
A Performance Model for Maintenance Tasks

in an Environment of Virtualized Servers

(Work in Progress)

Tien Van Do1,� and Udo R. Krieger2

1 Department of Telecommunications
Budapest University of Technology and Economics

H-1117, Magyar tudósok körútja 2., Budapest, Hungary
do@hit.bme.hu

2 Faculty Information Systems and Applied Computer Sciences
Otto-Friedrich-Universität, D-96045 Bamberg, Germany

udo.krieger@ieee.org

Abstract. This paper introduces the CPP/M/c model with working
vacations to describe queueing phenomena that arise in an advanced
computing environment of virtualized servers operated by the infra-
structure owners. In the proposed queue the inter-arrival times of
jobs requesting servers follow a Generalized Exponential distribution.
To model a maintenance activity, we assume that a certain number
of servers simultaneously goes to a maintenance state for a random
period when they complete the service of requests and find no further
jobs in the waiting line. We derive an expression for the steady-state
probabilities and prove a conditional stochastic decomposition property.
By a relatively simple model we are able to prove a property which has
a significant impact on the organization of maintenance activities of
virtualized servers. It means that instead of migrating virtual servers
to expensive physical backup servers during software maintenance, a
wise and simple strategy based on the vacation approach can be used.
Moreover, it is theoretically proved that the system is not overloaded
if we organize the maintenance according to the vacation model. We
believe that our model can be useful for administrators to choose an
appropriate parameter set for the maintenance activities.

Keywords: Virtualized services, performance management, CPP/M/c
model, working vacations policy.

1 Introduction

At present, virtualization constitutes a main trend in information systems and
advanced business engineering. Recent studies have shown that a proportion of
39% among 808 of the largest companies worldwide apply server virtualization

� Corresponding author.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 931–942, 2009.
c© IFIP International Federation for Information Processing 2009

932 T.V. Do and U.R. Krieger

to achieve new business goals and to provide more efficient services to their cus-
tomers. Disaster recovery, avoidance of service outage and dynamic load balanc-
ing represent some of the most important areas for the application of the rapidly
evolving virtualization concepts. Compared to existing service technologies 25%
of the cost or even more can be saved by these means.

In this context, virtualization means either to let a federation of servers ap-
pear as multiple computing entities or to let many computing entities appear
as a single computer. The latter is commonly called server aggregation or grid
computing. It is identified by an IDC research report (http://www.idc.com) that
virtualization of system resources in severs with an x86 compatible instruction
set is one disruptive technology. In the near future it may initiate a paradigm
shift in IT industry providing new powerful services like enhanced server
hosting.

As indicated by various studies it is the rationale behind this trend that vir-
tualization can reduce the infrastructure and IT management cost. The reason
is that it substantially improves the utilization of the physical infrastructure,
i.e. servers, storage systems and network components, while it can provide the
same safety and performance compared to a solution where each ASP obtains
a separate physical machine/server from the owner of the infrastructure. It is
another advantage that the infrastructure can provide in a flexible manner dif-
ferent service packages concerning specific operating systems running on top of
the same hardware.

From a practical perspective, it is observed that virtualization is a well
founded area. However, there are no theoretical investigations which consider
contention problems arising in the virtualized environment of a server farm. To
model the interaction between application service providers and an infrastructure
provider this paper studies the CPP/M/c queue with a compound Poissonian
arrival process (CPP) and working vacations.

Such vacation queues have been an intensively studied research topic of queue-
ing theory, cf. [3,5,7,8,9]. However, most of those studies assume a Poissonian
arrival model [3,5,7,9] or a model of single arrivals [8]. Regarding the perfor-
mance evaluation of practical systems, this assumption limits the application of
vacation queues.

Recently, queues with working vacations have obtained a big attention, see,
e.g., the work of Servi et al. [7] and Liu et al. [5]. It is motivated by the
performance evaluation of Wavelength Division Multiplexing (WDM) in opti-
cal systems. In this respect, the multi-server queue introduced here is indeed
a generalization of the M/M/c system with synchronous vacations [9] regard-
ing two different aspects, namely, the Poissonian batch arrivals and working
vacations.

The rest of the paper is organized as follows. In Section 2, we first provide a
description of the CPP/M/c model with working vacations (WV), develop then
a matrix-analytic solution approach and prove some interesting property of this
CPP/M/c WV-queue. Then some illustrative numerical results are presented in
Section 3. Finally, we summarize our findings in the conclusions.

A Performance Model for Maintenance Tasks 933

2 Analyzing the Maintenance Performance by a Versatile
Queueing System

2.1 Description of the Maintenance Model

In a virtualization environment three different roles canbe identified (seeFigure 1):

– users/applications,
– application service providers and
– owners of the hardware infrastructure.

Applications and related services, e.g. Web servers with Web, information re-
trieval and business services, are provided by application service providers that
require virtual machines from an infrastructure owner to run their virtualized
application servers.

In this environment two interrelated categories of Service Level Agreement
(SLA) can be defined:

– an SLA between users and application service providers specifying the service
requirements, e.g. the response time and availability of a service, etc,

– an SLA between application service providers and an infrastructure owner.

The SLA between users and application service providers are complicated and
they also depend on the nature of the hosted applications.

To operate the infrastructure efficiently, it is recognized that advanced man-
agement tools are needed. In this respect, system management activities should
also include the tasks of managing both virtual servers and physical resources
efficiently.

Fig. 1. Utility Computing Environment Based On Virtual Machines

934 T.V. Do and U.R. Krieger

In this paper, we consider the interaction between application service
providers and an infrastructure owner. We suppose that there are c virtual
servers available in the server pool of the infrastructure owner. To realize
a pay-as-you-go approach, application service providers can initiate requests
for servers to the provider of the infrastructure and server releases after task
completion.

We assume that server requests arrive in batches following the Compound
Poisson Process (CPP) (cf. [4]). This means that the inter-arrival times follow
a Generalized Exponential (GE) distribution. The arrival process is motivated
by the fact that GE is the only distribution of least bias [4] if only the mean
and variance of inter-arrival times can be reliably computed by the available
measurement data. This situation typically arises in virtualized computing en-
vironments exploiting the capabilities of monitoring systems. It has been shown
by recent studies [1,2] that the CPP is sufficiently accurate to model Internet
traffic in a Web server environment (i.e. the relevant CPP parameters have been
estimated by the captured Internet traffic) and that it can be applied to the
performance evaluation of wireless telecommunication systems.

To create a reliable computing system with these c servers, the provider of the
infrastructure can initiate specific maintenance actions, e.g. software updates, a
virtual server live migration etc., when any d servers become idle after a service
completion instant. This kind of maintenance activities are modeled in such a
way that d servers take a simultaneous vacation. During such a vacation period,
the residual c− d servers do not take a vacation even if they are idle. To ensure
the mathematical tractability of the model, we assume that the durations of
the vacation periods are independent, identical exponentially distributed ran-
dom variables with parameter θ. The service rate of each server which is not in
a vacation state is given by an independent exponential distribution with pa-
rameter μ. A server on vacation can serve customers following an independent
exponential distribution with rate μv. Note that an application service provider
who receives the allocation of a server which is on vacation may pay less as a
form of compensation.

2.2 Analysis of an Advanced Multi-server Model with Working
Vacations

Here, we consider the CPP/M/c multi-server queue with working vacations,
infinite waiting room and First In First Out (FIFO) service principle that we
have derived as performance model to analyze maintenance tasks in a virtualized
server environment.

The arrival process of customer requests is determined by a Compound Pois-
son Process (CPP) with parameters (λ, ω). It means that the probability distri-
bution function of the inter-arrival times τ is defined by P{τ = 0} = ω ∈ (0, 1)
and P{0 < τ < t} = (1 − ω)(1 − e−λt). Therefore, the arrival process can be
seen as a batch Poisson process whose batches of the random size S arriving at
some epoch follow a geometric distribution P{S = s} = (1−ω)ωs−1, s ≥ 1, with
mean E(S) = 1/(1 − ω) and variance Var(S) = ω/(1 − ω)2.

A Performance Model for Maintenance Tasks 935

The requests are served by c servers following a specific working-vacations
policy with independent, identical, exponentially distributed service and vacation
times with rates μ, μv, θ, respectively. Let us suppose that there are no servers
on vacation due to maintenance activities. Then a simultaneous vacation period
of d servers starts if there are d idle servers after a service completion. At the
end of a simultaneous vacation period of these d servers, three alternatives are
possible:

– if there are no waiting customers, the d servers stay idle and are ready to
serve any arriving new customers;

– if there are c−d < j < c, customers in the system, j−c+d returning servers
immediately start serving these customers and the other c − j returning
servers become idle;

– if there are j ≥ c customers in the system, the d returning servers all start
serving these customers immediately.

At any time t the state of the system Y (t) = (I(t), J(t)) can be completely
specified by two integer-valued random variables:

– I(t) =
{

0 if d servers are on vacation at time t
1 if there are no servers on vacation at time t

– J(t) represents the number of customers in the system at time t including
any in service or the waiting room.

The system is now modeled by a continuous-time discrete state Markov process
Y = {I(t), J(t)} on a rectangular lattice strip S = {0, 1} × N0 due to our
Markovian assumptions. We denote its corresponding steady-state probabilities
by π = {πi,j}(i,j)∈S , where πi,j = limt→∞ P{I(t) = i, J(t) = j}, and let vj =
(π0,j , π1,j) be the partitioned vector of state probabilities.

The one-step transitions of the Markov chain Y have a specific tridiagonal
block structure since the possible transitions are driven by following events:

(a) changing the status of I(t), i.e. from the vacation to non-vacation of servers.
Then Aj(i, k) denotes the corresponding transition rate from state (i, j) to
state (k, j), i, k ∈ {0, 1}, j ≥ 0. Let

A = Aj =
[
0 θ
0 0

]
, ∀j ≥ 0; and A∗ =

[−θ θ
0 0

]
.

(b) the arrivals of customers. Then Bi,j,s is the rate of the s−step upward tran-
sition from state (i, j) to state (i, j + s), i ∈ {0, 1}, j ≥ 0, caused by a batch
arrival of size s and

Bi,j,s = (1 − ω)ωs−1λ, j ≥ 0, i ∈ {0, 1}, s ≥ 1.

(c) the departures of customers. Cj(i, k) is the transition rate from state (i, j)
to state (k, j − 1); i, k ∈ {0, 1}, j ≥ 0. Then we get:

936 T.V. Do and U.R. Krieger

Cj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
jμ 0
0 jμ

]
, 1 ≤ j ≤ c− d

[
(c− d)μ+ μv 0
(c− d+ 1)μ 0

]
, j = c− d+ 1

[
(c− d)μ+ (j − c+ d)μv 0

0 jμ

]
, c− d+ 1 < j ≤ c

[
(c− d)μ+ dμv 0

0 cμ

]
= C, j > c.

Note that by a transition from (1, c−d+1) to (0, c−d) after a service completion
with rate (c− d+ 1)μ we get a simultaneous vacation of d servers.

Let Diag(x) denote the diagonal matrix defined by a row vector x and E ∈
R

2×2 be the identity matrix. We introduce the following notations

Λ = Diag[λ, λ] = λE; Ω = Diag[ω, ω] = ωE;
Bs = Bj,s = Diag[(1 − ω)ωs−1λ, (1 − ω)ωs−1λ], j ≥ 0,

and obtain

Bs = Ωs−1(E −Ω)Λ = ωs−1(1 − ω)λE, j ≥ 1,

Λ =
∞∑

s=1

Bs = λE.

Lemma 1. The necessary and sufficient condition for the existence of the
steady-state probabilities of the process Y = (I, J) is determined by

λ

cμ
+ ω < 1 ⇔ ρ =

λ

(1 − ω) · cμ < 1 (1)

Remark 1. The standard condition (1) states that the traffic intensity ρ must be
less than one to achieve the ergodicity of Y . Neither the rate θ of the vacations
period nor the number d of simultaneous servers on vacations have an impact on
the stability of the system. In other words, the system will not be overloaded due
to a maintenance activity. Indeed, this is good news for a system administrator
who shall organize the maintenance tasks of idle virtual machines.

Proof. The steady-state balance equation of the M/G/1-like upper Hessenberg
system can be written as follows:

j∑
s=1

vj−sBs + vj

[
A∗ − Λ−DCj

]
+ vj+1Cj+1 = 0, ∀j ≥ 1. (2)

Here DCj are diagonal matrices whose diagonal elements are the sum of the
elements in the rows of Cj . Note that by construction DCj = Cj holds for all
j �= c− d+ 1.

A Performance Model for Maintenance Tasks 937

For j ≥ c+ 1 we can write

j∑
s=1

vj−sBs + vj [A∗ − Λ− C] + vj+1C = 0. (3)

Substituting Bs = Ωs−1(E −Ω)Λ into this equation (3), we get

j∑
s=1

vj−sΩ
s−1(E −Ω)Λ + vj [A∗ − Λ− C] + vj+1C = 0 ∀j ≥ c+ 1, (4)

and

j−1∑
s=1

vj−1−sΩ
s−1(E −Ω)Λ + vj−1 [A∗ − Λ− C] + vjC = 0 ∀j ≥ c+ 2. (5)

If we multiply equation (5) by Ω and then subtract the result from equation (4),
we obtain the three-term recurrence equations

vj−1[Λ−A∗Ω + CΩ] + vj [A∗ − Λ− C − CΩ] + vj+1C = 0 , j ≥ c+ 2,

vj−1Q0 + vjQ1 + vj+1Q2 = 0 , j ≥ c+ 2, (6)

where Q0 = Λ−A∗Ω + CΩ, Q1 = A∗ − Λ− C − CΩ, Q2 = C.

Q(x) = Q0 +Q1x +Q2x
2 is defined as the characteristic matrix polynomial

associated with the equations (6). It is proved in [6] that the solution of these
matrix equations (6) is closely related to the eigenvalues and left-eigenvectors of
the polynomial Q(x). If (x,ψ) is an eigenvalue-eigenvector pair of Q(x), then it
holds

ψQ(x) = 0, det[Q(x)] = 0.

Consequently, we obtain:

det[Q(x)] = det
[
q00(x) θx− θω

0 q11(x)

]
= q00(x)q11(x)

q00(x) = λ+ ((c− d)μ+ dμv)ω + ωθ −
(λ+ (c− d)μ+ dμv + ((c− d)μ+ dμv)ω + θ)x + ((c− d)μ+ dμv)x2

q11(x) = λ+ cμω − (λ+ cμ+ cμω)x+ cμx2 = (1 − x)(λ + cμω − cμx)

Therefore, Q(x) has four eigenvalues

x1 =
1

2G
{H +G−

√
(H +G)2 − 4G(λ+ ((c− d)μ+ dμv)ω + ωθ)}

x2 =
1

2G
{(H +G+

√
(H +G)2 − 4G(λ+ ((c− d)μ+ dμv)ω + ωθ)}

x3 = λ/(cμ) + ω, x4 = 1,

938 T.V. Do and U.R. Krieger

where

G = (c− d)μ+ dμv

H = λ+ ((c− d)μ+ dμv)ω + θ

holds.
Note that ψ1 = (1, (θω−θx1)/q11(x1)) is the left-hand-side (LHS) eigenvector

of Q(x) for the eigenvalue x1, and ψ3 = ψ4 = (0, 1) are the LHS eigenvectors of
Q(x) for the eigenvalues x3 and x4, respectively.

Since ω < 1 holds, we have

(λ+ ((c− d)μ+ dμv)ω + ωθ) < H,

4G(λ+ ((c− d)μ+ dμv)ω + ωθ) < 4GH,
(H +G)2 − 4G(λ+ ((c− d)μ+ dμv)ω + ωθ) > (H +G)2 − 4GH,

0 < x1 <
1

2G
(H +G− |H −G|) ≤ 1,

x2 >
1

2G
(H +G+ |H −G|) ≥ 1.

Applying results from [6], it is a necessary and sufficient condition for the ergod-
icity of the Markov chain Y that the number of eigenvalues of Q(x) inside the
unit disk is given by 2. Therefore, x3 < 1 is required which yields condition (1).

�	
The steady-state balance equations of J(t) ∈ {0, . . . , c+1} can be written in the
following form:

v0 [A∗ − Λ] + v1C1 = 0
j∑

s=1

vj−sBs + vj

[
A∗ − Λ−DCj

]
+ vj+1Cj+1 = 0 , 1 ≤ j ≤ c+ 1,

For j ≥ c+ 1 the steady-state probabilities can be expressed as follows (cf. [6]):

vj = αψ1x
j
1 + βψ3x

j
3

π0,j = αxj
1

π1,j = α
θω − θx1

q11(x1)
xj

1 + βxj
3 (7)

where α and β are coefficients that have to be determined by the boundary
conditions.

Furthermore, we have to satisfy the normalization equation:

∞∑
j=0

1∑
i=0

πi,j = 1. (8)

Consequently, we have to determine the vectors vj , 0 ≤ j ≤ c, α and β. The
total number of these unknowns is given by 2(c+1)+2 = 2(c+2). To determine

A Performance Model for Maintenance Tasks 939

these unknowns, we have the steady-state balance equations of the levels j =
0, . . . , c+ 1 and the normalization equation. Thus, 2(c+ 2) + 1 is the number of
boundary equations, among those only 2(c+ 2) equations are independent.

It can be observed from the steady-state balance equations of J(t) ∈ {0, . . . , c}
that vj , 1 ≤ j ≤ c and j �= c − d + 1, can be expressed as a function
of v0, i.e π0,0 and π1,0, and vc−d+1. Therefore, we have only six unknowns
(π0,0, π1,0, π0,c−d+1, π1,c−d+1, α, β), which can be solved efficiently using the
steady-state balance equations of the states J(t) = c, J(t) = c− d, J(t) = c+ 1
and the normalization equation.

2.3 Conditional Stochastic Decomposition

In the following, we prove a conditional stochastic decomposition property for
the CPP/M/c queue with working vacations.

Lemma 2. If the ergodicity condition for the CPP/M/c queue with working va-
cations holds, then the conditional steady-state queue length Jb = limt→∞{J(t)−
c− 1|J(t) > c, I(t) = 1} provided that the server system is not on a working va-
cation can be decomposed into the sum of two independent random variables

Jb = J0 + Jc.

Here J0 is the conditional steady-state queue length of the CPP/M/c queue with-
out vacations and Jc is the additional steady-state queue length due to vacations.

Proof. The probability that the server is busy and the number of jobs is larger
than c is determined by:

Pb = P{J(t) > c, I(t) = 1} =
∞∑

j=c+1

π1,j =
∞∑

j=c+1

(
α
θω − θx1

q11(x1)
xj

1 + βxj
3

)

= α
θω − θx1

q11(x1)
xc+1

1

1 − x1
+ β

xc+1
3

1 − x3

The probability generating function of Jb can be expressed as follows:

GJb
(z) =

∞∑
j=0

P{Jb = j}zj =
∞∑

j=0

π1,j+c+1

Pb
zj

=
1
Pb

∞∑
j=0

(
α
θω − θx1

q11(x1)
xj+c+1

1 + bxj+c+1
3

)
zj

=
1
Pb

(
α
θω − θx1

q11(x1)
xc+1

1 /(1 − x1z) + βxc+1
3 /(1 − x3z)

)

The steady-state probabilities of the CPP/M/c queue without vacations can be
obtained by setting θ = 0, d = 0 and μv = μ. The probability that the number
of customers in the CPP/M/c queue without vacations is given by πj = β∗xj

3 for

j ≥ c+ 1, where β∗ is an appropriate coefficient. Therefore, GJ0(z) = β∗ xc+1
3

1−x3z
follows for the probability generating function of J0. These relations yield the
stated result. �	

940 T.V. Do and U.R. Krieger

3 Illustrative Numerical Results

In this section we present some numerical results to illustrate the impact of
the model parameters on the formulation of an effective maintenance policy, i.e.
how many servers should be simultaneously on vacations. For demonstration
purposes, we investigate the average number of customer requests waiting for
free servers

E(LQ) =
∞∑

j=c+1

(j − c) · (π0,j + π1,j) =
∞∑

j=c+1

(j − c) ·
(
α[1 +

θω − θx1

q11(x1)
]xj

1 + βxj
3

)

=
α[1 + θω−θx1

q11(x1)
]x(c+1)

1

(1 − x1)2
+

βx
(c+1)
3

(1 − x3)2

as major performance metrics and select some illustrative parameter set. Other
characteristics like the mean number of requests in the system

E(L) =
∞∑

j=1

j · (π0,j + π1,j) ,

or the mean number of active servers E(NV) =
∑∞

j=1 min(j, c) · (π0,j + π1,j) and

the throughput η =
∑∞

j=1 vj · Cj ·
(

1
1

)
=

∑∞
j=1

∑1
i=0 πi,j · (Cj(i, 0) + Cj(i, 1))

can be computed in a similar manner.
In Figure 2(a) we plot the average number of waiting requests E(LQ) versus

d for the following parameter set of a high load regime: c = 100 servers, ω = 0.2,
θ = 1.0, μ = 5.0, μv = 2.5, ρ = λ/[(1 − ω)cμ] ∈ [0.7, 0.9]. It generates batch
arrivals of mean size E(S) = 1.25 and variance Var(S) = 0.3125 for a high
traffic intensity 0.7 ≤ ρ ≤ 0.9 and assumes that the average service time 1/μ of
requests needs only 20 % of the mean maintenance time 1/θ while during these
maintenance periods the latter service time is extended by 100 % compared to
the normal operation mode.

Considering the average number E(LQ) of requests waiting in the system, it is
observed that increasing the load ρ from 0.7 to 0.8 or from 0.8 to 0.9 generates an
increment of one order of magnitude. To show the impact of the size S of arriving
batches and the influence of ω = 1 − 1/E(S) and E(S) ∈ {1.25, 1.67, 2, 5, 10},
respectively, we use the set of the same parameters but fix the load at ρ = 0.8.
Figure 2(b) illustrates the average number of waiting requests E(LQ) versus d
and ω. In Figure 3 E(LQ) is plotted against d and μv for the load ρ = 0.9 and a
mean batch size of E(S) = 1/(1 − ω) = 1.25.

It is observed that batch arrivals have the strongest impact on the average
number of waiting customers. The impact of the offered load ρ and the service
rate μv during maintenance can be handled by choosing an appropriate number
d of servers under maintenance.

A Performance Model for Maintenance Tasks 941

(a) (b)

Fig. 2. Average number E(LQ) of waiting requests versus d for different traffic load
ρ (left) and different control parameter ω = 1 − 1/E(S) of the mean batch size E(S)
(right)

Fig. 3. Average number E(LQ) of waiting requests versus d and μv

4 Conclusions

To model the queueing and congestion phenomena arising from maintenance
tasks of a virtualized server environment, we have presented in this study
a CPP/M/c multi-server system with Poissonian batch arrivals and working
vacations.

In the proposed queueing system the inter-arrival times of jobs requesting
service by a virtualized server follow a Generalized Exponential distribution. To
model the maintenance activities, we have assumed that a certain number of
servers goes simultaneously to a maintenance state for a random period when
they have completed the service of jobs and find no further requests in the
waiting line.

942 T.V. Do and U.R. Krieger

Analyzing the arising Markovian model by matrix-analytic methods, we have
derived a new expression for the steady-state probabilities and proved a con-
ditional stochastic decomposition property. The validation of the approach in
a testbed and the estimation of the parameters by gathered data is a topic of
future research.

In conclusion, we believe that the proposed Markovian multi-server system
with working vacations can serve as a useful tool to define efficient maintenance
policies in the virtualized environment of current server farms.

References

1. Do, T.V., Chakka, R., Harrison, P.G.: An integrated analytical model for compu-
tation and comparison of the throughputs of the UMTS/HSDPA user equipment
categories. In: MSWiM 2007 Proceedings of the 10th ACM Symposium on Mod-
eling, Analysis, and Simulation of Wireless and Mobile Systems, pp. 45–51. ACM,
New York (2007)

2. Do, T.V., Krieger, U.R., Chakka, R.: Performance modeling of an Apache Web
server with a dynamic pool of service processes. Telecommunication Systems 39(2),
117–129 (2008)

3. Doshi, B.T.: Queueing systems with vacations – a survey. Queueing Syst. Theory
Appl. 1(1), 29–66 (1986)

4. Kouvatsos, D.: Entropy maximisation and queueing network models. Annals of Op-
erations Research 48, 63–126 (1994)

5. Liu, W., Xu, X., Tian, N.: Stochastic decompositions in the M/M/1 queue with
working vacations. Oper. Res. Lett. 35, 595–600 (2007)

6. Mitrani, I., Chakka, R.: Spectral expansion solution for a class of Markov mod-
els: Application and comparison with the matrix-geometric method. Performance
Evaluation 23, 241–260 (1995)

7. Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV). Per-
form. Eval. 50(1-4), 41–52 (2002)

8. Tian, N., Zhang, Z.G.: Stationary Distributions of GI/M/c Queue with PH Type
Vacations. Queueing Syst. Theory Appl. 44(2), 183–202 (2003)

9. Zhang, Z.G., Tian, N.: Analysis on queueing systems with synchronous vacations of
partial servers. Perform. Eval. 52(4), 269–282 (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

