
Transparent Flow Mapping for NEAT

Felix Weinrank, Michael Tüxen
Department of Electrical Engineering and Computer Science

Funded by EU H2020 NEAT project (Grant agreement no. 644334)



In a nutshell

Automatic multiplexing + fallback

Transparent for the application

No additional coding effort

2



Multiplexing
● Bundling of several data paths to a single transport connection
● Key feature in widely used protocols

○ HTTP2 (TCP)
○ QUIC (UDP)
○ WebRTC Data Channel (SCTP)

3



Multiplexing - Pros and Cons
● Pros

○ Flow- and congestion-control mechanisms benefit from larger quantities 
of transferred data

○ Higher packet rates result in quicker loss detection
○ Shared congestion window is beneficial for new connections and 

connections with a low sending rate
○ Reduced amount of connections improves server capacities

● Cons
○ Additional coding effort
○ Fallback mechanism (optional)

4



NEAT Library
● Userland library for network communication
● Non-blocking and callback-based concept
● Unified API for all network protocols
● Supports (MP)TCP, UDP, SCTP (Kernel + Userland)
● Runs on Linux, FreeBSD, NetBSD and macOS
● Based on libuv
● www.neat-project.org

5



NEAT - Flow
● Bi-directional communication channel between two application endpoints
● Handles DNS resolution, buffer management, ...
● Can be grouped
● Unified API for all supported protocols

○ neat_open()
○ neat_write()
○ neat_read()
○ neat_close()
○ ...

6



Transparent Flow Mapping (TFM) - Concept
● Mapping multiple NEAT flows to a single transport connection while behaving 

like a 1:1 mapped flow

7



TFM - Requirements and Negotiation
● Both sides have to support

○ SCTP
○ SCTP - Stream Reconfiguration extension
○ SCTP - User Message Interleaving (IDATA) extension

● Support for TFM is negotiated via SCTP’s adaptation layer indication value
○ Carried via INIT / INIT-ACK chunk
○ TFM for NEAT specific value
○ If set by both sides → TFM support negotiated

8



TFM - Flow creation
● Transparent mapping of a new flow requires an existing flow with

○ Same destination IP / DNS-Name
○ Same port number
○ SCTP connection
○ Unused SCTP stream
○ TFM support

● New flow is instantly mapped to existing transport connection
○ Zero RTT connection setup

9



TFM - Data Transmission

10



TFM - Flow Teardown
● Using SCTP’s Stream Reset extension for closing procedure

11



TFM - Measurement Scenario
● NEAT application using two flows, same target, low sending rate
● Comparing “1:1 mapping” vs “transparent flow mapping”
● Focus: Application-to-Application delay
● UDP background traffic

12



TFM - Measurement Results

13



TFM - Alternative Transport Protocols
● Our implementation uses SCTP with extensions
● Transparent approach allows usage of alternative protocols

○ Easy integration into Happy-Eyeballs mechanism
● Interesting Candidate: Google’s QUIC

○ Quick UDP Internet Connections
○ Multiplexing concept
○ Built-in encryption
○ Zero-RTT connection setup
○ Not standardized (yet)

14



Conclusion and Outlook
● Multiplexing without additional effort for the developer
● Automatic negotiation and integrated fallback solution
● Beneficial for multiple flows with a low sending rate

○ Faster loss detection
○ Congestion-Window reusage
○ Less server load

● Approach allows seamless integration of alternative protocols like QUIC 

15



Questions? :)

16


