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Outline

• Empirical observations & modeling perspectives

• Markov model and approximations of systemic risk

• Cloud models

• Gradual vs. abrupt instabilities 
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Complex/Networked Systems: Empirical Observations

Inherent connectivity systemic benefit/risk tradeoff 
Connectivity is economically driven (rich gets richer, economy of scale, risk sharing, etc.)
Economics fail to address systemic risks of: (cyber)security, cascading failures, etc. 

Conventional Risk Management: use historical data to extrapolate, i.e., “fight the last war”.

Challenge: unexpected consequences due to
- externalities due to strategic selfish or malicious (cybersecurity, terrorism) components
- non-linear component interactions, randomness, e.g., stochastic resonance

Ultimate Goal: systemic risk/benefit control through combination of regulations/incentives
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Markov Micro-description   
Markov process with locally interacting components [R. Dobrushin, 1971]

Internal node dynamics               Markov process with 
transition rates dependent on internal states of neighbors  

Graph: nodes=components, (directed) links=interactions 

Non-steady and steady probabilities
are solutions to the corresponding Kolmogorov equations. 

System microstate: ))(),..,(()( 1 txtxtX N 
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Kolmogorov system’s dimension ~ exp(N) => solution intractable, metastability 

In “very particular case” of time reversible Markov process, P(X) ~ exp[U(X)]
Local minima of potential U(X) = metastable states (Landau theory of phase transitions) 

In a general case we use mean-field approximation 
based on “hypothesis of chaos propagation”: �
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Individual & Systemic Risks   

Negative externalities:

Undesirable states Desirable states 
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https://en.wikipedia.org/wiki/File:BD-proces.png


6

Cloud: Operational Model 

jicc iij z� ,

Problems:               exogenous load uncertain, other uncertainties. 
Possible solution: dynamic load balancing based on dynamic utilization, 
e.g., numbers of occupied servers, queue sizes, etc.
Problem: serving non-native requests is less efficient: 

)( jjjj cN/ Uwhere utilization is

Static load balancing is possible if:

)(1 21 DU ��� jj NO

and according to A.L. Stolyar and E. Yudovina (2013) this may cause 
instability of “natural” dynamic load balancing 

Server group   :
operational with prob.
non-operational with prob.
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Cloud: Markov Model

if server group i is operational (non-operational))1(,0 iZ

1,0 iG if server group i is, or respectively, is not available
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Failures/recoveries on much slower time scale than job arrivals/departures

Loss probability for class i jobs is:

where

iq probability that class i job is admitted to the native server group

iD probability that class i job attempts for non-native service if 1 iG
characterizes system topology iJ
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Markov description is intractable even for moderate size systems since it 
requires solving ~             Kolmogorov equations for        vectors I2 )( iZ
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Cloud: Mean-field & Fluid Approximations
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)1(,0 iG if server group i has (does not have) available resources
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where

Informally: utilizations of different server group are jointly statistically 
independent and described by Erlang distribution with loads determined 
by self-consistency conditions, i.e., mean-field equations:

In a case of large server groups:                         , fluctuations are negligible:
, resulting in fluid approximation.    
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Implications:
• for sufficiently low level of resource sharing – no metastability         
• as resource sharing level increases, metastability emerges
• performance in the “normal” (“congested”) metastable state gets better (worse) 
• economics drives system operator towards stability boundary 

Symmetric Cloud: Loss Model
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Implications:
• for sufficiently low level of resource sharing – no discontinuous instability         
• as resource sharing level increases, discontinuous instability emerges
• performance in the “normal” (“congested”) metastable state gets better (worse) 
• economics drives system operator towards stability boundary 

Symmetric Cloud: Queuing Model

Small service groups: discontinuity in 
queue size vs. exogenous load for 
sufficient level of resource sharing

Large service groups: discontinuity & 
metastability in queue size vs. exogenous 
load for sufficient resource sharing 
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Resource Sharing Drivers

Inefficiency of accommodating component i’s individual risk/load by component j 
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System operational region without:
risk sharing OAEBO:

System operational region with 
complete risk sharing OACEDBO: 

where: 

Generic: economy of scale
Specific: multiplexing gain due to mitigating local imbalances

We propose to quantify benefits of resource sharing by operational region increase 
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Operational Region Boundary: Gradual/Abrupt Instability 

Motivation:
- Gradual instabilities may be signaled by critical slowdown, anomalous fluctuations, etc. 

[M. Scheffer, et al., Early-warning signals for critical transitions, Nature, 2009].
- Abrupt/discontinuous instabilities may cause unacceptably high performance 

deterioration as system gets outside operational region.
- Abrupt/discontinuous instabilities are typically associated with undesirable metastable 

states inside operational region.

Thesis: since instabilities are unavoidable due to exogenous demand variability, 
hardware break downs, etc., systemic risk management should favor gradual rather than 
abrupt instability on the boundary of the operational region.

Loss system under fluid approximation with risk amplification 
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Since “normal” equilibrium loses stability as Perron-Frobenius eigenvalue of 
the linearized system                  crosses point                    from below, system 
stability margin and risk of cascading overload can be quantified by

Perron-Frobenius Measure of Systemic Risk

Key features of these equations linearized about “normal” equilibrium: 
• have a form of fixed-point system
• inside operational region have low systemic risk (normal) solution:
• non-negative due to negative externalities: local overload overflows to 
neighboring components.
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This in effect condition that the boundary of operational region is “safe.”
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In particular, condition of gradual instability on the boundary of operational 
region in terms of Perron-Frobenius eigenvalue of the linearized mean-field 
system under fluid approximation just outside operational region:
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Feasible and Safe Parameter Regions
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Effect of Bounded Rationality 
Consider bounded rationality due to uncertain exogenous demand
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Implications for Internet Transport: TCP + 
Congestion-aware Routing => Instability   

Congestion-aware routing robust to small yet fragile to large-scale congestion 
Benefit: lower network congestion for medium exogenous load from A1 to A2
Risk: hard/severe network overload (discontinuous phase transition) at A2
Economics drives system to the stability boundary A2.
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P. Echenique, J. Gomez-Gardenes, and Y. Moreno, “Dynamics of jamming transitions in complex networks,” 2004.

h=1: congestion oblivious 
(minimum hop  count) routing
h=0: congestion aware routing

Minimum-cost routing
Route cost:

iii qhhdC )1( �� 
# hops from node i to 
the destination
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User Defined Routing: Braess Paradox
Braess paradox, (1969): infrastructure expansion/redundancy may do harm

Price of Anarchy (PoA) = 80/65

4000 selfish travelers choose 
minimum cost/delay route
Without link AB:
Delay=2000/100+45=65

After adding link AB:
Delay=4000/100+4000/100=80

Link load

Link cost
mxC ~

Externalities depend on m:
m=0, no externalities, PoA=1
m>0: negative externalities, PoA>1  

Upper bound for PoA independent of 
network topology (T. Roughgargen, 2002)
m=1:  PoA  ~  1.333
m=2:  PoA  ~  1.626
m=3:  PoA  ~  1.896
m:     PoA ~ m/ln(m)

Randomness may cause abrupt deterioration of user defined routing  
performance due to discontinuous instability (word of caution for SDN) 
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Congestion-aware Routing: Analytical Modeling   

Mean-field approximation:

Arriving request is routed directly if possible, 
otherwise an available 2-link transit route.  
Performance: request loss rate L.
Risk amplification: load increase Æ more transit 
routes Æ load increase ..  Result: cascading overload

Simulation [F. Kelly, 2010]
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Mitigation technique: trunk reservation

Initial results: randomness may cause abrupt instability for TCP with 
congestion-aware routing and Multi-Path TCP, fairness mitigates
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Conclusions & Future Research
Conclusions:
• Since systemic instabilities are unavoidable, system designers/ 

operators should avoid abrupt in favor of gradual systemic instabilities
• Existence of inherent tradeoff between economic efficiency under 

normal conditions and risks of cascading overload/failure resulting in 
abrupt transition to persistent undesirable state.

• Due to negative externalities, operational equilibrium loses stability in 
a single dimension determined by the P-F eigenvector, and stability 
margin is determined by the P-F eigenvalue.

Future research:
• Verification/validation mean-field approximation through simulations, 

measurements and rigorous analysis (doubtful).
• Possibility of online measurement of the P-F eigenvalue as a basis 

for “early warning system.”
• Possibility of controlling Networked Systems through a combination of 

regulations and pricing, based on the P-F eigenvalue.
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Thank you!


