
Colin Perkins | https://csperkins.org/ | Copyright © 2017 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Raising the Datagram API to Support Transport
Protocol Evolution

Tom Jones, Gorry Fairhurst – University of Aberdeen
Colin Perkins – University of Glasgow

Presentation given at the IFIP Networking 2017 Workshop on Future of Internet Transport, 12 June 2017

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Problem: Transport Ossification

• Existing transport protocols are globally deployed:
• Can’t expect quick evolution of a network used by billions

• TCP and UDP will be strongly conserved

• But – desire to change transport, to better meet application needs

2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

The TCP Straightjacket

• Compatible evolution of TCP significantly constrained – too much
infrastructure “understands” TCP protocol to permit changes

• UDP provides minimal services – but offers few constraints

• Alternative protocols not deployable

• For the transport to evolve in ways that differ from the TCP model,
must tunnel over UDP

3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Enabling a UDP Substrate

• Layering new transport sub-layer over UDP is conceptually straight-forward

• Complexity is not in the layering, it’s in defining the new transport protocols;
enabling flexible composition of transport services under a coherent API

4

IP

TCP UDP

Applications

IP

TCP UDP

New Transport
and extra API

Applications

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Enabling Future Transport Services (1)

• Goal → raise the datagram API to support transport service
composition and reduce implementation complexity

• What transport services to support in future protocols?
• End-to-end security – while maintaining ease of management

• NAT traversal and connection racing → as a generic service

• Lower latency, avoiding HoL blocking
• Alternative congestion control algorithms and ECN

• Quality of service, active queue management, partial reliability

5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Enabling Future Transport Services (2)

• Goal → raise the datagram API to support transport service
composition and reduce implementation complexity

• How to compose services and develop new systems?
• Correctness of implementation → security and robustness

• Ease of transport service composition, validation against specification, clean
specification of policy

• Integrate with higher-level systems languages → Go, Rust, Swift, …

6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

What does the Sockets API do?

• Datagram API in Berkeley sockets:
• Create socket

• Bind to local port; “connect” remote 
No on-the-wire effect from connection – locks destination address
and enables receipt of ICMP responses on the socket

• Send and receive datagrams

• Set and get options

• Resolve DNS names to IP addresses

• Limited consistency in option usage
between different systems
• Ad-hoc addition of features – different

options to enable the same feature

• Inconsistent feature implementation

• Use of options to trigger actions 
setsockopt(socket, IPPROTO_IP, IP_ADD_MEMBERSHIP, …)

7

II. BACKGROUND

The Socket API closely models the file system API. Calls
to send and receive are mapped to performing read
and write calls on the socket for the network connection.
Datagram-orientated protocols are modeled as atomic read
and write socket operations that either succeed or fail
depending on the buffer size. UDP is offered in this API
as either a connected or unconnected transport, the default
unconnected state allows a sender to send datagrams to an IP
address. Connecting a UDP socket causes the socket to pass
ICMP errors up to the application. Connections have no side
effects on the wire, offering only a shortcut to applications by
using the explicit connected address for datagrams [3].

The UDP API offers only a few methods to access its mini-
mal services. Applications can create a socket, look up a host,
connect, set options and send and receive data, represented by
the pseudo-code for a typical client in Listing 1.
int main()
{
int sockfd, rv, numbytes;
struct addrinfo hints, *servinfo, *p;

hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
if ((rv = getaddrinfo(argv[1], SPORT, &hints, &

servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n",

gai_strerror(rv));
return 1;

}
while (true) {
if ((numbytes = sendto(sockfd, "hello",

strlen("hello"), 0,
p->ai_addr, p->ai_addrlen)) == -1) {
perror("talker: sendto");
exit(1);

}
if ((numbytes = recvfrom(sockfd, buf,

MAXBUFLEN-1 , 0,
(struct sockaddr *)&their_addr, &

addr_len)) == -1) {
perror("recvfrom");
exit(1);

}
}
close(sockfd);
return 0;

}

Listing 1. Example of a client application using the UDP Socket API. (The
example client, looks up the remote host, chooses an IP address and settles
into a loop of sending and receiving data until the application completes.)

An application may modify protocol options via the
setsockopt/getsockopt API calls. These provide the
only way to interact with the lower networking stack. Com-
monly used options allow control of the differentiated services
code point (DSCP) used, setting the ECN field, setting the hop
count for the IP datagram, the link maximum transmission unit
(MTU), and the “don’t fragment” (DF) bit in the IP header.

The setsockopt API allows applications to set options,
but provides no mechanism for discovering whether they will
work and no path for falling back to options known to always
work. This can make it dangerous to use QoS or ECN: if the
application has to provide fallback code it is more likely it
will stick to a safe set of values. Further, the set of options has
evolved over time, and is inconsistent between platforms and
often presents variants of the same function. This complicates
application portability between platforms. Furthermore, the

same setsockopt API is used to control features that
are semantically not socket options [2]. For example, the
IP_ADD_MEMBERSHIP option triggers an IGMP join of a
multicast group, with semantic closer to that of connect().

A. What features are missing from the Sockets API?

Establishing Connectivity: TCP-based applications tend to
use one of a small number of protocols, e.g, HTTP, SSH, FTP,
and typically run in a client-server manner. The connect(),
listen(), and accept() API fits this use case cleanly,
and is straightforward for Network Address Port Translation
(NAPT) or firewall traversal: ports are opened in response
to outgoing connection establishment packets, for the 5-tuple
representing the connection; the traffic is inspected to ensure
it looks like the corresponding protocol; and the connection is
closed when a FIN is seen (or after a timeout).

There are a diverse set of Applications built on UDP
that need themeselves to perform some form of connection
establishment. Many more protocols are in use, communi-
cation patterns are more varied and often peer-to-peer, and
the stateless nature of the transport protocol means that mid-
dleboxes that track transport protocol state to maintain holes
must resort to using timers to keep the firewall open. This
environment makes it likely that UDP-based applications will
encounter connectivity issues. This is especially true when the
remote endpoint is a peer that is also behind a NAPT. One
solution to this problem uses the combination of STUN [8]
to determine NAPT binding and probe connectivity, TURN
relays as dynamically configured proxies for UDP [9] or
TCP [10] flows, the Interactive Connectivity Establishment
(ICE) algorithm [11] to categorise network impediments and
systematically probe connectivity, and a relayed signalling
protocol to rendezvous with the remote host and exchange
candidate addresses for connectivity. While the signalling is
likely inherently application specific, there is scope to imple-
ment the other functions generically, as a path layer below the
socket API, rather than have each application implement the
entire complex NAPT traversal stack.1

Support for multiple interfaces: An application running
on a multihomed host has to account for the presence of
multiple interfaces and that those interfaces will vary in
properties and connectivity over time (mobility). The present
API does not make it easy for applications to discover the
local interfaces or their properties, it requires application
level methodologies to discover what is working. Applications
must determine whether network information gathered on one
interface is valid on another interface. Issues can arise with
locality if name servers are used across domains for accessing
resources. DNS resolution on multihomed systems can also
be problematic [13]. The interface used for name resolution
(getaddrinfo()) does not support multiple interfaces, and

1This can be viewed as a generalisation of the happy eyeballs connection
racing technique [12] used by TCP applications to probe IPv4 and IPv6
connectivity. That, too, would benefit from a consistent implementation in
the socket layer.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

What Transport Services are Missing?

Datagram API lacks critical features needed
for new protocols

• Establishing connectivity

• Support for multiple interfaces

• Control over QoS and reliability

• Congestion control

8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Datagram API lacks critical features needed
for new protocols

• Establishing connectivity

• Support for multiple interfaces

• Control over QoS and reliability

• Congestion control

What Transport Services are Missing?

9

• connect(), listen(), accept() suitable
for connection-oriented client-server protocols

• Unsuitable for peer-to-peer NAT traversal
• No support for probing connectivity via STUN, TURN, ICE

• No connection racing
• No support happy eyeballs IPv6 transition strategy

• Generically, no path layer features
• No help discovering, probing, and gaining consent for use

of path(s) from source to receiver

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Datagram API lacks critical features needed
for new protocols

• Establishing connectivity

• Support for multiple interfaces

• Control over QoS and reliability

• Congestion control

What Transport Services are Missing?

10

• Interfaces can have radically different properties
• Present API doesn’t make these easy to discover;

applications must probe to determine what works
• No way to determine if information gathered on an

interface is valid on any other interface (e.g., DNS
lookup results)

• Hard to portably determine valid interfaces, and
changes to interface availability
• Complicates NAT traversal, connection racing

• No systems support for migrating traffic flows
between network interfaces

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Datagram API lacks critical features needed
for new protocols

• Establishing connectivity

• Support for multiple interfaces

• Control over QoS and reliability

• Congestion control

What Transport Services are Missing?

11

• TCP provides a reliable, ordered, byte-stream
subject to HoL blocking – no flexibility in API

• Datagram API exposes best effort IP service,
but no help with (partial) reliability, ordering, or
framing
• Limited support for ECN use with datagrams
• Limited support for QoS use with datagrams –how

to determine what code points work?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Datagram API lacks critical features needed
for new protocols

• Establishing connectivity

• Support for multiple interfaces

• Control over QoS and reliability

• Congestion control

What Transport Services are Missing?

12

• TCP assumes congestion control occurs below
API, and doesn’t expose behaviour or offer any
controls

• Datagram service requires congestion control
be implemented above the API, with no support
and no visibility into send/receive queues
• No support for cooperation between congestion controller,

transport, and application – needed to ensure low-latency

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

What Transport Services are Missing?

Datagram API lacks critical features needed  
for new protocols

• Establishing connectivity

• Support for multiple interfaces

• Control over QoS and reliability

• Congestion control

Clear the current API is too low level – doesn’t meet needs of applications or help
implementors of new transport protocol layers

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Principles for Raising the Datagram API

• Follow four principles when revising the API:
• An application using the new API that does nothing new should receive

similar service to that of the Sockets API

• Commonly needed functions should be placed below the API when these
can be automated – do not require application decisions

• Functions where the preference can be expressed as a policy can also be
placed below the API

• Functions that rely on application algorithms or detailed knowledge of trade-
offs related to data should be implemented above the API

• Ensures continuity of behaviour, avoids surprises, while allowing
transport evolution

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Below the Datagram API – Policies and State

• Higher-layers pass abstract policy
information through the API – map
onto transport services rather than
concrete protocol features

• Per-interface information base:
• MTU, line rate, IP address, DNS name

cache, supported QoS features, …

• Per-path information base:
• Credentials for crypto session resumption,

key continuity, opportunistic encryption, …

• Last achieved congestion control state

• Destination feature support

• Policy specifies what is needed, not
how accomplished

15

complications can result with geographic load balancing and
applications that require mobility.

Control over quality of service and reliability: TCP provides
a reliable, ordered, byte stream service, that is subject to
head-of-line blocking while waiting for retransmissions of
lost packets. There is no portable way to inspect the receive
buffer, or access data out of order [14]. When needed, UDP-
based applications must implement (partial) reliability above
the API. The developer has to take responsibility for building
a solid network system [3].

Congestion control: For TCP, congestion control is assumed
to take place below the Sockets API, and there is no interface
to select the algorithm, or query congeston state. For UDP-
based application, congestion control must be implemented
above the API, with no support from the socket.

In summary, the socket API has been a companion for
developers writing application protocols for decades, but the
interface is starting to show its age. It provides a poor API
for many important features, and requires applications to im-
plement other features in their entirity. To address these issues
libraries can be integrated into an application, but integrating
such a library requires modifications to the code base, and
the libraries event model has to be made compatible with
the application. Supporting each and any new feature means
the application has to integrate more with libraries that help
support them, with a corresponding increase in complexity and
maintenance costs. A new, standard, API is needed.

III. RAISE THE DATAGRAM API
The current socket API is too low level. Even applications

that need direct access to the network can benefit from a higher
level Datagram API. By placing commonly needed functions
below this API, applications can specify what they want from
the stack, but allow the system below the API to perform
the actions needed to realise a service. However, it is not
immediately obvious what of the set of functions identified
in Section II-A should lie below a new Datagram API, and
which should remain in the application. On the one hand, part
of the success of UDP was an API that enables application
choice of how to interact with the network. On the other hand,
applications increasingly require solutions to the same set of
problems and implementing these below the API can benefit
from wider context of the network paths and interfaces, and
allow mechanisms to evolve independently of applications.

We use the following principles to guide our choice of which
functions should be placed below the Datagram API:

1) An application using the new API that does nothing new,
should be able to at least receive similar service to that
of the socket API.

2) Commonly needed functions should be placed below
the API when these are automatable (do not require
application decisions).

3) Functions where the preference can be expressed as a
policy can also be placed below the API.

4) Functions that rely on application algorithms or detailed
knowledge of trade-offs relating to data should be imple-

mented above the API [3] (e.g., choice of codec to meet
congestion control constraints in a conferencing appli-
cation, or how to trade loss vs. capacity constraints).

A richer API should allow an application to request a set
of abstract properties for the transport service it desires (e.g.,
requiring a datagram service, whether high capacity is needed,
whether there is benefit from low latency, whether low cost
is preferred, etc). Understanding application needs can help a
Datagram API because it can then automate functions that are
hard for an application to optimise.

A. Below the Datagram API

A higher level API can reduce the volume of code required
to build an Internet application, it can also significantly reduce
the complexity the application has to manage, providing a
starting point to automate appropriate choices below the API.

The system below the API needs to interpret properties from
the application together with system wide properties. Turning
these into concrete actions requires a policy system to select
protocol mechanisms, help discover interfaces and inform
parameter choices. For example, a video streaming application
could request properties that indicate a minimum capacity
required for the datagram service and QoS preferences to
minimise latency while constraining cost. Listing 2 shows an
example JSON policy file that indicates a QoS Live Video
precedence.
{

"transport": [
{

"value": "Datagram", "precedence": 1
},

],
"qos": [
{

"value": "Interactive Video", "precedence":
1

},
{

"value": "Live Video", "precedence": 2
}

]
"network": [
{

"value": "cost", "precedence": 1
},
{

"value": "capacity", "precedence": 2
}

]
}

Listing 2. Example JSON file describing a NEAT Abstract Policy

To provide network context for functions below the API, in-
formation needs to be gathered about the properties of network
paths, and network service interfaces. This knowledge base can
be related to policy and application requirements to enable the
application to rely on the system making good choices about
how to use the network. At the simplest level, this implies
understanding of available network service interfaces – by
gathering information (e.g., MTU, line rate, address) about
local physical and virtual interfaces (e.g., across tunnels or
source addresses that bind to provisioning domains).

TCP maintains information about the paths that have been
used from an endpoint, and similar data may be collected for
use by UDP – such as the path MTU, capacity recently used,

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Below the Datagram API – Mechanisms

• Policies bind to concrete protocol features and transports
• DSCP, ECN, IP addresses, network interfaces, congestion controllers, etc.

• TCP, UDP, SCTP, …

• Push new transport implementations below the API – UDP as
transport demultiplex
• Congestion control algorithms

• Reliability – retransmission, FEC

• Reordering

• PDU parsing and serialisation, framing

• Connection racing, probing for NAT traversal – driven by high level policy

• Asynchronous and event driven

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Implementation Approach

• Asynchronous, to match network behaviour

• Rich sharing of data across the API
• Application policies and preferences

• Queries of interface/path management data

• Jointly managed send and receive queues

• A higher-level API for applications… and, below that, a richer API
framework for transport services

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Example: The NEAT API

• An example of the application API:
• JSON policy specification – policy manager

component below API

• Asynchronous event loop – callback driven

• Allows transport behaviour to be chosen by
the stack – e.g., happy eyeballs connection
racing

18

etc.). This can also help eliminate transport candidates that
include protocols that are known not to be supported on a
specific path. Further information may be gleaned from the
experience of protocols using a path, including experienced
round-trip time (RTT) and capacity insight from coupled
congestion control [15]. Other functions could also be auto-
mated here, such as NAPT keep-alive and black-hole detection,
easing the tasks of finding a candidate path, failover between
paths, concurrent use of multiple paths.

We also note that application developers and users need to
be able to understand the decisions made on behalf of the
application. While most of the time it is expected that good
decisions will be taken, there is a need to understand why a
particular policy or application property resulted in a particular
choice. This supports troubleshooting and allows polices to be
refined when needed – this in itself is valuable compared to the
current information made available by the UDP socket API.

B. Above the Datagram API

We recognise that some functions cannot be easily migrated
below the API. While datagram congestion control can benefit
from standard mechanisms/algorithms, the details are often
linked to application design; applications have to provide their
own congestion control. This function is expected to remain
above the API. In contrast, the system below the API could
offer circuit breaker functions when required to control the
envelope of the capacity consumed by an application [3].

NAPT traversal could be automated for simple cases, but
many applications need complex processing to finally select
amongst a set of transport candidates. This is often compli-
cated by the need to interact with rendezvous points, signalling
intermediaries and to understand session-level negotiation di-
alogues. For these reasons more sophisticated applications are
likely to continue to utilise ICE libraries to perform the NAPT
traversal. None-the-less the availability of information from
below the API (such as speed, cost, reliability) can help select
candidates. The automation of path-related functions such as
keep-alive and path MTU discovery can eliminate features that
otherwise would need to be implemented above the API by
an application.

The transport 5-tuple of source IP, port, destination IP, port
and transport protocol is used to identify datagrams forming
a flow. If an application is multi-homed or mobile between
multiple network interfaces the 5-tuple cannot be used to
identify the endpoint. Mobility between interfaces requires
context (including a connection_ID) beyond individual flows
and can outlive transport usage, and as such is primarily
an application function, although such mechanisms may take
advantage of context information gathered below the API.

C. Traversing the Datagram API

Some functions require cooperation between the application
and transport to be effective, and straddle the Datagram API.

An example might be congestion control for an interactive
video conference. This has strict timing constraints: audio
frames must be sent every 20ms and video frames every 1/60th

of a second, but there is some flexibility to change what is
being sent, if not when, but this requires cooperation of the
media codecs. Real-time performance offers the application to
be tightly coupled with the congestion controller, and for both
the application to respect the congestion constraints and the
congestion control to respect application limitations.

IV. THE DATAGRAM API FOR THE NEAT SYSTEM

This section provides a concrete example of some of the API
aspects discussed in the paper, based on the open source NEAT
System [16], developed as part of the EU NEAT project [17].
Designed as a replacement for the socket API, this provides a
one-sided change to the transport API at the sender.

The new API offers applications access to abstract transport
services. This allows selection between the available transport
protocols including TCP, SCTP, SCTP/UDP, UDP and UDP-
Lite via a single unified API. Mechanisms beneath the API,
provide many functions including help to discover the set of
protocols that may work across an Internet path.

A simple example in Listing 3 illustrates the lifetime of an
application using the NEAT System. The application creates
a NEAT context, within which it then creates a NEAT flow,
using application policies passed in JSON to describe the
abstract properties it requires or desires. The Policy Manager
combines these policies with a global configured policy to
inform its decisions, e.g., to generate a list of transport
candidates. The NEAT Characteristic Information Base (CIB)
is populated with information about the network interfaces and
paths allowing decisions to also consider network, path and
transport statistics.
static struct neat_flow_operations ops;
static struct neat_ctx *ctx = NULL;
static struct neat_flow *flow = NULL;

ctx = neat_init_ctx()
flow = neat_new_flow(ctx)
prop = "(see Listing 2)";
neat_set_property(ctx, flow, &prop)
ops.on_writable = on_writable;
ops.on_readable = on_readable;
ops.on_error = on_error;

neat_set_operations(ctx, flow, &ops)
neat_open(ctx, flow, hostname, port)
neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

static neat_error_code
on_writable(struct neat_flow_operations *opCB)
{

neat_write(opCB->ctx, opCB->flow, buf)
return NEAT_OK;

}

static neat_error_code
on_readable(struct neat_flow_operations *opCB)
{

neat_read(opCB->ctx, opCB->flow, buf)
return NEAT_OK;

}

Listing 3. NEAT Example Application listing

Rather than an imperative polling-based socket API, an ap-
plication uses a callback-based API to access the NEAT
System. It therefore needs to provide a set of callback han-
dlers for each NEAT Flow. In Listing 3, the application
sets up the on_writeable callback. The application calls
neat_connect with the name and port of a listening server.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2017

Raising the Datagram API to Support Protocol Evolution

• We propose raising the datagram  
API to allow specification of policy 
and transport services

• Give the protocol stack flexibility to  
fulfil application needs via different  
transports

• Post Sockets APIs must raise the level of abstraction and enable composition
of transport services – raising the datagram API is but a first essential step

19

IP

Application

UDP Transport

IP

Application

Transport
Demux

Transport

CIB

Policy
Manager

Socket API

Datagram API

Fig. 1. Stack Evolution: Left, The traditional socket API. Right, A new
Datagram API utilising Policy and Transport-layer Demultiplexing

VI. LOOKING TO THE FUTURE

The network has become ossified and experience has shown
it has been virtually impossible to deploy transport protocols
with different IP protocol numbers. TCP development requires
modifications in operation system kernels, needing a large
effort for the developer to deploy enhancements. The time
required to have enough hosts running an enhancement to see
a benefit impedes iteration times.

Accordingly, new protocol development is happening on top
of UDP (Figure 1, left stack). This has several advantages.
First, and most critically, it enables the permissionless end-
to-end deployment of new transports: UDP has wide enough
deployment that it can be expected to work in most networks.
Secondly, a UDP demultiplexing substrate introduces minimal
bandwidth and processing overhead. In addition, there is
already at least some support in middlebox devices (NAPT,
Firewalls) that can be used as a starting point for deployment.
Finally, the UDP API is widely supported allowing user-space
stacks to directly access the network without requiring special
privileges. The latter overcomes the time and effort required to
integrate a new transport across a range of operation systems.

The history of the Stream Control Transmission Protocol
(SCTP) illustrates the benefits of using UDP as a demulti-
plexing substrate. SCTP has an assigned IP protocol number
(132), and is moderately widely implemented as a native
transport, but has seen only limited deployment because it
does not pass residential NATs/firewalls. When running over
UDP, as the WebRTC data channel [22], however, SCTP has
seen worldwide, deployment in web browsers, in part because
of ease of implementation in user-space, and in part because
it is not blocked by most firewalls/NATs.

Large developers are evolving their applications, we see
efforts from Facebook, Google, Apple and others to develop
new protocols on top of UDP. The new protocols offer a higher
level API to the applications, this API is locked away under
layers of application state. If you are not the browser vendor
with the new HTTP transport protocol you are playing catch up
to remain on a level with their networking stack. Developers
that do not have the same wide scale of resources have access
only to the socket API, this is not sufficient to continue to
evolve on the Internet.

VII. CONCLUSION

UDP is increasingly playing the role of a demultiplexing
substrate layer, dynamically binding the transport protocol to
a signalled “port” number. The UDP Sockets API needs to
evolve to be less an application programming interface, and
more a transport protocol interface. The usefulness of the
present UDP Sockets API has passed. It is time to raise the
Datagram API to support transport protocol evolution.

The application interface must migrate up the stack, to
provide a higher level of abstraction for applications, while
allowing transport flexibility to meet their needs. This provides
a substrate for new low-level transport protocol development,
while providing the transport services needed by the next
generation applications.

ACKNOWLEDGMENT
This work has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No. 644334
(NEAT). The views expressed are solely those of the author(s).

REFERENCES

[1] J. Postel, “User datagram protocol,” IETF, RFC 768, August 1980.
[2] G. Fairhurst and T. Jones, “Features of the user datagram protocol (UDP)

and lightweight UDP (UDP-lite) transport protocols,” IETF, Internet-
Draft, October 2016.

[3] L. Eggert, G. Fairhurst, and G. Shepherd, “UDP usage guidelines,” RFC
Editor, BCP 145, March 2017.

[4] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” IETF, Internet-Draft, January 2017.

[5] S. McQuistin and C. S. Perkins, “Reinterpreting the transport protocol
stack to embrace ossification,” in Proc. Workshop on Stack Evolution in
a Middlebox Internet. Zürich, Switzerland: IAB, January 2015.

[6] T. Herbert, L. Yong, and O. Zia, “Generic UDP encapsulation,” IETF,
Internet-Draft, October 2016.

[7] NEAT, “NEAT Project,” https://www.neat-project.org, 2017.
[8] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal

utilities for NAT (STUN),” IETF, RFC 5389, October 2008.
[9] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal using relays around

NAT (TURN): Relay extensions to session traversal utilities for NAT
(STUN),” IETF, RFC 5766, April 2010.

[10] S. Perreault and J. Rosenberg, “Traversal using relays around nat (turn)
extensions for tcp allocations,” IETF, RFC 6062, November 2010.

[11] J. Rosenberg, “ICE: A protocol for NAT traversal for offer/answer
protocols,” IETF, RFC 5245, April 2010.

[12] D. Wing and A. Yourchenko, “Happy eyeballs: Success with dual-stack
hosts,” IETF, April 2012, RFC 6555.

[13] T. Savolainen, J. Kato, and T. Lemon, “Improved recursive dns server
selection for multi-interfaced nodes,” IETF, RFC 6731, December 2012.

[14] S. McQuistin, C. S. Perkins, and M. Fayed, “TCP Hollywood: An
unordered, time-lined, TCP for networked multimedia applications,” in
Proc. Networking Conference. Vienna, Austria: IFIP, May 2016.

[15] S. Islam and M. Welzl, “Start me up: Determining and sharing TCP’s
initial congestion window,” in Proc. IRTF ANRW. ACM, 2016.

[16] K.-J. Grinnemo, T. Jones, G. Fairhurst, D. Ros, A. Brunstrom, and
P. Hurtig, “Towards a flexible Internet transport layer architecture,” in
Proc. LANMAN. IEEE, jun 2016.

[17] NEAT, “NEAT Source Code,” https://github.com/NEAT-project, 2017.
[18] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen,

N. Khademi, and P. Hurtig, “On the cost of using happy eyeballs for
transport protocol selection,” in Proc. IRTF ANRW. ACM, 2016.

[19] D. Anipko, “Multiple provisioning domain architecture,” IETF, RFC
7556, June 2015.

[20] B. Trammell and M. Kuehlewind, “Path layer UDP substrate specifica-
tion,” IETF, Internet-Draft, December 2016.

[21] J. Touch, “Transport options for UDP,” IETF, Work in progress, February
2017.

[22] H. Alvestrand, “Transports for WebRTC,” IETF, Work in progress,
October 2016.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

