
Identify P2P Traffic by Inspecting Data Transfer

Behaviour�

Mingjiang Ye1, Jianping Wu1, Ke Xu1, and Dah Ming Chiu2

1 Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science, Tsinghua University, Beijing, 100084, P.R. China

yemingjiang@csnet1.cs.tsinghua.edu.cn, jianping@cernet.edu.cn,

xuke@csnet1.cs.tsinghua.edu.cn
2 Dept. of Information Engineering, The Chinese University of Hong Kong,

Hong Kong, P.R. China
dmchiu@ie.cuhk.edu.hk

Abstract. Classifying network traffic according to its applications is
important to a broad range of network areas. Since new applications, es-
pecially P2P applications, no longer use well-known fixed port numbers,
the native port based traffic classification technique has become much
less effective. In this paper, we propose a novel approach to identify P2P
traffic by leveraging on the data transfer behaviour of P2P applications.
The behaviour investigated in the paper is that downloaded data from a
P2P host will be uploaded to other hosts later. To find the shared data
of downloading flows and uploading flows online, the content based par-
titioning schema is used to partition the flows into data blocks. Flows
sharing the same data blocks are identified as P2P flows. The effective-
ness of this method is demonstrated by experiments on various P2P
applications. The results show that the algorithm can identify P2P ap-
plications very accurately while only keeping a small set of data blocks.
The method is generic and can be applied to most P2P applications.

Keywords: traffic management, P2P traffic identification, data transfer
behaviour, content based partitioning, Rabin fingerprint.

1 Introduction

Classifying network traffic according to its applications is important to a broad
range of network areas including network monitoring, network management and
optimization, network security, traffic accounting etc. Different from the tradi-
tional applications (http, email, ftp), new applications, especially P2P appli-
cations, usually use dynamic port numbers. The traffic classification technique
based on native port has become less effective. However, the payload signature
� This research is supported by NSFC-RGC Joint Research Project (20731160014),

973 Project of China (2009CB320501), 863 Project of China (2008AA01A326,
2006AA01Z205, 2006AA01Z209), and Program for New Century Excellent Talents
in University.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 131–144, 2009.
c© IFIP International Federation for Information Processing 2009

132 M. Ye et al.

based traffic classification technique [1,2] can achieve a high accuracy. But the
technique also has its limitations. It is ineffective in classifying encrypted traf-
fic. Besides, a lot of P2P applications use proprietary protocols. Lacking open
protocol specifications makes analysing signatures and maintaining up-to-date
signatures very difficult.

Recently, machine learning algorithms which classify network traffic using
flow statistical information [5,6,7,8,9] have been proposed. There are several
challenges in classifying network traffic by using flow properties. First, the sta-
tistical characteristics used in classification are unstable since the delays and/or
the packet loss ratios of the networks are dynamic. Second, flows belonging to
different applications can have similar per-flow statistical characteristics. It is
hard to distinguish these similar flows by using flow properties.

This paper proposes a novel approach to identify P2P traffic based on its
data transfer behavior. The idea of the approach is based on the observation
that a P2P peer uploads data to other peers after downloading it. The idea
is first proposed by Xing Lu [10]. In their method, the first k bytes of each
packet in downloading flows are stored for each host. When the same content
are found in uploading flows of the host, the flows associated with the content are
classified as P2P flows. The partitioning schema in their method is named the
head packet partitioning schema in this paper. As shown in our experiments, the
performance of the head packet partitioning schema is very poor in identifying
some P2P applications.

The content based partitioning schema is proposed in the paper to solve the
problem. The schema divides payloads of flows into data blocks (a data block
is a contiguous content block of payload). The shared files and videos in P2P
applications are usually divided into small data pieces during exchanges. For
flows sharing the same data piece, the schema can synchronize the boundary of
the data piece, and extract the same part of the data piece as a data block. The
schema is generic and can be applied to most P2P applications.

Our contributions are as follows. First, we proposed the content based parti-
tioning schema in identifying data transfer behaviour. As shown in experiments,
The schema performs much better than the head packet partitioning schema. Be-
sides, Head tail partitioning schema, a simple enhancement schema of the head
packet partitioning schema, also can improve performance greatly, though not
as good as the content based partitioning schema. Second, we have studied the
performance impactions of some important issues. They are the size of the data
block, the number of the data blocks to be stored, the data block replacement
algorithms and the ratio of unobservable communications.

From the studies, we have drawn several conclusions. First, 256 bytes is a suit-
able size for data block. Second, the random replacement algorithm is suggested
in replacing the old data blocks. Third, with the random replacement algorithm,
the method performs quit well while only keeping a small data block set (3 min-
utes). Last, even though the communications of a large fraction of peers (about
30%) are not observed, the performance degradation is rather small.

Identify P2P Traffic by Inspecting Data Transfer Behaviour 133

2 Related Work

Payload signatures are useful in classifying network traffic [1,2]. Application
signatures are the common strings in the P2P protocols to identify P2P traffic
whereas our method focuses on the data being shared in P2P applications.

In addition to signature based methods, other payload based methods are
also proposed. ACAS [3] uses the first N bytes payload as the input to train
a machine learning model and uses it to classify flows. Levchenko et al. build
several probabilistic models on payload, including the statistical model treating
each n-byte flow distribution as a product of N independent byte distributions
and the Markov process model which relies on introducing independence be-
tween bytes [4]. The models still employ frequently appearing bytes in applica-
tion protocols to classify traffic since the random bytes in application data are
meaningless in statistics.

The machine learning algorithms classify network traffic by using traffic char-
acteristics [5,6,7,8,9], such as average length of packets, arrival interval of packets,
etc. The algorithms can be further summarized into supervised and unsupervised
methods. Zander et al. compare several supervised algorithms, including Naive
Bayes, C4.5 decision tree, Bayesian Network and Naive Bayes Tree [9]. They find
that the classification precision of the algorithms is similar, but computational
performance can be significantly different. McGregor et al. use the unsupervised
expectation maximum algorithm to cluster the flows [6]. The experiment finds
that the average precision of classification is very high, but some applications
are very difficult to distinguish.

The special communication patterns of applications are used in traffic classi-
fication. Karagiannis et al. study the communication pattern of P2P traffic in
transport layer to identify P2P traffic [11]. BLINC attempts to capture the com-
munication pattern of a host at three levels: the social level, the functional level
and the application level [12]. Graphlet is used to describe the communication
pattern of each application and classify network traffic.

It is hard to find a general communication pattern to fit all P2P applica-
tions. Y Hu et al. propose a method to build behavioural profiles of the target
application which then describes the dominant communication patterns of the
application [13]. The profiles of each application are built by data mining algo-
rithms in the training phase. The data transfer behaviour used in our method is
general for all the P2P applications, so our method does not need any training
phases.

Using the data transfer behaviour to identify P2P traffic was first proposed
by Xing Lu et al. [10]. But they only use the first k bytes of packet to find
the shared data. As shown in the experiments, our schemas performances much
better. Our method is general for different P2P applications while their schema
has some limitation to identify some P2P applications. Besides, we have studies
some important issues in identifying the data transfer behaviour which are not
studied before.

134 M. Ye et al.

3 Method

3.1 Payload Partitioning Schemas

The basic idea of the method is simple. The method inspects the P2P data
transfer behaviour on the host level. From the view of a host, flows can be
classified as downloading flows and uploading flows. If a host downloads a data
piece in a downloading flow, and the uploads it to other hosts in some uploading
flows. These flows are classified as P2P flows.

The biggest obstacle in the method is how to find the same data pieces in
different flows. One way is comparing the payloads of flows directly. But it is
time consuming. Besides, complete payloads of flows have to be saved in the
memory before comparing. It is quit difficult - and therefore, unrealistic - as an
online process.

In our method, payloads of flows are divided into data blocks and then the
signatures of the data blocks are compared. A payload partitioning schema de-
cides how to divide the payload into data blocks. The ideal result is that each
data block is an exact data piece in a P2P application. For example, for two
distinct flows in Fig. 1, the ideal case is that the generated data blocks in the
first flow equal to data pieces 1, 5 and 7 and the generated data blocks in the
second flow equal to data pieces 9, 4 and 1. Thus, the shared data (pieces 1) of
the two flows can be found.

However, a prerequisite to generating such ideal results is the detailed proto-
col information. As shown in Fig. 1, there are several challenges in locating the
boundaries of data pieces. First, a flow can contain protocol fields with variable
sizes. Second, the sizes of data pieces are variable in some P2P live streaming ap-
plications. In these applications, a data piece contains 1 second of video content.
The size of the data piece is variable in most video coding schemas.

Several partitioning schemas are considered. The first one is the method used
in [10]. We called it as the head packet partitioning schema. If the payload size
of a packet exceeds the threshold S, the first S bytes of the packet is extracted
as a data block.

The second one is the head tail packet partitioning schema. If the payload
size of a packet exceeds the threshold value S, the first S bytes of payload and
the last S bytes of payload are extracted as two data blocks. This schema is an

Fig. 1. Shared data piece

Identify P2P Traffic by Inspecting Data Transfer Behaviour 135

Fig. 2. Content based partitioning schema

enhancement of the previous one. If the target packets contain some protocol
fields at the beginning or at the end, the schema can skip them.

The last one is the content based partitioning schema. It has been used in
saving bandwidth in network file systems [14] and automatically generating sig-
natures of worms in security fields [10]. The schema divides a flow into variable-
size, non-overlapping data blocks. The schema works as follows. First, a pair of
pre-determined integers D and r (r < D) are set. Then a sliding window of fixed
width W moves across the byte sequence. The window begins from the first W
bytes in the sequence, and slides one byte at a time toward the end. At every
position of the byte sequences, a fingerprint F is calculated according to the
content in the current window. If F mod D equals r, the end of the window is
a data block boundary.

For example, in Fig. 2, the windows size is 5, D is 8 and r is 7. A window
of width 5 moves across the byte sequence and fingerprints are calculated in
every position. When the window reaches abcde, two positions have satisfied the
condition. Two data blocks tzynuns and ufabcde are extracted. The fingerprint
is calculated by using Rabin fingerprint [16] which has a low collision rate. Using
the pre-computed table, it is vey efficient to calculate the Rabin fingerprint [17].

The principle behind the content based partitioning schema is that, because
the schema determines the boundaries of data blocks based on the local content
of payload in a small window, the boundaries can synchronize in the same data
pieces. For example, in Fig. 3, there are two flows containing the same data piece
(the black part) in different positions. In the first flow, there are two positions
satisfying the condition. They locate at offset 100 and 500 from the beginning
of the data piece. In the second flow, the positions at the same offsets from the
beginning of the data piece should also satisfy the condition, as the contents in
the windows are the same. The same data block is extracted in both flows.

Fig. 3. Principle of content based partitioning

136 M. Ye et al.

The content based partitioning schema can create blocks with various sizes.
Although the average size of blocks is D, the data blocks can be as short as
several bytes. Short data blocks introduce many false positives, so the results
are further filtered to only keep data blocks whose sizes exceed threshold S.

The value of D decides the average size of data blocks. If D is much smaller
than S, many data blocks which are smaller than S will be generated and filtered.
So D is equal to S in the algorithm. Since the performance is not sensitive to
the value of r, we set r to D − 1 in the algorithm.

The boundaries of data blocks are determined by the local content in the
window. The window size should be much smaller than the size of data pieces
to generate data blocks inside a data piece. On the other side, a small window
is sensitive for random content in flows. In the experiments, the window size is
32 bytes.

3.2 Algorithm

The details of the algorithm are as follows. For each host, the algorithm keeps
a hash set, which is called the download set, to save data blocks. Payloads
of flows are divided into data blocks. Data blocks of each downloading flow
and flow identifiers (a flow identifier is the 5-tuple: source IP address, source
port, destination IP address, destination port, and protocol) are saved in the
corresponding download set. To save the memory capacity, signatures of data
blocks (Ranbin fingerprint) are calculated and saved instead of the original data
blocks. If the size of the download set exceeds the limitation, then data block
replacement is applied. Data blocks of each uploading flow are checked whether
they have been saved in the corresponding download set already. If a data block
of the uploading flow has been saved in the download set, the uploading flow,
the downloading flow and their reverse flows are identified as P2P flows.

A flow has two roles. One is the downloading flow of the target host. The
other is the uploading flow of the source host. The data blocks of the flow are
saved in the download set of the target host and checked in the download set of
the source host.

Fig. 4. Online process of the algorithm

Identify P2P Traffic by Inspecting Data Transfer Behaviour 137

The online process of the algorithm is illustrated in Fig. 4. When a packet
arrives, it is first partitioned into several data blocks. And then, the signatures
of the data blocks are calculated. Finally the signatures are saved into the down-
load set of the destination host and checked in the download set of the source
host.

3.3 Practical Problems

Our method is payload based, which focuses on the same data being shared
in P2P applications, so it is ineffective in classifying encrypted traffic. Besides,
the P2P applications using network coding [18] are also undetectable under
our method. We argue that encryption and network coding pose a burden on
the P2P application developers, so the mainstreaming P2P applications are still
transferring data without any transformation. To identify encrypted traffic, non-
payload based methods are more efficient. There are some studies using machine
learning algorithms to identify encrypted traffic [19].

The computation and memory overhead are important in identifying P2P
traffic online by using our method. The head packet partitioning and head tail
packet partitioning have little computation overhead, while the content based
partitioning required calculating the Rabin fingerprint which is also very fast.
The hash set can be used to check whether a data block have been saved in
the download set. In average, there are only several look-up operations for each
packet. So the computation overhead is affordable.

Memory is used mainly for two purposes. First, in the payload partitioning,
the byte level partitioning schemas have to keep some intermediate information
for each flow. For example, to update the fingerprint in the content based parti-
tioning schema, the fingerprint and the content of the last window are saved for
each flow. The intermediate information is quite small and 40 bytes are enough
to keep the intermediate status. Suppose there are 1M concurrent flows, only
40MB memory is needed.

Second, the signatures and flow identifiers of the data blocks are saved. Sup-
pose the size of a signature is 16 bytes and the size of the flow identifier is 4 bytes
(an index in the flow table is used instead of original 5-tuple), 20 bytes are needed
to record a data block. If a data block is as large as 512 bytes, a bidirectional
1Gbps link with 50% link utilization can generate at most 1Gb/8/512∗20 = 5MB
records per second. It costs about 300MB of memory for saving 1 minute records
and 1.46GB of memory for saving 5 minutes records.

The experiments show that keeping data blocks for several minutes is enough.
So the memory consumption is affordable in current hardware capabilities.
Besides, because a lot of small data blocks are not saved, the simple estima-
tion causes the results to be upper bounds. Other methods can further reduce
memory consumption. For example, flows which are too small or too short
are unnecessary to be saved since they are unlikely to be P2P downloading
flows.

138 M. Ye et al.

4 Evaluation

4.1 Experiments Setup

Two metrics are used in the evaluation [20]. The first one is the True Positive
(TP). It is used to measure the traffic fraction that can be recognized by the
algorithm out of the traffic belonging to the given application.

TP =
application traffic classified as the applciation

Total applciation traffic
(1)

The second one is the False Positive (FP). It is used to measure the traffic
fraction which is not really produced by a given application out of the traffic
classified as the application.

FP =
Non-applicationtraffic classified as the applciation

Total traffic classified as the applciation
(2)

They are very important metrics especially when flow type identification is
used in traffic management. For example, if network operators differentiate the
service qualities according to the flow types, high false positive or low true posi-
tive rates can make high priority traffic suffer from performance degradation. A
good algorithm should have low false positive and high true positive rates.

As shown in table 1, a lot of popular P2P applications are evaluated in the
experiments. They are classified into three types: P2P file sharing, P2P live
streaming and P2P video on demand (VOD).

Table 1. P2P applications

type applications

P2P file sharing BitTorrent, Emule
P2P live streaming PPLive,PPStream,TVAnt,FeiDian,PPMate,SinaLive,TVULive
P2P video on demand PPLive VOD, XL VOD, PPStream VOD

To evaluate the method, traffic traces are captured and replayed. Two kinds
of traffic traces are used in the experiments. The first ones are the pure appli-
cation traces. The traces are captured from a host which only has the given
application running on it. Each P2P file sharing applications trace contains the
traffic generated by downloading several files. Each P2P live streaming or P2P
VOD applications trace contains the traffic generated by watching a video. The
time slot of each trace file varies from half an hour to 1 hour. The traces are
only used to evaluate the True Positive.

The second ones are the mixed traces, which are captured from a host running
various applications. Each trace contains the traffic generated by a P2P applica-
tion and some non-P2P applications, such as HTTP, FTP, and POP3 etc. P2P
applications in them are labelled by their payload signatures. In each mixed
trace, the P2P traffic accounts for 30%-40% of the total traffic. The traces are
used to evaluate both the True Positive and the False Positive. we have generated
mixed traces with two P2P applications. They are BitTorrent and PPLive.

Identify P2P Traffic by Inspecting Data Transfer Behaviour 139

Bittorent Emule PPStreamVOD PPLiveVOD XLVOD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

applications

T
ru

e
P

os
iti

ve
head−packet
headtail−packet
content−based

Fig. 5. True Positives

4.2 Comparing Partitioning Schema

First, the True Positive of different partitioning schemas are studied by applying
them on the pure application traces. In the experiments, the threshold S is 256
bytes. To study the best True Positive that each schema can achieve, the size of
the download set is unlimited.

True Positives are shown in Fig. 5. Among the three partitioning schemas,
performance of the head packet partitioning schema is the worst. Quit a few
P2P applications can’t be recognized by the schema. Performance of the head tail
packet partitioning schema is almost as effective as the content based partitioning
schema, except for the FeiDian live streaming application. If the applications
have protocol fields in both the head and the tail of the packets, the packet level
based partitioning schemas don’t work. The content based partitioning schema
is more generic.

For most applications, the True positives in bytes are more than 90%, but it
is only 40% for the Emule application. There are two reasons. First, Emule will
upload the files which have been downloaded are older while data uploading in
BitTorrent are fresher. Second, Emule transfers a part of a file with 1300 bytes
in a separate packet each time to avoid fragmentation. The start position of the
part in the file is specified in a request message. The data pieces exchanged in
BitTorrent protocol are globally divided, but the data pieces exchanged in the
Emule protocol are not. It is more difficult to find the shared data pieces in flows
of the Emule application.

4.3 Data Block Size

The threshold S in the content based partitioning schema is important.The effect
of threshold S is evaluated in Fig. 6. The size of the download set is unlimited.

The consequences of a smaller threshold S are: the generation of more data
blocks; higher memory consumption and increased False Positives. On the other
side, the probability of finding the shared data pieces decreases as the threshold
S increases.

True Positives of most applications do not decrease significantly when S is
smaller than 1024 bytes, except the XLVOD application. It implies that the data

140 M. Ye et al.

64 128 256 384 512 640 768 896 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
Po

si
tiv

e

Bittorent

Emule

PPStreamVOD

PPLiveVOD

XLVOD 64 128 256 384 512 640 768 896 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
Po

si
tiv

e

PPStream

PPLive

TVAnt

FeiDian

PPMate

MySee

QQLive

SinaLive

TVULive

Fig. 6. True Positives of different threshold S

pieces of most P2P applications are not less than 1024 bytes. The threshold S of
256 bytes is suggested in the algorithm and used in the following experiments.

4.4 Download Set Size

The algorithm keeps recent data blocks in a download set for each host. Saving
data blocks for an extended period can improve the True Positive, but it requires
a lot of memory.

The effect of the download set size is shown in Fig. 7. The threshold S is 256.
The size of the download set is measured in time windows. The size of 1 minute
means that the download set will keep data blocks in last 1 minute.

Because peers exchange the video content in a small time window in p2p live
streaming applications, the True positives of P2P live streaming applications are
much better than P2P file sharing and P2P VOD applications for small download
sets. For P2P file sharing and P2P VOD applications, downloaded data pieces
can be uploaded after a long time. Keeping the most recent data blocks requires
a large time window for the applications.

1 3 6 9 12 15 18 21 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of download set

T
ru

e
Po

si
tiv

e

Bittorent

Emule

PPStreamVOD

PPLiveVOD

XLVOD

1 3 6 9 12 15 18 21 24
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Size of download set

T
ru

e
Po

si
tiv

e

PPStream

PPLive

TVAnt

FeiDian

PPMate

MySee

QQLive

SinaLive

TVULive

Fig. 7. True Positives of different download set sizes

Identify P2P Traffic by Inspecting Data Transfer Behaviour 141

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Size of download set

T
ru

e
Po

si
tiv

e/
T

ru
e

Po
si

tiv
e(

un
lim

ite
d)

FIFO

RANDOM

LRU

Fig. 8. True Positives for Emule

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Size of download set

T
ru

e
Po

si
tiv

e/
T

ru
e

Po
si

tiv
e(

un
lim

ite
d)

FIFO

RANDOM

LRU

Fig. 9. True Positives for PPLive VOD

The performance can be further improved using other replacement policies
instead of the current first in and first out(FIFO) policy. There are two other
data block replacement policies to consider. They are least recently used (LRU)
and random replacement (RANDOM).

We have evaluate the performance of all the P2P applications. Limited by
the space, only the result of Emule and PPLive VOD are shown in Fig. 8 and
Fig. 9. The x-axis is the size of the download set and the y-axis is the normalized
True Positive. It is calculated by dividing the current True Positive by the True
Positive of the unlimited download set. If the value is 1, it implies that the
performance of a small download set is as good as the one using the unlimited
download set.

The experiment results indicate that 1 minute time window is large enough
for P2P live streaming applications, each of the three policies work almost the
same for them. But for P2P file sharing and P2P VOD applications, the random
replacement algorithm works much better than the other algorithms. A download
set of a 3 minutes time window is enough for all P2P applications using random
replacement policy.

The idea behind the random replacement policy is that, old data blocks are
more likely to be kept by the algorithm than other algorithms. Keeping the
old data blocks can improve True Positives for P2P file sharing and P2P VOD
applications. Besides, the algorithm has a positive bias to big flows, which can
also improve True Positives in bytes. A flow transferring more traffic has a higher
probability to be recorded and identified in random replacement.

4.5 False Positive

The mixed traces are used to evaluate False Positives for BitTorrent and PPLive.
The size of the download set is unlimited in the experiment. The results are
shown in Fig. 10. The x-axis is the threshold S while the left y-axis is the False
Positive and the right y-axis is the True Positive.

As the result, a threshold of 256 bytes can help to guarantee a low False
Positive while non-P2P applications are transferring random data. But some
behaviors of non-P2P applications may lead to false positives. For example,

142 M. Ye et al.

128 256 384 512 640 768 896
0

0.05

0.1

0.15

0.2

Threshold S

F
al

se
 P

os
iti

ve

False Positiv(BitTorrent)
False Positiv(PPLive)

128 256 384 512 640 768 896
0.8

0.85

0.9

0.95

1

T
ru

e
P

os
iti

ve

True Positive(BitTorrent)

True Positive(PPLive)

Fig. 10. False Positives and True Positives for BitTorrent and PPLive

people forward email they received. Some methods can be used to eliminate
these false positives [11]. Since a P2P host always have a service port, we can
further identify the P2P {IP, port} pairs which associates with many identified
flows. The flows which are not associated with a P2P {IP, port} pairs are filtered
to eliminate false positives.

4.6 Deploying Place

In the previous experiments, all the communications of the host can be observed
and analysed. When deploying the algorithm in the gateway of an institute or
an edge router, the communications inside the intra network are unobservable.
The performance of absent communications is studied in the experiment. The
threshold S is 256 byte, the size of the download set is 3 minutes and the random
replacement policy is used in the experiment.

The results are shown in Fig. 11. The x-axis is the fraction of hosts which are
unobservable. For example, 0.2 means that flows between the monitored host
and 20% of the other hosts are filtered. The missed hosts are selected randomly
and the flows are removed from the original trace. The y-axis is the True Positive
on the filtered trace.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

unobservable host ratio

T
ru

e
Po

si
tiv

e

Bittorent

Emule

PPStreamVOD

PPLiveVOD

XLVOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

unobservable host ratio

T
ru

e
Po

si
tiv

e

PPStream

PPLive

TVAnt

FeiDian

PPMate

MySee

QQLive

SinaLive

TVULive

Fig. 11. True Positives of different unobservable host ratios

Identify P2P Traffic by Inspecting Data Transfer Behaviour 143

The results indicate that even though a large fraction of hosts (about 30%)
are not observed, the algorithm can still achieve a high True Positive. It also
implies that the algorithm can work well even when the deploying place is not
close to the hosts being inspected, such as the gateways of large institutes and
edge routers.

5 Conclusion

The paper proposed the content based partitioning schema to identify the P2P
data transfer behavior. The schema is generic in identifying P2P applications.
Besides, some important issues are studied by experiments. The experiments
show that the method can achieve a high True positive and a low False Positive
while only keeping a rather small data block set with random replacement policy.

Our future work is to extend our approach to distinguish different P2P appli-
cation flows by using their relationships in data exchange and flow properties.

References

1. Moore, A., Papagiannaki, K.: Toward the Accurate Identification of Network Ap-
plications. In: Passive and Active Measurements Workshop, Boston, MA, USA,
March 31- April 1 (2005)

2. Sen, S., Spatscheck, O., Wang, D.: Accurate, Scalable In-Network Identification of
P2P Traffic Using Application Signatures. In: Proc. of ACM WWW 2004 (2004)

3. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: automated construction of
application signatures. In: Proceedings of the 2005 ACM SIGCOMM Workshop on
Mining Network Data 2005, pp. 197–202. ACM, New York (2005)

4. Ma, J., Levchenko, K., Kreibich, C., Savage, S., Voelker, G.M.: Unexpected means
of protocol inference. In: Proceedings of the 6th ACM SIGCOMM Conference on
internet Measurement 2006, pp. 313–326. ACM, New York (2006)

5. Erman, J., Mahanti, A., Arlitt, M., Cohen, I., Williamson, C.: Semi-supervised net-
work traffic classification. In: Proceedings of the 2007 ACM SIGMETRICS (2007)

6. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow Clustering Using Machine
Learning Techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015,
pp. 205–214. Springer, Heidelberg (2004)

7. Zander, S., Nguyen, T., Armitage, G.: Self-Learning IP Traffic Classification Based
on Statistical Flow Characteristics. In: Dovrolis, C. (ed.) PAM 2005. LNCS,
vol. 3431, pp. 325–328. Springer, Heidelberg (2005)

8. Moore, A.W., Zuev, D.: Internet Traffic Classification Using Bayesian Analysis
Techniques. In: ACM SIGMETRICS (2005)

9. Williams, N., Zander, S., Armitages, G.: A Preliminary Performance Comparison
of Five Machine Learning Algorithms for Practical IP Traffic Flow Classification.
SIGCOMM Computer Communications Review, 36(5), 5–16 (2006)

10. Lu, X., Duan, H., Li, X.: Identification of P2P traffic based on the content redis-
tribution characteristic. In: Communications and Information Technologies, 2007.
ISCIT 2007, pp. 596–601 (2007)

11. Karagiannis, T., Broido, A., Faloutsos, M.: Transport Layer Identification of P2P
Traffic IMC (2004)

144 M. Ye et al.

12. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Clas-
sification in the Dark. In: ACM SIGCOMM, Philadelphia, PA (August 2005)

13. Hu, Y., Chiu, D.M., Lui, J.C.S.: Application Identification based on Network Be-
havioral Profiles. In: IEEE IWQoS (2008)

14. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file sys-
tem. In: Proceedings ofthe 18th ACM Symposium on Operating SystemsPrinciples
(SOSP 2001), Banff, Canada, pp. 174–187 (2001)

15. Kim, H., Karp, B.: Autograph: Toward automatic distributed worm signature de-
tection. In: Proc. of the USENIX Security Symp. Diego, pp. 271–286 (2004)

16. Rabin, M.O.: Fingerprinting by Random Polynomials. Tech. Rep.TR-15-81, Center
for Research in Computing Technology, Harvard University (1981)

17. Broder, A.Z.: Some applications of Rabin’s fingerprinting method. In: Capocelli,
R., De Santis, A., Vaccaro, U. (eds.) Sequences II: Methods in Communications,
Security, and Computer Science, pp. 143–152. Springer, New York (1993)

18. Gkantsidis, C., Miller, J., Rodriguez, P.: Comprehensive view of a live network
coding P2P system. In: Proceedings of the 6th ACM SIGCOMM Conference on
internet Measurement, IMC 2006, pp. 177–188. ACM, New York (2006)

19. Bonfiglio, D., Mellia, M., Meo, M., Rossi, D., Tofanelli, P.: Revealing skype traffic:
when randomness plays with you. SIGCOMM Comput. Commun. Rev. 37(4), 37–
48 (2007)

20. Salgarelli, L., Gringoli, F., Karagiannis, T.: Comparing traffic classifiers. SIG-
COMM Comput. Commun. Rev. 37(3), 65–68 (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

