Dont tell me what to do! (tell
me what you want,” February 2015. [Online]. Available:
https://www.sdxcentral.com/articles/contributed/network-intent-summit-
perspective-david-lenrow/2015/02/

[6] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” vol. 2014, no. 239. Belltown Media,
2014, p. 2.

[7] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:
A software library to monitor the energy consumed at the process-level,”
vol. 2013, no. 92, 2013.

[8] Core OS, “A distributed, reliable key-value store for the most critical data
of a distributed system.” [Online]. Available: https://coreos.com/etcd/

[9] ON.Lab, “ONOS intent framework,” May 2016. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Intent+Framework

[10] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch.” in NSDI, 2015, pp. 117–130.

[11] SooGREEN, “Service-oriented optimization of green mobile networks”
(soogreen), celtic-plus project, partially funded by the french directorate
general for enterprise (dge) and the scientific and technological research
council of turkey (tubitak),” 2018.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-6

Demo: Enabling In-Network Processing utilizing
Nearby Device-to-Device Communication

The An Binh Nguyen, Christian Klos
Björn Richerzhagen, Ralf Steinmetz

KOM, TU Darmstadt, Germany
{firstname.lastname}@kom.tu-darmstadt.de

Christian Meurisch

TK, TU Darmstadt, Germany
meurisch@tk.tu-darmstadt.de

Patrick Lampe

University Marburg, Germany
lampep@mathematik.uni-marburg.de

Abstract—In disaster situations, relief work can be enhanced
and facilitated by acquiring and processing distributed informa-
tion. However, the communication and computation infrastruc-
tures might be impaired or inaccessible in emergency response
scenarios. Consequently, approaches for coordination, and re-
source utilization are still challenging. To this end, we proposed
the concept of an adaptive task-oriented message template (ATMT),
that bundles the control information and the payload data, re-
quired to process and extract information, into a single message.
Thus, an ATMT enables distributed in-network processing of
complex tasks, allows to leverage the idle resources of mobile
devices of the first responders. In this paper, we demonstrate
the use of the ATMT concept in an example of face detection,
which can be used to offer Person Finder similar services in
an emergency ad hoc network. We utilize Google Nearby peer-
to-peer networking API, standard and available on Android-
based devices, to realize the handover of an ATMT message
between mobile devices. This successful integration underpins
the prospective adoption of the ATMT concept.

I. INTRODUCTION

Acquiring and processing distributed information are crucial
for disaster situations. Today, several services designed to
enhance relief work, and to offer information relevant for
emergency situations, such as Google’s Person Finder 1 or
Facebook’s Crisis Reponse 2, are available. However, these
services require stable Internet-based communication, which
might not be possible in disaster situations. To maintain
communication in emergency situations, mobile hand-held
devices such as smart phones can be used to create an
opportunistic ad hoc network [1], which allows mobile devices
to share data and exchange information through device-to-
device communication. Combining with the built-in sensors,
and the computing resource available on mobile devices, it is
possible to provide emergency relief services on top of mobile
opportunistic ad hoc network. Hereby, approaches to enable
distributed coordination, and efficient resource utilization are
necessary. For this purpose, we proposed and designed a mes-
sage template, called adaptive task-oriented message template
(ATMT) in [2].

An ATMT message describes a complex task, the operations
and the payload data required to complete the defined complex
task; which makes each ATMT message a self-encapsulated

1https://google.org/personfinder
2https://www.facebook.com/about/crisisresponse/

message. Hence, the ATMT message template is able to
support distributed processing, leveraging idle resource of the
participating mobile devices. Additionally, since an ATMT
message is self-encapsulated, each participating device can
make an autonomous decision based on its available capa-
bility, and its available resources. Overall, the ATMT message
provides a basis to create complex services on an opportunistic
network, utilizing mobile devices.

To showcase the advantages, and the applicability of the
ATMT concept in practice, we provide a demonstration, that
(i) uses ATMT message template to implement a face detection
technique, which requires multiple-processing stages, specially
designed for mobile devices [3], and (ii) utilizes the Google
Nearby Networking API [4] for enabling handover of an
ATMT message directly between devices.

ATMT Header

Message Header
(UUID, Checksum,

Length)

Analysis Header
Operations Graph

ATMT Payload

OP1
OP3

OP2
OP4

Data#1 Data#2 Data#3 ..
Data

Dictionary

Fig. 1: Structure of the adaptive task-oriented message tem-
plate (ATMT) as proposed in [2]

II. ADAPTIVE TASK-ORIENTED MESSAGE TEMPLATE

The design and construction of the ATMT message template
are illustrated in Fig. 1. The goal in designing ATMT message
template is to allow a user to define a processing goal, and the
steps/operations required to reach this goal. These information
are captured in an operations graph, modeled by a directed
acyclic graph within the ATMT header. A device can check
on the processing status of the operations graph, by reading
only the checksum field, without reading the whole content
of the ATMT message. This allows a device to make a fast
decision on whether to merge, to drop, or to handover an
ATMT task. To incorporate the payload data required for
the operations, considering the resource constraints of the
devices in an opportunistic mobile ad hoc network, we devise
the ATMT payload to contain pieces of data, which can be
compressed by different encoding methods to allow for more
flexibility. Each piece of data is mapped to an operation

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-7

in the operations graph through the data dictionary in the
ATMT header. To organize the coordination among mobile
devices, we conceive four roles, which can be assumed by the
participating devices according to their available capabilities.
These roles are sensor node to obtain data, delegator node
with domain knowledge to set up and adapt the operations
graph if necessary, operator node which executes one or more
operations from the operations graph based on its available
resource, and forwarder node which receives, store and for-
ward an ATMT message. Distributed processing of a complex
task is realized by simply passing ATMT messages. Each
device, receiving ATMT messages, will act accordingly to its
role, adjust the content of ATMT messages w.r.t. the current
processing state, and handover the adjusted ATMT message to
the other.

III. INTEGRATION OF ATMT WITH GOOGLE NEARBY

Support to setup and to provide device-to-device commu-
nication using mobile devices such as smart phones is still
restricted. To enable WiFi ad hoc communication between
Android devices, these are required to be rooted. Even though
WiFi direct allows for direct communication, but it requires a
master-slave model, which makes transmission of a message
through multi-hops difficult [1]. Recently, Google enables and
provides Nearby [4], a peer-to-peer networking API that allows
for discovery, connection and data exchange with devices
in the close vicinity. We use Nearby Connections to let
each device advertise its role/service. Thus, each participating
device is able to look for the next role/service, that it requires.
For instance, a sensor node, after acquiring data, needs to
look for a delegator node, so that the delegator node can
setup and include the corresponding operation graphs into
the ATMT message. Similarly, a delegator node searches for
operator nodes to execute the operations on the obtained
data. If an operator node cannot complete the task described
in ATMT message alone, this operator node will look for
further operator nodes which possess the capabilities, e.g.,
special hardware, special algorithms/libraries, to take over
the upcoming operations. When an operator node notices the
completion of the ATMT task, it can look for forwarder nodes
to transport the final result to a predefined destination. In this
manner, a multi-stage processing is realized through multi-
hops device-to-device communication.

IV. SCENARIO AND DEMONSTRATION

We use the ATMT concept to implement the face detection
technique proposed in [3], which can be used to support person
finder service in an emergency ad hoc network. The face
detection technique as introduced in [3] relies on multiple
stages pipeline to detect multiple faces within an image; these
are (1) preprocessing to handle parameters, (2) a fast face
detection to determine important regions within the image, and
(3) a validation phase using dlib library to detect and validate
the faces within the image.

Despite the fact, that the face detection technique in [3] is
designed considering the resource and energy constraint of a

Fig. 2: User interface of the Android mobile devices used in
the demonstration

mobile device, this technique can be further enhanced using
the ATMT concept. The processing pipeline as described can
be distributed to multiple devices; consequently, each device
has to process only one phase of the pipeline. The advantages
for the utilization of the ATMT concept in this scenario are (i)
further reducing the resources consumption of the participating
devices, since now each device has to process only one phase
of the pipeline, and (ii) being able to leverage heterogeneous
capabilities, for instance, in the described scenario, the dlib
library might not available on all devices.

In the demonstration, a user can use a sensor device to
capture and send a picture containing multiple faces to other
devices for further processing. Next, the device chosen as
a delegator node should receive the picture, adds the op-
erations graph for the face detection technique accordingly,
and forwards the constructed ATMT message to the operator
devices. On each operator device, the user can choose which
operations should be available, and can observe through log
messages, how the devices handle ATMT messages, and how
the Nearby Connections are used (cf. Fig. 2). At the end of
the processing pipeline, the results of the face detection can
be seen in the chosen end-node device, showing the cropped
images of different detected faces. A short video, showing the
demonstration as described, can be found at the following link
http://bit.ly/2GGenHZ

REFERENCES

[1] S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “Wlan-
opp: Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc
Networks, vol. 25, 2015.

[2] T. A. B. Nguyen, C. Meurisch, S. Niemczyk, D. Böhnstedt, K. Geihs,
M. Mühlhäuser, and R. Steinmetz, “Adaptive Task-oriented Message
Template for In-Network Processing,” in NetSys’17. IEEE, 2017.

[3] P. Lampe, L. Baumgärtner, R. Steinmetz, and B. Freisleben, “Smartface:
Efficient face detection on smartphones for wireless on-demand emer-
gency networks,” in IEEE ICT, 2017.

[4] “Google Nearby.” [Online]. Available: https://developers.google.com/
nearby/

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-8

http://bit.ly/2GGenHZ
https://developers.google.com/nearby/
https://developers.google.com/nearby/

DEMO: Controlling software router resource
sharing by fair packet dropping
Vamsi Addanki, Leonardo Linguaglossa, Jim Roberts, Dario Rossi

Telecom ParisTech, Paris

Abstract—We demonstrate a practical way to achieve multi-
resource sharing in a software router, where both bandwidth and
CPU resources may be bottlenecks. Our main idea (published in a
same-titled paper in this year IFIP Networking conference [1]),
is to realize per-flow max-min fair sharing of these resources
by wisely taking drop decisions according to the state of a
shadow system. We implement our FairDrop proposed algorithm
in Vector Packet Processor (VPP), a novel high-speed software
router architecture. We demonstrate FairDrop is capable of fairly
sharing CPU cycles among flows with heterogeneous computing
workload, at 10Gbps on a single core.

I. INTRODUCTION

Controlling how bandwidth is shared between concurrent
flows is a classical issue in networking, and the advantages
of imposing fairness have been repeatedly discussed since
Nagle’s pioneering work [2]. More recently, the blending of
networking and computing raise new challenges [3] in terms
of resource contention and sharing – however, simple mech-
anisms that are capable of handling heterogeneous resources
have yet to appear. In emerging high-speed software routers,
flow throughput may additionally be impeded by network
capacity limitations as well as other resources, such as the
amount of available CPU cycles to process packets of any
given flow: in this case, it would be desirable in this case to
impose per-flow fair throughput expressed in cycle/s[4].

As in[4], we advocate that flexible dropping algorithms
are an attractive solution to control resource sharing, be
it cycles of a multi-core CPU or network bandwidth. We
implement a simple and practical algorithm, which we refer to
as FairDrop (FD), that realizes max-min fair flow rates while
retaining the network interface card (NIC) and server code
optimizations that are necessary to keep up with line speeds
of 10 Gbps on a single CPU core. These optimizations notably
require packets to be batched for both I/O and processing
making implementation of classical scheduling algorithms like
DRR [5] problematic if not impossible, as argued in [3].

Our proposal is then to realize fairness via a shadow system.
Briefly, suppose packets are handled simultaneous by two
service systems, one the actual buffer management system
implemented in the router (e.g., a DPDK circular ring), the
other a shadow system implementing a more sophisticated
scheduler (e.g., per-flow FQ). Packets that are dropped in one
system are also dropped by the other so that both systems yield
exactly the same rate over the lifetime of a flow. The shadow
system in our proposal is virtual and makes dropping decisions
based on a measure of per-flow virtual queue occupancy.
This measure is depleted between packet arrivals, at a rate

that varies depending on the number of active flows, and
incremented by packet length on the arrival of every batch.
In particular, if the shadow system implements per-flow head-
of-line processor sharing, the long-term flow rates will be max-
min fair.

We implement the above proposal in Vector Packet Pro-
cessor (VPP), an software router released as open source
in the context of the FD.io Linux foundation project. For
a detailed explanation of our FairDrop (FD) algorithm we
refer the interested reader to a same-titled paper in this year
IFIP Networking conference [1]. In this extended abstract we
instead describe the experimental environment and scenarios
that we will demonstrate, contrasting results achieved under
simple buffer management policies (such as FIFO or NIC ring
buffers). More information about the project, as well as our
implementation, is available at [6].

II. FAIRDROP IMPLEMENTATION AND DEMONSTRATION

In a software router, a CPU core becomes a bottleneck when
flows emit packets too fast yielding a compute load greater
than the CPU capacity, leading to packet drops. High-speed
software routers are intrinsically flow-aware: flow-awareness is
facilitated by NICs implementing receive side scaling (RSS),
that hashes the 5-tuple and maps packets to distinct virtual
queues, mainly for the purpose of load balancing over multiple
CPU cores. Individual threads of packet processing appli-
cations are bound to a CPU core and, using kernel-bypass
stacks such as DPDK, threads consume independent streams
of packets, each from a different RSS queue. Additionally,
high-speed software routers and their NICs generally deal
with packets in batches rather than individually, which reduces
interrupt pressure and that is a necessary optimization for line-
speed packet processing. Software routers typically polls for
available packets in the NIC circular buffer, grabbing and
processing the whole batch before the next poll. FairDrop
operates over packet batches at the router ingress.

We demonstrate FairDrop with a scenario where N flows
share a C=10Gbps link and are processed by a single CPU
core clocked at 2.6GHz. Particularly, flows have equal input
rate C/N but different treatment cost. For the sake of simplic-
ity, in the demonstration we consider only two flow classes: the
majority of the flows belong to the light-weight class CL (e.g.,
Ethernet switching or IPv4 forwarding), whereas few flows
belong to a heavy-weight treatment class CH (e.g., IPsec or
stateful L4 operation). In particular, we select functions whose
CH/CL ≈10 so that a single packet of an heavy-weight flow

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-9

FIFO/Ring buffer FairDrop

2.0
.
10

6

4.0
.
10

6

6.0
.
10

6

F
lo

w
 r

at
e

[p
p
s]

2.0
.
10

6

4.0
.
10

6

6.0
.
10

6

1.0
.
10

9

2.0
.
10

9

3.0
.
10

9

 10 20 30 40

F
lo

w
 c

o
st

[c
y
cl

es
]

Time (s)

1.0
.
10

9

2.0
.
10

9

3.0
.
10

9

 10 20 30 40

Time (s)

Fig. 1. Illustration of Classical (left column) vs FairDrop (right column) operations. Top part reports sankey diagrams of the rate at the Traffic Generator
(TGS) and at the System Under Test (SUT). Lower part depicts the time evolution of the flow rate (in Mpps, middle) and the flow ccost (in cycles, bottom).

requires as many CPU cycles as about 10 packets of light-
weight flows. We additionally fix NH = 2 and NL = 18 so
that out of the total N = 20 flows, the NH flows of class CH

requires as many processing cycles as the NL flows of class
CL. Needless to say, 64B packets are sent to the maximum
rate of 14.88Mpps, so that not all flows can be processed with
the CPU budget.

We represent experimental results of the demo with the
visual layout of Fig.1, where plots in the left column represent
the case of traditional buffer management, and plots in the
right column report the FairDrop case. In particular, the top
plots report a sankey visualization of the experiments, whereas
the bottom plots report the individual flow rate (in packets per
second) and the individual flow cost (in cycles per second).
The two heavy-weight flows are represented in red, and the
18 light-weight flows in blue.

In the traditional case, since the CPU budget is not enough
to process packet of all flows, about 74% of packets are lost
at the NIC before entering the VPP router. Given that flows
have equal rates, there is no loss differentiation at the NIC, so
that only about 3.86Mpps exit the VPP router, consuming the
2.6Gcycles/sec budget of our CPU. Notice that each flow have
equal rate, but that a single heavy-weight flow alone consumes
25% of the CPU budget.

Conversely, the FairDrop mechanism preferentially drops
packets of the heavy-weight flows to reinstate fairness (at
a rate approximately 10 times higher). Dropping decisions

have a cost (i.e., the packets need to be fetched from the
NIC, the queue in the shadow system is updated, etc.) and
FairDrop consumes 0.17Gcycles/sec. The net result of fair
dropping decisions, more light-weight packets are processed in
the router: this increases the overall throughput at 5.95Mpps
(top right plot), reducing the drops at the NIC buffer, and
reinstates per-flow fairness in terms of the number of cycles
(bottom right plot).

The demonstration will allow to interact with the VPP router
configuration (e.g., FairDrop vs classical ring management)
and altering the scenario parameters (e.g., number of flows,
relative cost, etc.) to contrast the key performance indicators
under both approaches.

ACKNOWLEDGMENTS

This work was funded by NewNet@Paris, Cisco’s Chair
“NETWORKS FOR THE FUTURE” at Telecom ParisTech.

REFERENCES

[1] V. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi, “Controlling
software router resource sharing by fair packet dropping,” in IFIP
Networking, 2018.

[2] J. Nagle, “On packet switches with infinite storage,” RFC 970, 1985.
[3] K. To, D. Firestone, G. Varghese, and J. Padhye, “Measurement based

fair queuing for allocating bandwidth to virtual machines,” in ACM
HotMiddlebox, 2016.

[4] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness
through differential dropping,” ACM SIGCOMM Comput. Commun. Rev.

[5] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” SIGCOMM Comput. Commun. Rev.

[6] https://newnet.telecom-paristech.fr/index.php/fairdrop/.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-10

Poster: Impact of Prioritized Network Coding on
Sensor Data Collection in Smart Factories

Marie Schaeffer, Roman Naumann, Stefan Dietzel, and Björn Scheuermann
Humboldt-Universität zu Berlin, Germany

Email: {marie.schaeffer, roman.naumann, stefan.dietzel}@hu-berlin.de, scheuermann@informatik.hu-berlin.de

Abstract—Utilizing information from the production process
is integral to smart factory concepts. In our example use-case,
plastic industry, sensor information from the injection molding
process helps to detect defective parts and provides automated
guidance for process set-up. An enabler for such applications is a
means to wirelessly collect machines’ sensor information in harsh
factory environments, and network coding has been proposed as a
tool to implement suitable network protocols. Using pre-recorded
sensor data from actual injection processes, we study the impact
of network coding on the latency of sensor data collection. In
particular, we show how network coding with prioritization helps
to reduce delays until information becomes usable.

I. INTRODUCTION

Many smart factory use cases strive to automate previously
manual tasks via the utilization of highly detailed process in-
formation. In our example use-case, plastic injection molding,
molten plastic is injected with high pressure and temperature
into a form, termed the “mold.” As the plastic cools down, the
final product hardens out and is finally ejected from the mold.
Here, relevant process information includes material pressure
and temperature measured within the mold. Such information,
in combination with machine learning techniques, allows the
automated detection of a variety of product defects before they
can reach the customer [1], [2].

In order to leverage process information, it has to be
collected quickly from machines throughout the factory. A
centralized server then acts upon results and, for example,
issues alarms to operators should the process become unstable.
Wireless transmission of sensor information is preferable,
because it avoids expensive retrofitting of factories. Wireless
transmission, however, can be difficult due to the harsh factory
environment with metal obstruction and widespread factory
areas that necessitate multi-hop capabilities.

Using network coding in our use case can improve the
throughput, simplify routing decisions, and add robustness
against packet loss. But using random linear network coding
(RLNC) to transmit sensor information may result in intolera-
ble delays due to the “all-or-nothing” property. This property
states that it is highly unlikely that the server can decode parts
of the sensor information before a sufficient number of linear
combinations for, in our case, a complete injection cycle are
received. A number of prioritized network coding schemes
have been proposed to allow early decoding of a subset of a
generation’s information.

We study the impact of two prioritized network coding
techniques – hierarchical network coding (HNC) [3] and

iNsPECt [4] – on delays in sensor data collection. As a third
mechanism, regular RLNC [5] serves as a baseline for our
comparison.

II. ENCODING AND TRANSMISSION SCHEMES

Using regular RLNC as an example, we explain how net-
work coding in general can be applied to our sensor data col-
lection use case. We then briefly introduce the two prioritized
network coding mechanisms used in our comparison.

RLNC splits information into generations of data messages.
In our case, a generation is one production cycle’s worth of
sensor information from a single sensor. Each message is a set
of sensor samples and consists of several symbols over a finite
field. We employ the common finite field F28 , as it combines
efficient byte alignment with sufficient protection from linear
dependency. Each machine generates linear combinations of
one generation’s messages using random coefficients. Each
machine then continually broadcasts these linear combinations
until all neighbors can decode the current generation. Subse-
quently, the next generation is sent.

To apply prioritized network coding techniques to our
industrial use case, we pre-process sensor information such
that it can be divided into different priority layers, as described
in [6], We apply discrete cosine transform (DCT) to each
production cycle’s sensor information and divide its output into
blocks of coefficients. Blocks with low-frequency coefficients
provide an early preview of a complete sensor cycle, whereas
blocks with high-frequency coefficients incrementally increase
precision to enable more demanding detection techniques. We
again use one injection cycle as a generation, but we use
blocks of coefficients as the prioritized network coding mech-
anisms’ prioritization layers. To generate a linear combination
associated with a given priority layer, the prioritized network
coding (PNC) codes combine only messages of equal-or-lower
layers. In our case, this concept translates to only lower-or-
equal frequencies of the DCT-provided spectrum of sensor
information. As the prioritized layers form a linear subspace
in the decoding matrix, they can generally be decoded earlier
and, therefore, reduce delays in data processing.

In our evaluation, we study the impact of HNC [3], a PNC
protocol, on the delay after which information is usable by
the central server. We also study the impact of layer selection,
a central aspect of PNC protocols, on decoding delay. To
that extent, we compare HNC, which selects priority layers at
random, with iNsPECt [4], which employs limited knowledge

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-11

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12

N13 N14 N15 S

(a) Grid topology with one sink.

0 5 10
0.00

100.00

200.00

300.00

Time in s

Te
m

pe
ra

tu
re

in
K

RLNC
HNC
iNsPECt

(b) Temperature error.

0 5 10
0.00

5.00

10.00

15.00

20.00

Time in s

Pr
es

su
re

in
ba

r

RLNC
HNC
iNsPECt

(c) Pressure error.

Fig. 1. Topology and average sensor error over time.

on neighboring network nodes’ decoding states to determine
ideal layers.

III. FACTORY NETWORK MODEL AND EVALUATION

We use a wireless network model in which nodes broadcast
their messages. Our topology, given in Figure 1a, represents a
typical factory layout with rows of machines in a regular grid
and node distances of 30 m. The fifteen nodes, N1 to N15,
represent the machines where the sensor data is measured.
One sink node, S, is the factory’s central server system. We
consider a single sensor for each machine. More sensors in
machines bring a constant factor for the amount of required
transmissions, analogous to a higher sample rate.

We evaluate using the discrete event network simulator ns-3
(version 3.25) with YANS Wifi model, 802.11g MAC, and 2.4
GHz PHY using log-distance propagation loss model (γ = 3.0,
which is in line with a range modern factory environments [7])
combined with Rayleigh fast fading. We use real, pre-recorded
sensor information from the injection molding process. Our
sensor information stems from a 25 s long production cycle
that was sampled at 500 Hz rate. Each measured sample is
a 4 B floating-point number. We split frequency components
into five priority layers with a generation size of 53 frequency
components to limit each data message’s size to 1008 B. For
the PNC-iNsPECt variant, we set the data-feedback ratio to
1 : 2. Each sample shown in the following is the average over
five simulation runs of 200 s simulated duration each, using
different sub-streams of ns-3’s PRNG. Error bars depict 95%
confidence intervals (assuming normal distribution), but might
not be visible if the error is negligible. During each run, several
production cycles are transmitted to the sink.

Figures 1b and 1c show the simulation results for temper-
ature error over time and pressure error over time. The time
measurement starts with the first message being transmitted,
which explains the initially very high average error that results
from production cycles without any frequency components
decodable at the server. Generally, it can be seen that the
preview provided by the PNC scheme iNsPECt quickly gains
precision and is virtually indistinguishable from the original

sensor information much earlier than RLNC can provide any
information. HNC also gains precision more quickly on aver-
age than RLNC. The overhead of the HNC scheme, however,
results in RLNC providing the full picture before HNC can
lower the remaining error below 1 K or 1 bar. In contrast,
PNC achieves such a low average error approximately four
times as fast as RLNC for both temperature and pressure
readings. The maximum time until each production cycle was
available with full precision was 8.40 s with our baseline
RLNC. As a result of the principal message overhead imposed
by PNC schemes, iNsPECt and HNC required up to 9.20 s and
17.80 s, respectively, until the preview reached full precision.
Especially with iNsPECt, however, the error is extremely low
during the time after which RLNC finished transmission.

IV. CONCLUSION

We studied the impact of prioritized network coding for
smart factory use-cases using real sensor information from
plastic industry. Our results suggest that iNsPECt provides
significant benefits over non-prioritized RLNC, whereas HNC
can only provide a coarse preview before RLNC provides the
full picture.

REFERENCES

[1] B. Ozcelik and T. Erzurumlu, “Comparison of the warpage optimization
in the plastic injection molding using ANOVA, neural network model
and genetic algorithm,” Feb. 1, 2006.

[2] H. Oktem, T. Erzurumlu, and I. Uzman, “Application of Taguchi
optimization technique in determining plastic injection molding process
parameters for a thin-shell part,” 2007.

[3] K. Nguyen, T. Nguyen, and S. c Cheung, “Peer-to-peer streaming with
hierarchical network coding,” in 2007 IEEE International Conference
on Multimedia and Expo, Jul. 2007.

[4] M. Schaeffer, R. Naumann, S. Dietzel, et al., “Hierarchical Layer
Selection with Low Overhead in Prioritized Network Coding,” in 2018
IFIP Networking Conference (IFIP Networking), 2018.

[5] T. Ho, R. Koetter, M. Medard, et al., “The benefits of coding over
routing in a randomized setting,” 2003.

[6] R. Naumann, S. Dietzel, and B. Scheuermann, “INFLATE: Incremental
wireless transmission for sensor information in industrial environments,”
in 2015 IEEE International Conference on Advanced Networks and
Telecommuncations Systems (ANTS), Dec. 2015.

[7] S. Phaiboon, “Space Diversity Path Loss in a Modern Factory at
frequency of 2.4 GHz,” WSEAS Transactions on Communications, 2014.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-12

Poster: Design and Evaluation of a Time Efficient
Vertical Handoff Algorithm between LTE-A and

IEEE 802.11ad Wireless Networks
Sina Rafati Niya, Burkhard Stiller

Communication Systems Group CSG, Department of Informatics IfI, University of Zürich UZH
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

Email: [rafati | stiller@ifi.uzh.ch]

Abstract—LTE-A and IEEE 802.11ad are two of the networks
that can have complementary roles in 5G networking. Thus, this
paper proposes a time efficient, predictive, and dynamic Handoff
(HO) algorithm between these two protocols. The algorithm
presented measures the Signal to Interference Plus Noise Ratio
(SINR), the Reference Signal Received Quality (RSRQ), velocity,
and the Time of Stay (ToS) for pedestrian mobile users and
calculates the best Time to Trigger (TTT) value accordingly. One
of the main advances of this algorithm is that the TTT value
is calculated dynamically regarding user’s velocity and Handoff
Failure Ratio (HoFR). Comparisons with other algorithms in this
area determine that the algorithm proposed gains the least HoFR
for these two protocols by avoiding unnecessary handoffs.

I. INTRODUCTION

One of the major research areas in 5G is the offloading
process. With offloading, user traffic traverses the local wire-
less AP instead of utilizing a continuous connection to cellular
networks even in indoor areas. In case of using LTE-A in 5G, a
proper network for offloading LTE-A communications with up
and downlink data rates of higher than 1 Gbps needs to support
the same data rates, otherwise, users will not be willing to
switch to the local networks. One of the wireless technologies
to support high data rates and being deployed in indoor areas
as a replacement of traditional WiFi networks is the IEEE
802.11ad standard. This protocol is known as WiGig because
of the Gigabit scale data rates it supports. WiGig provides
almost 7 Gbps for downlink and almost 3 Gbps for uplink
[2].

Switching the user’s network from a home (already con-
nected) network, to a new target network (one of the possible
networks to be switched to) and vice versa is known as
Handoff (HO) or Handover. In this work, a new time-efficient
HO algorithm is designed to provide specifically a seamless
connection and offloading between LTE-A and WiGig net-
works as two of the networks might be used broadly in 5G
for high data rates . Results of a comparison with other HO
algorithms reveal (cf. Section IV) that the algorithm proposed
is capable of reducing Handoff Failure Rates (HoFR) in a
predictive fashion. Also, the Time to Trigger (TTT) is updated
frequently based on measures defined, and the HO process
follows a cross-layer algorithm to increase the time efficiency.

II. SIMULATION SCENARIOS, PARAMETERS AND
EVALUATION

Simulation of the scenarios done in Matlab. The focus of
this work laid on two scenarios: (1) HO process of a user
connected to the LTE-A cell and moves toward the WiGig
network as presented in Figure 1. (2) HO process of a user
connected to the WiGig network and moves toward the LTE-A
cell as presented in Figure 2. Parameter used in simulations
are listed in Table 1.

TABLE I
SIMULATION PARAMETERS

Simulation Parameters Symbol Value
eNB Number NLTE 1
WG-AP Number NWG 1
Simulation Duration Tsim 1000 s
RSRQ Threshold RSRQth 19.5 dBm
SINR Threshold SINRth 25 dB
LTE-A eNB Transmission Power PLTE 30 dBm
WG Transmission Power PWG 10 dBm
LTE-A Bandwidth BLTE 100 MHz
WG Bandwidth BWG 2160 MHz
LTE-A Antenna Height heNB 40 m
WG Antenna Height hWG 1.5 m
Mobility Model ———- Gauss-Markov

and LPP
Initial TTT TTTi 0.1 s
LTE Frequency fc−LTE 2100 MHz
WG Frequency fc−WG 60 GHz
LTE Radius LTEr Whole

Simulation
Area

User Velocity Vu [0− 5]m/s
Data Transfer Direction ———- Downlink
Number of LTE users NU−LTE (1-50)
Number of WG users NU−WG (1-50)

The HO algorithm proposed is memory-and-time efficient,
and managed in a cross-layer fashion. Number of unnecessary
HO and HoFR are managed by TTT value. Being a proactive
algorithm, users’ mobility, including their next location, speed,
and angle of movement, are estimated using the Gauss-Markov
mobility model, which is updated and readjusted by the
accurate data received from Location Positioning Protocol
(LPP). This update increases the precision of the Gauss-
Markov model for upcoming estimations.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-13

Fig. 1. HO Process: Moving From LTE-A To WiGig

To be computationally efficient, this algorithm does not
continuously gather information from target and host net-
works, instead time intervals are set dynamically according
to the amount of TTT to gather information from networks.
The algorithm reacts to HoFR increase by adjusting the
TTT value. Besides lowering the computational complexity,
a binary search is used in TTT calculations to provide faster
converges than with a linear method by the order of O(log(n)),
which leads a very practical application.

Fig. 2. HO Process: Moving From WiGig to LTE-A

To avoid continuous monitoring of various parameters, this
algorithm specifies a high priority to users’ velocity. For that
reason, checking other variables such as SINR, RSRQ, and
TTT is done only, if the user’s velocity is in a specific range.
Being sensitive to the user’s velocity, this new algorithm per-
forms better in comparison to other HO algorithms, especially
within the decision making phase for high user velocities.

Fig. 3. TTT Variation Using Method of [3] With User Velocity Larger than
3 m/s.

In this algorithm, base (home) and target networks and User
Equipment (UE), work together to reduce the process load on
each side and calculate the parameters used in decision-making
phase. finally, UE decides to start or deny the HO process
based on her velocity, current TTT, Reference Signal Received
Quality (RSRQ), and Signal to Interference Plus Noise Ratio
(SINR). Also, this model is not memory bounded and with
only few bytes of memory the user’s exact location can be
estimated.

Finally, as presented in Figure 3, the proposed algorithm
manages to handle the HO process while keeping the HoFR
rate close to 0. This is done with keeping the TTT amount
in less than 0.2s which will end in a seamless connection.
Comparisons with similar HO algorithms [1] revealed that
other algorithms cannot be used in scenarios between LTE-A
and WiGig networks with the goals of time-efficiency and low
data loss during a HO process. High (or constantly increasing)
TTT values of other algorithms make them inappropriate to be
used for managing the HO processes for these scenarios and
in most cases HoFR could not be controlled or reduced by
employing the methods used by them.

REFERENCES

[1] S. R. Niya, B. Stiller, “Design and Evaluation of a Time Efficient
Vertical Handoff Algorithm between LTE-A and IEEE 802.11ad Wireless
Networks,” IFI Tecnical Report No.2018.03, Zürich, Switzerland, Tech.
Rep., April 2018. [Online]. Available: https://files.ifi.uzh.ch/CSG/staff/
Rafati/Handoff-IFI-2018.03.pdf

[2] H. Peng, K. Moriwaki, Y. Suegara, “Macro-Controlled Beam Database-
Based Beamforming Protocol for LTE-WiGig Aggregation in Millimeter-
Wave Heterogeneous Networks,” in IEEE 83rd Vehicular Technology
Conference (VTC Spring), May 2016, pp. 1–6.

[3] J. Xu, Y. Zhao, X. Zhu, “Mobility Model Based Handover Algorithm in
LTE-Advanced,” in 10th International Conference on Natural Computa-
tion (ICNC), Aug 2014, pp. 230–234.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-14

Poster: WebMaDa 2.0 - Automated Handling of User Requests

Corinna Schmitt, Dominik Bünzli, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH

Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
[schmitt|stiller]@ifi.uzh.ch, dominik.buenzli@uzh.ch

Abstract—Today users want to monitor their networks
remotely and adjust privileges immediately. Addressing the
first request is not a big problem anymore, because many
applications offer such solutions by default (e.g., via a special
app to be installed or a browser-based solution). The immediate
privilege handling is the challenge nowadays, because usually
a global administrator in the background needs to be included
in the workflow. This is required, because he is the only person
who has the full overview of the tool the network is included. In
general this is a nice idea, but introduces delays to the privilege
management depending of the number of networks linked to
the system, in total. WebMaDa 2.0 overcomes this bottleneck by
introducing an automated request handling solution to a web-
based framework for monitoring sensor networks remotely as
well as supporting privacy and immediate handling of privilege
requests.

Keywords- WebMaDa, automation

I. INTRODUCTION

Today, many different devices are connected with each
other building small networks that are part of the Internet
of Things (IoT). Such networks are designed for indi-
vidual solutions specialized for a specific purpose (e.g.,
environmental monitoring, health monitoring). Devices used
show heterogeneity concerning hardware and software and
are linked to a specialized solution allowing analysis and
visualization of data collected. This itself is nothing really
new within the IoT community. But the requests of users
and network owners changed over time towards (1) mobility
support, (2) ownership and controlling of data, as well as (3)
updating granted privileges immediately.
Many specific solutions are in place addressing the mobility
request installing a special application on the mobile device.
In general this is a good solution, but these solutions usually
have special requirements to the operating system of the
device and can exhaust the device quickly when running.
The later can be overcome by integrating energy saving
solutions, but still the applications require much memory
of the device. To overcome this, web-based solutions are
thought of beeing most suitable, because they only require
Internet access and a browser installation on the device.
Fortunately, both can be considered to be available by default
on mobile devices. Furthermore, the code base only has to be
updated in one place, thus reducing the cost for maintenance.
The urge for control and ownership of the collected data
is manifesting itself more and more in the minds of users.

This is due to increased media coverage of data abuse
caused by data leaks and the possibility of having data
analyzed and visualized by third-party providers. Together
with this situation comes the users’ request to update granted
privileges to manage access to the data collected. This
is challenging, because access granted to applications can
hardly be revoked or updated immediately if at all. Thus,
the call for solutions supporting data and access control
immediately arise. The aforementioned three issues (1)-(3)
are addressed by WebMaDa, a Web-based Management and
Data Handling Framework for sensor networks. The devel-
opment started in 2014 with a basic support of mobile access
to owned sensor networks allowing visualization of collected
data in a flexible and hardware independent manner [2]. In
2016 WebMaDa received an update addressing the general
request of fine-grained access management and pulling data
in emergency cases [3]. The drawback was that each request
(e.g., create networks, access to foreign networks, to view
or pull data) required interaction of a global administrator
introducing delay into the system. This drawback has now
been solved in WebMaDa 2.0 [1] by automating the request
handling within the system allowing immediate handling
without the involvement of a global administrator. At the
same time, the request for privacy and controlling data
access is respected as every action that affects access rights
is logged in the database.

In Section II, the main design decisions taken are pre-
sented leading towards the implemented WebMaDa 2.0 so-
lution. Section III summarizes the new features of WebMaDa
2.0 highlighting the benefits and practical issues, as well as
giving a hint to future improvements.

II. DESIGN AND IMPLEMENTATION

In order to handle any request received immediately an
automated solution is required. This solution must support
(1) user creation, (2) access request to foreign networks, and
(3) password reset. Furthermore, for addressing privacy and
controlling of the data (4) transparency must be assured by
including a detailed logging system into the infrastructure.

Addressing the first three requests an automated mailing
solution was integrated into WebMaDa 2.0. If a new user
wants to use WebMaDa he needs to register by filling out the
registration form. By submitting the form, the user creates
an invitation request that is stored in the database. At the

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-15

Figure 1: Graphical views during data access request

same time, the administrators receive a notification that a
new request has been created. If the request is accepted
by the administrators the user will receive an invitation
which can be used to complete the registration. Otherwise,
a message will be sent informing that the request has
been rejected. After this, the user is able to create new
networks or request access to foreign networks when not
yet having permission as shown in Figure 1a. The latter is
done by creating a permission request filling out a form (cf.
Figure 1b). The form is received by the backend. Here a
mapping between the selected network by the unique WSN
Identifier (ID) and the stored owner address is performed
resulting in mailing the request to him. The owner receives
a mail with the request and a personalized link to handle
it within WebMaDa (cf. Figure 1c). The owner can now
grant the access, update the request or deny it. In return, the
requester receives the result andl a log entry is created in
the backend’s database addressing the transparency request.
Same procedure is followed if after time the network owner
updates granted privileges. In case a registered WebMaDa
user looses the password, a request can be placed via the
corresponding form. The filled in data of the form is then
compared to the logged entries in the database. If the check
fails, no action is performed as not to provide a single bit
of information wheter a user exists or not. Otherwise, the
user receives a link to reset the password. In order to ensure
transparency, the updating of a password also triggers the
creation of a log entry.

III. SUMMARY, PRACTICAL ISSUES, AND BENEFITS

WebMaDa 2.0 supports the original functionality devel-
oped in 2014 and 2016. This is extended by an automated
mailing solution to handle incoming requests immediately
and, thus, reducing delays in the system each time an
administrator interaction was required in earlier versions.
The designed and implemented solution is user-friendly due
to its intuitive design in the graphical environment including
easy understandable instruction to conclude the workflow
(e.g., request data access, register new user). All steps are

following a global process starting with a form that need to
be filled out with respective information required, checkup
with stored information if applicable, and updating database
with new information (e.g., new user information, new
networks, granted/updated/revoked privileges). In order to
address the general privacy request of users the administrator
is only involved when new users are registered or an existing
WebMaDa user should become administrator of WebMaDa
for the case the original administrator needs a representative.
Addressing the transparency concerns of users, any changes
are logged within the database with required information
(e.g., timestamp, what was done and by whom). All this
logging information can only be accessed by the network
owner or the global administrator.
Looking from a practical perspective all user requests
are addressed within WebMaDa without having drawbacks
on performance of WebMaDa assuming several networks
hosted at the same time. Due to the fact that WebMaDa 2.0
is still web-based, no new special requirements to the mobile
device exist and the solution is still hardware and software
independent.
Further developments are conceivable with regard to session
timeout similar to banking systems, two-way authentication
besides mailing using SMS, and further flexibility in visu-
alizing data collected.

REFERENCES

[1] D. Buenzli, “Efficient and User-friendly Handling of Access
Requests in WebMaDa,” Bachelor Thesis, Communication
Systems Group, Department of Informatics, University of
Zurich, Zurich, Switzerland, Jan. 2018.

[2] M. Keller, “Design and Implementation of a Mobile App to Ac-
cess and Manage Wireless Sensor Networks,” Master Thesis,
Communication Systems Group, Department of Informatics,
University of Zurich, Zurich, Switzerland, Nov. 2014.

[3] C. Schmitt, C. Anliker, and B. Stiller, “Pull Support for IoT
Applications Using Mobile Access Framework WebMaDa,” in
IEEE 3rd World Forum on Internet of Things (WF-IoT). New
York, NY, USA: IEEE, Dec. 2016, pp. 377–382.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-16

