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Abstract. This paper presents a new online algorithm for automated
detection of load changes, which provides statistical evidence of station-
ary changes in traffic load. To this end, we perform continuous measure-
ments of the link load, then look for clusters in the dataset and finally
apply the Behrens-Fisher hypothesis testing methodology. The algorithm
serves to identify which links deviate from the typical load behavior. The
rest of the links are considered normal and no intervention of the net-
work manager is required. Due to the automated selection of abnormal
links, the Operations Expenditure (OPEX) is reduced. The algorithm
has been applied to a set of links in the Spanish National Research and
Education Network (RedIRIS) showing good results.
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1 Introduction and Problem Statement

The steady growth of Internet traffic [1,2,3] makes it necessary to pay close
attention to load changes. Actually, network operators face bandwidth outages,
and there is a growing pressure, both from customers and regulatory bodies, to
ensure Quality of Service (QoS). Furthermore, operators are currently offering
Service Level Agreements in their product portfolios, and the levels of QoS in
terms of delay, bandwidth and jitter are very challenging to achieve in practice.
Thus, there is an increasing need to detect changes in traffic load in order to
perform an adequate capacity planning.

This paper focuses on detection of traffic changes in large-scale networks, i.e.
with a very large number of links. In such networks, there are many traffic probes
that produce time-series of link occupation (traffic volume). Being the number of
links very large, it is not feasible to inspect all the time-series visually, and then
make capacity planning decisions. The techniques provided in this paper allow
the network manager to focus on those links that show a significant deviation
from their typical behavior, and thus call for an upgrade.

On the other hand, we focus on the capacity planning timescale. The proposed
detection techniques are amenable to use in the timescale of days or weeks. This
is the timescale for capacity planning decisions ([4]), i.e. the timescale to decide
whether more bandwidth should be rolled out and in which links. Therefore, this
paper does not investigate the issue of reactive response in terms of severe traffic
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load peaks, which typically happens in the timescale of minutes or below. For this
kind of traffic load detection a threshold-based algorithm applies better. On the
contrary we focus on links with low-medium load that is increasing continuously
over time. More specifically, we look for changes in traffic volume, which require
intervention from the network manager, and possibly lead to a capacity planning
decision.

The proposed technique employs a combination of clustering algorithms and
the Behrens-Fisher test of hypothesis. The main advantage is that it reduces
OPEX. Indeed, our technique marks the links as either remaining stable or
changing in load and only the latter require human intervention. As a result, the
load monitoring tasks are less time-consuming for the network manager.

Concerning the state of the art we find methods for traffic forecasting, such
as the one presented in [5]. Our work provides a technique to decide if a link
is deviating from its typical behavior but we do not perform traffic forecasting.
The authors in [6] propose a model to decide when and to which capacity out of
a discrete set is more convenient to upgrade a network link. The model takes into
account economic variables such as the revenue, the risk free interest rate and
the market price of risk to determine the value of the investment and based on
these results the authors decide when is profitable to upgrade. Our work differs
from this one because we detect the changes in load instead of running a model
to check the network investment periodically. Our approach also diverges from
the usual capacity planning studies where a link is marked as a candidate for
upgrading when it does not met certain QoS metrics [7,8]. The difference is that
our algorithm does not make the capacity planning decision by itself according
to static thresholds, but it triggers a signal to a network manager to revise the
logs and make the most convenient decision, based on the fact that a stationary
load change has happened.

More related methods to our work are those presented in [9,10]. In [9] the
authors make use of wavelets on attempts to detect changes in network mea-
surements for the purpose of anomaly detection. The difference with our work is
that we do not desire to detect anomalies (so we remove potentially anomaly data
from our datasets, see Section 2) but to detect stationary changes in the network
load, i.e. that the patterns of usage, the number of users, etc. have changed. On
the other hand, [10] presents an adaptive sampling algorithm to enhance the
traffic load measurements. This algorithm improves the results of load change
detectors when applied to the measurement step, but does not introduce any
novelty in the change detection mechanisms state of the art.

A brief description of our algorithm follows. First, clustering techniques are
applied in order to find groups where the intra-group mean value is the same
but the mean values between groups are different. To test whether the means
are different or not, we apply the Behrens-Fisher methodology (we make no as-
sumption about the covariance matrices), after testing that the data is indeed
multivariate normal. The rest of the paper is structured as follows: Section 2
describes the dataset and Section 3 presents the methodology and addresses
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the main characteristics of the applied techniques. In Section 4 our online algo-
rithm is described. Section 5 presents the results and Section 6 concludes the
paper. Finally, future work is outlined in Section 7.

2 Data Set

We use MRTG [11] measurements from a set of links of the Spanish National
Research and Education Network (NREN) RedIRIS1. We have collected MRTG
logs for the traffic traversing the incoming and outgoing interfaces of several
Points of Presence (POP) of the RedIRIS network. With a time granularity of
five minutes, we have obtained 288 values for each day. In order to make this
sample more manageable, we have averaged such values in 16 disjoint intervals
of 90 minutes. The reasons to choose 90 minutes as the averaging period are
manifold: first, there is a slim chance of missing data in the five minutes timescale,
which is filtered out by averaging in 90 minute periods. Second, the time of
the measurements may not be the same in the different POPs due to clock
synchronization issues. A timescale of 90 minutes is coarse enough to circumvent
this problem (this reason is also pointed out by [5]). Third, the assumption of
normality for Internet traffic holds when there is enough temporal aggregation
of the measurements [12,13]. Fourth, we require the day duration to be a exact
multiple of the averaging period, in order to divide the days in the same intervals
and track the daily pattern of network traffic. This daily pattern reflects intervals
of high load in working hours and intervals of low load during night periods.
Last, but not the least, there is a trade-off between a large averaging period,
as required by the aforementioned reasons, and the precision obtained with a
smaller one. We believe 90 minutes is a good compromise, which has also been
adopted in other studies [5].

As we do not pursue to detect measurement anomalies, we remove potential
abnormal data when preprocessing our dataset. Days where at least one of the 90
minutes intervals have no measurements are removed in order to avoid missing
values in the dataset. Holidays and exam periods are also removed, since the
measurements come from an educational network.

Note that this preprocessing can be performed on-line because these days are
known in advance. Thus, the analyzer can be programmed with the days to
be withdrawn from the traffic sample. Our measurements last from the 2nd of
February 2007 to the 31st of May 2008. After the preprocessing step, the dataset
contains more than 200 samples, each corresponding to a day worth of data that
we model with a p-variate normal distribution, where p = 16 (16 periods of 90
minutes).

To facilitate the understanding of the relation of the number of the variable
with the time period of the day to which it refers, these associations are presented
in Table 1.

1 http://www.rediris.es/
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Table 1. Equivalence in time of the variables

Number of
Time interval

Number of
Time interval

the variable the variable

1 00.00-01:30 9 12:00-13:30

2 01:30-03:00 10 13:30-15:00

3 03.00-04:30 11 15:00-16:30

4 04:30-06:00 12 16:30-18:00

5 06.00-07:30 13 18:00-19:30

6 07:30-09:00 14 19:30-21:00

7 09.00-10:30 15 21:00-22:30

8 10:30-12:00 16 22:30-00:00

3 Methodology

In this section we first present the clustering techniques that have been adopted
and then provide a brief introduction to the Behrens-Fisher problem. The se-
lected clustering algorithm was k-means[14], which is a two-step iterative algo-
rithm that finds the clusters by minimizing the sum of the squared distances to
a representative, which is called centroid. The input to the algorithm is the num-
ber of clusters k existing in the dataset (since we always look for two clusters,
then k = 2). The choice of k-means for our online algorithm is due to the ease
of adding a new instance to an existing model. To do this, it is only necessary to
compute the distance from the new instance to the existing centroids, and then
recompute the centroid for the cluster the new instance is assigned to. Finally,
if the centroids have changed, k-means is applied again from a quasi-optimal
solution, so the algorithm finds the new centroids faster than the first time. On
the other hand, in order to obtain clusters that are adjacent in time (i.e. all
samples sequential in time and not out of order) the UNIX initial time of the
last sample of each day is included as an additional dimension.

To have statistical foundations that the obtained clusters in the former step
are in fact different, we have applied the Generalized Behrens-Fisher Problem
(GBFP). The GBFP is the statistical problem of testing whether the means
of two normally distributed populations (X1, X2) are the same (null hypothesis
H0), for the case of unknown covariance matrices. The assumptions are that Xi ∼
Np(μi,Σi), i = 1, 2; i.e. the samples of population i come from a p-variate normal
distribution with mean μi and covariance matrix Σi. To solve this problem the
Hotelling’s Generalized T 2-statistic is used, which is distributed as a central F-
distribution under the null hypothesis of equality of means. When the sizes of
the populations are not equal, a transformation is needed before computing the
T 2-statistic (see Section 5.6 of [15]).

The GBFP assumes that the data comes from normal distributions. In order
to trust in the results of the GBFP test, we have to make sure that our data is
normal. To this end, we have performed several statistical tests to see whether
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the assumption of normality holds for each of the clusters. When testing for
multivariate normality, it is necessary to perform tests for univariate normality of
each of the dimensions, for bivariate normality in all the possible combinations of
two dimensions and for p-variate normality (see for instance [16]). For univariate
tests we have used Kolmogorov-Smirnov test, Lilliefors test and the Jarque-Bera
test. For the multivariate tests we use the multivariate standard distance and
χ2 plots. Although it is necessary to test the normality assumption before each
application of the GBFP test, these tests are lightweight and can be performed
on-line very fast. If the normality condition does not hold, the distribution of the
T 2-statistic under the null hypothesis may differ from the central F-distribution,
and thus the probability of rejecting the null hypothesis when it is actually true
would be different (Type I error).

4 Online Algorithm

The flux diagram of our algorithm is depicted in Fig. 1. First, daily traffic is
collected (16 samples averaging each one 90 minutes of MRTG data) and the
timestamp of the day is added (as the dimension 17), giving raise to a time-
series of 17-dimensional vectors, where the first 16 dimensions are assumed to
come from a 16-variate normal distribution. Then, clustering is applied to the
time-series. If the number of samples per cluster is not enough to apply the
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Fig. 1. Flux diagram of the online algorithm

GBPF (less than 17 samples per cluster [15]) we wait for a new day worth of
measurements. When both clusters have enough instances, we test for normality
and apply the GBFP to the resulting clusters if the normality assumption cannot
be rejected. If the GBFP test determines that the null hypothesis of equality
of means cannot be rejected, we mark the link as stable and wait for a new
day worth of measurements, repeating the process. When the GBFP test shows
statistical evidence of a difference in the means at a given significance level α,
an alert is sent to the network manager. After the manager is alerted about the
possible change in the means, we remove the oldest cluster from the dataset
being analyzed and start the algorithm with the newest cluster as input. The
results of applying our algorithm to real network measurements are presented in
the following section.
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5 Results

In this section we present the results of applying our methodology to the mea-
surements of seven links in the RedIRIS network. Table 2 summarizes the number
of tests performed and alerts generated. The second and fourth columns show
the number of times the Behrens-Fisher testing methodology is applied. This is
the number of times that the clustering algorithm was able to form two clusters
with enough size to apply the test and the normality assumption held for both
sets. It is worth mentioning that the null hypothesis of normality could not be
rejected at the significance level α = 0.05 for none of the obtained clusters. This
supports our initial assumptions about the chosen averaging period (note also
that the averaging process reinforces the supposition thanks to the Central Limit
Theorem [17]). The third and fifth columns show the number of times an alert
signal is sent, i.e. the null hypothesis of equality of means is not verified (again
with α = 0.05).

Table 2. Results for the online algorithm

University
Incoming direction Outgoing direction

link
Number Number Number Number
of tests of alerts of tests of alerts

U1 18 9 13 9

U2 13 9 14 7

U3 17 8 12 8

U4 15 8 20 7

U5 13 8 17 9

U6 15 7 11 8

U7 28 8 20 7

As can be seen in Table 2, the main advantage of our online algorithm to
network load detection is the reduction in human interventions. This leads to
a decrease in the OPEX costs making the network operator save money. The
reduction of the human interventions is achieved because our algorithm produces
an alert only in case a stationary statistically evident change in the load happens.
The rest of the time the link is considered normal, and no intervention from the
network manager is required.

Considering the time span of the measurements, our algorithm placed less
than 10 alerts (potential network load changes) requiring human supervision
in a period of more than 450 days (including holidays). That means a potential
stable period between load changes of more than 45 days in average. To illustrate
these results, Fig. 2 shows a time-series representation of the obtained groups
with statistical evidence of different means. The data showed in that figure refers
to the incoming direction of university link U1 for the time interval 12:00-13:30
(Variable 9).
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Fig. 2. Time-series plot for time interval 12:00-13:30 showing the different clusters
found in the incoming direction of university U1

6 Conclusions

We have presented a new online algorithm for automated detection of network
load changes, which has been applied to the Spanish NREN case. The algorithm
makes use of well-known statistical techniques to reduce human intervention in
network operation. This reduction is achieved by alerting the network manager
only when there is statistical evidence of a change in the load, avoiding visual
daily inspection of the load graphics for every link in the network. Finally, the
capacity planning decision is deferred to the manager supervising the network.

7 Future Work

Several interesting issues remain open for further study. On the one hand, our
approach uses a volume model of the network load. It would be interesting to
take into account external variables as user demand or access capacity to develop
more complex models that increase the accuracy of the detection trigger. On the
other hand, it is important to know what limitations introduce the normality
assumption and how to cope with them. In this light it would be interesting to
know whether the traffic could be modeled with another kind of distribution,
maybe using different larger timescales, and in those cases what would be the
distribution of the statistic to test for differences in the means.
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