1st International Workshop on Future of Internet Transport IFIP Networking 2017

Implementation of PI² Queuing Discipline for Classic TCP Traffic in ns-3

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Rohit P. Tahiliani, Hitesh Tewari School of Computer Science & Statistics, Trinity College Dublin, Ireland tahiliar@tcd.ie

Outline of the presentation

- Introduction: *Bufferbloat*, PIE, PI²
- Motivation
- Contributions
- Implementation details
- Model evaluation
- Functional verification
- Conclusions & Future Work
- Relation to the Future of Internet Transport
- Acknowledgements

Introduction: *Bufferbloat*

- Inexpensive memory.
- *Side effect*: Bloated buffers at routers!
- Bufferbloat: large queueing delays
- *Potential solution*: deploy AQM algorithms to control queue delay

1

Popular AQM algorithms:

- RED / Adaptive RED [S. Floyd, V. Jacobson, ...]
- CoDel / Fair Queue CoDel [K. Nichols, V. Jacobson, ...]
- PIE [R. Pan, P. Natarajan, ...]

Introduction: PI²

- PI² Extends PIE to support Classic & Scalable Congestion Control.
 Three major components of PI²:
- Random dropping
 - based on drop probability. PI² applies the squared drop probability.
- Drop probability calculation
 - happens at a regular interval.
- Average departure rate estimation
 - only when there is sufficient amount of data.

Motivation

- Latency of 300ms appears to be "slow" [1]
- *Bufferbloat* makes the situation worse.

Why implement PI^2 *in ns-3:*

- No support of PI² in network simulators.
- Adds value to the ongoing research work to solve *Bufferbloat*.
- ns-3: several new features compared to other simulators.

[1] Grigorik, I. (2013). High Performance Browser Networking: What every web developer should know about networking and web performance. "O'Reilly Media, Inc.".

Contributions

- Developed a new model for PI² in ns-3.
- Preliminary verification by writing test cases in ns-3.
- Evaluation by comparing results obtained from ns-3 PIE model and ns-3 PI² model.
- ns-3 PI² model is currently under review and can be accessed here [1].

Limitations:

• Currently, this ns-3 PI² model supports only Classic Traffic.

[1] https://codereview.appspot.com/314290043/

Fig. 1: Class diagram for PI² model in ns-3.

Implementation details

- A test suite for evaluating the working of PI² algorithm.
 - verifies the attribute settings of PI^2 parameters.
 - basic enqueue / dequeue of packets.
- Compare PI² in ns-3 with PIE in ns-3 under same scenarios.
- Performance metrics under observation:
 - Queue delay.
 - Throughput.

Four simulation scenarios:

- 1. Light TCP traffic
- 2. Heavy TCP traffic
- 3. Mix TCP and UDP traffic
- 4. CDF of Queuing Delay

Parameter	Value
Topology	Dumbbell
Bottleneck RTT	76ms
Bottleneck buffer size	200KB
Bottleneck bandwidth	10Mbps
Bottleneck queue	PI ²
Non-bottleneck RTT	2ms
Non-bottleneck bandwidth	10Mbps
Non-bottleneck queue	DropTail
Mean packet size	1000B
TCP	NewReno
target	20ms
tupdate	30ms
alpha	PIE - 0.125, PI ² - 0.3125
beta	PIE - 1.25, PI ² - 3.125
dq_threshold	10KB
Application start time	Os
Application stop time	99s
Simulation stop time	100s

Table 1: Simulation Setup

Functional verification: Light TCP traffic

Fig. 3: Queue Delay with Light TCP traffic.

Functional verification: Light TCP traffic

Fig. 4: Link Throughput with Light TCP traffic.

Functional verification: Heavy TCP traffic

Fig. 5 : Queue Delay with Heavy TCP traffic.

Functional verification: Heavy TCP traffic

Fig. 6: Link Throughput with Heavy TCP traffic.

Functional verification: Mix TCP and UDP traffic

Fig. 7: Queue Delay with mix TCP and UDP traffic.

Functional verification: Mix TCP and UDP traffic

Fig. 8: Link Throughput with mix TCP and UDP

traffic.

Functional verification: CDF of Queue Delay

20 TCP flows and target delay = 5ms 20 TCP flows and target delay = 20ms

Fig. 9: CDF of Queuing Delay with 20 TCP flows.

Functional verification: CDF of Queue Delay

5 TCP + 2 UDP with target delay=5ms

5 TCP + 2 UDP with target delay=20ms

Fig. 10: CDF of Queuing Delay with 5 TCP and 2

UDP flows.

- A ns-3 model for PI² has been implemented and evaluated.
- Results obtained are compared to those of ns-3 PIE model.

Next Tasks:

- Extend PI² to work with Explicit Congestion Notification (ECN).
- Merge it into the main line of ns-3.
- Extend PI² in ns-3 for Scalable Congestion Control such as DCTCP.
- Compare PI² in ns-3 with PI² implementation in Linux.

Relation to the Future of Internet Transport

This work is inline with the ongoing research in the area of:

- DualQ Coupled AQM for Low Latency, Low Loss Scalable throughput.
- TCP Prague.

Acknowledgements

- To all the reviewers, for the highly effective reviews!
- Prof. Stein Gjessing for shepherding our paper.
- Workshop organizers for providing this opportunity.
- Trinity College Dublin, Ireland for providing financial assistance.

Thank you.