

INFORMATION TECHNOLOGY LABORATORY

Fragility Risks of Low Latency Dynamic Queuing in Large-Scale Clouds: Complex System Perspective

Vladimir Marbukh

FIT 2017

INFORMATION TECHNOLOGY LABORATORY

Outline

- Empirical observations & modeling perspectives
- Markov model and approximations of systemic risk
- Cloud models
- Gradual vs. abrupt instabilities
- Implications for Internet transport
- Conclusion, future research

Complex/Networked Systems: Empirical Observations

Inherent connectivity systemic benefit/risk tradeoff

Connectivity is economically driven (rich gets richer, economy of scale, risk sharing, etc.) Economics fail to address systemic risks of: (cyber)security, cascading failures, etc.

Conventional Risk Management: use historical data to extrapolate, i.e., "fight the last war".

Challenge: unexpected consequences due to

- *externalities* due to strategic selfish or malicious (cybersecurity, terrorism) components
- non-linear component interactions, randomness, e.g., stochastic resonance

Ultimate Goal: systemic risk/benefit control through combination of regulations/incentives

Markov Micro-description

Markov process with locally interacting components [R. Dobrushin, 1971]

Graph: nodes=components, (directed) links=interactions

Internal node dynamics $X_n(t)$ Markov process with transition rates dependent on internal states of neighbors

System microstate: $X(t) = (x_1(t), ..., x_N(t))$

Non-steady and steady probabilities $P(t, X) = \Pr(X(t) = X)$, $P(X) = \lim_{t \to \infty} P(t, X)$ are solutions to the corresponding Kolmogorov equations.

Kolmogorov system's dimension ~ exp(N) => solution intractable, metastability

In "very particular case" of time reversible Markov process, $P(X) \sim exp[U(X)]$ Local minima of potential U(X) = metastable states (Landau theory of phase transitions)

In a general case we use mean-field approximation based on "hypothesis of chaos propagation":

$$P(t,X) \approx \prod_{n=1}^{N} P(t,x_n)$$

Individual & Systemic Risks

Negative externalities:
$$\delta_{-n}^{1} \leq \delta_{-n}^{2} \Rightarrow E[\delta_{n} | \delta_{-n}^{1}] \leq E[\delta_{n} | \delta_{-n}^{2}]$$

where $\delta_{-n} = (\delta_{i}, i \neq n)$

Individual risk: $s_n = E[\delta_n \chi_n(\delta_{-n})]$

where $\chi_n(\delta_{-n}) = 0(1)$ depending whether Individual risk can (can't) be transferred to the neighboring components

Example:
$$S_n = E \left[\delta_n \prod_{i \in J_n} \delta_j \right]$$
 when $\chi_n(\delta_{-n}) = \prod_{i \in J_n} \delta_i$

Lorenz, J., Battiston, S., and Schweitzer, F. 2009

Systemic risk:
$$S = \left(\sum_{n} w_{n} s_{n}\right) / \left(\sum_{n} w_{n}\right)$$

Cloud: Operational Model

Server group j: operational with prob. $1 - f_{ai}$ non-operational with prob. f_i^j

Failures/recoveries on much slower time scale than job arrivals/departures

Static load balancing is possible if:

$$f_j = 0, \quad \rho_j = 1 - O(N_j^{-1/2 + \alpha})$$

where utilization is $\rho_i = \Lambda_i / (N_i c_i)$ and $\alpha \ge 0, N_i \rightarrow \infty$

Problems: $f_i > 0$, exogenous load uncertain, other uncertainties. Possible solution: dynamic load balancing based on dynamic utilization, e.g., numbers of occupied servers, queue sizes, etc.

Problem: serving non-native requests is less efficient: $C_{ii} < C_i$, $i \neq j$

and according to A.L. Stolyar and E. Yudovina (2013) this may cause instability of "natural" dynamic load balancing

Cloud: Markov Model

Failures/recoveries on much slower time scale than job arrivals/departures

$$\Omega(\omega) = \prod_{i=1}^{I} [f_i^{\omega_i} (1 - f_i)^{1 - \omega_i}], \quad \text{where}$$

 $\omega_i = 0, (1)$ if server group i is operational (non-operational)

Loss probability for class i jobs is:

$$L_{i}(\omega) = \left(1 - \alpha_{i} + \alpha_{i}E\left[\prod_{j \in J_{i}} \delta_{j} | \delta_{i} = 1, \omega\right]\right)E[\delta_{i} | \omega], \text{ where }$$

 $\delta_i = 0,1$ if server group i is, or respectively, is not available

 q_i probability that class i job is admitted to the native server group α_i probability that class i job attempts for non-native service if $\delta_i = 1$ J_i characterizes system topology

Markov description is intractable even for moderate size systems since it requires solving $\sim 2^{I+N+B}$ Kolmogorov equations for 2^{I} vectors (ω_i)

Cloud: Mean-field & Fluid Approximations $E\left[\prod_{i \in \{i\}} \delta_i | \omega\right] \approx \prod_{i \in \{i\}} \overline{\delta}_i(\omega_i), \quad \text{where}$

$$\begin{split} & \delta_i = 0, (1) \quad \text{if server group i has (does not have) available resources} \\ & \overline{\delta}_i(\omega_i) = \omega_i + (1 - \omega_i)\widetilde{\delta}_i, \qquad \widetilde{\delta}_i \approx \frac{\frac{(N_i \widetilde{\rho}_i)^{N_i + B_i}}{N_i! N_i^{B_j}}}{\sum\limits_{k=0}^{N_i} \frac{(N_i \widetilde{\rho}_i)^i}{k!} + \frac{(N_i \widetilde{\rho}_i)^{N_i}}{N_i!} \frac{1 - \widetilde{\rho}_i^{B_i + 1}}{1 - \widetilde{\rho}_i}} \end{split}$$

Informally: utilizations of different server group are jointly statistically independent and described by Erlang distribution with loads determined by self-consistency conditions, i.e., mean-field equations:

$$\widetilde{\delta}_i = \varphi_i(\widetilde{\delta}), \ i = 1,..,I$$

In a case of large server groups: $N_i + B_i \rightarrow \infty$, fluctuations are negligible: $\widetilde{\delta_i} = \max(0, 1-1/\widetilde{\rho_i})$, resulting in fluid approximation.

Symmetric Cloud: Loss Model

Revenue loss vs. exogenous load for different levels of resource sharing

Revenue loss vs. resource sharing level for medium exogenous load

Implications:

- for sufficiently low level of resource sharing no metastability
- as resource sharing level increases, metastability emerges
- performance in the "normal" ("congested") metastable state gets better (worse)
- economics drives system operator towards stability boundary

Symmetric Cloud: Queuing Model

Small service groups: discontinuity in queue size vs. exogenous load for sufficient level of resource sharing

Implications:

- for sufficiently low level of resource sharing no discontinuous instability
- as resource sharing level increases, discontinuous instability emerges
- performance in the "normal" ("congested") metastable state gets better (worse)
- economics drives system operator towards stability boundary

Resource Sharing Drivers

Generic: economy of scale Specific: multiplexing gain due to mitigating local imbalances

We propose to quantify benefits of resource sharing by operational region increase

Inefficiency of accommodating component i's individual risk/load by component j

$$\chi_{ij} > \chi_{ii} = 1, \ i \neq j$$

System operational region without: risk sharing OAEBO:

$\rho_i \leq 1$

System operational region with complete risk sharing OACEDBO:

 $\rho_i + \chi_{ji} (C_j / C_i) [\rho_j - 1]^+ \leq 1$

where: $[x]^+ := \max(0, x)$

Operational Region Boundary: Gradual/Abrupt Instability

High level of resource sharing

Thesis: since instabilities are unavoidable due to exogenous demand variability, hardware break downs, etc., systemic risk management should favor gradual rather than abrupt instability on the boundary of the operational region.

Motivation:

- Gradual instabilities may be signaled by critical slowdown, anomalous fluctuations, etc. [M. Scheffer, et al., Early-warning signals for critical transitions, *Nature*, 2009].
- Abrupt/discontinuous instabilities may cause unacceptably high performance deterioration as system gets outside operational region.
- Abrupt/discontinuous instabilities are typically associated with undesirable metastable states inside operational region.

Perron-Frobenius Measure of Systemic Risk

Mean-field equations: $\widetilde{\delta}_i = \varphi_i(\widetilde{\delta}), \ i = 1,..,N$

Key features of these equations linearized about "normal" equilibrium:

have a form of fixed-point system

• inside operational region have low systemic risk (normal) solution: $S \approx 0$

• non-negative due to negative externalities: local overload overflows to neighboring components.

Since "normal" equilibrium loses stability as **Perron-Frobenius eigenvalue** of the linearized system $\delta = A\delta$ crosses point $\gamma(A) = 1$ from below, **system stability margin and risk of cascading overload can be quantified** by

$$\Delta(A) = 1 - \gamma(A)$$

In particular, condition of gradual instability on the boundary of operational region in terms of Perron-Frobenius eigenvalue of the linearized mean-field system under fluid approximation just outside operational region:

$$\gamma(A) < 1 \iff \Delta(A) > 0$$

This in effect condition that the **boundary** of operational region is "safe."

NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Feasible and Safe Parameter Regions

Performance loss vs. resource sharing.

Feasible and safe regions.

Revenue loss at the operational regime boundary: $L = [\gamma L + bL^2 + cL^3]^+$

Feasible parameter region: $F = \{ \alpha : \gamma(\alpha) < 1 \}$

Safe parameter region: $F_* = \{ \alpha : \gamma(\alpha) < 1, b(\alpha) < 0 \}$

Systemic risk of abrupt/discontinuous instability: $R := 1 - \Pr(\gamma < 1, b < 0)$

Effect of Bounded Rationality

Consider bounded rationality due to uncertain exogenous demand ~
ho

- $F := F_1 \bigcup F_2$: operational equilibrium $\widetilde{\delta} = 0$ stable
- $F_1\left(F_2
 ight)$: operational equilibrium $\widetilde{\delta}=0$ globally (locally) stable

- $F^{\,c}$: operational equilibrium $\widetilde{\mathcal{S}}=0$ unstable

Implication: bounded rationality may increase global stability region (C)

Implications for Internet Transport: TCP + Congestion-aware Routing => Instability

P. Echenique, J. Gomez-Gardenes, and Y. Moreno, "Dynamics of jamming transitions in complex networks," 2004.

h=1: congestion oblivious (minimum hop count) routing h=0: congestion aware routing

Minimum-cost routing Route cost:

$$C_i = hd_i + (1-h)q_i$$

- d_i # hops from node i to the destination
- q_i queue length at node i

Congestion-aware routing *robust* to small *yet fragile* to large-scale congestion **Benefit**: lower network congestion for medium exogenous load from A1 to A2 **Risk**: hard/severe network overload (discontinuous phase transition) at A2 Economics drives system to the stability boundary A2.

User Defined Routing: Braess Paradox

Braess paradox, (1969): infrastructure expansion/redundancy may do harm

4000 selfish travelers choose minimum cost/delay route Without link AB: Delay=2000/100+45=65

After adding link AB: Delay=4000/100+4000/100=80

Price of Anarchy (PoA) = 80/65

Externalities depend on m: m=0, no externalities, PoA=1 m>0: negative externalities, PoA>1

Upper bound for PoA independent of network topology (T. Roughgargen, 2002) m=1: PoA ~ 1.333

m=2: PoA ~ 1.626 m=3: PoA ~ 1.896

m: PoA ~ m/ln(m)

Randomness may cause abrupt deterioration of user defined routing performance due to discontinuous instability (word of caution for SDN)

Congestion-aware Routing: Analytical Modeling

Arriving request is routed directly if possible, otherwise an available 2-link transit route. Performance: request loss rate *L*.

Risk amplification: load increase \rightarrow more transit routes \rightarrow load increase ... Result: cascading overload

Mitigation technique: trunk reservation

Initial results: randomness may cause abrupt instability for TCP with congestion-aware routing and Multi-Path TCP, fairness mitigates

Conclusions & Future Research

Conclusions:

- Since systemic instabilities are unavoidable, system designers/ operators should avoid abrupt in favor of gradual systemic instabilities
- Existence of inherent tradeoff between economic efficiency under normal conditions and risks of cascading overload/failure resulting in abrupt transition to persistent undesirable state.
- Due to negative externalities, operational equilibrium loses stability in a single dimension determined by the P-F eigenvector, and stability margin is determined by the P-F eigenvalue.

Future research:

- Verification/validation mean-field approximation through simulations, measurements and rigorous analysis (doubtful).
- Possibility of online measurement of the P-F eigenvalue as a basis for "early warning system."
- Possibility of controlling Networked Systems through a combination of regulations and pricing, based on the P-F eigenvalue.

INFORMATION TECHNOLOGY LABORATORY

Thank you!