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Abstract. The study of network traffic by flow analysis has been the
subject of intense and varied research. Wavelet transforms, which form
the core of most traffic analysis tools, are known to be robust to lin-
ear trends in data measurements, but may suffer from the presence of
occasional non-stationarities.

This paper considers how the information associated to quantiles of
wavelet coefficients can be exploited to improve the understanding of
traffic features. A tool based on these principles is introduced and results
of its application to analysis of traffic traces are presented.

1 Introduction

Statistical traffic analysis refers to the general properties of network traffic, aim-
ing to describe them by suitable flow models. Traffic in packet networks has been
the subject of intense and varied research, leading to progressive refinements of
models and analysis tools.

When the statistical features of flow intensity in a traffic trace are analyzed,
it can be seen that anomalies, associated to local changes in the distribution of
traffic, frequently affect the tails of the empirical probability density function
(pdf). Effects of a similar nature may also arise when a highly composite traffic
trace is considered, in which case distribution changes may be attributed to the
varying mix of contributions from flows having different statistical properties.
These issues are directly related to the assumed traffic model: in a number of
cases of practical interest, forcing a single-flow LRD random process model on
measured data does not appear to suit the actual situation entirely [1], [2].

The well-known Abry-Veitch (A-V) wavelet-based tool has become a stan-
dard reference for most traffic analysis methods [3]. However, analysis of real
traffic traces showed that, in the cases mentioned above, the tool may not pro-
vide meaningful measurements of the Hurst scaling exponent [4] and of other
parameters. A reason why the A-V tool is not ideally suited to deal with these
kinds of phenomena, is that it refers to a cumulative quantity, i.e., the energy of
wavelet coefficients. From a statistical viewpoint this emphasises variance, which
is sensitive to changes in empirical pdf’s but does not allow a more detailed un-
derstanding of phenomena.

This paper will show that quantile analysis of wavelet coefficients, on the
contrary, can provide very robust and acceptably accurate estimates of the Hurst
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parameter value, even in the presence of non-stationary disturbances in traffic
time series. The probability level of quantiles represents an additional parameter,
that can be tuned for the purposes of the analysis. Comparison between curves
obtained for different confidence levels may provide additional information on
the features of the analysed traffic.

2 Scaling and Wavelets

The proposed approach merges concepts from quantile analysis with the wavelet
multiresolution approach, whose main features are briefly recalled in this Section.

Let X(k) be a time series obtained by counting the number of packets (or
bytes) flowing through a link during consecutive, non-overlapping time slots of
duration T . Packet counts can be aggregated over larger time scales. Considering
time intervals of progressively longer duration 2j · T , the time series:

X(j)(k) =
1
2j

2j−1∑

i=0

X(k · 2j + i) (1)

represents the aggregate version of the time series X(k) at scale j. Under the
hypothesis of self-similarity for X(k), the following relationship can be found:

X(j)(k) d= 2j(H−1)X(k), (2)

where d= denotes equality of probability distributions and H is the Hurst ex-
ponent. It is well known, e.g., from the early pioneering studies presented in
[5], that the correlation structure of the time series X(k) can be assumed to
decrease with a power law as the lag number increases. This statistical property
is called long-range dependence (LRD). The Hurst parameter H quantifies the
asymptotic self-similar scaling as well as the degree of long-range dependence.
Under the common assumption that the underlying random process is fractional
with stationary increments, H varies between 0.5 and 1, denoting respectively a
non-correlated and a completely correlated time series.

For a self-similar process a scaling relationship among wavelet coefficients
exists [6] and has the same form for both approximation coefficients ax(j, k)
and detail coefficients dx(j, k). Using the symbol cx(j, k) to generically indicate
either of the two set of coefficients, it can be given in the form:

cx(j, k) d= 2j(H+ 1
2 )cx(0, k), (3)

where d= denotes equality of probability distributions. It should be remembered
that, if the definition of aggregate process given in (1) is referred to, the relation-
ship must be normalized by the number of samples considered in the summation,
yielding:

cx(j, k) d= 2j(H− 1
2 )cx(0, k). (4)

Recursive algorithms are initialized with cx(0, k) = X(k).
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The Abry-Veitch estimator considers the energy of detail coefficients dx(j, k)
at different time scales. This follows the scaling law:

E
[
dx(j, k)2

]
= 2j(2H−1)

E
[
dx(0, k)2

]
, (5)

which provides a means to identify the presence of long range dependence in
data measurements and estimate the corresponding scaling exponent H . It can
be noted that, since the mean of detail coefficients is zero: E [dx(j, k)] = 0, the
energy (5) corresponds to the coefficient variance.

The tool has been largely used to identify the presence of scaling in data
measurements and to estimate the value of the scaling exponent by a linear
regression on the log-log wavelet spectrum diagram. Since the detail coefficients
are uncorrelated, its variance is a function of the amount of data considered and
does not depend on the unknown, actual value of the Hurst coefficient H . This
very important property allows to improve estimation accuracy by increasing
the number of samples and is one of the reasons for the success of the tool.
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Fig. 1. Wavelet spectrum over consecutive non-overlapping blocks

3 A-V Analysis of a Non-stationary Trace

The A-V estimator is known to be robust to linear trends in data measurements,
but may suffer from the presence of occasional non-stationarities. An example
is provided by the following analysis of the AUCK [7] traffic trace captured on
06 April 2001, which presents a strong, localised non-stationarity. The raw traf-
fic trace was initially aggregated over time intervals of duration T = 50 ms.
Analysis is restricted to measurements taken during the day working hours, by
considering only the samples between the (6.5E + 05)-th and the (11.5E + 05)-
th. This allows to disregard longer-term fluctuations of traffic on a daily scale.
The discrete wavelet transform was applied over four non-overlapping blocks of
125, 000 samples each (roughly a two-hour lenght); the wavelet spectra obtained
in each block are plotted together in Fig. 1(a). It can be seen that, at lower time
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Fig. 2. Histograms of the wavelet detail coefficient dx(j, k) calculated over consecutive
non-overlapping blocks. The analysis refers to the AUCKIV trace of the 06 April 2001.

scales, the curve related to block A, which entirely contains the non-stationarity,
presents a strong discrepancy from the others.

Recall that the Hurst parameter characterizes the dependence of the traffic
only a large scales. However the wavelet spectrum provides additional useful
information about the dependence in the data also on small time scales. In this
case, where an alignment can be found at the lowest scales [3], that is from j1 = 1
to an upper bound j2, the scaling indicates the fractal nature of the traffic.

To understand the influence of this local flow irregularity on wavelet spectra,
the time series of the lowest-scale detail coefficients dx(1, k) have been considered
for the same four blocks. Their histograms are presented in Fig. 2, where they
are compared with Gaussian distributions having the same mean and variance.
Block A is characterised by an asymmetric histogram with a much heavier tail
for positive values of detail coefficients; the estimated variance is accordingly
larger than in the other blocks.

As can be noted in Fig. 1(a), the non-stationarity affects the time series over
time scales in the range between j1 = 1 and j2 = 4. The wavelet spectrum
obtained by the A-V tool represents, over these scales, the behaviour of the
non-stationarity and not that of the main process.

Similar effects are known and have been noted in a number of works, e.g., [8].
The consequences are that scaling analysis becomes harder, since alignments in
a log energy-scale diagram are more difficult to find.

The analysis of quantiles provides additional information about the distribu-
tion of detail coefficients. Estimated quantile values for the four blocks of the
AUCK traffic trace show that the local features in block A only affect quan-
tiles associated with probability levels ≥ 99%. Lower probability levels are not
affected by the presence of disturbances in the traffic time series.

It is important to investigate how this additional knowledge could be inter-
preted correctly. In this example, analysis of quantiles referring to a probability
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level < 99% could provide more accurate scaling information. On the other
hand, quantiles with higher probability levels might convey information about
local features.

4 Quantile-Based Estimation

Let rγ(j) be the (1-γ)-quantile of coefficients at scale j. It provides a bound on
the value that the samples of cx(j, k) can assume, which can be exceeded with
a probability γ, called violation probability:

P [cx(j, k) ≤ rγ(j)] = 1 − γ. (6)

The self-similarity relationship between cx(0, k) and cx(j, k) extends to their
quantiles, providing the following expression that links quantiles at different
scales:

rγ(j) − E[cx(j, k)] = 2j(H− 1
2 ) [rγ(0) − E[cx(j, k)]] . (7)

It should be remembered that for detail coefficients, i.e., when cx(j, k) =
dx(j, k), the mean value is null. In this case the scaling relationship between
quantiles can be obtained in a straightforward manner by substituting (4) in
(6). It results in:

P
[
2j(H− 1

2 )dx(0, k) ≤ rγ(j)
]

= P
[
dx(0, k) ≤ rγ(j) · 2−j(H− 1

2 )
]

= 1 − γ. (8)

where P [dx(0, k) ≤ rγ(0)] = 1 − γ for definition. This provides the expression
(7) where E[dx(j, k)] = 0.

Rewriting expression (7) in a log-log scale shows that the scaling exponent
can be obtained by a simple process.

Graphically, a plot of log-quantile versus scale is obtained; borrowing from
[8], this will be called a quantile-based wavelet spectrum. A linear regression of
this plot then yields the scaling exponent, from which an estimate of the Hurst
parameter H follows immediately.

For the AUCK trace considered in Sec. 3, the quantile-based wavelet spectra
have been plotted in Fig. 1(b), with a probability level (1−γ) = 80%. The same
partitioning scheme of Fig. 1(a) has been adopted. It can be noted that the
quantile-based spectrum related to block A is very similar to the curves obtained
from the other blocks. In fact, the non-stationarity located within that block does
not affect quantile estimates at the 80% level of probability. As a consequence,
variability in Hurst parameter estimation is much reduced.

To gain a better understanding of the potentiality of a quantile approach, it
was tested on a large amount of traffic traces. In the following we will report the
results obtained for one of the traffic traces collected by the DIRT research group
at the University of North Carolina (UNC). These traffic traces are particularly
useful because they have been thoroughly analyzed, identifying and localizing a
number of features that made correct estimation of the Hurst parameter by the
A-V tool quite difficult. Therefore, we employed them to test the effectiveness
of the proposed approach.
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The considered trace was captured on 09 April 2002; it has been aggregated
over time intervals of T = 1ms. It presents a burst of about 300−400 seconds du-
ration. This burst gives rise to a strong non-stationarity that affects the medium
time scales, as can be noted from the variance-based wavelet spectrum of detail
coefficients in Fig. 3(a). In this case no alignment can be found, resulting in very
poor estimates for H .
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Fig. 3. Wavelet spectrum for the UNC02 trace, captured 09 Apr. 2002 from 19:30 to
21:30

The corresponding quantile-based wavelet spectrum for the same trace is plot-
ted in Fig. 3(b), where the curves obtained for different probability levels are
shown. If probability levels ≤ 95% are considered, curves are not affected by
the presence of the non-stationarity, therefore alignments can be found for cer-
tain scale ranges, as illustrated by dotted lines. At those time scales the scaling
exponent can be correctly estimated. Interestingly, quantile-based wavelet spec-
tra show the same familiar two-slope behavior that generally characterizes most
traffic traces.

For lower probability levels, like 60%, the quantile spectrum presents a greater
variability. To explain this matter, the uncertainty associated to the estimates
of quantile must be taken into account. For a random process, having a prob-
ability density function (pdf) f(·), the estimation variance of the theoretical
(1 − γ)−quantile is:

σ2
rγ(j) =

γ(1 − γ)
Nj · f2(rγ(j))

. (9)

where Nj is the number of samples considered for estimating the quantile.
Quantile properties therefore depend on the probability distribution of the

process [9]. The uncertainty associated to quantile estimates presents a maxi-
mum for γ = 50% and minimum values for γ = 0% and γ = 100%. For the
purposes of uncertainty analysis, the distribution of measurement data can be
approximated by a Gaussian process. It is important to remember the limits of
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this idealization. In the case of actual processes, where the tails of the distribu-
tion are generally limited by some physical constraint, the Gaussian hypothesis
no longer holds for values of γ close to 0 or to 1. This discrepancy can be over-
come by considering values of γ for which the Gaussian hypothesis holds true, at
least as an approximation. Analysis of experimental data by normal probability
plots can help find suitable limiting values [10].

This explain the greater variability at lower probability levels as well as at
higher levels, as can be noted in Fig. 3(b).

5 Conclusions

The study of quantiles is better suited to deal with the heavy-tail phenom-
ena that characterize network traffic. Its application in quantile-based wavelet
spectra, that can be referred to both detail and approximation coefficients of a
wavelet transform is, to the authors’ knowledge, a novel idea that appears quite
promising. It is important, however, to approach the method with a degree of
caution.

Results shown in this paper suggest that the accuracy of Hurst parameter
estimates can be improved by tuning the choice of quantile probability level. It
should be realised that, in so doing, an experimenter is deliberately discarding
information contained in the heavy-tails. This choice has a considerable impact
in determining what is actually being modelled in a traffic flow. For instance, if
traffic irregularities are related to local phenomena, the network flow could be
described by a “mainstream” process, whose statistical properties may be altered
by occasional outliers. If the “contamination” is not self-similar, its presence
would only be evident at well-defined time scales of influence, while for larger
time scales it is smoothed out by aggregation. In a similar case, information
obtained by considering wavelet spectra for higher probability quantiles and by
tracking their evolution with time would be just as valuable.

In general, traffic analysis can present difficulties when complex and het-
erogeneous flows are considered. Then, a different modelling paradigm can be
considered by decomposing the flow in the monitored link into a superposition
of stochastic processes, each having its own specific correlation structure. In this
case analysis of wavelet quantiles would provide a more detailed picture of traffic
features and might prove to be a more flexible tool.
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