neət

Understanding Multistreaming for Web Traffic: An Experimental Study

M. Rajiullah⁺, A. C. Mohideen^{*}, F. Weinrank[‡], R. Secchi^{*}, G. Fairhurst^{*} and A. Brunstrom[†] [†]Karlstad University, Karlstad, Sweden ^{*}University of Aberdeen, Aberdeen, U.K. [‡]FHM, Munster, germany

Fachhochschule Münster University of Applied Sciences

Horizon 2020 European Union funding for Research & Innovation

Outline

- In the Internet, Web is still the king
- HTTP/1.1 known issues
- A way forward change http?
- Web Model & Dataset
- Tools And Experiment Setup
- Benefit of Parallelism
- Impact of Processing Time, Loss
- Discussion of Experiment Setup
- Conclusion
- Q&A
- Future of Web Protocol

In the Internet, Web is still the king

- Browser-based services are popular, e.g. search, entertainment, productivity, business, social and personal communication
- Latency is the most important factor impacting browsing experience.
- Slow browsing is not just *annoying* to endusers, but also *costly* for content owners.

HTTP/1.1 known issues

- HTTP/1.1 remains the de-facto standard for loading web pages
- Web pages have evolved:
 - Pages with many objects/resources
 - Objects with complex dependencies
 - Head-of-Line blocking in HTTP/1.1 makes things slow
- Multiple transport connections help:
 - Can download many objects in parallel
 - But, shortcomings more state, more contention
 - Domain sharding increases parallelism even more
 - Other solutions like spriting, inlining and concatenation of resources also have their own shortcomings

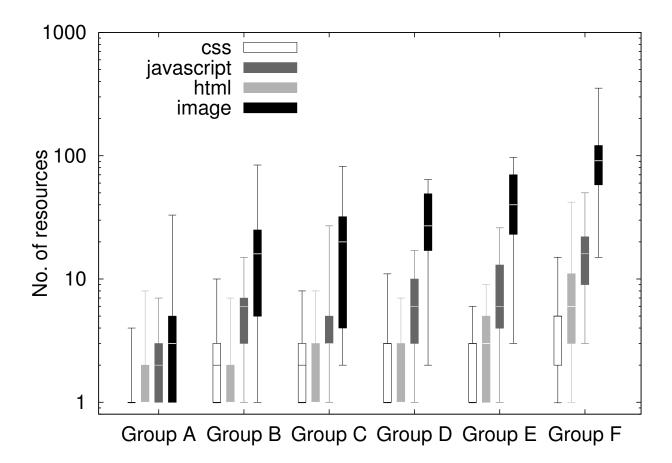
A way forward – change http?

- Application-based improvement using Google SPDY, IETF Standard HTTP/2.0
- Transport-based proposals, Google QUIC, IETF QUIC?
- So what should transport for web look like?
 Multi-streaming (one transport flow, multiple streams)
- We compare multi-streaming using SCTP against multiple TCP connections for web to understand the benefits across a range of usage:
 - 1. We present a web model
 - 2. We evaluate the impact of RTT, loss and capacity

Web Model & Dataset

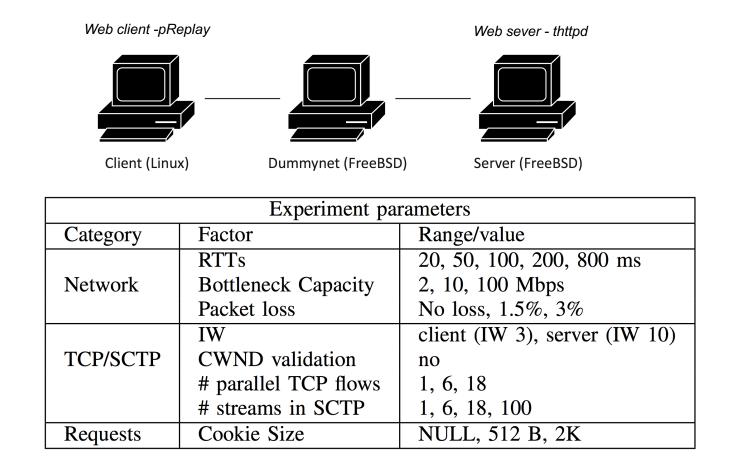
- Utilised a public web performance dataset*
- Dataset contains graphs representing dependency between HTTP resources and their processing time at the client
- We categorized the web pages according to the total size of all resources in a page
- The total was used to divide pages into 6 bins (size-ranks), labeled A to F

* X. S. Wang *et al.*, "How Speedy is SPDY?" in *11th USENIX Symposium on Networked Systems Design and Implementation*, Seattle, Apr. 2014, pp. 387–399.


Web Model (1)

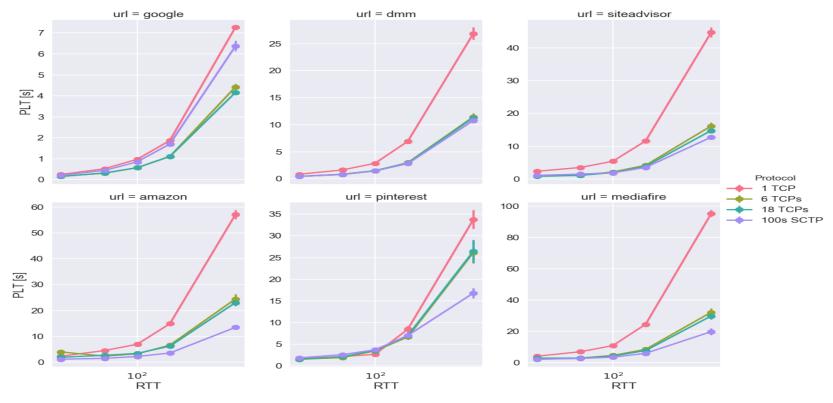
Group Name	Size-Rank (KB)	Size (KB) and # res. at 5%	Size (KB) and # res. at 50%	Size (KB) and # res. at 95%
1 tunite				
A	0.05-118	0.05 (1)	23 (6)	109 (39)
B	119-565	129 (3)	325 (21)	532 (67)
C	566-873	567 (6)	690 (25)	846 (69)
D	874-1242	878 (6)	964 (45)	1183 (82)
E	1243-1945	1286 (24)	1546 (55)	1901(119)
F	1946-3315	2070 (49)	2454 (127)	3309 (228)

- Correlation between page size and number of resources
- Pages of similar sizes have quite dissimilar compositions


Web Model (2)

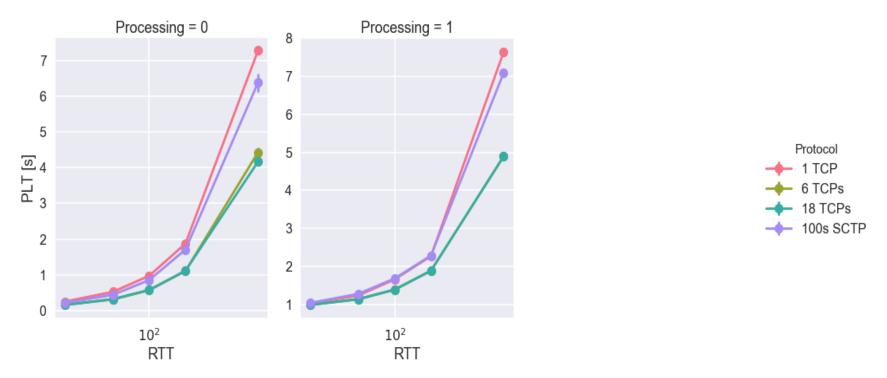
In all cases, the most common resources are images
 neət

Tools And Experiment Setup

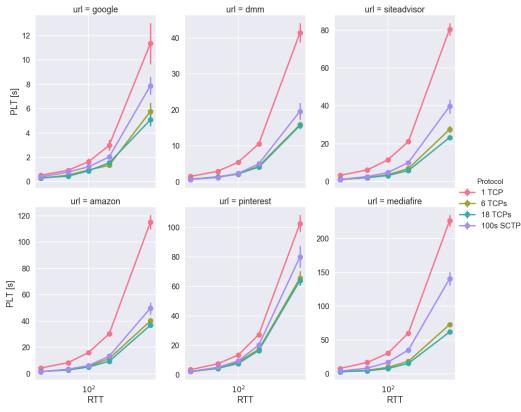


Page Load Time

- We explore
 - Impact of parallelism (no added loss)
 - Impact of processing time
 - Impact of loss


Benefit of Parallelism

- Multi-streaming provides similar to better performance
- Multi-streaming shows more benefit in higher RTT


Impact of Processing Time

- Upper bound of performance from processing time
- Processing time inflates PLTs

Impact of Loss

- Parallelism helps TCPs when loss happens (but can be aggressive)
- Multi-streaming improves on head of line blocking but its conservative congestion control inflates the PLT

Discussion of Experiment Setup

- A key benefit of multistreaming is the lightweight cost for additional streams
- No domain sharding
- We only consider pseudo-random link loss

Conclusion

- We used a data-driven workload
- Our results commented on how mechanisms were impacted by the level of parallelism and RTT
- Key transport explored multistreaming, parallelism, shared and individual congestion control
- Multi-streaming enabled rapid utilisation of available bottleneck capacity
- A clear cost in terms of performance is the single congestion-control context, although could have benefits in fairer sharing with other flows.

Future of Web Protocol

- Our evaluation (of multistreaming) is inline with the current HTTP1.1 vs. HTTP2 debate
- QUIC solves the Head-of-line problem from single connection using UDP

NEAT and SCTP

- Web is still the most important use case for future Internet
- SCTP can be leveraged by a client, but currently not widely used by web servers
- NEAT can help gradual deployment
 Our results can inform policy in the NEAT stack

THE END THANK YOU FOR LISTENING

