
A-1

Annex to the IFIP Networking 2018 Proceedings

Demonstration and Poster Session

Ahmed Abdelsalam:
Demo: Chaining of Segment Routing Aware and Unaware Service Functions A-3

Fred Aklamanu, Sabine Randriamasy, Eric Renault, Imran Latif, Abdelkrim Hebbar,
Alberto Contem Bilal Al Jamal, Warda Hamdaoui:
Demo: Intent-Based 5G IoT Application Slice Energy Monitoring A-5

The An Binh Nguyen, Christian Klos, Christian Meurisch, Patrick Lampe:
Demo: Enabling In-Network Processing utilizing Nearby
Device-to-Device Communication .. A-7

Vamsi Addanki, Leonardo Linguaglossa, Jim Roberts, Dario Rossi:
Demo: Controlling Software Router Resource Sharing by Fair Packet Dropping A-9

Marie Schaeffer, Roman Naumann, Stefan Dietzel, Björn Scheuermann:
Poster: Impact of Prioritized Network Coding on Sensor Data Collection in
Smart Factories .. A-11

Sina Rafati Niya, Burkhard Stiller:
Poster: Design and Evaluation of a Time Efficient Vertical Handoff Algorithm
between LTE-A and IEEE 802.11ad Wireless Networks .. A-13

Corinna Schmitt, Dominik Bünzli, Burkhard Stiller:
Poster: WebMaDa 2.0 - Automated Handling of User Requests A-15

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP

A-2

.

Demo: Chaining of Segment Routing aware and
unaware Service Functions

Ahmed Abdelsalam
Gran Sasso Science Institute

Abstract—Segment Routing (SR) is a source routing paradigm
that can benefit from both MPLS and IPv6 data planes to steer
traffic through a set of nodes. It provides a simple and scalable
way to support Service Function Chaining (SFC). In this demo,
we propose an NFV architecture based on SR and implemented
in Linux environment. It allows chaining of both SR-aware and
SR-unaware Service Functions (SFs). In order to include SR-
unaware SFs into SR SFC, we use our SR proxy implementation:
srext, a Linux kernel module that handles the processing of SR
information in behalf of the SR-unaware SFs. As SR-aware SFs,
we use two of our implementation; SERA and SR-aware snort.
SERA is a SEgment Routing Aware Firewall, which extends the
Linux iptables firewall, and capable of applying the iptables
rules to the inner packet of SR encapsulated traffic. SR-aware
snort is an extended version of snort that can apply snort rules
directly to inner packet of SR encapsulated traffic. We show
the interoperability between SR-aware and SR-unaware SFs by
including both of them within the same SFC.

Index Terms—Service Function Chaining, Network Function
Virtualization, Segment Routing, Linux networking

I. INTRODUCTION

Telecommunication networks infrastructures are evolving
at a rate rarely seen since the transformation from analog
to digital [1]. Network functions virtualization (NFV) offers
an agile way to design and deploy networking service [2].
In an NFV infrastructure, network functions are decoupled
from proprietary hardware appliances and moved to virtual
servers so they can run in software modules called Virtual
Network functions (VNFs), which are sometimes referred to
as Service Functions (SFs). This dramatically reduces both
capital expenditures (CAPEX) and operating expenses (OPEX)
[3]. A set of these VNFs (SFs), which can be arbitrarily located
in a distributed virtualization infrastructure, are often required
to deliver an end-to-end service, hence Service Function
Chaining (SFC) comes into play.

SFC denotes the process of forwarding packets through the
sequence of SFs [4]. It requires a steering mechanism to force
packets to go through SFs. These steering mechanisms often
require inserting a new header into packets, which carries the
path information. Network Service Header (NSH) and IPv6
Segment Routing header (SRH) are two examples of those
headers. NSH has been proposed by the IETF SFC Working
Group to support the encapsulation of packets with a header
that specifies the sequence of SFs to be crossed [5]. Using
NSH requires creating a state (per each NFV chain) in the
network fabric, which doesn’t make it the preferred solution
in the recent era of networking, where everything is going

towards stateless and simplicity. On the contrary, using SRH
for SFC doesn’t have the need for those state information.

In this demo, we consider the use of the Segment Routing
(SR) architecture to support SFC. SR is a new network
architecture that leverages the source routing paradigm [6]. It
allows to steer packets through an ordered list of nodes, which
are refereed to as segments. SR can be instantiated over both
MPLS (SR-MPLS) and IPv6 (SRv6) data planes. SRv6 defines
a new IPv6 Routing type, named SRH. It allows including a
list of segments in the IPv6 packet header [7]. Each A segment
is encoded as an IPv6 address and represents function to be
called at a specific location in the network. SR enables SFC in
a simple and scalable manner, by associating each SF with a
segment. Such segments are combined together in a segment
list to achieve SFC.

II. SR-AWARE VS SR-UNAWARE SFS

SFs can be categorized into two types, depending on their
ability to properly process SR encapsulated packets. These
are respectively named SR-aware and SR-unaware SFs [8].
An SR-aware SF is able to correctly process SR-encapsulated
packets it receives, which imply being able to process the
original packet despite the fact that it has been encapsulated
within a SR packet, but also being able to process the SRH.
On the contrary, An SR-unaware SF is not able to correctly
process the SR-encapsulated it receives. It may either drop the
traffic or take erroneous decisions due to the unrecognized SR
information. In order to include SR-unware SFs in an SR SC
policy, it is thus required to remove the SR information as well
as any other encapsulation header before the SF receives the
packet, or to alter it in such a way that the SF can correctly
process the packet. SR proxy is an entity, separate from the
service, that performs these modifications and handle the SR
processing on behalf of a SR-unaware service. Srext [9] is
a Linux kernel module providing advanced SR functions. It
supports different SR proxy behaviours detailed in [8].

III. SR/SFC TESTBED

In order to showcase the SFC of SR-aware and SR-unaware
SFs, we built the testbed shown in Figure 1, which consists of
six nodes (R1-R6), implemented as Linux VMs and represent
our SR domain. This SR domain is used to connect two
branches (BR1 and BR2) of an enterprise to an external
network (Ext). All nodes, except R4, support SRv6. Nodes
R1 and R6 respectively represent the ingress and egress nodes,
while nodes R2, R3 and R5 are used as NFV nodes of our

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-3

SRv6 based SFC scenario. Node R4 is a normal IPv6 Linux
router. Service Functions (F1-F3), Branches (BR1 and BR2),
and external network (Ext) are deployed as Linux network
namespaces. F1 is an SR-aware Linux iptables firewall, F2 is
SR-unaware snort, and F3 is an extended SR-aware version
of snort. Nodes R1, and R4-R6 are running kernel 4.14 and
have iproute2 v4.14 installed. Node R2 is running compiled
Linux kernel 4.15-rc2 with SRv6 enabled and SERA firewall
included [10]. Node R3 has the srext [9] kernel module
installed. The links between any two nodes Rx and Ry
are assigned IPv6 addresses in the form fc00:xy::x/64
and fc00:xy::y/64. For example, the two interfaces of
the link between R1 and R2 are assigned the addresses
fc00:12::1/64 and fc00:12::2/64. Each node owns
an IPv6 prefix to be used for SRv6 local SID allocation,
which is in the form fc00:n::/64, where n represents
the node number. As an example, R2 owns the IPv6 prefix
fc00:2::/64. SFs are instantiated on an SR SID of form
fc00:n::fk:/112 where n represents the node hosting
the SF and k is the SF number. For example, F1 which is
running in node R2 is given the prefix fc00:2::f1:/112.
BR1, BR2, and Ext are respectively assigned the IPv6 prefixes
fc00:b1::/64, fc00:b2::/64, and fc00:e::/64.

IV. SR/SFC POLICIES

The testbed in Figure 1 supports two different path, with
different bandwidth and security guarantees, towards Ext. Path
p1 (R1 → R4 → R5 → R6) provides high bandwidth. Path
p2 (R1 → R2 → R3 → R6) has lower bandwidth, but more
security guarantees. Going through p1 implies crossing F1 and
F2. The same way, going through p2 implies crossing F3. BR1
and BR2 have different traffic requirements; BR2 traffic is
very delay-sensitive, while BR1 traffic is highly confidential,
but less delay sensitive. We exploit p1 and p2 to satisfy those
traffic requirement. BR1 traffic is steered through p1, and BR2
traffic is steered through p2. At the ingress node (R1), we
configured two different SR SFC policies (CP1 and CP2) that
steer traffic through p1 and p1. Policy Based Routing (PBR)
is used to classify traffic coming form BR1 and BR2, which
respectively go through CP1 and CP2.

V. DEPLOYMENT AND TESTING

We built our testbed by using VirtualBox [11] as hyper-
visor and Vagrant [12] as VM manager. This makes it easy
to replicate the demo on any commodity hardware. Scripts
required to deploy the demo are open source and can be found
at [13]. To verify the deployment of the demo, we use iperf
[14] to generate traffic from BR1 and BR2. BR1 traffic should
cross both F1 and F2. F1 is configured with iptables rules,
which are applied by SERA firewall directly to inner packet
of received SR traffic. F2 is an SR-unaware snort, which can’t
correctly processes SR packets. We used srext to remove SR
encapsulation from packets before being handed to F2. The
removed SR encapsulation is re-added again to packets after
being processed. F3 is the only SF crossed by BR2 traffic.
It’s an SR-aware snort that can apply configured snort rules

BR1

BR2

R1

R2

R4 SR3

R6

srext

F5

F4
F1 F2

F3

Ext

R3

Fig. 1: Testbed for SR/SFC demo

directly to inner packet. To make sure that BR1 and BR2 traffic
follows the exact path in both upstream and downstream, we
configure two SR SFC policies on the egress node (R6) for the
reverse path. This guarantees that SFs get the traffic in both
directions.

VI. CONCLUSIONS

In this demo, we introduce a Linux NFV infrastructure that
support SFC of both SR-aware and SR-unaware SFs. We used
our SR proxy implementation (srext) to include those SR-
unaware SFs in an SR SFC. As SR-aware SFs, we provided
two implementations of SR-aware SFs. SR-aware and SR-
unaware SFs have been included in the same SFC to show their
inter-operability. We provided an open source implementation
for the SR/SFC testbed been used.

REFERENCES

[1] B. Thekkedath, Network Functions Virtualization For Dummies. Wiley,
2016.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[3] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, 2015.

[4] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Ar-
chitecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015.

[5] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” Internet-Draft, November 2017. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-sfc-nsh

[6] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” in 2015 IEEE Global Communi-
cations Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[7] S. Previdi (ed.) et al., “IPv6 Segment Routing Header (SRH),”
Internet-Draft, September 2016. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-6man-segment-routing-header-02

[8] F. Clad et al., “Segment Routing for Service Chaining,” Internet-
Draft, October 2017. [Online]. Available: https://tools.ietf.org/html/
draft-clad-spring-segment-routing-service-chaining-00

[9] “srext - a Linux kernel module implementing SRv6 Network
Programming model,” Web site. [Online]. Available: https://github.com/
netgroup/SRv6-net-prog/

[10] “SERA - SEgment Routing Aware Firewall,” Web site. [Online].
Available: https://github.com/SRouting/SERA

[11] “VirtualBox home page,” Web site. [Online]. Available: http:
//www.virtualbox.org/

[12] “Vagrant home page,” Web site. [Online]. Available: http://www.
vagrantup.com/

[13] “SRv6 SFC demo,” Web site. [Online]. Available: https://github.com/
SRouting/sr-sfc-demo

[14] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” Web
site. [Online]. Available: http://iperf.fr

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-4

http://tools.ietf.org/html/draft-ietf-sfc-nsh
http://tools.ietf.org/html/draft-ietf-sfc-nsh
http://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02
http://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02
https://tools.ietf.org/html/draft-clad-spring-segment-routing-service-chaining-00
https://tools.ietf.org/html/draft-clad-spring-segment-routing-service-chaining-00
https://github.com/netgroup/SRv6-net-prog/
https://github.com/netgroup/SRv6-net-prog/
https://github.com/SRouting/SERA
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.vagrantup.com/
http://www.vagrantup.com/
https://github.com/SRouting/sr-sfc-demo
https://github.com/SRouting/sr-sfc-demo
http://iperf.fr

Demo: Intent-Based 5G IoT Application Slice
Energy Monitoring

*+Fred AKLAMANU, *Sabine RANDRIAMASY, +Eric RENAULT, *Imran LATIF, *Abdelkrim HEBBAR,
*Alberto CONTE, *Bilal AL JAMMAL, *Warda HAMDAOUI

*Nokia Bell Labs, Nozay, France
firstname.lastname@nokia-bell-labs.com

+Institut Mines-Télécom / Télécom SudParis, Samovar CNRS, France
firstname.lastname@telecom-sudparis.eu

Abstract—Current Telco Network Service Provisioning
requires proficient expertise on Infrastructure equipment.
Moreover the process is tedious and erroneous making Network
Service lifecycle a daunting task for Network Operators (NOs)
and 3rd Party Network Tenants. This paper, proposes an
Over-The-Top Intent Based Network Framework for Network
Slice Energy Monitoring and Provisioning. The aim is to
automate the task of network slicing through a declarative
approach known as Intents while hiding network complexity
enabling NOs monitor Network Slice energy consumption. We
provide an experimental validation of the Intent Framework
with a scenario of a 5G IoT Application Network Slice energy
monitoring.

I. INTRODUCTION

The next generation mobile network, 5G is becoming a
reality. The backbone or foundation of 5G is viewed as
Software Defined Networking [1] and Network Function
(SDN) Virtualisation (NFV) [2]. These technologies provide
potential cost cutting .i.e. Capital Expenditure (CAPEX),
Operational Expenditure (OPEX) and they will help Network
Operators (NOs) maintain elastic networks to meet growing
network demands.

5G will potentially provide a window for NOs to extend
their infrastructure services to Mobile Virtual Network
Tenants (MVNO) and Vertical Markets such as Over-The-Top
Application Providers. The services envisioned by NOs to
potential tenants will include physical or virtual shared
end-to-end network resources known as a Network Slices. This
encompasses network resources from Cloud Radio Access
Network (CRAN) [3] through to Evolve Packet Core Network
(EPC) [4] which traverses a transport network. Both NOs and
Network Tenants will want an idea of how much energy these
network slices consume. This will help NOs to bill their clients
based on network slice energy consumption and other factors.

The current approach to realise network services by NOs
requires proficient expertise on infrasturucture equipments and
moreover the process is tedious and erroneous. They exert a
manual method to deliver the network services to their clients
i.e. MVNOs and vertical markets. Such an approach will not
suffice on 5G mobile networks due to a 30 million expected
connected devices. Intent-Based Networking (IBN) [5] aims to
ease such challenge of manual network service provisioning

through network automation. Networks Tenants will only have
to specify their Intents i.e. “WHAT” network service while an
Intent-Based Management Framework handles the automation
process of realising the Intent, that is, the “HOW”. An Intent
in this paper refers to an Over-The-Top (OTT) Network
Application Slice.

We propose an OTT Intent-Based Network Framework
which provides a simplified and non-technical interface
for MVNOs and vertical markets to request for OTT
Network Application Slice without knowledge of the physical
insfrastructure details such as configuration, topologies and
protocols. The framework enables energy monitoring of such
Network Application Slices.

II. PROPOSED OVER-THE-TOP INTENT BASED
NETWORKING (IBN) FRAMEWORK

The proposed IBN Framework provides network tenants and
NOs with a simple service platform. The framework speeds
up service request placement and provisioning, provides a
feedback for network service feasibility and guarantees the
platform reliability. The modules of the OTT IBN platform
on top of a Cloud-Over-The-Top Application Slicing Platform
(COASP) are shown in Fig. 1.

Fig. 1. OTT IBN Framework

We provide details on the energy monitoring module
for VNFs on the OTT IBN Framework. Details of other

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-5

sub-modules of the framework are skipped here and provided
in our related work on Intent-Based Real Time 5G Cloud
Service Provisioning. We employ the term micro-services
for VNFs. These micro-services are cloud native Docker
containers [6] which provide numerous advantages over
traditional virtual machine. They are lighter and setup time
is in order of few seconds compared to minutes for virtual
machines.

A. Energy Monitoring Module
This module is responsible for microservices energy

consumption monitoring. The module comprises a Software
Defined Network middleware power metering, PowerAPI [7].
This tool enables the power measurements of micro-services
which will be important for NOs about possible VNF
placement decisions and furthermore identify high energy
consuming ones. The energy data will be potentially useful
in the future for data analysis and learning purposes.

III. DEMONSTRATION
The demonstration involves the setup of the physical

insfrastructure. This is made up of two Nokia Airframes
Front-End Unit (FEU) and Edge Cloud (EC) and a laptop for
Central Cloud (CC) interconnected by two switches. The table
I shows the physical platform specifications.

Front End Unit Edge Cloud Central Cloud
OS Ubuntu 16.04 Ubuntu 16.04 Ubuntu 16.04

RAM (GB) 128 128 16
CPU Cores 24 24 8

TABLE I
CLOUD PLATFORMS

The next phase is the virtual network setup, deployment of a
VNF Orchestrator, distributed key-value store, ETCD [8] and
ONOS [9], an SDN controller as a docker container on the
Central Cloud (CC). This phase also involves the installation
of Open Virtual Switches (OVS) [10] on FEU and EC. ONOS
is responsible for the management of the OVS to establish
connectivity for the Virtual Network Infrastructure (VNI).

Phase two involves deployment of 5G helper VNFs, these
are VNFs necessary for the deployment of 5G Network
Application Slices. 3 VNFs and 5 VNFs are deployed on FEU
and EC respectively by a VNF Orchestrator.

The above steps ensure that the VNI is properly set up
to receive network service requests. The Network Tenant
provides the type of service (Intent), which is a 5G IoT
Application Slice from a GUI interface. Energy monitoring
option is activated for End-to-End Network Slice monitoring.
End-to-End Network Slice monitoring comprise energy
monitoring of all micro-services on the VNI. The tenant
request is transmitted to the Intent Engine for feasibility of
service deployment. In the absence of any problem, a 5G
IoT VNF is deployed as well as PowerAPI docker containers
for individual microservices monitoring on the VNI. The
individual consumption of the VNFs are summed and stored in
a real-time database, influxDB. The total network slice energy
consumption is displayed on a dashboard as shown in Fig. 2.

Fig. 2. 5G IoT Application Slice Energy Consumption

IV. CONCLUSION AND FUTURE WORKS

Our proposed OTT Intent Based Networking Framework
simplifies network slice energy monitoring through
automation. The NO does not need to manually setup
different configuration for OTT Application Network Slice
components for energy monitoring.

V. ACKNOWLEDGMENT

The power metering virtualization was done within the
studies of the Celtic-Plus project SooGREEN [11].

REFERENCES

[1] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking
(sdn): A reference architecture and open apis,” in ICT Convergence
(ICTC), 2012 International Conference on. IEEE, 2012, pp. 360–361.

[2] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” vol. 51, no. 11. IEEE,
2013, pp. 24–31.

[3] e. Imran Latif, “Cloud ran architecture for smart cities,” in The 1st
American University in The Emirates International Research Conference
(AUEIRC). Springer, 2017.

[4] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “Nfv: state of the
art, challenges, and implementation in next generation mobile networks
(vepc),” vol. 28, no. 6. IEEE, 2014, pp. 18–26.

[5] SDxCentral, “Intent: Dont tell me what to do! (tell
me what you want,” February 2015. [Online]. Available:
https://www.sdxcentral.com/articles/contributed/network-intent-summit-
perspective-david-lenrow/2015/02/

[6] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” vol. 2014, no. 239. Belltown Media,
2014, p. 2.

[7] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:
A software library to monitor the energy consumed at the process-level,”
vol. 2013, no. 92, 2013.

[8] Core OS, “A distributed, reliable key-value store for the most critical data
of a distributed system.” [Online]. Available: https://coreos.com/etcd/

[9] ON.Lab, “ONOS intent framework,” May 2016. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Intent+Framework

[10] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch.” in NSDI, 2015, pp. 117–130.

[11] SooGREEN, “Service-oriented optimization of green mobile networks”
(soogreen), celtic-plus project, partially funded by the french directorate
general for enterprise (dge) and the scientific and technological research
council of turkey (tubitak),” 2018.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-6

Demo: Enabling In-Network Processing utilizing
Nearby Device-to-Device Communication

The An Binh Nguyen, Christian Klos
Björn Richerzhagen, Ralf Steinmetz

KOM, TU Darmstadt, Germany
{firstname.lastname}@kom.tu-darmstadt.de

Christian Meurisch

TK, TU Darmstadt, Germany
meurisch@tk.tu-darmstadt.de

Patrick Lampe

University Marburg, Germany
lampep@mathematik.uni-marburg.de

Abstract—In disaster situations, relief work can be enhanced
and facilitated by acquiring and processing distributed informa-
tion. However, the communication and computation infrastruc-
tures might be impaired or inaccessible in emergency response
scenarios. Consequently, approaches for coordination, and re-
source utilization are still challenging. To this end, we proposed
the concept of an adaptive task-oriented message template (ATMT),
that bundles the control information and the payload data, re-
quired to process and extract information, into a single message.
Thus, an ATMT enables distributed in-network processing of
complex tasks, allows to leverage the idle resources of mobile
devices of the first responders. In this paper, we demonstrate
the use of the ATMT concept in an example of face detection,
which can be used to offer Person Finder similar services in
an emergency ad hoc network. We utilize Google Nearby peer-
to-peer networking API, standard and available on Android-
based devices, to realize the handover of an ATMT message
between mobile devices. This successful integration underpins
the prospective adoption of the ATMT concept.

I. INTRODUCTION

Acquiring and processing distributed information are crucial
for disaster situations. Today, several services designed to
enhance relief work, and to offer information relevant for
emergency situations, such as Google’s Person Finder 1 or
Facebook’s Crisis Reponse 2, are available. However, these
services require stable Internet-based communication, which
might not be possible in disaster situations. To maintain
communication in emergency situations, mobile hand-held
devices such as smart phones can be used to create an
opportunistic ad hoc network [1], which allows mobile devices
to share data and exchange information through device-to-
device communication. Combining with the built-in sensors,
and the computing resource available on mobile devices, it is
possible to provide emergency relief services on top of mobile
opportunistic ad hoc network. Hereby, approaches to enable
distributed coordination, and efficient resource utilization are
necessary. For this purpose, we proposed and designed a mes-
sage template, called adaptive task-oriented message template
(ATMT) in [2].

An ATMT message describes a complex task, the operations
and the payload data required to complete the defined complex
task; which makes each ATMT message a self-encapsulated

1https://google.org/personfinder
2https://www.facebook.com/about/crisisresponse/

message. Hence, the ATMT message template is able to
support distributed processing, leveraging idle resource of the
participating mobile devices. Additionally, since an ATMT
message is self-encapsulated, each participating device can
make an autonomous decision based on its available capa-
bility, and its available resources. Overall, the ATMT message
provides a basis to create complex services on an opportunistic
network, utilizing mobile devices.

To showcase the advantages, and the applicability of the
ATMT concept in practice, we provide a demonstration, that
(i) uses ATMT message template to implement a face detection
technique, which requires multiple-processing stages, specially
designed for mobile devices [3], and (ii) utilizes the Google
Nearby Networking API [4] for enabling handover of an
ATMT message directly between devices.

ATMT Header

Message Header
(UUID, Checksum,

Length)

Analysis Header
Operations Graph

ATMT Payload

OP1
OP3

OP2
OP4

Data#1 Data#2 Data#3 ..
Data

Dictionary

Fig. 1: Structure of the adaptive task-oriented message tem-
plate (ATMT) as proposed in [2]

II. ADAPTIVE TASK-ORIENTED MESSAGE TEMPLATE

The design and construction of the ATMT message template
are illustrated in Fig. 1. The goal in designing ATMT message
template is to allow a user to define a processing goal, and the
steps/operations required to reach this goal. These information
are captured in an operations graph, modeled by a directed
acyclic graph within the ATMT header. A device can check
on the processing status of the operations graph, by reading
only the checksum field, without reading the whole content
of the ATMT message. This allows a device to make a fast
decision on whether to merge, to drop, or to handover an
ATMT task. To incorporate the payload data required for
the operations, considering the resource constraints of the
devices in an opportunistic mobile ad hoc network, we devise
the ATMT payload to contain pieces of data, which can be
compressed by different encoding methods to allow for more
flexibility. Each piece of data is mapped to an operation

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-7

in the operations graph through the data dictionary in the
ATMT header. To organize the coordination among mobile
devices, we conceive four roles, which can be assumed by the
participating devices according to their available capabilities.
These roles are sensor node to obtain data, delegator node
with domain knowledge to set up and adapt the operations
graph if necessary, operator node which executes one or more
operations from the operations graph based on its available
resource, and forwarder node which receives, store and for-
ward an ATMT message. Distributed processing of a complex
task is realized by simply passing ATMT messages. Each
device, receiving ATMT messages, will act accordingly to its
role, adjust the content of ATMT messages w.r.t. the current
processing state, and handover the adjusted ATMT message to
the other.

III. INTEGRATION OF ATMT WITH GOOGLE NEARBY

Support to setup and to provide device-to-device commu-
nication using mobile devices such as smart phones is still
restricted. To enable WiFi ad hoc communication between
Android devices, these are required to be rooted. Even though
WiFi direct allows for direct communication, but it requires a
master-slave model, which makes transmission of a message
through multi-hops difficult [1]. Recently, Google enables and
provides Nearby [4], a peer-to-peer networking API that allows
for discovery, connection and data exchange with devices
in the close vicinity. We use Nearby Connections to let
each device advertise its role/service. Thus, each participating
device is able to look for the next role/service, that it requires.
For instance, a sensor node, after acquiring data, needs to
look for a delegator node, so that the delegator node can
setup and include the corresponding operation graphs into
the ATMT message. Similarly, a delegator node searches for
operator nodes to execute the operations on the obtained
data. If an operator node cannot complete the task described
in ATMT message alone, this operator node will look for
further operator nodes which possess the capabilities, e.g.,
special hardware, special algorithms/libraries, to take over
the upcoming operations. When an operator node notices the
completion of the ATMT task, it can look for forwarder nodes
to transport the final result to a predefined destination. In this
manner, a multi-stage processing is realized through multi-
hops device-to-device communication.

IV. SCENARIO AND DEMONSTRATION

We use the ATMT concept to implement the face detection
technique proposed in [3], which can be used to support person
finder service in an emergency ad hoc network. The face
detection technique as introduced in [3] relies on multiple
stages pipeline to detect multiple faces within an image; these
are (1) preprocessing to handle parameters, (2) a fast face
detection to determine important regions within the image, and
(3) a validation phase using dlib library to detect and validate
the faces within the image.

Despite the fact, that the face detection technique in [3] is
designed considering the resource and energy constraint of a

Fig. 2: User interface of the Android mobile devices used in
the demonstration

mobile device, this technique can be further enhanced using
the ATMT concept. The processing pipeline as described can
be distributed to multiple devices; consequently, each device
has to process only one phase of the pipeline. The advantages
for the utilization of the ATMT concept in this scenario are (i)
further reducing the resources consumption of the participating
devices, since now each device has to process only one phase
of the pipeline, and (ii) being able to leverage heterogeneous
capabilities, for instance, in the described scenario, the dlib
library might not available on all devices.

In the demonstration, a user can use a sensor device to
capture and send a picture containing multiple faces to other
devices for further processing. Next, the device chosen as
a delegator node should receive the picture, adds the op-
erations graph for the face detection technique accordingly,
and forwards the constructed ATMT message to the operator
devices. On each operator device, the user can choose which
operations should be available, and can observe through log
messages, how the devices handle ATMT messages, and how
the Nearby Connections are used (cf. Fig. 2). At the end of
the processing pipeline, the results of the face detection can
be seen in the chosen end-node device, showing the cropped
images of different detected faces. A short video, showing the
demonstration as described, can be found at the following link
http://bit.ly/2GGenHZ

REFERENCES

[1] S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “Wlan-
opp: Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc
Networks, vol. 25, 2015.

[2] T. A. B. Nguyen, C. Meurisch, S. Niemczyk, D. Böhnstedt, K. Geihs,
M. Mühlhäuser, and R. Steinmetz, “Adaptive Task-oriented Message
Template for In-Network Processing,” in NetSys’17. IEEE, 2017.

[3] P. Lampe, L. Baumgärtner, R. Steinmetz, and B. Freisleben, “Smartface:
Efficient face detection on smartphones for wireless on-demand emer-
gency networks,” in IEEE ICT, 2017.

[4] “Google Nearby.” [Online]. Available: https://developers.google.com/
nearby/

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-8

http://bit.ly/2GGenHZ
https://developers.google.com/nearby/
https://developers.google.com/nearby/

DEMO: Controlling software router resource
sharing by fair packet dropping
Vamsi Addanki, Leonardo Linguaglossa, Jim Roberts, Dario Rossi

Telecom ParisTech, Paris

Abstract—We demonstrate a practical way to achieve multi-
resource sharing in a software router, where both bandwidth and
CPU resources may be bottlenecks. Our main idea (published in a
same-titled paper in this year IFIP Networking conference [1]),
is to realize per-flow max-min fair sharing of these resources
by wisely taking drop decisions according to the state of a
shadow system. We implement our FairDrop proposed algorithm
in Vector Packet Processor (VPP), a novel high-speed software
router architecture. We demonstrate FairDrop is capable of fairly
sharing CPU cycles among flows with heterogeneous computing
workload, at 10Gbps on a single core.

I. INTRODUCTION

Controlling how bandwidth is shared between concurrent
flows is a classical issue in networking, and the advantages
of imposing fairness have been repeatedly discussed since
Nagle’s pioneering work [2]. More recently, the blending of
networking and computing raise new challenges [3] in terms
of resource contention and sharing – however, simple mech-
anisms that are capable of handling heterogeneous resources
have yet to appear. In emerging high-speed software routers,
flow throughput may additionally be impeded by network
capacity limitations as well as other resources, such as the
amount of available CPU cycles to process packets of any
given flow: in this case, it would be desirable in this case to
impose per-flow fair throughput expressed in cycle/s[4].

As in[4], we advocate that flexible dropping algorithms
are an attractive solution to control resource sharing, be
it cycles of a multi-core CPU or network bandwidth. We
implement a simple and practical algorithm, which we refer to
as FairDrop (FD), that realizes max-min fair flow rates while
retaining the network interface card (NIC) and server code
optimizations that are necessary to keep up with line speeds
of 10 Gbps on a single CPU core. These optimizations notably
require packets to be batched for both I/O and processing
making implementation of classical scheduling algorithms like
DRR [5] problematic if not impossible, as argued in [3].

Our proposal is then to realize fairness via a shadow system.
Briefly, suppose packets are handled simultaneous by two
service systems, one the actual buffer management system
implemented in the router (e.g., a DPDK circular ring), the
other a shadow system implementing a more sophisticated
scheduler (e.g., per-flow FQ). Packets that are dropped in one
system are also dropped by the other so that both systems yield
exactly the same rate over the lifetime of a flow. The shadow
system in our proposal is virtual and makes dropping decisions
based on a measure of per-flow virtual queue occupancy.
This measure is depleted between packet arrivals, at a rate

that varies depending on the number of active flows, and
incremented by packet length on the arrival of every batch.
In particular, if the shadow system implements per-flow head-
of-line processor sharing, the long-term flow rates will be max-
min fair.

We implement the above proposal in Vector Packet Pro-
cessor (VPP), an software router released as open source
in the context of the FD.io Linux foundation project. For
a detailed explanation of our FairDrop (FD) algorithm we
refer the interested reader to a same-titled paper in this year
IFIP Networking conference [1]. In this extended abstract we
instead describe the experimental environment and scenarios
that we will demonstrate, contrasting results achieved under
simple buffer management policies (such as FIFO or NIC ring
buffers). More information about the project, as well as our
implementation, is available at [6].

II. FAIRDROP IMPLEMENTATION AND DEMONSTRATION

In a software router, a CPU core becomes a bottleneck when
flows emit packets too fast yielding a compute load greater
than the CPU capacity, leading to packet drops. High-speed
software routers are intrinsically flow-aware: flow-awareness is
facilitated by NICs implementing receive side scaling (RSS),
that hashes the 5-tuple and maps packets to distinct virtual
queues, mainly for the purpose of load balancing over multiple
CPU cores. Individual threads of packet processing appli-
cations are bound to a CPU core and, using kernel-bypass
stacks such as DPDK, threads consume independent streams
of packets, each from a different RSS queue. Additionally,
high-speed software routers and their NICs generally deal
with packets in batches rather than individually, which reduces
interrupt pressure and that is a necessary optimization for line-
speed packet processing. Software routers typically polls for
available packets in the NIC circular buffer, grabbing and
processing the whole batch before the next poll. FairDrop
operates over packet batches at the router ingress.

We demonstrate FairDrop with a scenario where N flows
share a C=10Gbps link and are processed by a single CPU
core clocked at 2.6GHz. Particularly, flows have equal input
rate C/N but different treatment cost. For the sake of simplic-
ity, in the demonstration we consider only two flow classes: the
majority of the flows belong to the light-weight class CL (e.g.,
Ethernet switching or IPv4 forwarding), whereas few flows
belong to a heavy-weight treatment class CH (e.g., IPsec or
stateful L4 operation). In particular, we select functions whose
CH/CL ≈10 so that a single packet of an heavy-weight flow

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-9

FIFO/Ring buffer FairDrop

2.0
.
10

6

4.0
.
10

6

6.0
.
10

6

F
lo

w
 r

at
e

[p
p
s]

2.0
.
10

6

4.0
.
10

6

6.0
.
10

6

1.0
.
10

9

2.0
.
10

9

3.0
.
10

9

 10 20 30 40

F
lo

w
 c

o
st

[c
y
cl

es
]

Time (s)

1.0
.
10

9

2.0
.
10

9

3.0
.
10

9

 10 20 30 40

Time (s)

Fig. 1. Illustration of Classical (left column) vs FairDrop (right column) operations. Top part reports sankey diagrams of the rate at the Traffic Generator
(TGS) and at the System Under Test (SUT). Lower part depicts the time evolution of the flow rate (in Mpps, middle) and the flow ccost (in cycles, bottom).

requires as many CPU cycles as about 10 packets of light-
weight flows. We additionally fix NH = 2 and NL = 18 so
that out of the total N = 20 flows, the NH flows of class CH

requires as many processing cycles as the NL flows of class
CL. Needless to say, 64B packets are sent to the maximum
rate of 14.88Mpps, so that not all flows can be processed with
the CPU budget.

We represent experimental results of the demo with the
visual layout of Fig.1, where plots in the left column represent
the case of traditional buffer management, and plots in the
right column report the FairDrop case. In particular, the top
plots report a sankey visualization of the experiments, whereas
the bottom plots report the individual flow rate (in packets per
second) and the individual flow cost (in cycles per second).
The two heavy-weight flows are represented in red, and the
18 light-weight flows in blue.

In the traditional case, since the CPU budget is not enough
to process packet of all flows, about 74% of packets are lost
at the NIC before entering the VPP router. Given that flows
have equal rates, there is no loss differentiation at the NIC, so
that only about 3.86Mpps exit the VPP router, consuming the
2.6Gcycles/sec budget of our CPU. Notice that each flow have
equal rate, but that a single heavy-weight flow alone consumes
25% of the CPU budget.

Conversely, the FairDrop mechanism preferentially drops
packets of the heavy-weight flows to reinstate fairness (at
a rate approximately 10 times higher). Dropping decisions

have a cost (i.e., the packets need to be fetched from the
NIC, the queue in the shadow system is updated, etc.) and
FairDrop consumes 0.17Gcycles/sec. The net result of fair
dropping decisions, more light-weight packets are processed in
the router: this increases the overall throughput at 5.95Mpps
(top right plot), reducing the drops at the NIC buffer, and
reinstates per-flow fairness in terms of the number of cycles
(bottom right plot).

The demonstration will allow to interact with the VPP router
configuration (e.g., FairDrop vs classical ring management)
and altering the scenario parameters (e.g., number of flows,
relative cost, etc.) to contrast the key performance indicators
under both approaches.

ACKNOWLEDGMENTS

This work was funded by NewNet@Paris, Cisco’s Chair
“NETWORKS FOR THE FUTURE” at Telecom ParisTech.

REFERENCES

[1] V. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi, “Controlling
software router resource sharing by fair packet dropping,” in IFIP
Networking, 2018.

[2] J. Nagle, “On packet switches with infinite storage,” RFC 970, 1985.
[3] K. To, D. Firestone, G. Varghese, and J. Padhye, “Measurement based

fair queuing for allocating bandwidth to virtual machines,” in ACM
HotMiddlebox, 2016.

[4] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness
through differential dropping,” ACM SIGCOMM Comput. Commun. Rev.

[5] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” SIGCOMM Comput. Commun. Rev.

[6] https://newnet.telecom-paristech.fr/index.php/fairdrop/.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-10

Poster: Impact of Prioritized Network Coding on
Sensor Data Collection in Smart Factories

Marie Schaeffer, Roman Naumann, Stefan Dietzel, and Björn Scheuermann
Humboldt-Universität zu Berlin, Germany

Email: {marie.schaeffer, roman.naumann, stefan.dietzel}@hu-berlin.de, scheuermann@informatik.hu-berlin.de

Abstract—Utilizing information from the production process
is integral to smart factory concepts. In our example use-case,
plastic industry, sensor information from the injection molding
process helps to detect defective parts and provides automated
guidance for process set-up. An enabler for such applications is a
means to wirelessly collect machines’ sensor information in harsh
factory environments, and network coding has been proposed as a
tool to implement suitable network protocols. Using pre-recorded
sensor data from actual injection processes, we study the impact
of network coding on the latency of sensor data collection. In
particular, we show how network coding with prioritization helps
to reduce delays until information becomes usable.

I. INTRODUCTION

Many smart factory use cases strive to automate previously
manual tasks via the utilization of highly detailed process in-
formation. In our example use-case, plastic injection molding,
molten plastic is injected with high pressure and temperature
into a form, termed the “mold.” As the plastic cools down, the
final product hardens out and is finally ejected from the mold.
Here, relevant process information includes material pressure
and temperature measured within the mold. Such information,
in combination with machine learning techniques, allows the
automated detection of a variety of product defects before they
can reach the customer [1], [2].

In order to leverage process information, it has to be
collected quickly from machines throughout the factory. A
centralized server then acts upon results and, for example,
issues alarms to operators should the process become unstable.
Wireless transmission of sensor information is preferable,
because it avoids expensive retrofitting of factories. Wireless
transmission, however, can be difficult due to the harsh factory
environment with metal obstruction and widespread factory
areas that necessitate multi-hop capabilities.

Using network coding in our use case can improve the
throughput, simplify routing decisions, and add robustness
against packet loss. But using random linear network coding
(RLNC) to transmit sensor information may result in intolera-
ble delays due to the “all-or-nothing” property. This property
states that it is highly unlikely that the server can decode parts
of the sensor information before a sufficient number of linear
combinations for, in our case, a complete injection cycle are
received. A number of prioritized network coding schemes
have been proposed to allow early decoding of a subset of a
generation’s information.

We study the impact of two prioritized network coding
techniques – hierarchical network coding (HNC) [3] and

iNsPECt [4] – on delays in sensor data collection. As a third
mechanism, regular RLNC [5] serves as a baseline for our
comparison.

II. ENCODING AND TRANSMISSION SCHEMES

Using regular RLNC as an example, we explain how net-
work coding in general can be applied to our sensor data col-
lection use case. We then briefly introduce the two prioritized
network coding mechanisms used in our comparison.

RLNC splits information into generations of data messages.
In our case, a generation is one production cycle’s worth of
sensor information from a single sensor. Each message is a set
of sensor samples and consists of several symbols over a finite
field. We employ the common finite field F28 , as it combines
efficient byte alignment with sufficient protection from linear
dependency. Each machine generates linear combinations of
one generation’s messages using random coefficients. Each
machine then continually broadcasts these linear combinations
until all neighbors can decode the current generation. Subse-
quently, the next generation is sent.

To apply prioritized network coding techniques to our
industrial use case, we pre-process sensor information such
that it can be divided into different priority layers, as described
in [6], We apply discrete cosine transform (DCT) to each
production cycle’s sensor information and divide its output into
blocks of coefficients. Blocks with low-frequency coefficients
provide an early preview of a complete sensor cycle, whereas
blocks with high-frequency coefficients incrementally increase
precision to enable more demanding detection techniques. We
again use one injection cycle as a generation, but we use
blocks of coefficients as the prioritized network coding mech-
anisms’ prioritization layers. To generate a linear combination
associated with a given priority layer, the prioritized network
coding (PNC) codes combine only messages of equal-or-lower
layers. In our case, this concept translates to only lower-or-
equal frequencies of the DCT-provided spectrum of sensor
information. As the prioritized layers form a linear subspace
in the decoding matrix, they can generally be decoded earlier
and, therefore, reduce delays in data processing.

In our evaluation, we study the impact of HNC [3], a PNC
protocol, on the delay after which information is usable by
the central server. We also study the impact of layer selection,
a central aspect of PNC protocols, on decoding delay. To
that extent, we compare HNC, which selects priority layers at
random, with iNsPECt [4], which employs limited knowledge

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-11

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12

N13 N14 N15 S

(a) Grid topology with one sink.

0 5 10
0.00

100.00

200.00

300.00

Time in s

Te
m

pe
ra

tu
re

in
K

RLNC
HNC
iNsPECt

(b) Temperature error.

0 5 10
0.00

5.00

10.00

15.00

20.00

Time in s

Pr
es

su
re

in
ba

r

RLNC
HNC
iNsPECt

(c) Pressure error.

Fig. 1. Topology and average sensor error over time.

on neighboring network nodes’ decoding states to determine
ideal layers.

III. FACTORY NETWORK MODEL AND EVALUATION

We use a wireless network model in which nodes broadcast
their messages. Our topology, given in Figure 1a, represents a
typical factory layout with rows of machines in a regular grid
and node distances of 30 m. The fifteen nodes, N1 to N15,
represent the machines where the sensor data is measured.
One sink node, S, is the factory’s central server system. We
consider a single sensor for each machine. More sensors in
machines bring a constant factor for the amount of required
transmissions, analogous to a higher sample rate.

We evaluate using the discrete event network simulator ns-3
(version 3.25) with YANS Wifi model, 802.11g MAC, and 2.4
GHz PHY using log-distance propagation loss model (γ = 3.0,
which is in line with a range modern factory environments [7])
combined with Rayleigh fast fading. We use real, pre-recorded
sensor information from the injection molding process. Our
sensor information stems from a 25 s long production cycle
that was sampled at 500 Hz rate. Each measured sample is
a 4 B floating-point number. We split frequency components
into five priority layers with a generation size of 53 frequency
components to limit each data message’s size to 1008 B. For
the PNC-iNsPECt variant, we set the data-feedback ratio to
1 : 2. Each sample shown in the following is the average over
five simulation runs of 200 s simulated duration each, using
different sub-streams of ns-3’s PRNG. Error bars depict 95%
confidence intervals (assuming normal distribution), but might
not be visible if the error is negligible. During each run, several
production cycles are transmitted to the sink.

Figures 1b and 1c show the simulation results for temper-
ature error over time and pressure error over time. The time
measurement starts with the first message being transmitted,
which explains the initially very high average error that results
from production cycles without any frequency components
decodable at the server. Generally, it can be seen that the
preview provided by the PNC scheme iNsPECt quickly gains
precision and is virtually indistinguishable from the original

sensor information much earlier than RLNC can provide any
information. HNC also gains precision more quickly on aver-
age than RLNC. The overhead of the HNC scheme, however,
results in RLNC providing the full picture before HNC can
lower the remaining error below 1 K or 1 bar. In contrast,
PNC achieves such a low average error approximately four
times as fast as RLNC for both temperature and pressure
readings. The maximum time until each production cycle was
available with full precision was 8.40 s with our baseline
RLNC. As a result of the principal message overhead imposed
by PNC schemes, iNsPECt and HNC required up to 9.20 s and
17.80 s, respectively, until the preview reached full precision.
Especially with iNsPECt, however, the error is extremely low
during the time after which RLNC finished transmission.

IV. CONCLUSION

We studied the impact of prioritized network coding for
smart factory use-cases using real sensor information from
plastic industry. Our results suggest that iNsPECt provides
significant benefits over non-prioritized RLNC, whereas HNC
can only provide a coarse preview before RLNC provides the
full picture.

REFERENCES

[1] B. Ozcelik and T. Erzurumlu, “Comparison of the warpage optimization
in the plastic injection molding using ANOVA, neural network model
and genetic algorithm,” Feb. 1, 2006.

[2] H. Oktem, T. Erzurumlu, and I. Uzman, “Application of Taguchi
optimization technique in determining plastic injection molding process
parameters for a thin-shell part,” 2007.

[3] K. Nguyen, T. Nguyen, and S. c Cheung, “Peer-to-peer streaming with
hierarchical network coding,” in 2007 IEEE International Conference
on Multimedia and Expo, Jul. 2007.

[4] M. Schaeffer, R. Naumann, S. Dietzel, et al., “Hierarchical Layer
Selection with Low Overhead in Prioritized Network Coding,” in 2018
IFIP Networking Conference (IFIP Networking), 2018.

[5] T. Ho, R. Koetter, M. Medard, et al., “The benefits of coding over
routing in a randomized setting,” 2003.

[6] R. Naumann, S. Dietzel, and B. Scheuermann, “INFLATE: Incremental
wireless transmission for sensor information in industrial environments,”
in 2015 IEEE International Conference on Advanced Networks and
Telecommuncations Systems (ANTS), Dec. 2015.

[7] S. Phaiboon, “Space Diversity Path Loss in a Modern Factory at
frequency of 2.4 GHz,” WSEAS Transactions on Communications, 2014.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-12

Poster: Design and Evaluation of a Time Efficient
Vertical Handoff Algorithm between LTE-A and

IEEE 802.11ad Wireless Networks
Sina Rafati Niya, Burkhard Stiller

Communication Systems Group CSG, Department of Informatics IfI, University of Zürich UZH
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

Email: [rafati | stiller@ifi.uzh.ch]

Abstract—LTE-A and IEEE 802.11ad are two of the networks
that can have complementary roles in 5G networking. Thus, this
paper proposes a time efficient, predictive, and dynamic Handoff
(HO) algorithm between these two protocols. The algorithm
presented measures the Signal to Interference Plus Noise Ratio
(SINR), the Reference Signal Received Quality (RSRQ), velocity,
and the Time of Stay (ToS) for pedestrian mobile users and
calculates the best Time to Trigger (TTT) value accordingly. One
of the main advances of this algorithm is that the TTT value
is calculated dynamically regarding user’s velocity and Handoff
Failure Ratio (HoFR). Comparisons with other algorithms in this
area determine that the algorithm proposed gains the least HoFR
for these two protocols by avoiding unnecessary handoffs.

I. INTRODUCTION

One of the major research areas in 5G is the offloading
process. With offloading, user traffic traverses the local wire-
less AP instead of utilizing a continuous connection to cellular
networks even in indoor areas. In case of using LTE-A in 5G, a
proper network for offloading LTE-A communications with up
and downlink data rates of higher than 1 Gbps needs to support
the same data rates, otherwise, users will not be willing to
switch to the local networks. One of the wireless technologies
to support high data rates and being deployed in indoor areas
as a replacement of traditional WiFi networks is the IEEE
802.11ad standard. This protocol is known as WiGig because
of the Gigabit scale data rates it supports. WiGig provides
almost 7 Gbps for downlink and almost 3 Gbps for uplink
[2].

Switching the user’s network from a home (already con-
nected) network, to a new target network (one of the possible
networks to be switched to) and vice versa is known as
Handoff (HO) or Handover. In this work, a new time-efficient
HO algorithm is designed to provide specifically a seamless
connection and offloading between LTE-A and WiGig net-
works as two of the networks might be used broadly in 5G
for high data rates . Results of a comparison with other HO
algorithms reveal (cf. Section IV) that the algorithm proposed
is capable of reducing Handoff Failure Rates (HoFR) in a
predictive fashion. Also, the Time to Trigger (TTT) is updated
frequently based on measures defined, and the HO process
follows a cross-layer algorithm to increase the time efficiency.

II. SIMULATION SCENARIOS, PARAMETERS AND
EVALUATION

Simulation of the scenarios done in Matlab. The focus of
this work laid on two scenarios: (1) HO process of a user
connected to the LTE-A cell and moves toward the WiGig
network as presented in Figure 1. (2) HO process of a user
connected to the WiGig network and moves toward the LTE-A
cell as presented in Figure 2. Parameter used in simulations
are listed in Table 1.

TABLE I
SIMULATION PARAMETERS

Simulation Parameters Symbol Value
eNB Number NLTE 1
WG-AP Number NWG 1
Simulation Duration Tsim 1000 s
RSRQ Threshold RSRQth 19.5 dBm
SINR Threshold SINRth 25 dB
LTE-A eNB Transmission Power PLTE 30 dBm
WG Transmission Power PWG 10 dBm
LTE-A Bandwidth BLTE 100 MHz
WG Bandwidth BWG 2160 MHz
LTE-A Antenna Height heNB 40 m
WG Antenna Height hWG 1.5 m
Mobility Model ———- Gauss-Markov

and LPP
Initial TTT TTTi 0.1 s
LTE Frequency fc−LTE 2100 MHz
WG Frequency fc−WG 60 GHz
LTE Radius LTEr Whole

Simulation
Area

User Velocity Vu [0− 5]m/s
Data Transfer Direction ———- Downlink
Number of LTE users NU−LTE (1-50)
Number of WG users NU−WG (1-50)

The HO algorithm proposed is memory-and-time efficient,
and managed in a cross-layer fashion. Number of unnecessary
HO and HoFR are managed by TTT value. Being a proactive
algorithm, users’ mobility, including their next location, speed,
and angle of movement, are estimated using the Gauss-Markov
mobility model, which is updated and readjusted by the
accurate data received from Location Positioning Protocol
(LPP). This update increases the precision of the Gauss-
Markov model for upcoming estimations.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-13

Fig. 1. HO Process: Moving From LTE-A To WiGig

To be computationally efficient, this algorithm does not
continuously gather information from target and host net-
works, instead time intervals are set dynamically according
to the amount of TTT to gather information from networks.
The algorithm reacts to HoFR increase by adjusting the
TTT value. Besides lowering the computational complexity,
a binary search is used in TTT calculations to provide faster
converges than with a linear method by the order of O(log(n)),
which leads a very practical application.

Fig. 2. HO Process: Moving From WiGig to LTE-A

To avoid continuous monitoring of various parameters, this
algorithm specifies a high priority to users’ velocity. For that
reason, checking other variables such as SINR, RSRQ, and
TTT is done only, if the user’s velocity is in a specific range.
Being sensitive to the user’s velocity, this new algorithm per-
forms better in comparison to other HO algorithms, especially
within the decision making phase for high user velocities.

Fig. 3. TTT Variation Using Method of [3] With User Velocity Larger than
3 m/s.

In this algorithm, base (home) and target networks and User
Equipment (UE), work together to reduce the process load on
each side and calculate the parameters used in decision-making
phase. finally, UE decides to start or deny the HO process
based on her velocity, current TTT, Reference Signal Received
Quality (RSRQ), and Signal to Interference Plus Noise Ratio
(SINR). Also, this model is not memory bounded and with
only few bytes of memory the user’s exact location can be
estimated.

Finally, as presented in Figure 3, the proposed algorithm
manages to handle the HO process while keeping the HoFR
rate close to 0. This is done with keeping the TTT amount
in less than 0.2s which will end in a seamless connection.
Comparisons with similar HO algorithms [1] revealed that
other algorithms cannot be used in scenarios between LTE-A
and WiGig networks with the goals of time-efficiency and low
data loss during a HO process. High (or constantly increasing)
TTT values of other algorithms make them inappropriate to be
used for managing the HO processes for these scenarios and
in most cases HoFR could not be controlled or reduced by
employing the methods used by them.

REFERENCES

[1] S. R. Niya, B. Stiller, “Design and Evaluation of a Time Efficient
Vertical Handoff Algorithm between LTE-A and IEEE 802.11ad Wireless
Networks,” IFI Tecnical Report No.2018.03, Zürich, Switzerland, Tech.
Rep., April 2018. [Online]. Available: https://files.ifi.uzh.ch/CSG/staff/
Rafati/Handoff-IFI-2018.03.pdf

[2] H. Peng, K. Moriwaki, Y. Suegara, “Macro-Controlled Beam Database-
Based Beamforming Protocol for LTE-WiGig Aggregation in Millimeter-
Wave Heterogeneous Networks,” in IEEE 83rd Vehicular Technology
Conference (VTC Spring), May 2016, pp. 1–6.

[3] J. Xu, Y. Zhao, X. Zhu, “Mobility Model Based Handover Algorithm in
LTE-Advanced,” in 10th International Conference on Natural Computa-
tion (ICNC), Aug 2014, pp. 230–234.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-14

Poster: WebMaDa 2.0 - Automated Handling of User Requests

Corinna Schmitt, Dominik Bünzli, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH

Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
[schmitt|stiller]@ifi.uzh.ch, dominik.buenzli@uzh.ch

Abstract—Today users want to monitor their networks
remotely and adjust privileges immediately. Addressing the
first request is not a big problem anymore, because many
applications offer such solutions by default (e.g., via a special
app to be installed or a browser-based solution). The immediate
privilege handling is the challenge nowadays, because usually
a global administrator in the background needs to be included
in the workflow. This is required, because he is the only person
who has the full overview of the tool the network is included. In
general this is a nice idea, but introduces delays to the privilege
management depending of the number of networks linked to
the system, in total. WebMaDa 2.0 overcomes this bottleneck by
introducing an automated request handling solution to a web-
based framework for monitoring sensor networks remotely as
well as supporting privacy and immediate handling of privilege
requests.

Keywords- WebMaDa, automation

I. INTRODUCTION

Today, many different devices are connected with each
other building small networks that are part of the Internet
of Things (IoT). Such networks are designed for indi-
vidual solutions specialized for a specific purpose (e.g.,
environmental monitoring, health monitoring). Devices used
show heterogeneity concerning hardware and software and
are linked to a specialized solution allowing analysis and
visualization of data collected. This itself is nothing really
new within the IoT community. But the requests of users
and network owners changed over time towards (1) mobility
support, (2) ownership and controlling of data, as well as (3)
updating granted privileges immediately.
Many specific solutions are in place addressing the mobility
request installing a special application on the mobile device.
In general this is a good solution, but these solutions usually
have special requirements to the operating system of the
device and can exhaust the device quickly when running.
The later can be overcome by integrating energy saving
solutions, but still the applications require much memory
of the device. To overcome this, web-based solutions are
thought of beeing most suitable, because they only require
Internet access and a browser installation on the device.
Fortunately, both can be considered to be available by default
on mobile devices. Furthermore, the code base only has to be
updated in one place, thus reducing the cost for maintenance.
The urge for control and ownership of the collected data
is manifesting itself more and more in the minds of users.

This is due to increased media coverage of data abuse
caused by data leaks and the possibility of having data
analyzed and visualized by third-party providers. Together
with this situation comes the users’ request to update granted
privileges to manage access to the data collected. This
is challenging, because access granted to applications can
hardly be revoked or updated immediately if at all. Thus,
the call for solutions supporting data and access control
immediately arise. The aforementioned three issues (1)-(3)
are addressed by WebMaDa, a Web-based Management and
Data Handling Framework for sensor networks. The devel-
opment started in 2014 with a basic support of mobile access
to owned sensor networks allowing visualization of collected
data in a flexible and hardware independent manner [2]. In
2016 WebMaDa received an update addressing the general
request of fine-grained access management and pulling data
in emergency cases [3]. The drawback was that each request
(e.g., create networks, access to foreign networks, to view
or pull data) required interaction of a global administrator
introducing delay into the system. This drawback has now
been solved in WebMaDa 2.0 [1] by automating the request
handling within the system allowing immediate handling
without the involvement of a global administrator. At the
same time, the request for privacy and controlling data
access is respected as every action that affects access rights
is logged in the database.

In Section II, the main design decisions taken are pre-
sented leading towards the implemented WebMaDa 2.0 so-
lution. Section III summarizes the new features of WebMaDa
2.0 highlighting the benefits and practical issues, as well as
giving a hint to future improvements.

II. DESIGN AND IMPLEMENTATION

In order to handle any request received immediately an
automated solution is required. This solution must support
(1) user creation, (2) access request to foreign networks, and
(3) password reset. Furthermore, for addressing privacy and
controlling of the data (4) transparency must be assured by
including a detailed logging system into the infrastructure.

Addressing the first three requests an automated mailing
solution was integrated into WebMaDa 2.0. If a new user
wants to use WebMaDa he needs to register by filling out the
registration form. By submitting the form, the user creates
an invitation request that is stored in the database. At the

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-15

Figure 1: Graphical views during data access request

same time, the administrators receive a notification that a
new request has been created. If the request is accepted
by the administrators the user will receive an invitation
which can be used to complete the registration. Otherwise,
a message will be sent informing that the request has
been rejected. After this, the user is able to create new
networks or request access to foreign networks when not
yet having permission as shown in Figure 1a. The latter is
done by creating a permission request filling out a form (cf.
Figure 1b). The form is received by the backend. Here a
mapping between the selected network by the unique WSN
Identifier (ID) and the stored owner address is performed
resulting in mailing the request to him. The owner receives
a mail with the request and a personalized link to handle
it within WebMaDa (cf. Figure 1c). The owner can now
grant the access, update the request or deny it. In return, the
requester receives the result andl a log entry is created in
the backend’s database addressing the transparency request.
Same procedure is followed if after time the network owner
updates granted privileges. In case a registered WebMaDa
user looses the password, a request can be placed via the
corresponding form. The filled in data of the form is then
compared to the logged entries in the database. If the check
fails, no action is performed as not to provide a single bit
of information wheter a user exists or not. Otherwise, the
user receives a link to reset the password. In order to ensure
transparency, the updating of a password also triggers the
creation of a log entry.

III. SUMMARY, PRACTICAL ISSUES, AND BENEFITS

WebMaDa 2.0 supports the original functionality devel-
oped in 2014 and 2016. This is extended by an automated
mailing solution to handle incoming requests immediately
and, thus, reducing delays in the system each time an
administrator interaction was required in earlier versions.
The designed and implemented solution is user-friendly due
to its intuitive design in the graphical environment including
easy understandable instruction to conclude the workflow
(e.g., request data access, register new user). All steps are

following a global process starting with a form that need to
be filled out with respective information required, checkup
with stored information if applicable, and updating database
with new information (e.g., new user information, new
networks, granted/updated/revoked privileges). In order to
address the general privacy request of users the administrator
is only involved when new users are registered or an existing
WebMaDa user should become administrator of WebMaDa
for the case the original administrator needs a representative.
Addressing the transparency concerns of users, any changes
are logged within the database with required information
(e.g., timestamp, what was done and by whom). All this
logging information can only be accessed by the network
owner or the global administrator.
Looking from a practical perspective all user requests
are addressed within WebMaDa without having drawbacks
on performance of WebMaDa assuming several networks
hosted at the same time. Due to the fact that WebMaDa 2.0
is still web-based, no new special requirements to the mobile
device exist and the solution is still hardware and software
independent.
Further developments are conceivable with regard to session
timeout similar to banking systems, two-way authentication
besides mailing using SMS, and further flexibility in visu-
alizing data collected.

REFERENCES

[1] D. Buenzli, “Efficient and User-friendly Handling of Access
Requests in WebMaDa,” Bachelor Thesis, Communication
Systems Group, Department of Informatics, University of
Zurich, Zurich, Switzerland, Jan. 2018.

[2] M. Keller, “Design and Implementation of a Mobile App to Ac-
cess and Manage Wireless Sensor Networks,” Master Thesis,
Communication Systems Group, Department of Informatics,
University of Zurich, Zurich, Switzerland, Nov. 2014.

[3] C. Schmitt, C. Anliker, and B. Stiller, “Pull Support for IoT
Applications Using Mobile Access Framework WebMaDa,” in
IEEE 3rd World Forum on Internet of Things (WF-IoT). New
York, NY, USA: IEEE, Dec. 2016, pp. 377–382.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-16

	D3-Nguyen.pdf
	Introduction
	Adaptive Task-oriented Message Template
	Integration of ATMT with Google Nearby
	Scenario and Demonstration
	References

